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1. Introduction

Let R be a unital commutative ring and G be a finite group. The notion of Mackey 
functor was introduced by Green in 1971. For him a Mackey functor is an axiomatiza-
tion of the comportment of the representations of a finite group. There are now several 
possible definitions of Mackey functors. In this paper we use the point of view of Dress 
who defined the Mackey functors as particular bivariant functors and we use the Mackey 
algebra introduced by Thévenaz and Webb. In [15] they proved that a Mackey functor 
is nothing but a module over the so-called Mackey algebra. Numerous properties of this 
algebra are known: this algebra shares a lot of properties with the group algebra. For 
example, the Mackey algebra is a free R-module, and its R-rank doesn’t depend on the 
ring R. If we work with a p-modular system which is “large enough”, there is a decompo-
sition theory, in particular the Cartan matrix of this algebra is symmetric. However there 
are some differences, over a field of characteristic p > 0, where p | |G|, the determinant of 
the Cartan matrix is not a power of the prime number p in general, and as shown in [15]
the Mackey algebra is seldom a self-injective algebra. One may wonder about a stronger 
property for the Mackey algebra: when is the Mackey algebra a symmetric algebra? The 
answer to this question depends on the ring R.

When R is a field of characteristic 0 or coprime to |G|, the Mackey algebra is semi-
simple (see Theorem 9.1 of [16]), so it is clearly a symmetric algebra. Over a field of 
characteristic p > 0 which is “large enough”, where p | |G|, then Jacques Thévenaz and 
Peter Webb proved that the so-called p-local Mackey algebra (see Section 2 of [2]) is self-
injective if and only if the Sylow p-subgroups of G are of order p (Theorem 19.2 of [15]). 
However, in the same article, they proved that the p-local Mackey algebra is a product of 
matrix algebras and Brauer tree algebras (Theorem 20.2 of [15]). Since a Brauer tree al-
gebra is derived equivalent to a symmetric Nakayama algebra, then by [13] or, for a more 
general result [18], all Brauer tree algebras are symmetric algebras. So the p-local Mackey 
algebra over a field of characteristic p is symmetric if and only if the Sylow p-subgroups 
are of order 1 or p. Now the Mackey algebra of the group G is Morita equivalent to 
a direct product of p-local Mackey algebras for some sub-quotients of the group G [15, 
Theorem 10.1], so if p2 � |G|, the Mackey algebra of G is symmetric. However, if (K, O, k)
is a p-modular system for the group G, it is not so clear that the previous argument can 
be used for the valuation ring O. In particular the Mackey algebras over the valuation 
rings are rather complicate objects (see Section 6.3 of [14]).

An R-algebra is a symmetric algebra if it is a projective R-module and if there exists 
a non-degenerate symmetric, associative bilinear form on this algebra. Such a bilinear 
form is called a symmetrizing form for the algebra. One may think that the previous 
argument for the symmetry of the Mackey algebra is somewhat elaborate for something 
as elementary as the existence of a bilinear form on this algebra. However, for the Mackey 
algebra it is not obvious to specify such a bilinear form even in the semi-simple case.

In this paper we propose a systematic approach to this question: by using the so-called 
Burnside Trace, introduced by Serge Bouc (Section 2 of [4]), we reduce the question of the 
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existence of such a bilinear form on the Mackey algebra to the question of the existence 
of a family of symmetric, associative, non-degenerate bilinear forms on Burnside algebras 
with an extra property. Here we denote by RB(H) the usual Burnside algebra of the 
group H.

Definition A. Let G be a finite group and R be a commutative ring. Let φ = (φH)H�G

be a family such that φH is a linear form on RB(H). Let bφH
be the bilinear form on 

RB(H) defined by bφH
(X, Y ) := φH(XY ) for X, Y ∈ RB(H).

1. The family φ is stable by induction if for every H subgroup of G and finite H-set X
we have φG(IndG

H(X)) = φH(X).
2. The family (RB(H))H�G is a compatible family of symmetric algebras if there exists 

a stable by induction family of linear forms φ = (φH)H�G such that the bilinear 
form bφH

on RB(H) is non-degenerate for all H � G.

The main result of the paper is the following theorem:

Theorem B. Let G be a finite group and R be a commutative ring. Then the Mackey 
algebra μR(G) is a symmetric algebra if and only if (RB(H))H�G is a compatible family 
of symmetric algebras.

As a corollary, we produce various symmetric associative bilinear forms on the Mackey 
algebra which generalize the usual symmetrizing form for the group algebra. Using these 
forms we give direct and elementary proof for the symmetry of the Mackey algebras in 
the following cases:

• Over the ring of integers Z, the Mackey algebra of a finite group G is symmetric if 
and only if the order of G is square-free.

• Over a field k of characteristic 0, the Mackey algebra of G is symmetric.
• Over a field k of characteristic p > 0, the Mackey algebra of G is symmetric if and 

only if p2 � |G|.
• Let p be a prime number such that p | |G|. Let R be a ring in which all prime divisors 

of |G|, except p, are invertible. Then the Mackey algebra μR(G) is symmetric if and 
only if p2 � |G|. In particular, if (K, O, k) is a p-modular system for G, then the 
Mackey algebras μk(G) and μO(G) are symmetric if and only if p2 � |G|.

Notations 1.1. We use the following notations:

• Let G be a finite group. Then [s(G)] denotes a set of representatives of the conjugacy 
classes of subgroups of G.

• If A is a Grothendieck group, we still denote by X the isomorphism class of X in A.
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• All the G-sets are supposed to be finite. We denote by G-set the category of finite 
G-sets.

• Let p be a prime number. Then Op(G) is the smallest normal subgroup of G such 
that G/Op(G) is a p-group. A finite group G is p-perfect if Op(G) = G.

• Let H and K be two subgroups of G. We use the notation H =G K if H and K are 
conjugate in G.

2. Preliminaries

2.1. Symmetric algebras

Let R be a commutative ring with unity.

Definition 2.1. (See [5, Definition 2.3].) Let A be an R-algebra. Then A is a symmetric 
algebra if:

1. A is a finitely generated projective R-module.
2. There exists a non-degenerate, associative, symmetric bilinear form b on A. That is 

a bilinear form b such that:
• For x, y, z ∈ A we have b(xy, z) = b(x, yz).
• For x and y in A, we have b(x, y) = b(y, x).
• The map from A to HomR(A, R) defined by x �→ b(x, −) is an isomorphism of 

R-modules.

In this case, the bilinear form b is called a symmetrizing form for A.

Remark 2.2. Let A be an R-algebra which is a finitely generated projective R-module. 
Then A is a symmetric algebra if and only if A is isomorphic to HomR(A, R) as 
A–A-bimodule.

We have the following elementary but useful result:

Lemma 2.3. Let A be an R-algebra which is free of finite rank over R. Let b be a bilinear 
form on A. Let e := (e1, · · · , en) be an R-basis of A. Then b is non-degenerate if and 
only if the matrix of b in the basis e is invertible.

Proof. Lemma 2.2 of [12]. �
2.2. Mackey functors

There are several possible definitions for the notion of Mackey functor for G over R. 
In this paper we use two of them. The first definition is due to Dress in [7].
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Definition 2.4. A bivariant functor M = (M∗, M∗) from G-set to R-Mod is a pair of func-
tors from G-set to R-Mod such that M∗ is a contravariant functor, and M∗ is a covariant 
functor. If X is a G-set, then the images by the covariant and by the contravariant part 
coincide. We denote this image by M(X). A Mackey functor for G over R is a bivariant 
functor from G-set to R-Mod such that:

• Let X and Y be two finite G-sets. Let iX and iY be the canonical injections of X and 
Y in X�Y . Then (M∗(iX), M∗(iY )) and (M∗(iX), M∗(iY )) are inverse isomorphisms

M(X) ⊕M(Y ) ∼= M(X � Y ).

• If

X
a

b

Y

c

Z
d

T

is a pullback diagram of G-sets, then the diagram

M(X)

M∗(b)

M(Y )
M∗(a)

M∗(c)

M(Z) M(T )
M∗(d)

is commutative.

A morphism between two Mackey functors is a natural transformation of bivariant 
functors. Let us denote by MackR(G) the category of Mackey functors for G over R. Let 
us first recall an important example of Mackey functor:

Example 2.5. (See Proposition 2.4.2 of [1].) If X is a finite G-set, then the category of 
G-sets over X is the category with objects (Y, φ) where Y is a finite G-set and φ is a 
morphism from Y to X. A morphism f from (Y, φ) to (Z, ψ) is a morphism of G-sets 
f : Y → Z such that ψ ◦ f = φ.

The Burnside functor at X is the Grothendieck group of the category of G-sets over X, 
where the addition is given by disjoint union. This is a Mackey functor for G over R by 
extending scalars from Z to R. We denote by RB the functor after scalar extension.

If X is a G-set, the Burnside module RB(X2) has an R-algebra structure. The product 
of (the isomorphism classes of) (X α← Y

β→ X) and (X γ← Z
δ→ X) is given by (the 

isomorphism class of) the pullback along β and γ.
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P

Y

α β

Z
γ δ

X X X

The identity of this R-algebra is (the isomorphism class of)

X

X X

Remark 2.6. The usual Burnside algebra of a finite group H, previously denoted by 
RB(H) is isomorphic to the value of the Burnside functor at the H-set H/H. In the 
Mackey functors’ language the first notation corresponds to Green’s notation and the 
second one corresponds to Dress’ notation. In the rest of the paper the notation RB(H)
will always be used for the usual Burnside algebra of the group H. If we want to speak 
about the Burnside functor evaluated at the H-set H/1, we will write RB(H/1).

Another definition of Mackey functors was given by Thévenaz and Webb in Section 2
of [15].

Definition 2.7. The Mackey algebra μR(G) for G over R is the unital associative algebra 
with generators tKH , rKH and cg,H for H � K � G and g ∈ G, with the following relations:

•
∑

H�G tHH = 1μR(G).
• tHH = rHH = ch,H for H � G and h ∈ H.
• tLKtKH = tLH , rKH rLK = rLH for H � K � L.
• cg′,gHcg,H = cg′g,H , for H � G and g, g′ ∈ G.
• t

gK
gHcg,H = cg,KtKH and r

gK
gH cg,K = cg,HrKH , H � K, g ∈ G.

• rHL tHK =
∑

h∈[L\H/K] t
L
L∩hKch,Lh∩HrKLh∩H for L � H � K.

• All the other products of generators are zero.

Proposition 2.8. The Mackey algebra is a free R-module, of finite rank independent of R. 
The set of elements tHKxrLKx , where H and L are subgroups of G, where x ∈ [H\G/L], 
and K is a subgroup of H∩xL up to (H ∩ xL)-conjugacy, is an R-basis of μR(G).

Proof. Section 3 of [15]. Here and in the rest of the paper, we use the notation tHKxrLKx

as a useful abbreviation for the product of generators tHKcx,KxrLKx . �
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Proposition 2.9. The Mackey algebra μR(G) is isomorphic to RB(Ω2
G), where ΩG is the 

G-set: �L�G G/L.

Proof. The proof can be found in Proposition 4.5.1 of [1]. Let us recall that an explicit 
isomorphism β can be defined on the generators of μR(G) by

β
(
tKH

)
:=

G/H
πK
H

G/K G/H

where πK
H : G/H → G/K is the map which takes gH to gK.

Similarly, we define

β
(
rKH

)
:=

G/H
πK
H

G/H G/K

and

β(cg,H) :=

G/gH
γg,H

G/gH G/H

where γg,H(xgH) = xgH. One can check that this gives an isomorphism of algebras. �
Remark 2.10. It should be noticed that the interpretation of Mackey functors with spans 
goes back to Lindner [10].

Proposition 2.11. (See Proposition 3.1 of [15].) There is an equivalence of categories

MackR(G) ∼= μR(G)-Mod.

3. Proof of the main theorem

There is a tensor product in the category of Mackey functors (see Section 1.3 to 
Section 1.6 of [1], e.g.). With this tensor product, the category is a closed symmetric 
monoidal category with the Burnside functor as unit. So, using the formalism of May 
(Sections 2 and 4 of [11]) where the dualizable Mackey functors are exactly the finitely 
generated projective Mackey functors, Bouc has defined the notion of Burnside dimension 
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and Burnside trace for these Mackey functors (Section 2 of [4]). Let M be a finitely 
generated projective Mackey functor. The Burnside trace, denoted by Btr is a map 
from EndMackR(G)(M) to RB(G). Let RBX be the Dress construction of the Burnside 
functor at the finite G-set X (see [7] or Section 1.2 of [1]). It is well known that RBX

is a finitely generated projective Mackey functor. By an adjunction property, we have 
an isomorphism of R-algebras EndMackR(G)(RBX) ∼= RB(X2) where the product in this 
ring is defined as in Example 2.5. Using these identifications, the Burnside trace on this 
Mackey functor is in fact a map from RB(X2) to RB(G). Here we use Green’s notation 
for RB(G).

Proposition 3.1. Let X and Z be finite G-sets, let a and b be two maps of G-sets from Z
to X. Let

f =

Z

b a

X X

∈ RB(X ×X)

The Burnside trace Btr : RB(X2) → RB(G) is defined on f by:

Btr(f) :=
{
z ∈ Z

∣∣ a(z) = b(z)
}
∈ RB(G).

Proof. Corollary 2.7 of [4]. �
By composing the Burnside trace by any R-linear map RB(G) → R we have a linear 

form on RB(X2).

Remark 3.2. Let R be a commutative ring. Let f be any linear form on RB(G) such 
that f(G/1) = 1. The map f ◦Btr generalizes the usual symmetrizing form for the group 
algebra RG in the following way. The Burnside algebra RB(G/1 × G/1) is isomorphic 
to RG. The isomorphism is defined as follows: a transitive G-set over G/1 × G/1 is 
isomorphic to

Sg =

G/1
g

G/1 G/1

,

for some g ∈ G. The element Sg is sent to g ∈ RG. Now, the Burnside trace of the 
element Sg is δg,1G/1. Via the previous isomorphism, the map (g1, g2) �→ f ◦Btr(g1 · g2)
is equal to the usual symmetrizing form on RG.
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Using the fact that the Mackey algebra μR(G) is isomorphic to RB(Ω2
G), the Burnside 

trace gives a linear map from μR(G) to RB(G). Using Proposition 2.9 we have as an 
immediate corollary:

Corollary 3.3. The Burnside trace Btr on the Mackey algebra is defined on a basis ele-
ment by

Btr
(
tKHxrLHx

)
=

{
G/H if K = L and x ∈ L,

0 otherwise.

Lemma 3.4. Let tHKxrLKx and tLQyr
H
Qy be two basis elements of μR(G). Then

Btr
(
tHKxrLKxtLQyr

H
Qy

)
=

∑
α∈[Kx\L/Q]

δxαy,HG/
(
K ∩ xαQ

)
,

where δxαy,H = 1 if xαy ∈ H and 0 otherwise.

Proof. This follows from the computation of the product tHKxrLKxtLQyr
H
Qy by using the 

Mackey formula:

Btr
(
tHKxrLKxtLQyr

H
Qy

)
=

∑
α∈[Kx\L/Q]

Btr
(
tHK∩xαQxαyr

H
Qy∩Kxαy

)
. �

Let us denote by (−,−)B the bilinear map μR(G) × μR(G) → RB(G) defined by

(x, y)B := Btr(xy) for x, y ∈ μR(G).

To order the basis of Proposition 2.8, we first choose an arbitrary order on the pairs of 
subgroups of G. Then for a fixed pair (H, L) of subgroups of G, we choose an arbitrary 
order on the set of representatives of the double cosets [H\G/L]. And for a fixed repre-
sentative HxL of a double coset we choose an arbitrary order on the set of the conjugacy 
classes of subgroups H ∩ xL.

Lemma 3.5. In the basis of Proposition 2.8 the matrix M of the bilinear form (−,−)B is 
a permutation by block matrix. The possibly non-zero blocks can be labeled by (H, L, x, y)
where H and L are subgroups of G. The element x is a representative of a double coset 
H\G/L and y is a representative of L\G/H such that HxL = Hy−1L.

Proof. In the basis of Proposition 2.8, it is easy to see that the matrix M of (−,−)B is 
a block matrix, where the blocks are indexed by two pairs of subgroups of G. Indeed the 
block matrix indexed by (H, L) and (M, N) is the sub-matrix of M where the columns 
are indexed by the basis elements of the form tHKxrLKx and the lines are indexed by 
the basis elements of the form tMP yrNPy . Now the product tHKxrLKxtMP yrNPy is zero unless 
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L = M and Btr(tHKxrLKxtMP yrNPy ) = 0 unless H = N . So the non-zero blocks are exactly 
the blocks indexed by the pairs of subgroups (H, L) and (L, H).

Let Bl be the block of M indexed by (H, L) and (L, H). Then, the matrix Bl is again a 
block matrix where the blocks are indexed by elements x ∈ [H\G/L] and y ∈ [L\G/H]. 
Let us denote by BlH,L,x,y the corresponding block.

If HxL �= Hy−1L then BlH,L,x,y = 0. Indeed if the restriction of (−,−)B to the 
block BlH,L,x,y is non-zero, then there are subgroups K � H ∩ xL and Q � L ∩ yH

and an element α ∈ [Kx\L/Q] such that xαy ∈ H. Then there exists h ∈ H such that 
x = hy−1α−1, so we have HxL = Hy−1L. �
Notations 3.6. Let φG be a linear map from RB(G) to R.

• We denote by trφG
the composite φG ◦ Btr : μR(G) → R.

• We denote by (−,−)φG
the bilinear form on μR(G) defined by (x, y)φG

= trφG
(xy), 

for x, y ∈ μR(G).
• We denote by bφG

the bilinear form on RB(G) defined by bφG
(X, Y ) := φG(XY ).

Lemma 3.7. Let φG be a linear form on RB(G). Then, the map trφ is a central linear 
form on the Mackey algebra μR(G).

Proof. Let us recall that a linear form φ on an R-algebra A is central if φ(a · b) = φ(b ·a)
for every a, b ∈ A. Now it is easy to check that the Burnside trace has the following 
property:

Btr
(
(X α← Y

β→ X) · (X γ← Z
δ→ X)

)
= Btr

(
(X γ← Z

δ→ X) · (X α← Y
β→ X)

)
.

The result follows. �
Definition 3.8. Let G be a finite group and φ = (φH)H�G be a family such that φH is a 
linear form on RB(H). The family φ is stable by induction if for every H subgroup of G
and finite H-set X we have φG(IndG

H(X)) = φH(X).

Lemma 3.9. Let φ = (φH)H�G be a stable by induction family of linear forms on 
(RB(H))H�G. In the usual basis of μR(G), the matrix of (−,−)φG

is a permutation by 
block matrix. A non-zero block indexed by (H, L, x, y) of this matrix is equal, up to per-
mutation of the lines and the columns, to the block (Θ, Θ, 1, 1) of the matrix of (−,−)φΘ

for Θ = L ∩Hx.

Proof. Let BlH,L,x,y be a non-zero block of the matrix of trφG
. That is H and L are 

subgroups of G, the element x is a representative of the double coset H\G/L and the 
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element y is a representative of L\G/H. Since the block is non-zero, the double cosets 
HxL and Hy−1L are equal. Let us choose h ∈ H and l ∈ L such that

y = lx−1h.

Now the basis elements which appear for this block are: for the lines tHKxRL
Kx for

K � H ∩ xL up to conjugacy in H ∩ xL, and for the columns tLQyRH
Qy where Q � L ∩ yH

up to conjugacy in L ∩ yH. By Lemma 3.4, the entry indexed by these two elements is:
∑

α∈[Kx\L/Q]

δxαy,HφG

(
G/

(
K ∩ xαQ

))
.

Lemma 3.10. The map f defined by f(α) = αl induces a bijection between the set
{
α ∈

[
Kx\L/Q

]
; xαy ∈ H

}
,

and the set
{
w ∈

[
Kx\L ∩Hx/Ql

]}
.

Proof.

• Let α ∈ L such that xαy ∈ H. Since y = lx−1h we have:

xαy ∈ H ⇔ xαlx−1h ∈ H

⇔ αl ∈ Hx,

so αl ∈ L ∩Hx.
• The map f is well defined: if α and α′ are in the same double coset, there are k ∈ K

and q ∈ Q such that α′ = x−1kxαq, and

f
(
α′) = x−1kxαql = x−1kxαll−1ql,

so f(α) and f(α′) are in the same double coset.
• The map f is injective: if f(α) = f(α′) then there are k ∈ K and q ∈ Q such that 

αl = x−1kxα′ll−1ql = x−1kxα′ql, so α and α′ are in the same double coset.
• The map f is surjective: let w ∈ L ∩Hx, then wl−1 ∈ L and f(wl−1) = w. �

So, we have:

trφG

(
tHKxRL

KxtLQyR
H
Qy

)
=

∑
α∈[Kx\L/Q]

δxαy,HφG

(
G/

(
K ∩ xαQ

))

=
∑

x x l

φG

(
G/

(
K ∩ xw

(
Ql

)))

w∈[K \L∩H /Q ]
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=
∑

w∈[Kx\L∩Hx/Ql]

φG

(
G/

(
Kx ∩ w

(
Ql

)))

=
∑

w∈[Kx\L∩Hx/Ql]

φG

(
IndG

L∩Hx

((
L ∩Hx

)
/
(
Kx ∩ w

(
Ql

))))

=
∑

w∈[Kx\L∩Hx/Ql]

φL∩Hx

((
L ∩Hx

)
/
(
Kx ∩ w

(
Ql

)))
.

Let Θ = L ∩ xH. The basis elements which appear for the block BlΘ,Θ,1,1 of the matrix 
of φΘ are the tΘAr

Θ
A for A � Θ up to conjugacy. Let A and B be subgroups of Θ, the 

entry corresponding to tΘAr
Θ
A and tΘBr

Θ
B is:

∑
w∈[A\Θ/B]

φΘ

(
Θ/A ∩ wB

)
.

So the blocks BH,L,x,y and BΘ,Θ,1,1 are equal up to permutation of the lines and the 
columns. In particular, these two matrices have the same determinant, up to a sign. �
Lemma 3.11. Let Θ be a finite group, and μ′

R(Θ) be the sub-algebra of μR(Θ) generated 
by the elements of the form tΘAr

Θ
A for A � Θ. Then the restriction of the Burnside trace 

to μ′
R(Θ) is an isomorphism of R-algebras between μ′

R(Θ) and RB(Θ), sending the basis 
of Proposition 2.8 to the usual basis of RB(Θ) consisting of isomorphism classes of 
transitive G-sets.

Proof. It is clear that the restriction of the Burnside trace to μ′
R(Θ) is an R-linear 

isomorphism since we have Btr(tΘArΘA) = Θ/A ∈ RB(Θ). Moreover this is an isomorphism 
of algebras, since:

Btr
(
tΘAr

Θ
At

Θ
Br

Θ
B

)
=

∑
θ∈[A\Θ/B]

Θ/
(
A ∩ θB

)
= Θ/A×Θ/B ∈ RB(Θ). �

In conclusion, we have the following theorem.

Theorem 3.12. Let G be a finite group. Let φ = (φH)H�G be a stable by induction family 
of linear forms on (RB(H))H�G. Then the bilinear form (−,−)φG

on the Mackey algebra 
μR(G) is non-degenerate if and only if the bilinear form bφH

on RB(H) is non-degenerate 
for every H subgroup of G.

Proof. If φ is such a family of linear forms, by Lemma 3.5 the matrix of the bilinear 
form (−,−)φG

in the usual basis of μR(G) is a permutation by block matrix. So the 
determinant of this matrix is (up to a sign) the product of the determinant of the 
non-zero blocks. By Lemma 3.9 and Lemma 3.11 the determinant of the block indexed 
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by (H, L, x, y) is equal to the determinant of the matrix of the bilinear form bφL∩Hx in 
the usual basis of RB(L ∩Hx). So the determinant of (−,−)φG

is invertible in R if and 
only if the determinant of the form bφH

on RB(H) is invertible in R for every subgroup 
H of G. �
Definition 3.13. Let G be a finite group. The family (RB(H))H�G is a compatible fam-
ily of symmetric algebras if there exists a stable by induction family of linear forms
φ = (φH)H�G such that the bilinear form bφH

on RB(H) is non-degenerate for every 
H � G.

Theorem 3.14. Let G be a finite group. Then the Mackey algebra is a symmetric algebra 
if and only if (RB(H))H�G is a compatible family of symmetric algebras.

Proof. Only for this proof, we use Green’s definition of Mackey functors since it is much 
more convenient for understanding the action of the induction and restriction maps (see 
Section 2 of [15]). If (RB(H))H�G is a compatible family of symmetric algebras, then 
by Theorem 3.12, the Mackey algebra is symmetric. Conversely, if the Mackey algebra 
is symmetric, then the Mackey algebra is isomorphic to its R-linear dual as bimodule. 
Using the usual equivalence of categories, the modules over the Mackey algebras are 
the Mackey functors. In particular the Burnside functor RB corresponds to a direct 
summand of the free module of rank 1 over the Mackey algebra. Since the Mackey algebra 
is symmetric, the Burnside functor is isomorphic to its R-linear dual, that is there exists 
an isomorphism of Mackey functors f : RB → HomR(RB, R). For the Mackey functor 
structure of HomR(RB, R), see Section 4 of [15]. This isomorphism allows us to build an 
associative non-degenerate bilinear form 〈−,−〉 : RB×RB → R, i.e. a family of bilinear 
form 〈−,−〉K for each subgroup K of G defined in the following way: let K be a subgroup 
of G and X and Y be two elements of RB(K). Then

〈X,Y 〉K := fK(X)(Y )

The fact that f is a morphism of Mackey functors implies in particular the following 
properties: for H � K two subgroups of G, we let X be an H-set and Y be a K-set. 
Then, we have:

〈
IndK

HX,Y
〉
K

=
〈
X,ResKHY

〉
H
,

and:

〈
ResKHY,X

〉
H

=
〈
Y, IndK

HX
〉
K
.

So we have a family of linear forms (φH)H�G on the Burnside algebras (RB(H))H�G

defined by: let X ∈ RB(H). Then φH(X) := 〈X, H/H〉. Let H � K and X ∈ RB(H). 
Then, we have:
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φK

(
IndK

HX
)

=
〈
IndK

H(X),K/K
〉
K

=
〈
X,ResKHK/K

〉
H

= 〈X,H/H〉H
= φH(X).

The family (φH)H�G is a stable by induction family of linear forms on the Burnside 
algebras (RB(H))H�G, and the bilinear forms bφH

are the bilinear forms 〈−,−〉H so by 
definition they are non-degenerate. �
Remark 3.15. If the Mackey algebra is symmetric, it is always possible to choose a stable 
by induction family of linear maps (φH)H�G on (RB(H))H�G which generalizes the 
symmetrizing forms on the group algebras (RH)H�G in the sense of Remark 3.2, i.e. 
such that φH(H/1) = 1.

Indeed, since the family is stable by induction, for every H subgroup of G, we have 
φH(H/1) = φ1(1/1). Let us denote by a the value φH(H/1). Now in the usual basis of 
RB(H), the matrix of the bilinear form bφH

as a column divisible by a, and since this 
bilinear form is non-degenerate, we must have a ∈ R×, so one can normalize the linear 
forms φH by a−1.

4. Symmetry in the semi-simple case

Let G be a finite group and k be a field of characteristic zero, or characteristic p > 0
which does not divide the order of G, then it is well known that the Mackey algebra μk(G)
is semi-simple, so it is clearly a symmetric algebra. One can specify a symmetrizing form 
for this algebra by using the previous section. Let us consider the linear form φG on 
kB(G) defined by

φG(X) =
∑

H∈[s(G)]

1
|NG(H)|

∣∣XH
∣∣,

where X ∈ kB(G) and [s(G)] is a system of representatives of conjugacy classes of 
subgroups of G.

In this situation the primitive orthogonal idempotents of kB(G) are well known. 
These idempotents are in bijection with the conjugacy classes of subgroups of G. If H
is a subgroup of G, let us denote by eGH the idempotent corresponding to the conjugacy 
class of H. For more details, see [17,8] or [3] for a summary. Let us recall some important 
results about these idempotents.

Theorem 4.1. Let G be a finite group.

1. Let H and K be subgroups of G. Then |(eGH)K | = 1 if H is conjugate to K and 0
otherwise.
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2. Let X be a G-set and H � G. Then X.eGH = |XH |eGH .
3. Let H � K be subgroups of G. Then IndG

K(eKH) = |NG(H)|
|NK(H)|e

G
H .

4. Let H be a subgroup of G. Then, we have:

eGH = 1
|NG(H)|

∑
K�H

|K|μ(K,H)G/K.

Lemma 4.2.

1. Let G be a finite group. Then φG is a linear form.
2. The family (φH)H�G is stable by induction.
3. Let G be a finite group. Then φG(G/1) = 1.

Proof. The only non-obvious assertion is the second. Since the map is linear it is enough 
to check this assertion on basis elements of kB(G). We use the basis consisting of the 
primitive orthogonal idempotents. Let H � K � G, then

φG

(
IndG

K

(
eKH

))
= |NG(H)|

|NK(H)|φG

(
eGH

)

= |NG(H)|
|NK(H)|

1
|NG(H)|

= 1
|NK(H)| .

On the other hand,

φK

(
eKH

)
= 1

|NK(H)| . �
Proposition 4.3. The determinant of this bilinear form bφG

, in the basis consisting of the 
transitive G-sets is:

det(bφG
) =

∏
H∈[s(G)]

|NG(H)|
|H|2 .

If G is abelian, this determinant is equal to 1.

Proof. We first compute the determinant of this bilinear form in the basis consisting 
of the orthogonal primitive idempotents of kB(G), then we apply a change of basis. 
Since the idempotents are orthogonal, this matrix is diagonal. The diagonal terms are 
φG(eGH) = 1 . So in this basis, the determinant of the matrix is 

∏
H∈[s(G)]

1 .
|NG(H)| |NG(H)|
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The change of basis matrix from the basis of transitive G-sets to the basis of the 
primitive idempotents is an upper triangular matrix, the diagonal terms are the |NG(H)|

|H| . 
So in the basis of transitive G-sets, we have

det(bφG
) =

∏
H∈[s(G)]

|NG(H)|
|H|2 .

If G is abelian, this determinant is equal to 
∏

H�G
|G|
|H|∏

H�G |H| , which is equal to 1 since the 

abelian groups are isomorphic to their dual. �
Remark 4.4. There exists a non-abelian group such that this determinant is equal to 1. 
The smallest counter example is for G = (C4 × C2) � C4. A quick run in GAP with the 
group G := SmallGroup(32, 2) shows that the determinant of bφG

is 1.
This determinant is most of the time of the form 1

n , where n ∈ N, but this is not always 
true. The first counter example is for two groups of order 64: H = (C8 × C2) � C4 and 
K = C2 × ((C4 ×C2) �C4). In these cases, the determinants are 4 and 16, respectively.

Corollary 4.5. Let G be a finite group and k be a field of characteristic zero, or p > 0
which does not divide the order of G, then the Mackey algebra μk(G) is symmetric.

Proof. By Lemma 4.2 and Proposition 4.3, the family (kB(H))H�G is a compatible 
family of symmetric algebras. The result is now clear by Theorem 3.12. �
5. Symmetry of the Mackey algebra over the ring of integers

The trace map defined in the previous section is not defined over the ring of integers. 
In this part let us consider the map φG : B(G) → Z defined on the usual basis by 
φG(G/H) = 1 if H = {1} and φ(G/H) = 0 otherwise. We have the following lemma:

Lemma 5.1. Let G be a finite group.

1. φG is a linear form on B(G).
2. φ = (φH)H�G is a stable by induction family of linear forms.
3. φG(G/1) = 1.

Let G be a finite group. We denote by π(G) the set of the prime divisors of |G|. Recall 
that for π ⊆ π(G), a Hall-π-subgroup of G (or an Sπ-subgroup of G) is a π-subgroup H
such that |H| and |G/H| are coprime. The notion of Sπ-group is a generalization of the 
notion of Sylow p-subgroup. In the case of a solvable group, there is a Sylow theorem 
for Sπ-groups:

Theorem 5.2 (Hall). The group G is solvable if and only if G has an Sπ-subgroup for all 
set π of prime divisors of |G|. In this case,
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1. Two Sπ-subgroups are conjugate in G.
2. Each π-subgroup of G is contained in an Sπ-subgroup.

Proof. The proof can be found in Part I.6 of [9]. �
Definition 5.3. A finite group G is a square-free group if p2 does not divide the order of 
G for any prime number p.

Let us recall the well-known fact:

Lemma 5.4. A square-free group G is solvable.

Proof. The group G is in fact a super-solvable group. This is well known, but we weren’t 
able to find a reference. Let p be the smallest prime divisor of |G|. Let P be a Sylow 
p-subgroup of G. Then NG(P )/CG(P ) ↪→ Aut(P ). But |Aut(P )| = p − 1 and the order 
of NG(P )/CG(P ) is a product of prime numbers bigger than p. So NG(P ) = CG(P ), and 
by Burnside’s Theorem, the set of all the p′-elements of G is a normal subgroup of G. 
By induction this proves that G is (super-)solvable. �
Corollary 5.5. Let G be a square-free group and n be the size of π(G). Then there are 2n
conjugacy classes of subgroups of G, one for each divisor of |G|.

Proof. Let π be a set of prime divisors of G. Since G is solvable, there is an Sπ-subgroup 
of G. Now since G is a square-free order group, each subgroup of G is an Sπ-subgroup 
for a set of prime π. So two subgroups are conjugate in G if and only if they have the 
same order. �
Remark 5.6. Let P be the set of divisors of |G|. Let us consider the following order on this 
set: let p1, p2, · · · , pn be the prime divisors of |G| such that p1 < p2 < · · · < pn. Then 1 <
p1 < p2 < · · · < pn < p1p2 < p1p3 < · · · < p1pn < p2p3 < · · · < pn−1pn < p1p2p3 < · · · . 
Let [H] and [K] be two conjugacy classes of subgroups of G. Then [H] � [K] if and only 
if |H| < |K| for this order or |H| = |K|.

Proposition 5.7. Let G be a square-free group. The determinant of the bilinear form bφG

is ±1.

Proof. We work with the basis of B(G) consisting of transitive G-sets. Let H and K be 
subgroups of G, then

bφG
(G/H,G/K) = Card

({
g ∈ [H\G/K]; H ∩Kg = 1

})
.

• If π(H) � π(K) = π(G) and π(H) ∩ π(K) = ∅, then bφ(G/H, G/K) = 1. Indeed, 
by cardinality reason, for all g ∈ G, we have H ∩Kg = 1. So, we have:
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bφG
(G/H,G/K) = Card

{
g ∈ [H\G/K]

}
= 1,

since there is only one double coset in this situation.
• If H � G and K � G such that

∏
pi∈π(H)

pi ×
∏

pj∈π(K)

pj > |G|,

then bφG
(G/H, G/K) = 0, since H ∩Kg �= {1} for all g ∈ G.

We order the basis elements using the total order of Remark 5.6 on the subgroups of G. 
The antidiagonal coefficients of the matrix correspond to subgroups H and K such that 
π(H) ∩ π(K) = ∅ and π(H) � π(K) = π(G). So the anti-diagonal coefficients of the 
matrix are 1.

The coefficients of the matrix which are below the anti-diagonal correspond to sub-
groups H and K such that

∏
pi∈π(H)

pi ×
∏

pj∈π(K)

pj > |G|.

These coefficients are zero by the previous computation. The matrix of bφG
in this basis, is 

an upper anti-triangular matrix with 1 on the anti-diagonal so its determinant is ±1. �
Theorem 5.8. The Mackey algebra μZ(G) is a symmetric algebra if and only if G is a 
square-free group.

Proof. Let G be a square-free group. Then by Theorem 3.12 and the result of Proposi-
tion 5.7, the determinant of the matrix of the bilinear form (−,−)φG

: μZ(G) ×μZ(G) → Z

is ±1. So μZ(G) is a symmetric algebra.
Conversely, let G be a finite group and p be a prime number such that p2 | |G|. Then 

G has a p-subgroup P of order p2. We prove that all the associative symmetric bilinear 
forms 〈−,−〉 on RB(P ) are degenerate.

• Suppose that P = Cp2 , let B be the Burnside functors of MackZ(P ). Then there are 
a, b, c ∈ Z such that the matrix M of 〈−,−〉 in the usual basis of B(G) is:

M =

⎛
⎜⎝ a b c

b pb pc

c pc p2c

⎞
⎟⎠ .

If we reduce modulo p this matrix, it is clear that the two last columns are propor-
tional. So det(M) is divisible by p.
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• Suppose that P = Cp ×Cp. Let B be the Burnside functors of MackZ(P ). There are 
elements a, b1, b2, · · · , bp+1, c ∈ Z such that the matrix M of 〈−,−〉 in the usual basis 
of B(G) is:

M :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b1 · · · bp bp+1 c

b1 pb1 c · · · c pc
... c pb2

. . .
...

bp
...

. . . . . . c
...

bp+1 c · · · c pbp+1 pc

c pc · · · pc pc p2c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By reducing this matrix modulo p it is enough to look at the following (p +1) ×(p +1)
matrix:

⎛
⎜⎜⎜⎜⎝

0 c · · · c

c 0
. . .

...
...

. . . . . . c

c · · · c 0

⎞
⎟⎟⎟⎟⎠

the sum of the lines is zero modulo p, so det(M) is divisible by p. �
Remark 5.9. Let G be a finite group and let p be a prime number such that p2 | |G|. The 
proof of Theorem 5.8 shows that if p is not invertible in a commutative ring R, then the 
Mackey algebra μR(G) is not symmetric.

6. Symmetry in the p-local case

Let G be a finite group. Let p be a prime number such that p | |G|. Let R be a 
commutative ring with unit in which all the prime divisors of |G| except p are invertible. 
The ring R can be for example a field k of characteristic p > 0. If (K, O, k) is a p-modular 
system, the ring R can be either the valuation ring or the residue field. Finally R can be 
the localization of Z at the prime p.

Even for the field k, the symmetry of the Mackey algebra does not directly follow
from Theorem 5.8. Indeed the determinant of the bilinear forms (−,−)φG

and bφG
can 

be zero in k when φG is the map defined in Lemma 5.1. For example, the matrix of bφC
p2

is: 
( p2 p 1

p 0 0
1 0 0

)
. So in characteristic 3, for G = C3 ×C4 the determinant of bφG

is zero even 

if we expect the Mackey algebra to be symmetric in this case.
Using Theorem 3.14, the symmetry of the Mackey algebra μk(G) follows from the 

symmetry of the modular Burnside algebras (kB(H))H�G. In [6], Markus Deiml proved 
that the Burnside algebra of a finite group G is symmetric if and only if p2 � |G|. For our 
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purpose, we need to check that the stability by induction condition holds. So, following 
Deiml’s proof, we specify a symmetric associative non-degenerate bilinear form on the 
Burnside algebra, then we check the stability condition. Almost all the arguments of 
Deiml can be used for the ring R, if it is not the case, we sketch the proof.

Let us recall that the primitive idempotents of the Burnside algebra are in bijection 
with the conjugacy classes of p-perfect subgroups of G denoted by [s(G)]perf . If J is 
p-perfect, then we denote by fG

J the corresponding idempotent of RB(G).

Lemma 6.1. (See [17, Lemma 3.4].) Let J be a p-perfect subgroup of G. Then, fG
J =∑

K eGK , where K runs through the conjugacy classes of subgroups of G such that 
Op(K) =G J .

Lemma 6.2. Let G be a finite group and J be a p-perfect subgroup of G. If p | |NG(J)|
|J|

and p2 � |NG(J)|
|J| , then there are exactly two conjugacy classes of subgroups L of G such 

that Op(L) = J .

Proof. Let SJ � NG(J) such that SJ/J is a Sylow p-subgroup of NG(J)/J . Then 
Op(SJ) = J . Conversely if H is a subgroup of G such Op(H) is conjugate to J , then 
changing H by one of its conjugates one can assume that Op(H) = J and H � NG(J). 
Now H/J is a p-subgroup of NG(J)/J , so there are two possibilities: either H = J or 
H/J is a Sylow p-subgroup of NG(J)/J , i.e. H is conjugate to SJ . �
Lemma 6.3. (See [6, Lemma 5].) Let J be a p-perfect group. Let us denote by SJ a set 
of representatives of conjugacy classes of subgroups L of G such that Op(L) = J . Then 
the set of G/I · fG

J where I ∈ SJ and J ∈ [s(G)]perf is an R-basis of RB(G).

Proof. Here, the proof of Deiml does not work for a general ring R, since there is a 
dimension argument. However by Lemma 5 of [6], we know that the family (G/I · fG

J ) is 
a free family, so we just need to check that it is a generating family. Let K be a subgroup 
of G. It is enough to check that G/K is an R-linear combination of elements of the form 
G/I · fG

J where Op(I) = J . If |K| = 1, then G/1 = G/1 · fG
1 . By induction on |K|, 

we have in RB(G):

G/K = G/K · 1 =
∑

J∈[s(G)]perf

G/K · fG
J

= G/K · fG
Op(K) +

∑
J∈[s(G)]perf ; Op(K) �=GJ

G/K · fG
J .

Now G/K · fG
J is zero unless J is conjugate to a subgroup of K. If it is the case, then 

we have:

G/K · fG
J =

∑
p

∣∣G/KL
∣∣eGL .
L∈[s(G)]; O (L)=GJ
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Now |G/KL| is zero unless L is conjugate to a subgroup of K. Moreover, since 
Op(L) = K �= Op(K), the group L cannot be conjugate to K. So G/K · fG

J is an 
R-linear combination of transitive G-set G/L′ where |L′| < |K|. By induction, G/K is 
an R-linear combination of elements of the form G/I · fG

J such that Op(I) = J . �
Following [6], let us consider the linear form φG on RB(G) defined on a basis element 

by:

φG

(
G/I · fG

J

)
=

{
1 if I = J,

0 if I �= J.

Remarks 6.4.

• If R = k is a field of characteristic p, and if p � |G|, then the idempotents fG
J are the 

idempotents eGJ so it is easy to check that

φG(X) =
∑

H∈[s(G)]

|H|
|NG(H)|

∣∣XH
∣∣, for X ∈ kB(G).

• If p | |G|, it seems rather difficult to compute the value of φG on a transitive G-set.

Lemma 6.5. Let H � G and J be a p-perfect subgroup of H. Then, we have:

1. IndG
H(H/J · fH

J ) = G/J · fG
J .

2. Moreover if p | |NH(J)/J | and p2 � |NH(J)/J |, let SJ be a subgroup of H such that 
J ⊂ SJ and Op(SJ) = J . Then, we have:

IndG
H

(
H/SJ · fH

J

)
= G/SJ · fG

J .

Proof. Using Lemma 6.1, we have:

IndG
H

(
H/J · fH

J

)
= |NH(J)|

|J | IndG
H

(
eGH

)

= |NH(J)|
|J |

|NG(J)|
|NH(J)|e

G
J

= G/J · fG
J .

For the second part, by Lemma 3.5 of [17], we have ResGH(fG
J ) =

∑
J ′ fH

J ′ where J ′ runs 
the subgroups of H up to H-conjugacy such that J ′ is conjugate to J in G. So, we have:

H/SJ · ResGH
(
fG
J

)
=

∑
H/SJ · fH

J ′ ,

J ′
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but we have:

H/SJ · fH
J ′ =

∑
K�H up to H-conjugacy

Op(K)=J ′

∣∣(H/SJ)K
∣∣eHK .

Moreover |(H/SJ)K | = 0 unless K is H-conjugate to a subgroup of SJ . Without lost of 
generality one can assume K � SJ . So the only non-zero terms are for J ′ � K � SJ

and since |SJ |/|J ′| = p either K = J ′ or K = SJ . If K = SJ , then Op(K) = J ′ is 
H-conjugate to Op(SJ) = J , that is J ′ is H-conjugate to J .

If K = J ′ and J �= J ′, then we have the following situation:

SJ

J

p

J ′

p

J ∩ J ′

The two subgroups J and J ′ are of index p in SJ . We have JJ ′ = SJ . Since J is normal 
in SJ , the intersection J ∩J ′ is normal in J ′. Then by the second isomorphism theorem, 
we have |J ′|/|J ′ ∩ J | = p. This implies that p2 divides |SJ | which is not possible by 
hypothesis. So we have H/SJ ·ResGH(fG

J ) = H/SJ ·fH
J . Using the Frobenius identity (see 

[3, Proposition 3.13]), we have:

IndG
H

(
H/SJ · fH

J

)
= IndG

H

(
H/SJ · ResGHfG

J

)
= G/SJ · fG

J . �
Lemma 6.6. Let G be a finite group. Then, we have:

1. φG(G/1) = 1.
2. If p | |G| and p2 � |G|, then the family (φH)H�G is stable by induction.

Proof. 1. The first part is obvious since G/1 · fG
1 = |G|eG1 = G/1.

2. The second part follows from Lemma 6.5. �
Proposition 6.7. Let G be a finite group such that p | |G| and p2 � |G|. Then the Burnside 
algebra RB(G) is a symmetric algebra.
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Proof. In the basis of Lemma 6.3 the matrix of bφG
is a diagonal by block matrix. The 

blocks are indexed by the conjugacy classes of p-perfect subgroups of G. If J is a p-perfect 
subgroup such that p � |NG(J)/J |, then there is only one conjugacy class of subgroups 
L of G such that Op(L) = J , so the block indexed by J is of size 1. The entry in this 
block is:

bφG

(
G/J · fG

J , G/J · fG
J

)
= φG

(
G/J · fG

J ·G/J · fG
J

)
=

∑
g∈[J\G/J]

φG

(
G/

(
J ∩ Jg

)
· fG

J

)

=
∑

g∈[NG(J)/J]

φG

(
G/J · fG

J

)

= |NG(J)|
|J | ∈ R×.

If J is a p-perfect subgroup of G such that p | |NG(J)|
|J| , then there are two conjugacy 

classes of subgroups L of G such that Op(L) = J . We denote by SJ a subgroup of G
such that J � SJ and Op(SJ) = J . The block matrix indexed by J is of size 2. The first 
diagonal entry is:

bφG

(
G/J · fG

J , G/J · fG
J

)
= |NG(J)|

|J | .

The anti-diagonal entries are:

bφG

(
G/J · fG

J , G/SJ · fG
J

)
=

∑
g∈[SJ\G/J]

φG

(
G/

(
SJ ∩ Jg

)
· fG

J

)

=
∑

g∈[SJ\NG(J)/J]

1

= |NG(J)|
|SJ |

.

Finally, the second diagonal element is:

a := bφG

(
G/SJ · fG

J , G/SJ · fG
J

)
=

∑
g∈[SJ\G/SJ ]

φG

(
G/

(
SJ ∩ Sg

J

)
· fG

J

)
.

Now, if g /∈ NG(J) we have G/(SJ ∩ Sg
J) · fG

J = 0 and if g ∈ NG(SJ), we have

φG

(
G/SJ · fG

J

)
= 0.
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For the computation of a, we work in Q. Then we have:

a =
∑

g∈[SJ\G/SJ ]

φG

(
G/

(
SJ ∩ Sg

J

)
· fG

J

)

=
∑

g∈NG(J)\NG(SJ )

|SJ ∩ Sg
J |

|SJ |2
φG

(
G/J · fG

J

)

=
∑

g∈NG(J)\NG(SJ )

|J |
|SJ |2

= |J |
|SJ |2

(∣∣NG(J)
∣∣− ∣∣NG(SJ)

∣∣).
The determinant of each of these blocks is:

|NG(J)|
|J | ×

(
|J |
|SJ |2

(∣∣NG(J)
∣∣− ∣∣NG(SJ)

∣∣))− |NG(J)|2
|SJ |2

= −|NG(J)| × |NG(SJ)|
|SJ |2

∈ R×.

This determinant is invertible in R, so the bilinear form bφG
is non-degenerate. �

Corollary 6.8. Let G be a finite group. Then the Mackey algebra μR(G) is a symmetric 
algebra if and only if p2 � |G|.

Proof. If p2 � |G|, the fact that μR(G) is a symmetric algebra follows from Theorem 3.12, 
Proposition 6.7 and Lemma 6.6. If p2 | |G|, we saw in the proof of Theorem 5.8 that 
every associative bilinear form on RB(P ) is degenerate if |P | = p2, so the Mackey algebra 
μR(G) is not a symmetric algebra. �
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