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1. Introduction

A lattice Λ is a discrete additive subgroup of Rn. Equivalently, Λ ⊆ Rn is a lattice 
iff there are linearly independent vectors v1, . . . , vm ∈ Rn such that Λ =

{∑m
i=1 aivi;

ai ∈ Z, i = 1, . . . , m
}
.

Lattices have been considered in different areas, especially in coding theory and more 
recently in cryptography. In this paper, we attempt to construct lattices with full rank, 
i.e., m = n, which may be suitable for signal transmission over both Gaussian and 
Rayleigh fading channels (see [9, Section I]). For this purpose the lattice parameters we 
consider here are packing density, diversity and minimum product distance.

The classical sphere packing problem is to find out how densely a large number of 
identical spheres can be packed together in the Euclidean space. The packing density of 
a lattice Λ is the proportion of the space Rn covered by the non-overlapping spheres of 
maximum radius centered at the points of Λ. The densest possible lattice packings have 
only been determined in dimensions 1 to 8 and 24 (see [12, p. 12] for n = 1, 2, . . . , 8 and 
[13] for n = 24). It is also known that these densest lattice packings are unique.

A lattice Λ has diversity k ≤ n if k is the maximum number such that any non-zero 
vector y ∈ Λ has at least k non-zero coordinates. Given a full rank lattice with full 
diversity Λ ⊆ Rn, i.e., k = n, the minimum product distance of Λ is defined as dp,min(Λ) =
min

{∏n
i=1 |yi|; y ∈ Λ, y �= 0

}
.

Usually the problem of finding good signal constellations for a Gaussian channel is 
associated with the search for lattices with high packing density (see [12, Chapter 3]). 
On the other hand, for a Rayleigh fading channel the efficiency, measured by lower 
error probability in the transmission, is strongly related to the lattice diversity and high 
minimum product distance (see [9, Section III]).

In this paper, we make use of algebraic number theory for constructing rotated lattices 
via subfields of cyclotomic fields. Let K be a number field of degree n, OK its ring of 
integers and α ∈ OK a totally positive real element. In [3,4] it was introduced a twisted 
embedding σα : K −→ Rn such that if I ⊆ OK is a free Z-module of rank n, then σα(I)
is a lattice in Rn. These lattices are called here algebraic lattices. Special algebraic lattice 
constructions can be used to obtain certain lattice parameters such as packing density 
and minimum product distance, which are usually difficult to calculate for general lattices 
in Rn. Some constructions and properties of algebraic lattices can be found in [1–18]. 
We quote particularly the paper [8], where full diversity rotated versions of the lattices 
A2, E6, E8, K12 and Λ24 are constructed.

Let K be a totally real number field. When an algebraic lattice can be obtained 
via a free Z-module I contained in OK, its minimum product distance depends on the 
discriminant dK of the number field considered (see [6, Section III]). In order to get greater 
minimum product distances, we consider number fields with small discriminants. Results 
on the existence of number fields K such that it is possible to obtain rotated A2, E6 and 
E7-lattices via twisted embeddings applied to fractional ideals of OK are presented in 
Propositions 4.1, 4.7 and 4.10. Using some constructions of rotated Zn-lattices, we also 
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show that there are infinitely many rotated D3, D5, and E7-lattices obtained via free 
Z-modules that are not ideals.

The paper is organized as follows. In Sections 2 and 3, we collect some results on 
number fields and algebraic lattices. In Subsections 4.1, 4.2, 4.3, 4.5, 4.6 and 4.7 explicit 
constructions of rotated A2, D4, E6, E8, K12 and Λ24-lattices via principal ideals and 
free Z-modules that are not ideals are presented. In Subsections 4.2 and 4.4 rotated 
D3, D5 and E7-lattices are obtained. Finally, in Section 5, we present a comparison 
between relative minimum product distance and density of the lattices considered here 
and rotated Zn-lattices.

2. Basic results from algebraic number theory

In this section, we summarize some concepts and results from algebraic number theory 
and establish the notation to be used from now on. The results presented here can be 
found in [22,23].

Let K be a number field of degree n and OK its ring of integers. As it is well known, 
there are exactly n distinct Q-homomorphisms σi : K → C, for i = 1, 2, . . . , n. A homo-
morphism σi is said to be real if σi(K) ⊆ R and imaginary otherwise. A number field 
K is said to be totally real if σi is real for all i = 1, . . . , n and totally imaginary if σi is 
imaginary for all i = 1, . . . , n. A number field K is called a CM-field if there is a totally 
real number field F such that K is a totally imaginary quadratic extension of F.

Given x ∈ K, the values N(x) = NK|Q(x) =
∏n

i=1 σi(x) and Tr(x) = TrK|Q(x) =∑n
i=1 σi(x) are called norm and trace of x in K|Q, respectively, and if x ∈ OK, then 

N(x), Tr(x) ∈ Z.
Every non-zero fractional ideal I of OK is a free Z-module of rank n. The norm of 

a free Z-module I ⊆ OK of rank n is defined as NK(I) = |OK/I|. If {ω1, . . . , ωn} is a 
Z-basis of OK, the integer dK = (det(σj(ωi))ni,j=1)2 is called the discriminant of K and 
it is an invariant under change of basis.

Let p be a prime number and P = pZ ⊆ Z a prime ideal. The ideal POK ⊆ OK can 
be expressed as POK =

∏g
i=1 Q

ei
i , where Qi’s are distinct prime ideals of OK and ei’s 

are positive integers. The integer ei is called the ramification index of Qi over P and it 
is denoted by e(Qi|p). The degree fi = f(Qi|p) = [OK/Qi : Z/P] is called the residual 
degree of Qi over P. We have that 

∑g
i=1 eifi = n.

A prime p is said to be inert in K|Q if g = 1 and e1 = 1, that is if pZ = Q (and hence 
f1 = n). A prime p splits completely in K|Q if g = n (and hence ei = fi = 1 for all i). 
p is said to be ramified in K|Q if there is an ei ≥ 2, otherwise p is said to be unramified.

If K|Q is a Galois extension, then we have that POK =
∏g

i=1 Qe
i , where the Qi’s 

are distinct prime ideals of OK, f(Qi|p) = [OK/Qi : Z/P] = f for all i = 1, . . . , g, and 
n = efg.

Let ζm ∈ C be a primitive m-th root of unity. We consider here the cyclotomic field
L = Q(ζm) and its maximal totally real subfield K = Q(ζm + ζ−1

m ). We have that 
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[Q(ζm) : Q] = ϕ(m) and [Q(ζm + ζ−1
m ) : Q] = ϕ(m)/2, where ϕ is the Euler function. 

Moreover, OL = Z[ζm] and OK = Z[ζm + ζ−1
m ].

3. Algebraic lattices

Let {v1, . . . , vm} be a set of linearly independent vectors in Rn and Λ =
{∑m

i=1 aivi;
ai ∈ Z

}
the associated lattice. The set {v1, . . . , vm} is called a basis for Λ. A matrix M

whose rows are these vectors is said to be a generator matrix for Λ while the associated 
Gram matrix is G = MM t = (〈vi,vj〉)mi,j=1. The determinant of Λ is detΛ = detG
and it is an invariant under change of basis (see [12, p. 4]). A lattice Λ is said to be 
integral if 〈x, y〉 ∈ Z for any x, y ∈ Λ. An integral lattice is said to be even if 〈x, x〉
is even for any x ∈ Λ and odd otherwise. A unimodular lattice is an integral lattice 
with det(Λ) = 1. Two lattices Λ1 and Λ2 are said to be similar if there is an orthogonal 
mapping φ : Rn → Rn and a real positive number c such that cφ(Λ1) = Λ2. When c = 1
the similar lattices Λ1 and Λ2 are said to be congruent or isomorphic. In this paper, as 
in [6,17], we will say that Λ1 is a rotated Λ2-lattice if Λ1 and Λ2 are congruent.

The computational search for detecting if two lattices are isomorphic is in general a 
difficult problem. The isomorphism problem on lattices, which also has showed up in 
lattice applications to cryptography, is at least as hard as that on graphs and lies on 
complexity class SZK (see [16] and references therein). In [16, Theorem 1.1] it is derived 
an algorithm for solving it running in time nO(n) times a polynomial in the input size, 
where n is the rank of the lattice.

In what follows let K be a number field of degree n = r1 + 2r2. Let σi, for i =
1, . . . , n, be the n distinct Q-homomorphisms from K to C such that σ1, . . . , σr1 are 
real, σr1+1, . . . , σr1+r2 , σr1+r2+1, . . . , σr1+2r2 are imaginary and σr1+r2+i is the complex 
conjugate of σr1+i, for all i = 1, . . . , r2.

Definition 3.1. (Cf. [4], Section 4.) Let α ∈ K be a totally positive element (i.e., σi(α) > 0
for all i = 1, . . . , n), and let αi = σi(α). The twisted embedding σα : K −→ Rn is defined 
by σα(x) = (√α1σ1(x), . . . , √αr1σr1(x), 

√
2αr1+1�(σr1+1(x)), 

√
2αr1+1�(σr1+1(x)), . . . ,√

2αr1+r2�(σr1+r2(x)), 
√

2αr1+r2�(σr1+r2(x))), where � and � represent the real and 
imaginary part of a complex number, respectively.

Proposition 3.2. (Cf. [20], Corollary 2.1.) Let K be a number field of degree n, and let 
α ∈ K be a totally positive element. If I ⊆ OK is a free Z-module of rank n with Z-basis 
{w1, . . . , wn}, then the image Λ = σα(I) is a lattice in Rn with basis {σα(w1), . . . ,
σα(wn)}.

If K is a totally real number field or a CM-field, the complex conjugation commutes 
with all homomorphisms σi, i = 1, . . . , n, and therefore the associated Gram matrix for 
σα(I) can be expressed in the special form described next.
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Proposition 3.3. (Cf. [20], Proposition 2.1.) Let K be a totally real number field or a 
CM-field, and let α ∈ K be a totally positive element. If I ⊆ OK is a free Z-module 
of rank n with Z-basis {w1, . . . , wn}, then G =

(
TrK|Q(αwiwj)

)n
i,j=1 is a Gram matrix 

for σα(I).

From now on we will consider K a totally real number field or a CM-field.

Proposition 3.4. (Cf. [4], Proposition 15.) Let I ⊆ OK be a free Z-module of rank n. 
A lattice Λ = σα(I) has diversity n if K is totally real, and diversity n

2 if K is totally 
imaginary.

Proposition 3.5. (Cf. [6], Theorem 1.) Let I ⊆ OK be a free Z-module of rank n. If 
K is totally real, then Λ = σα(I) has minimum product distance given by dp,min(Λ) =√

det(Λ)
dK

1
NK(I) min0�=y∈I |NK|Q(y)|. In particular, if I ⊆ OK is a principal ideal, then 

min0�=y∈I |NK|Q(y)| = NK(I).

Definition 3.6. Let μ be the minimum Euclidean norm of a non-zero vector of a lattice Λ. 
The relative minimum product distance of Λ, denoted by dp,rel(Λ), is the minimum prod-
uct distance of the scaled lattice 1

μΛ.

Proposition 3.7. (Cf. [3], Proposition 2.1.) If I ⊆ OK is a non-zero free Z-module of 
rank n, then det(σα(I)) = NK(I)2NK|Q(α)|dK|.

In what follows we present a necessary condition for constructing an algebraic lattice 
Λ = σα(I) with determinant D via a fractional ideal I of OK. Proposition 3.9 is a 
generalization of [18, Proposition 4.3], which considers rotated Dn-lattices.

Lemma 3.8. Let p be a prime number. Suppose that pOK =
∏g

i=1 Qe
i , where Qi’s are 

distinct prime ideals of OK, and f(Qi|p) = f , for all i = 1, . . . , g. If B ⊆ OK is an 
ideal and p divides NK(B), then NK(B) =

(
pf

)a
b, where a ≥ 1 is an integer and b is an 

integer such that p does not divide b.

Proof. Let B =
∏s

i=1 P
ei
i , where the Pi’s are distinct prime ideals of OK. Since p | NK(B), 

it follows that p | NK(Pj) for some j. Since Pj ∩ Z = rZ is a prime ideal of Z, it follows 
that r is a prime number and Pj lies over rOK Thus, r = p, the ideal Pj lies over pOK

and NK(Pj) = pf . So, NK(B) =
∏s

i=1 NK(Pi)ei =
(
pf

)a
b, where a ≥ 1 is an integer and 

b is an integer such that p � b. �
Proposition 3.9. Let K|Q be a Galois extension and dK = prd, where p is a prime number, 
r ≥ 0 is an integer and d is an integer such that p does not divide d. Let Λ be a lattice 
such that det(Λ) = pmq, where m > 0 is an integer and q is an integer such that p does 
not divide q. If pOK =

∏g
i=1 Qe

i , where Qi’s are prime ideals of OK and f = f(Qi|p)
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does not divide (m − r), then there does not exist any fractional ideal I of OK such that 
Λ = σα(I) for some α ∈ K.

Proof. Suppose that there exist a fractional ideal I of OK and a totally positive element 
α ∈ K such that Λ = σα(I). Thus, there exists a positive integer t ∈ Z such that 
tI = A is an ideal of OK, and therefore, NK(I) = NK(A)/tn. By Lemma 3.8, if p divides 
NK(A), then NK(A) =

(
pf

)a1
b1, where a1 ≥ 1 is an integer and b1 is an integer such 

that p � b1. Otherwise, if p does not divide NK(A), then NK(A) =
(
pf

)a1
b1, where 

a1 = 0 and b1 is an integer such that p � b1. So, we can write NK(A) =
(
pf

)a1
b1, where 

a1 ≥ 0 is an integer and b1 is an integer such that p � b1 and then NK(I) =
(
pf

)a1
b1/t

n. 
Given α ∈ K, there exists an integer s such that sα ∈ OK. We can write NK|Q(sα) =
NK(sαOK) =

(
pf

)a2
b2, where a2 ≥ 0 is an integer and b2 is an integer such that p � b2. 

Then, NK|Q(α) =
(
pf

)a2
b2/s

n. Let t = pk1 l1 and s = pk2 l2, where k1, k2 ≥ 0 are integers 
and l1, l2 are integers such that p � l1 and p � l2. From Proposition 3.7, it follows that

NK(I)2NK|Q(α)|dK| =
(
pf

)2a1
b21

t2n

(
pf

)a2
b2

sn
pr|d|

= p2fa1−2k1n+fa2−k2n+r
(
b21l

−2n
1 l−n

2 b2|d|
)

= pmq,

and therefore, m = 2fa1 − 2k1n + fa2 − k2n + r. Since n = efg, it follows that m − r =
f(2a1 − 2k1eg + a2 − k2eg), that is f divides (m − r), which is a contradiction. �

The next remark will be used as a tool for constructing rotated integer lattices.

Remark 3.10. Let Λ ⊆ Zn be an integer lattice with a generator matrix M , K a number 
field of degree n, α ∈ K a totally positive element, and I ⊆ OK a free Z-module of 
rank n. If cσα(I) is a rotated Zn-lattice, for some real positive number c, then there 
exists a generator matrix R for cσα(I) such that RRt = In×n. The matrix MR is a 
generator matrix for a rotated version of Λ which is contained in cσα(I). Therefore we 
may use the matrix MR and homomorphism properties to get the free Z-submodule 
J ⊆ I such that Λ = cσα(J ).

4. Algebraic constructions for densest lattices

In this section, we discuss the possibility of constructing rotated A2, E6 and E7-lattices 
via twisted embeddings applied to fractional ideals of the ring of integers of a number 
field K. Constructions of rotated A2, D3, D4, D5, E6, E7, E8, K12 and Λ24-lattices via 
ideals and free Z-modules that are not ideals are also presented. Full diversity rotated A2, 
E6, E8, K12 and Λ24-lattices are obtained via Q(ζ12 + ζ−1

12 ), Q(ζ36 + ζ−1
36 ), Q(ζ60 + ζ−1

60 ), 
Q(ζ84 + ζ−1

84 ) and Q(ζ140 + ζ−1
140), respectively, the same number fields considered in [8, 

Section 3] where the authors construct these lattices by shifting ideal lattices constructed 
over cyclotomic fields in [3, Section 3] to maximal totally real subfields of cyclotomic 
fields.
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4.1. Rotated A2-lattice

The classical A2-lattice in R2 is generated by the basis {(1, 0), (−1/2, 
√

3/2)}. We 
consider next the scaled lattice Λ2 with basis {

√
2(1, 0), 

√
2(−1/2, 

√
3/2)} which has 

minimum squared Euclidean norm 2 and det(Λ2) = 3. In the next result, we obtain a 
necessary condition for constructing a rotated A2-lattice via a twisted embedding applied 
to a fractional ideal of OK. A related result, through a different approach, can be found 
in [7, Theorem 3.3].

Proposition 4.1. Let K be a quadratic number field. If 3 is inert in K|Q, then there does 
not exist any fractional ideal I of OK such that σα(I) is a rotated A2-lattice, scaled 
by

√
c∗, with c∗ ∈ Z, for any α ∈ K totally positive.

Proof. Suppose that there exist a fractional ideal I of OK and a totally positive element α
such that Λ = σα(I) is a rotated Λ2-lattice, scaled by 

√
c with c ≥ 0 an integer. Then, 

det(Λ) = 3c2, where c = 3ab with a ≥ 0 an integer and b ≥ 1 an integer such that 
3 � b. So, det(Λ) = 31+2ab2. Since 3 is inert in K|Q, we have that 3OK = P, e(P|3) = 1, 
f = f(P|3) = 2 and 3 does not divide the discriminant dK. By Proposition 3.9, since 
f = 2 does not divide (m − r) = (1 + 2a − 0), it follows that there does not exist any 
fractional ideal I of OK such that Λ = σα(I) is a rotated Λ2-lattice, scaled by 

√
c, with 

c ∈ Z, for any α ∈ K. Since A2 =
√

2
2 Λ2 the last assertion holds also for the lattice A2. �

Example 4.2. Note that [Q(ζm) : Q] = 2 if and only if m = 3, 4 and 6 and [Q(ζm +
ζ−1
m ) : Q] = 2 if and only if m = 5, 8, 10 and 12. Let K1 = Q(ζ4) = Q 

(√
−1

)
, K2 =

Q(ζ5 + ζ−1
5 ) = Q(ζ10 + ζ−1

10 ) = Q 
(√

5
)

and K3 = Q(ζ8 + ζ−1
8 ) = Q 

(√
2
)
. Through a 

direct computation, we have that 3 is inert in Ki|Q for i = 1, 2, 3. By Proposition 4.1, 
it follows that there does not exist any fractional ideal I of OKi

, for i = 1, 2, 3, such 
that Λ = σα(I) is a rotated A2-lattice, scaled by 

√
c with c ∈ Z, for any α ∈ Ki totally 

positive.

Algebraic constructions of rotated A2-lattices with diversity 1 via Q(ζ3) = Q(ζ6) =
Q(

√
−3) appear in [3, p. 76] and [9, p. 508]. In what follows we present a construction 

of a rotated A2-lattice, which is full diversity as the one presented in [8, Section 3], via 
a principal ideal of the ring of integers of Q(ζ12 + ζ−1

12 ) = Q(
√

3).

A rotated A2A2A2-lattice via an ideal of ZZZ[ζ12 + ζ−1
12 ][ζ12 + ζ−1
12 ][ζ12 + ζ−1
12 ]: If K = Q(ζ12 + ζ−1

12 ) = Q(
√

3), I =〈
1 +

√
3
〉

and α = 1, then the lattice Λ = 1
2σα(I) is a rotated A2-lattice and 

√
dp,rel(Λ) =

0.5. In fact, since dK = 12 = 223, consider the factorization 2OK = P2, where P =〈
2, 1 +

√
3
〉

=
〈
1 +

√
3
〉

and NK(P) = 2. Taking I = P and α = 1, a straightforward 
computation shows that the Gram matrix for 12σα(I), related to the Z-basis {1 +

√
3, 3 +√

3} of I, has only even numbers in its diagonal. Therefore, 1
2σα(I) is an even lattice 

with determinant 3. Since A2 is up to equivalence the only lattice with this property in 
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dimension 2, it follows that 1
2σα(I) a rotated A2-lattice. Since the minimum Euclidean 

norm of 1
2σα(I) is 

√
2, its relative minimum product distance satisfies 

√
dp,rel(Λ) =√

1
22

1√
22

√
NK|Q(α)NK(I)2 =

√
0.25 = 0.5.

The rotated A2-lattices presented above and in [8, Section 3] have the same relative 
minimum product distance (Proposition 3.5) and, as it can be seen next, this is the 
maximum possible value for a rotated A2-lattice.

Proposition 4.3. The maximum relative minimum product distance for a rotated 
A2-lattice is 0.25. Moreover, up a coordinate axis reflection, there is a unique rotated 
A2-lattice with this relative minimum product distance.

Proof. Since an orthogonal transformation in the plane is either a rotation or a re-
flection R1 on the x-axis composed with a rotation, any lattice congruent to A2 is 
obtained by a rotation. Let Rot(A2, θ) be the rotation of A2 by an angle θ, i.e., 
Rot(A2, θ) = {k1(cos(θ), sin(θ)) + k2(cos(θ + π

3 ), sin(θ + π
3 )), k1, k2 ∈ Z}. Taking into 

account the symmetry of A2 we can consider only −π
6 < θ ≤ π

6 . Moreover, since we 
also have that Rot(A2, −θ) = R1(Rot(A2, θ)) and Rot(A2, π6 − θ) = R2(Rot(A2, θ)), 
where R2(x, y) = (y, x), we can restrict our analysis to 0 ≤ θ ≤ π

12 . The abso-
lute value of the product of the coordinates of a point in Rot(A2, θ) is f(k1, k2, θ) =∣∣ 1
2k

2
1 sin(2θ) + 1

2k
2
2 sin(2θ + 2π

3 ) + k1k2 sin(2θ + π
3 )
∣∣. Since f(k1, 0, θ) =

∣∣ 1
2k

2
1 sin(2θ)

∣∣ ≤∣∣ 1
2k

2
1 sin(π6 )

∣∣ = 1
4k

2
1, it follows that 1

4 an upper bound for f(k1, k2, θ) which is not reach-
able for θ �= π

12 . On the other hand f(k1, k2, π12 ) = 1
4
∣∣k2

1 + k2
2 + 4k1k2

∣∣ �= 0, for k1, k2 ∈ Z, 
k1k2 �= 0, what implies that the relative minimum product distance of Rot(A2, π12 ) is 1

4 , 
the biggest possible. The same holds for Rot(A2, − π

12 ) = R1(Rot(A2, θ)). �
4.2. Rotated D3, D4 and D5-lattices

For n ≥ 3, the n-dimensional lattice Dn in Rn is described, in its standard form, 
as Dn = {(x1, . . . , xn) ∈ Zn; 

∑n
i=1 xi is even}. The set β = {(−1, −1, 0, . . . , 0), (1, −1,

0, . . . , 0), (0, 1, −1, 0, . . . , 0), . . . , (0, 0, . . . , 1, −1)} is a basis for Dn, the minimum squared 
Euclidean norm of this version of Dn is 2 and det(Dn) = 4 for all n.

Algebraic constructions of rotated D4-lattices with diversity 2 were presented in [3, 
p. 76] and [9, p. 512] via Q(ζ8), and algebraic constructions of full diversity rotated D3, 
D4 and D5-lattices were presented in [17, Propositions 4.6 and 5.1] via Q(ζ7 + ζ−1

7 ), 
Q(ζ16 + ζ−1

16 ) and Q(ζ11 + ζ−1
11 ), respectively. The lattice D4 was obtained via a principal 

ideal of Z[ζ16 + ζ−1
16 ] whereas the lattices D3 and D5 were obtained via free Z-modules 

in Z[ζ7 + ζ−1
7 ] and Z[ζ11 + ζ−1

11 ], respectively, that are not ideals. If it were possible 
to construct such rotated D3 and D5-lattices via principal ideals of Z[ζ7 + ζ−1

7 ] and 
Z[ζ11+ζ−1

11 ], respectively, their minimum product distances would be twice those obtained 
in such constructions via Z-modules. However, in [18, Proposition 2.7] it was shown that 
if K is a totally real Galois extension with dK an odd integer, then it is impossible to 
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construct rotated Dn-lattices via fractional ideals of OK. In particular, it is impossible 
to construct rotated D3, D4 and D5-lattices via fractional ideals of any Galois extension 
K ⊆ Q(ζm) with m odd.

In what follows we discuss some possibilities for constructing a full diversity rotated 
D4-lattice and present a construction of D4 via a principal ideal of Z[ζ12] and via a free 
Z-module in Z[ζ15 + ζ−1

15 ].

Example 4.4. Note that [Q(ζm) : Q] = 4 if and only if m = 5, 8, 10 and 12 and [Q(ζm +
ζ−1
m ) : Q] = 4 if and only if m = 15, 16, 20, 24 and 30. Let K1 = Q(ζ5) = Q(ζ10) and 
K2 = Q(ζ15 + ζ−1

15 ) = Q(ζ30 + ζ−1
30 ). Since dKi

is odd for i = 1, 2, there does not exist 
any fractional ideal I of OKi

, for i = 1, 2, such that Λ = σα(I) is a rotated D4-lattice, 
scaled by 

√
c with c ∈ Z, for any α ∈ Ki totally positive.

A rotated D4D4D4-lattice via an ideal of ZZZ[ζ12][ζ12][ζ12]: Let ei = ζi12 +ζ−i
12 for all i ∈ N. If K = Q(ζ12), 

I = OK and α = (1 −e1)e5, then 16σα(OK) is a rotated D4-lattice. In fact, since dK = 2432, 
consider the factorizations 3OK = P2, where P = 〈e5〉 and NK(P) = 22 and 2OK = Q2, 
where Q = 〈1 − e1〉 and NK(Q) = 22. Taking I = OK and α = (1 −e1)e5 a totally positive 
element, a straightforward computation shows that the Gram matrix for 16σα(I), related 
to the Z-basis {1, ζ12, ζ2

12, ζ
3
12} of OK, has only even numbers in its diagonal. So, the lattice 

Λ = 1
6σα(OK) is an even lattice with determinant 4. Since D4 is, up to congruence, the 

only lattice with this property, it follows that 1
6σα(OK) is a rotated D4-lattice.

By considering only the values of m such that [Q(ζm + ζ−1
m ) : Q] = 4 and reordering 

the list from the minimum to the maximum discriminant, we have m = 15, 20, 16 and 24. 
The case m = 15 is considered next.

A rotated D4D4D4-lattice via a ZZZ-module in ZZZ[ζ15 + ζ−1
15 ][ζ15 + ζ−1
15 ][ζ15 + ζ−1
15 ]: Let ei = ζi15 + ζ−i

15 for all i ∈ N and 
K = Q(ζ15 + ζ−1

15 ). Since m is odd, there does not exist any fractional ideal I of OK such 
that σα(I) is a rotated and scaled D4-lattice for any α ∈ K totally positive. If I = OK

and α = (1 + e1)(1 + e1 + e2)e1, then the lattice Λ = 1√
15σα(OK) is a rotated Z4-lattice. 

In fact, since dK = 3253, consider the factorizations 3OK = P2, where P = 〈1 + e1 + e2〉
and NK(P) = 32, and 5OK = Q4, where Q = 〈1 + e1〉 and NK(Q) = 5. Taking I = OK, 
α = (1 + e1)(1 + e1 + e2)e1 a totally positive element and calculating a Gram matrix for 
Λ = 1√

15σα(OK), we have that Λ is an odd unimodular lattice in dimension 4, i.e., Λ is 
a rotated Z4-lattice. Using Remark 3.10, we obtain the Z-module I ⊆ OK with Z-basis 
{e1, 2e2, e3, e4} such that Λ1 = 1√

15σα(I) is a rotated D4-lattice. Since the minimum 

Euclidean norm of D4 is 
√

2, NK(I) = 2 and NK|Q(e1) = 1, the relative minimum 

product distance of Λ1 satisfies 4
√
dp,rel(Λ1) = 4

√
1√
24

1√
154

√
(32 5) 22 1

2 = 0.29383.

Remark 4.5. Although the discriminants of Q(ζ15 + ζ−1
15 ) and Q(ζ16 + ζ−1

16 ) are 1125
and 2048, respectively, the relative minimum product distance of the rotated D4-lattice 
Λ2 obtained in [17, Proposition 4.6] via a principal ideal of Z[ζ16 + ζ−1

16 ] satisfies 



G.C. Jorge et al. / Journal of Algebra 429 (2015) 218–235 227
4
√

dp,rel(Λ2) = 0.324210 and is greater than the relative minimum product distance 
obtained via the free Z-module considered above in Z[ζ15 + ζ−1

15 ]. It is also worth notic-
ing that, in certain cases, the relative minimum product distances obtained via free 
Z-modules can be greater than some obtained via principal ideals. For example, the ro-
tated D8-lattice Λ3 obtained in [17, Proposition 5.1] via a free Z-module in Z[ζ17 + ζ−1

17 ]
has relative minimum product distance satisfying 8

√
dp,rel(Λ3) = 0.20472 whereas the 

rotated D8-lattice Λ4 obtained in [17, Proposition 4.6] via an ideal of Z[ζ32 + ζ−1
32 ] has 

relative minimum product distance satisfying 8
√

dp,rel(Λ4) = 0.201311.

In the next proposition, we show that the lattices D3 and D5 can be obtained from 
infinitely many free Z-modules contained in subfields of cyclotomic fields.

Proposition 4.6. There exist infinitely many prime numbers p and number fields K such 
that K ⊆ Q(ζp + ζ−1

p ) and a full diversity rotated D3-lattice (D5-lattice) can be obtained 
via a twisted embedding applied to a free Z-module of rank 3 (rank 5) contained in OK.

Proof. By Dirichlet’s Theorem, it follows that there exist infinitely many prime numbers 
p such that p ≡ 1 (mod 3). Since 3 divides p − 1 and G = Gal(Q(ζp) : Q) is cyclic, it 
follows that there is a unique subgroup H ⊆ G such that |H| = (p− 1)/3. By Galois 
Correspondence Theorem, it follows that there is a unique field K contained in Q(ζp)
which is cyclic of degree 3 over Q. Now, since 3 is odd, it follows that 3 divides (p − 1)/2
and K ⊆ Q(ζp + ζ−1

p ). Using the cyclic construction of [6, Section V] we obtain a rotated 
Z3-lattice via OK. Since D3 ⊆ Z3, the result follows from Remark 3.10. A similar proof 
holds for D5. �
4.3. Rotated E6-lattice

Algebraic constructions of rotated E6-lattices were presented in [3, p. 77] and [10, p. 48]
via Q(ζ9) with diversity 3, and in [8, Section 3] via Q(ζ36+ζ−1

36 ) with full diversity. In what 
follows we discuss some possibilities for constructing a full diversity rotated E6-lattice, 
present a construction of a rotated E6-lattice via a principal ideal of Z[ζ36 + ζ−1

36 ], and 
calculate its minimum product distance.

The 6-dimensional densest lattice E6 is an even lattice with minimum squared 
Euclidean norm 2 and det(E6) = 3. E6 can be defined by the basis (1, 1, 0, 0, 0, 0), 
(−1, 1, 0, 0, 0, 0), (0, −1, 1, 0, 0, 0), (0, 0, −1, 1, 0, 0), (0, 0, 0, −1, 1, 0) and (1/2, −1/2, −1/2,
−1/2, −1/2, 

√
3/2).

Note that the generator matrix M defined by the basis above (and hence any other 
generator matrix for E6 in dimension 6) is not a matrix with only rational entries, up to 
a scalar factor. So, we cannot use the same strategy of Remark 3.10 for constructing a 
rotated E6-lattice.

Proposition 4.7. Let K = Q(θ) be a Galois extension with [K : Q] = 6. Let 3OK =∏g
i=1 Qe

i , where Qi’s are prime ideals of OK, e(Qi|3) = e and f(Qi|3) = f , for all 
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i = 1, . . . , g. If 3 does not divide dK, then there does not exist any fractional ideal I of 
OK such that Λ = σα(I) is a rotated E6-lattice, scaled by 

√
c with c ∈ Z, for any α ∈ K

totally positive.

Proof. Suppose that there exists a fractional ideal I of OK such that Λ = σα(I) is 
a rotated E6-lattice, scaled by 

√
c with c ≥ 0 an integer. Then, det(Λ) = 3c6, where 

c = 3ab, with a ≥ 0 an integer and b ≥ 1 an integer such that 3 � b. So, det(Λ) = 31+6ab6. 
By Proposition 3.9, it follows that f must divide (1 +6a −r). Since 3 does not divide dK, it 
follows that r = 0. We show next that f �= 1 and f divides 6. Therefore, f does not divide 
(m −r) = (1 +6a −0) = 1 +6a and the result follows. Let m(x) = minQ(θ) be the minimal 
polynomial of θ over Q and m(x) the polynomial obtained from m(x) by reduction 
modulo Z3[x]. If f = 1, then m(x) is written as the product of irreducible polynomials of 
degree 1 in Z3[x] and there are only three possibilities for these polynomials mi+1(x) =
x− i, for i = 0, 1, 2. If m(x) = m1(x)m2(x)m3(x), then 3OK = Q1Q2Q3. Since f = 1, 
it follows that NK(Q1) = NK(Q2) = NK(Q3) = 31 = 3. Thus, NK(3OK) = 33 and this 
is possible only if [K : Q] = 3. Similarly, if m(x) = mi+1(x), for some i = 0, 1, 2, then 
[K : Q] = 1, and if m(x) = mi+1(x)mj+1(x), for some i, j = 0, 1, 2, with i �= j, then 
[K : Q] = 2. Therefore, f > 1. Since e f g = 6, it follows that f divides 6. �
Example 4.8. Note that [Q(ζm) : Q] = 6 if and only if m = 7, 9, 14 and 18, and [Q(ζm +
ζ−1
m ) : Q] = 6 if and only if m = 13, 21, 26, 28, 36 and 42. Set K1 = Q(ζ7) = Q(ζ14), K2 =
Q(ζ13 + ζ−1

13 ) = Q(ζ26 + ζ−1
26 ), K3 = Q(ζ21 + ζ−1

21 ) = Q(ζ42 + ζ−1
42 ) and K4 = Q(ζ28 + ζ−1

28 ). 
A straightforward computation shows that dK1 = −75, dK2 = 135, dK3 = 3375 and 
dK4 = 2675. According to Proposition 4.7, it follows that it is not possible to obtain a 
rotated E6-lattice, scaled by 

√
c with c ∈ Z, via a fractional ideal of OKi

for i = 1, 2, 4. 
For i = 3, we have that 3OK2 = P2, where P is a prime ideal of OK2 and f(P|3) = 3. 
Following the notation of Proposition 3.9, let p = 3. Suppose that there exists a fractional 
ideal I of OK2 such that Λ = σα(I) is a rotated E6-lattice, scaled by 

√
c with c > 0 an 

integer. Then, det(Λ) = 3c6, where c = 3ab with a ≥ 0 an integer and b ≥ 1 an integer 
such that 3 � b. So, det(Λ) = 31+6ab6. Since f = 3 does not divide (1 + 6a − 3), we have 
a contradiction.

A rotated E6E6E6-lattice via an ideal of ZZZ[ζ36 + ζ−1
36 ][ζ36 + ζ−1
36 ][ζ36 + ζ−1
36 ]: Let K = Q(ζ36+ζ−1

36 ) and ei = ζi36+ζ−i
36 . 

If α = e4
1 and I =

〈
1 + e1 + e3

1
〉
, then the lattice Λ = 1√

36σα(I) is a rotated E6-lattice 

and 6
√

dp,rel(Λ) = 0.24037. In fact, since dK = 2639 consider the factorizations 3OK =
Q6, where Q = 〈e1〉 with NK(Q) = 3 and 2OK = P2, where P =

〈
1 + e1 + e3

1
〉

and 
NK(P) = 23. Taking α = e4

1, I = P and θ = 1 + e1 + e3
1, we have that α is totally 

positive, NK|Q(α) = 34, NK(I) = 23 and a straightforward computation shows that 
a Gram matrix for 1

6σα(I), associated with the Z-basis {θe1, . . . , θe6} of I has only 
even numbers in its diagonal. Therefore, 1

6σα(I) is an even lattice with determinant 3. 
Its minimum squared Euclidean norm must be 2, otherwise we would have a lattice 
denser than E6 in dimension 6. Since E6 is, up to congruence, the only even lattice 
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with minimum squared Euclidean norm 2 and determinant 3 in dimension 6, it follows 
that 1

6σα(I) is a rotated E6-lattice. Since the minimum Euclidean norm of 1
6σα(I) is √

2, its relative minimum product distance is dp,rel(Λ) = 1
66

1
(
√

2)6
√

2634 = 1
2634 and then 

6
√

dp,rel(Λ) = 0.24037.

Example 4.9. Let K = Q(ζ12 + ζ−1
12 )Q(ζ7 + ζ−1

7 ) the compositum of the fields Q(ζ12 +
ζ−1
12 ) = Q(

√
3) and Q(ζ7 + ζ−1

7 ). We have that dK = (223)3(72)2 = 263374. Consider the 
factorizations 3Z[ζ7 + ζ−1

7 ] = P1 where P1 =
〈
3, 2 + a1 + a2

1 + a3
1
〉

with a1 = ζ7 + ζ−1
7

and 3OK = P2
2 , where P2 is the prime ideal of OK such that P2 ∩ Z[ζ7 + ζ−1

7 ] = P1 and 
f(P2|3) = 3. Suppose that there exists a fractional ideal I of OK such that Λ = σα(I)
is a rotated E6-lattice, scaled by 

√
c with c > 0 an integer. Then, det(Λ) = 3c6, where 

c = 3rs with r ≥ 0 an integer and s ≥ 1 an integer such that 3 � s. So, det(Λ) = 31+6rs6. 
Since 3 does not divide (1 + 6r − 3), it follows that there does not exist any fractional 
ideal I of OK and a totally positive element α such that σα(I) is a rotated and scaled 
E6-lattice.

4.4. Rotated E7-lattice

The 7-dimensional densest lattice E7 is an even lattice with minimum squared Eu-
clidean norm 2 and det(E7) = 2. A basis for 

√
2E7 in dimension 7 is given by the vectors 

(2, 0, 0, 0, 0, 0, 0), (0, 2, 0, 0, 0, 0, 0), (0, 0, 2, 0, 0, 0, 0), (0, 0, 0, 2, 0, 0, 0), (1, 1, 1, 0, 1, 0, 0), 
(0, 1, 1, 1, 0, 1, 0) and (0, 0, 1, 1, 1, 0, 1).

In Proposition 4.10, we present a necessary condition for constructing a rotated 
E7-lattice via a fractional ideal in a Galois extension. In Proposition 4.12, we show 
that there exist infinitely many number fields such that it is possible to obtain a scaled 
and rotated E7-lattice via free Z-modules of rank 7.

Proposition 4.10. Let K = Q(θ) be a Galois extension such that [K : Q] = 7. Let 2OK =∏g
i=1 Qe

i , where Qi’s are prime ideals of OK, e(Qi|2) = e and f(Qi|2) = f , for all 
i = 1, . . . , g. If 2 does not divide dK, then there does not exist any fractional ideal I of 
OK such that Λ = σα(I) is a rotated E7-lattice, scaled by 

√
c with c ∈ Z, for any α ∈ K

totally positive.

Proof. Suppose that there exists a fractional ideal I of OK such that Λ = σα(I) is a 
rotated E7-lattice, scaled by 

√
c with c ≥ 0 an integer. Thus, det(Λ) = 2c7, where c = 2ab

with a ≥ 0 an integer and b ≥ 1 an integer such that 2 � b. So, det(Λ) = 21+7ab7. By 
Proposition 3.9, it follows that f must divide (1 + 7a − r). Since 2 does not divide dK, 
it follows that r = 0. We show next that f = 7 what implies that f does not divide 
(m − r) = (1 + 7a − 0) = 1 + 7a and the result follows. Let m(x) = minQ(θ) be 
the minimal polynomial of θ over Q and m(x) the polynomial obtained from m(x) by 
reduction modulo Z2[x]. If f = 1, then m(x) is written as the product of irreducible 
polynomials of degree 1 in Z2[x] and there are only two possibilities for these polynomials: 
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m1(x) = x and m2(x) = x− 1. If m(x) = m1(x)m2(x), then 2OK = Q1Q2. Since f = 1, 
it follows that NK(Q1) = NK(Q2) = 21 = 2. Thus, NK(2OK) = 22 and this is possible 
only if [K : Q] = 2. Similarly, if m(x) = m1(x) or m(x) = m2(x), we get [K : Q] = 1. 
Since e f g = 7, it follows that f = 7. �
Example 4.11. Let K ⊆ Q(ζm + ζ−1

m ) be a Galois extension of degree 7 and m odd. Since 
dK is odd, it is not possible to get a rotated E7-lattice via a fractional ideal of OK.

Since 
√

2E7 is an integer lattice, using Remark 3.10 and the cyclic construction of 
[6], the next proposition can be derived.

Proposition 4.12. There exist infinitely many prime numbers p and number fields K such 
that K ⊆ Q(ζp + ζ−1

p ) and a full diversity rotated 
√

2E7-lattice can be obtained via a 
twisted embedding and a free Z-module of rank 7 contained in OK.

Remark 4.13. Let p be a prime number and K ⊆ Q(ζp+ζ−1
p ) such that [K : Q] = 7. Since 

dK = p6, it follows that in this case the minimum value of dK is achieved when p = 29. 
Using the cyclic construction of [6, Section V], it follows that there exists a rotated 
Z7-lattice, Rot(Z7), via a subfield K ⊆ Q(ζ29 + ζ−1

29 ) satisfying 7
√

dp,rel(Rot(Z7)) =
0.23618. Using this rotated Z7-lattice, we can obtain a rotated 

√
2E7-lattice, Rot(

√
2E7), 

such that Rot(
√

2E7) ⊆ Rot(Z7). Since the minimum squared Euclidean norm of E7 is 2, 

it follows that 7
√

dp,rel(Rot(
√

2E7)) ≥ 7

√(
1√
27

1√
27 (0.23618)7

)
= 0.11809.

4.5. Rotated E8-lattice

The 8-dimensional densest lattice is defined, in its standard form, as E8 = {(x1, . . . ,
x8) such that xi ∈ Z for all i or xi ∈ Z + 1/2 for all i and

∑8
i=1 xi is even}. The lattice 

E8 is an even unimodular lattice with minimum squared Euclidean norm 2.
Algebraic constructions of rotated E8-lattices were presented in [3, p. 77] via the 

cyclotomic fields Q(ζ15), Q(ζ20) and Q(ζ24) and in [11, p. 52] via Q(ζ20) and Q(ζ24). In 
[15] it was shown that there exist infinitely many subfields K ⊆ Q(ζpq), with p, q distinct 
primes, such that it is possible to obtain rotated E8-lattices via the canonical embedding 
applied to an ideal of OK. All these rotated E8-lattices have diversity 4. In [8, Section 3]
it was presented a full diversity rotated E8-lattice via Q(ζ60 + ζ−1

60 ). In what follows we 
discuss some possibilities for constructing a full diversity rotated E8-lattice and present 
constructions of E8 via a principal ideal of Z[ζ60 + ζ−1

60 ] and via a free Z-module in 
Z[ζ60 + ζ−1

60 ] that is not an ideal. In both cases we obtain the relative minimum product 
distance.

Note that [Q(ζm) : Q] = 8 if and only if m = 15, 16, 20, 24 and 30 and [Q(ζm + ζ−1
m ) :

Q] = 8 if and only if m = 17, 32, 34, 40, 48 and 60. Reordering the last list from the 
minimum to the maximum discriminant we have m = 60, 17, 40, 48 and 32.
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A rotated E8E8E8-lattice via an ideal of ZZZ[ζ60 + ζ−1
60 ][ζ60 + ζ−1
60 ][ζ60 + ζ−1
60 ]: Let K = Q(ζ60 + ζ−1

60 ) and ei =
ζi60 + ζ−i

60 for all i ∈ N. If α = (e1 + e5)e5 and I = 〈e1 + e4 + e6〉, then the lattice Λ =
1√
60σα(I) is a rotated E8-lattice and 8

√
dp,rel(Λ) = 0.20776. In fact, since dK = 283456, 

consider the factorizations 2OK = P2, where P =
〈
2, 1 + e3

1 + e4
1
〉

= 〈e1 + e4 + e6〉 and 
NK(P) = 24, 3OK = Q2, where Q =

〈
3, 2 + e2

1 + e4
1
〉

= 〈e5〉 and NK(Q) = 34, and 
5OK = R4, where R =

〈
5, 2 + e2

1
〉

= 〈e1 + e5〉 and NK(R) = 52. Taking α = (e1 + e5)e5
and I = P, it follows that α is totally positive, NK|Q(α) = 5234 and NK(I) = 24. 
If θ = e1 + e4 + e6, a straightforward calculation shows that the Gram matrix for 

1√
60σα(I), associated with the Z-basis {θe1, . . . , θe8} of I, has only even numbers in 

its diagonal. Therefore, 1√
60σα(I) is an even unimodular lattice. Since E8 is, up to 

congruence, the only even unimodular lattice with minimum squared Euclidean norm 2
in dimension 8, it follows that 1√

60σα(I) is a rotated E8-lattice. Since the minimum 

Euclidean norm of 1√
60σα(I) is 

√
2, it follows that its relative minimum product distance 

satisfies 8
√

dp,rel(Λ) = 8
√

1√
608

1√
28

√
283452 = 0.20776.

A rotated E8E8E8-lattice via a free ZZZ-module in ZZZ[ζ60 + ζ−1
60 ][ζ60 + ζ−1
60 ][ζ60 + ζ−1
60 ]: Let K = Q(ζ60 +ζ−1

60 ) and ei =
ζi60+ζ−i

60 for all i ∈ N. If α = (e1+e5)e5 and I = OK, then the lattice Λ = 1√
30σα(OK) is a 

rotated Z8-lattice and 8
√
dp,rel(Λ) = 0.29382. In fact, a straightforward calculation shows 

that Λ is an odd unimodular lattice in dimension 8. Therefore, 1√
30σα(OK) is a rotated 

Z8-lattice. Since 2E8 is a sublattice of Z8, using Remark 3.10 we obtain the Z-module 
J with Z-basis {2e1, 2e2 + 2e5, e3 + e5 + e6 + e7 + e8, 2e4, 4e5, 2e6, 2e7, 2e8} such that 
Λ� = 1√

30σα(J ) is a rotated 2E8-lattice, i.e., Λ∗ = 1√
120σα(J ) is a rotated E8-lattice. 

The Z-module J is not an ideal of OK. In fact, if J were an ideal we would have 
(2e1)e2 = 2e3 +2e1 ∈ J and then (2e3 +2e1) −2e1 = 2e3 ∈ J . Moreover, 2(e3 +e5 +e6 +
e7+e8) −2e3−2e6−2e7−2e8 = 2e5 ∈ J . Therefore, {2e1, 2e2, 2e3, 2e4, 2e5, 2e6, 2e7, 2e8}
would be a Z-basis of a free Z-module J1 ⊆ J . However, 1√

120σα(J1) is a rotated 

Z8-lattice. Since Z8 is not a sublattice of E8, it follows that J is not an ideal of OK. Since 
the minimum Euclidean norm of E8 is 

√
2 and min0�=y∈J |NK|Q(y)| = 24 = NK|Q(e3 +

e5 + e6 + e7 + e8), the relative minimum product distance of Λ∗ satisfies 8
√

dp,rel(Λ∗) =
8
√

1√
1208

1√
28

√
(34 52)24 = 0.146913.

Example 4.14. For m = 16 if we consider I = Z[ζ16] and α = 1 we obtain a rotated 
Z8-lattice. We also get rotated Z8-lattices for m = 17, 32, 40 and 48 when we consider 
I = Z[ζm+ζ−1

m ] and α = 2 −(ζ17 +ζ−1
17 ), 2 −(ζ32 +ζ−1

32 ), (ζ40 +ζ−1
40 )(ζ6

40 +ζ−6
40 )(ζ7

40 +ζ−7
40 )

and (ζ48+ζ−1
48 )(ζ4

48+ζ−4
48 )(ζ19

48 +ζ−19
48 ), respectively. In such cases we can use Remark 3.10

to obtain rotated 2E8-lattices via free Z-modules of rank 8.

4.6. Rotated K12-lattice

The Coxeter–Todd lattice K12 is a 12-dimensional even lattice with determinant 
det(K12) = 36 and minimum squared Euclidean norm 4.
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Algebraic constructions of rotated K12-lattices with diversity 6 were presented in 
[3, p. 78] and [9, p. 513] via Q(ζ21). In what follows we discuss some possibilities for 
constructing a full diversity rotated K12-lattice with the same minimum product distance 
of the one constructed in [8, Section 3].

Example 4.15. Note that [Q(ζm) : Q] = 12 if and only if m = 13, 21, 26, 28, 36, 42
and [Q(ζm + ζ−1

m ) : Q] = 12 if and only if m = 35, 39, 45, 52, 56, 70, 72, 78, 84 and 90. 
Let K1 = Q(ζ35 + ζ−1

35 ) = Q(ζ70 + ζ−1
70 ), K2 = Q(ζ13) = Q(ζ26) and K3 = Q(ζ28). 

A straightforward computation shows that dK1 = 59710, 3OK1 = Q with f(Q|3) = 12, 
dK2 = 1313, 3OK2 = R with f(R|3) = 12 and dK3 = 212710, 3OK3 = S with f(S|3) = 12. 
By Proposition 3.7, it follows that there does not exist any rotated K12-lattice via a 
fractional ideal of OKi

, for i = 1, 2, 3, since f(Q|3) = f(R|3) = f(S|3) does not divide 36.

Considering only the values of m such that [Q(ζm + ζ−1
m ) : Q] = 12 and reordering 

the list from the minimum to the maximum discriminant we have m = 35, 45, 84, 39, 56,
72 and 52.

A rotated K12K12K12-lattice via an ideal of ZZZ[ζ84 + ζ−1
84 ][ζ84 + ζ−1
84 ][ζ84 + ζ−1
84 ]: Let K = Q(ζ84 + ζ−1

84 ) and ei =
ζi84 +ζ−i

84 for all i ∈ N. If α = e3e20e19e2 and I = 〈1 + e2 + e3 + e5 + e6〉, then the lattice 
Λ = 1√

28σα(I) is a rotated K12-lattice and 12
√
dp,rel(Λ) = 0.15172. In fact, we have that 

dK = 21236710, 2OK = P2, where P =
〈
2, 1 + e5

1 + e6
1
〉

= 〈1 + e2 + e3 + e5 + e6〉 and 
NK(P) = 26 and 7OK = S6, where S =

〈
7, 4 + e2

1
〉

= 〈e3〉 and NK(S) = 72. Taking 
α = e3e20e19e2 and I = P, it follows that NK|Q(α) = 72 and α is totally positive. If 
θ = 1 + e2 + e3 + e5 + e6, then a Gram matrix for 1√

28σα(I), associated with the Z-basis 
{θe1, . . . , θe12} of I, has only even numbers in its diagonal. Therefore, 1√

28σα(I) is an 

even lattice with determinant 36. Moreover, using a full search algorithm in the software 
Mathematica we shown that its minimum squared Euclidean norm must be 4. Since 
K12 is up to equivalence the only even lattice with minimum Euclidean norm 2 and 
determinant 36 in dimension 12 [3], it follows that 1√

28σα(I) is a rotated K12-lattice. 
Since the minimum Euclidean norm of 1√

28σα(I) is 2, its relative minimum product 

distance satisfies 12
√

dp,rel(Λ) = 12
√

1√
2812

1
212

√
21272 = 0.15172.

4.7. Rotated Λ24-lattice

The Leech lattice Λ24 is, up to congruence, the only even unimodular lattice in the 
24-dimensional Euclidean space with minimum squared Euclidean norm 4 (cf. [13]).

Algebraic constructions of the Leech lattice were presented in [11] via Q(ζ39) and in 
[3, p. 79] via Q(ζ39) and Q(ζ35). In [3] it was also stated in Proposition 3.4 that the 
Leech lattice can be obtained from Q(ζm) if only if m = 35, 39, 52, 56, 70, 78 and 84. 
In [8, Section 3] it was presented a construction of a full diversity rotated Λ24-lattice 
via Q(ζ140 + ζ−1

140). In what follows we discuss some possibilities for constructing a full 
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diversity rotated Leech lattice via a principal ideal of Q(ζm+ζ−1
m ), present a construction 

for m = 140, and obtain its minimum product distance. We also present a construction 
of Λ24 via a free Z-module in Z[ζ180 + ζ−1

180].
Note that [Q(ζm+ζ−1

m ) : Q] = 24 if and only if m = 65, 104, 105, 112, 130, 140, 144, 156,
168, 180 and 210. This last list when reordered from the minimum to the maximum 
discriminant is 105, 140, 180, 168, 65, 156, 112, 144 and 104. If we could construct a Leech 
lattice for the case m = 105 via a principal ideal of Z[ζ105 + ζ−1

105], we would have the 
greater minimum product distance possible among the constructions obtained via the 
number fields in this list and principal ideals. However, we could not get the Leech 
lattice for m = 105 using an algorithm approach similar to the one described next for 
m = 140.

A rotated Λ24Λ24Λ24-lattice via an ideal of ZZZ[ζ140 + ζ−1
140][ζ140 + ζ−1
140][ζ140 + ζ−1
140]: Let K = Q(ζ140 + ζ−1

140) and ei =
ζi140 + ζ−i

140 for all i ∈ N. If α = e5e7(e1e4e16e23) and I = 〈1 + e7 + e14〉, then the lattice 
Λ = 1√

140σα(I) is a rotated Λ24-lattice and 24
√

dp,rel(Λ) = 0.08594. In fact, we have 

that dK = 224518720, 2OK = P2, where P =
〈
2, 1 + e5

1 + e6
1 + e7

1 + e9
1 + e11

1 + e12
1
〉

=
〈1 + e7 + e14〉 and NK(P) = 212, 5OK = S4, where S = 〈e7〉 and NK(S) = 56 and 
7OK = R6, where R = 〈e5〉 and NK(R) = 74. Taking α = e5e7(e1e4e16e23) and I = P, 
it follows that NK|Q(α) = 5674 and α is totally positive. If θ = 1 + e7 + e14, then 
a Gram matrix for 1√

140σα(I), associated with the Z-basis {θe1, . . . , θe24} of I, has 
only even integer numbers in its diagonal. From the Gram matrix above, it follows 
that 1√

140σα(I) is an even unimodular lattice. To show that this lattice is in fact the 
Leech lattice Λ24 a fundamental result is that Λ24 is, up to congruence, the unique even 
unimodular lattice with minimum squared Euclidean norm 4 in dimension 24 [13]. In 
order to show that the minimum squared Euclidean norm of 1√

140σα(I) is not 2 we 
implement an algorithm in the Mathematica software following the ideas of [14] (which 
has inspired the so called Sphere Decoder process [19,24]). Since 1√

140σα(I) is an even 
unimodular lattice and does not have vectors with minimum squared Euclidean norm 2, 
it follows that this lattice is a rotated Λ24-lattice. Its relative minimum product distance 

is 24
√
dp,rel(Λ) = 24

√
1√

14024
1√
424

√
2245674 = 0.08594.

A rotated Λ24Λ24Λ24-lattice via a free ZZZ-module in ZZZ[ζ180 + ζ−1
180][ζ180 + ζ−1
180][ζ180 + ζ−1
180]: Let K = Q(ζ180 + ζ−1

180)
and ei = ζi180 + ζ−i

180 for all i ∈ N. If α = (e1 + e5 + e9)3(−e1 − e17)(1 − 4e2
17 + e4

17) and 
I = 〈−1 −e15+e22+e23〉, then the lattice Λ = 1√

180σα(I) is a rotated E8⊕E8⊕E8-lattice 

and 24
√
dp,rel(Λ) = 0.119954. In fact, we have that dK = 224336518, 2OK = P2, where 

P = 〈−1 − e15 + e22 + e23〉 and NK(P) = 212, 5OK = S4, where S = 〈e1 + e17〉 and 
NK(S) = 56, and 3OK = R6, where R = 〈e1 + e5 + e9〉 and NK(R) = 34. Taking 
α = (e1 + e5 + e9)3(−e1 − e17)(1 − 4e2

17 + e4
17), it follows that α is totally positive and 

NK|Q(α) = 56312. Let I = P and θ = −1 − e15 + e22 + e23. The Gram matrix for 
1√
180σα(I), associated with the Z-basis {θe1, . . . , θe24} of I, has only even numbers in 

its diagonal. Using the LLL algorithm for reduction of basis we show that 1√ σα(I) is a 
180
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rotated E8⊕E8 ⊕E8-lattice. Since the minimum Euclidean norm of E8⊕E8⊕E8 is 
√

2, 
it follows that 24

√
dp,rel(Λ) = 24

√
1√

18024
1√
224

√
22456312 = 0.119954. Using the fact that 

√
2Λ24 is a sublattice of E8⊕E8⊕E8 we found the Z-module J ⊆ I with Z-basis {θ(e1+

e16+e17+e19+e21+e22+e23), θ(e2+e11+e16+e18+e19+e20+e23), θ(e3+e16+e18+e19+
e21+e24), θ(e4+e11+e12+e15+e17+e19+e23), θ(e5+e11+e16+e19+e21+e24), θ(e6+e12+
e15+e17+e19+e20+e22+e24), θ(e7+e11+e12+e15+e16+e17+e19+e23+e24), θ(e8+e16+
e21+e23), θ(e9+e12+e15+e16+e17+e18+e19+e21+e22+e24), θ(e10+e12+e15+e17+e19+
e21+e23+e24), 2θe11, 2θe12, θ(e13+e15+e17+e20+e21+e22), θ(e14+e15+e17+e18+e19+
e20+e21+e22+e23), 2θe15, 2θe16, 2θe17, 2θe18, 2θe19, 2θe20, 2θe21, 2θe22, 2θe23, 2θe24}. The 
Gram matrix for the lattice Λ1 = 1√

360σα(J ), associated with this Z-basis of J has only 
even integers in its diagonal. Using an algorithm in the Mathematica software we show 
that the minimum squared Euclidean norm of Λ1 is 4. Then, 1√

360σα(J ) is a Leech lattice. 
Since NK|Q(θ) = 212, it follows that min0�=y∈J |NK|Q(y)| ≥ 212. Now, y = −1 +2e1 +e2 +
2e3+2e4+2e5+2e8+3e10+e11−2e13−e14−e15−e17−3e19−3e20−2e21−4e22−e23 ∈ J
and |NK|Q(y)| = 212. Therefore, 24

√
dp,rel(Λ1) = 24

√
1√

36024
1

224

√
5634212 = 0.0599771.

5. Conclusion

In this section, we present a comparison between relative minimum product distance 
versus density. As mentioned in the Introduction, density and minimum product distance 
are lattice parameters which are associated with the efficiency in the signal transmission 
over Gaussian and Rayleigh fading channels, respectively.

The next Table 1 shows a comparison between the best known normalized product 
distance of rotated Zn-lattices and of the densest lattices Λ in dimensions 2 to 8, 12 and 
24. The center density δ of these lattices are also displayed.

The relative minimum product distance of the rotated A2-lattice obtained here is the 
maximum possible, as stated in Subsection 4.1. A broader question to be investigated 
is if algebraic constructions of lattices, as the ones approached here, can provide the 
greatest possible relative minimum product distance for rotated densest lattices in other 
dimensions.

Table 1
Relative minimum product distance versus center density (from [6,21,17]
and the results presented here).

n n
√
dp,rel(Zn) n

√
dp,rel(Λ) δ(Zn) δ(Λ)

2 0.66870 0.5 0.25 0.28868
3 0.52276 0.36965 0.125 0.17677
4 0.43899 0.32421 0.06250 0.12500
5 0.38322 0.27097 0.03125 0.08838
6 0.34958 0.24037 0.01563 0.07217
7 0.30080 ≥0.11809 0.00781 0.0625
8 0.29382 0.20777 0.00391 0.0625

12 0.22967 0.15172 0.00024 0.03704
24 0.15134 0.08594 5.96 × 10−8 1
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