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1. Introduction

In this paper all rings and algebras, unless otherwise stated, are assumed commutative 
with identity. We denote the category of sets by Sets and the category of abelian groups 
by Ab. For any ring k we let k- Mod and k-Alg denote the category of k-modules and the 
category of k-algebras, respectively, and for any k-module M we denote the n-th tensor 
power of M over k by M⊗kn, or M⊗n if the ring k is understood.

Let k be a ring. A k-plethory is a k-algebra P together with a comonad structure 
WP , called the P -Witt ring functor, on the covariant functor Homk- Alg(P, −) that it 
represents [5]. A k-plethory is also known as a k-k-biring monoid (or monad object), a 
k-k-biring triple, and a Tall–Wraith monoid (or monad object) in k-Alg [3,40]. Trivially, 
the polynomial ring k[X] has the structure of a k-plethory, denoted k[e] and called the 
trivial k-plethory, which is an initial object in the category of k-plethories.

Motivated by our previous efforts [23] to use the theory of plethories to generalize 
our results in [20] on binomial rings, we say that a k-plethory P is idempotent if the 
comonad WP is idempotent, in the sense of [2], [4, Definition 4.1.1], [18,33]; that is, P
is idempotent if the natural transformation WP −→ WP ◦ WP is an isomorphism, or, 
equivalently, if the composition map P � P −→ P is an isomorphism. The idempotent 
k-plethories are the plethystic analogue of the k-epimorphs, which are the k-algebras A
such that the map k −→ A is an epimorphism of rings, or equivalently such that the 
multiplication map A ⊗kA −→ A is an isomorphism [38, Theorem 1]. (The Z-epimorphs 
were classified in [8] and again in [9], and the classification was later generalized in [19]
to Dedekind domains.) Not surprisingly, an analogous equivalence holds for plethories: a 
k-plethory P is idempotent if and only if the map k[e] −→ P from the trivial k-plethory 
to P is an epimorphism of k-plethories.

This paper represents a first step towards a classification of the idempotent 
k-plethories, or more generally the k-plethory epimorphisms. This problem is embedded 
in two larger problems: first, to generalize, when possible, results in commutative algebra 
and algebraic geometry to plethystic algebra, and, second, to classify all k-plethories, 
which recently has been solved for fields k of characteristic zero [13]—all such plethories 
are linear—and which could be within reach for k = Z. Among our results are several 
equivalent characterizations of the idempotent plethories, namely, Theorems 2.9, 4.3, 
6.4, and 6.7 and Propositions 5.2 and 6.6. In Section 2 we provide an overview of the 
paper, along with motivation for the theory from the standpoint of binomial rings and 
integer-valued polynomial rings, and in Section 3 we summarize the relevant definitions 
and theorems from the theory of plethories as presented in [5] by Borger and Wieland. 
Sections 4 and 5 focus on general results that have analogues for the k-epimorphs, and 
Section 6 is concerned with questions of existence and uniqueness of idempotent plethory 
structures. Sections 7 and 8 are devoted to the study of k-plethories contained in K[e], 
where K is the total quotient ring of k, which are all necessarily idempotent and con-
tained in Int(k) = {f ∈ K[e] : f(k) ⊆ k}. There we provide, for example, some exotic 
examples of k-plethories for any Krull domain k, including not only Int(k) but also the 
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ring Int(∞)(k) of all polynomials in K[X] all of whose derivatives are integer-valued. 
Section 8 deals specifically with the well-studied integer-valued polynomial rings Int(k), 
for integral domains k, of [10,21,35–37].

Special cases of Theorems 2.4 and 8.9 and Propositions 7.7, 7.8, 8.2, 8.4, and 8.7, 
along with Problem 2.2, were announced without proofs by the author in [23].

The author would like to thank James Borger for his numerous conversations with 
the author on plethystic algebra, as well as the anonymous referees for their helpful 
comments and suggestions for improvements.

2. Motivation and overview

A ring A is said to be binomial if A is Z-torsion-free and a(a− 1)(a− 2)· · ·(a− n + 1)/
n! ∈ A ⊗Z Q lies in A for all a ∈ A and all positive integers n. By [20, Theorem 9.1], 
a binomial ring is equivalently a λ-ring A whose Adams operations are all the identity 
on A. For any ring A, let Λ(A) denote the universal λ-ring over A. (As an abelian group 
the ring Λ(A) is the group 1 + TA[[T ]], and, in another guise, the ring Λ(A) is the ring 
W (A) of big Witt vectors over A.) Let Bin(A) for any ring A denote the subring of Λ(A)
of all elements that are fixed by all of the Adams operations on Λ(A). (See any of [7,32,
42] for the relevant definitions.) The motivating problem of this paper is to generalize 
the following theorem.

Theorem 2.1 ([20, Theorem 9.1], [3, Section 46]). The association A �−→ Bin(A) defines 
a functor from the category of rings to the category of binomial rings that is a right 
adjoint to the inclusion from binomial rings to rings and is represented by the ring 
Int(Z) = {f ∈ Q[X] : f(Z) ⊆ Z}.

By [5, 2.10–11], [40], the functor Λ ∼= W is isomorphic to the P -Witt functor WP

of a Z-plethory structure P on the ring of symmetric functions over Z in countably 
many variables. In fact, the theory of plethories generalizes the theory of λ-rings. It also 
provides an alternative construction of the functor Bin as the P -Witt functor WP of the 
binomial plethory P = Int(Z) [5, 2.14].

This approach to constructing Bin points to a generalization of Theorem 2.1 to other 
plethories, in particular, to plethory structures on various rings of polynomials, including 
the integer-valued polynomial rings of [10,35–37], which have been studied exclusively for 
integral domains but can be generalized to arbitrary rings as follows. Let k be a ring 
with total quotient ring K. The ring of integer-valued (or k-valued) polynomials on k is 
the subring

Int(k) = {f ∈ K[X] : f(k) ⊆ k}

of the polynomial ring K[X]. More generally, for any set X and any subset E of KX, 
the ring of integer-valued polynomials on E is the subring
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Int(E, k) = {f(X) ∈ K[X] : f(E) ⊆ k}

of the polynomial ring K[X]. One writes Int(kX) = Int(kX, k). One also writes Int(kn) =
Int(kX) if X is a set of cardinality n.

By [20, Proposition 6.4], for any set X the ring Int(ZX) ∼=
⊗

X∈X Int(Z) is the free 
binomial ring generated by X, and therefore a Z-torsion-free ring A is binomial if and 
only if for every a ∈ A there exists a ring homomorphism Int(Z) −→ A sending X to a. 
(In Section 8 we will show that a ring A is binomial if and only if for every a ∈ A

there exists a unique ring homomorphism Int(Z) −→ A sending X to a.) To generalize 
Theorem 2.1 to rings other than k = Z we need an appropriate k-algebra analogue of 
the binomial rings, which should form a full subcategory C of the category of k-algebras. 
From this perspective the problem of generalizing Theorem 2.1 translates more precisely 
to the following.

Problem 2.2 ([23]). Characterize all pairs k, C, where k is a ring and C is a full subcategory 
of k- Alg, such that Int(k) represents a right adjoint to the inclusion from C to k- Alg.

To motivate the following slight modification of the problem, note that Int(Z) is a 
binomial ring and therefore the map Bin(Int(Z)) −→ Int(Z) is an isomorphism.

Problem 2.3. Characterize all pairs k, C, where k is a ring and C is a full subcategory of 
k- Alg, such that Int(k) represents a right adjoint F to the inclusion from C to k- Alg for 
which the map F (Int(k)) −→ Int(k) is an isomorphism.

Theorem 2.10, stated at the end of this section, provides a solution to Problem 2.3.
There is a clear connection between Problems 2.2 and 2.3 and the theory of plethories. 

Let k be any ring. A k-k-biring is a k-algebra R together with a lift of the functor 
Homk- Alg(R, −) from k-Alg to Sets to a functor WR from k- Alg to k- Alg. Thus, if k, C
is a pair satisfying the condition in Problem 2.2, then the functor Homk- Alg(Int(k), −)
from k- Alg to Sets lifts to a functor from k-Alg to C, whence Int(k) has the structure 
of a k-k-biring. (This a priori places restrictions on candidates for k and C.) Moreover, 
as explained in [5] and in Section 3, a k-plethory is equivalently a monoid object in the 
monoidal category, equipped with the composition product �, of k-k-birings; that is, it 
is a k-k-biring P together with a homomorphism P � P −→ P of k-k-birings, called 
composition, that is associative and possesses a unit k[X] −→ P . (The functor P �− is 
a left adjoint to the comonad WP and is therefore a monad on k-Alg.) Since Int(k) is 
closed under the operation of composition of polynomials, any k-k-biring structure on 
Int(k) containing k[X] as a sub-k-k-biring is unique and extends to a unique k-plethory 
structure on Int(k).

It turns out that there are very large classes of rings k for which Int(k) has the 
structure of a k-plethory, including, for example, all Krull domains and more generally 
all domains of Krull type. An integral domain D is said to be of Krull type [29] if D is a 
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locally finite intersection of essential valuation overrings, that is, if D =
⋂

p∈P Dp, where 
P ⊆ SpecD, each Dp is a valuation domain, and the intersection is locally finite, that is, 
every nonzero element of D belongs to only finitely many p ∈ P. This is the same as the 
definition of a Krull domain except that the localizations are assumed to be valuation 
domains rather than DVRs. Just as with Krull domains, the set P may be taken to be 
canonical, namely, as the set t-Max(D) ⊆ SpecD of all t-maximal ideals of D, which 
for a Krull domain are precisely the height one primes. An ideal is t-maximal if it is 
maximal among the proper t-closed ideals of D, where t is the well-studied t-closure 
(star) operation t : I �−→ It =

⋃
{Jv : J ⊆ I is finitely generated} on the partially 

ordered set of ideals I of D, where v : I �−→ Iv = (I−1)−1 is the divisorial closure (star) 
operation. In particular, a domain D is of Krull type if and only if D is a PVMD (that 
is, Dp is a valuation domain for every t-maximal ideal p of D) [28] and D is of finite 
t-character (that is, every nonzero element of D lies in only finitely many t-maximal 
ideals of D, or equivalently the intersection D =

⋂
p∈t- Max(D) Dp, which holds generally, 

is locally finite) [30]. A Krull domain is equivalently a PVMD, or domain of Krull type, 
that satisfies the ascending chain condition on t-closed ideals. In fact, more generally 
any TV PVMD (that is, any PVMD such that It = Iv for all ideals I) [30] is a domain 
of Krull type, and any n-dimensional discrete valuation domain is a TV PVMD but is a 
Krull domain if and only if n ≤ 1.

Theorem 2.4. Let k be a ring. Each of the following conditions implies the next.

1. k is a Krull domain.
2. k is a TV PVMD.
3. k is a domain of Krull type.
4. k is a PVMD and Int(kp) = Int(k)p for every maximal ideal p of k.
5. Int(k)p is equal to Int(kp) and is free as a kp-module for every maximal ideal p of k.
6. For every positive integer n the canonical k-algebra homomorphism Int(k)⊗n −→

Int(kn) is an isomorphism.
7. The canonical k-algebra homomorphism Int(k)⊗n −→ Int(kn) is an isomorphism for 

n = 2 and an inclusion for n = 3.
8. Int(k) has the structure, necessarily unique, of a k-k-biring such that the inclusion 

k[X] −→ Int(k) is a homomorphism of k-k-birings.
9. Int(k) has the structure, necessarily unique, of a k-plethory with unit given by the 

inclusion k[X] −→ Int(k). Moreover, composition Int(k) � Int(k) −→ Int(k) is an 
isomorphism and acts by ordinary composition of polynomials on elements of the 
form f � g.

In particular, if D is a domain of Krull type, or more generally a PVMD such that 
Int(Dp) = Int(D)p for all maximal ideals p of D, then Int(D) has a canonical D-plethory 
structure. This lends a new dimension to the study (as in [10–12,17,21,22,24,25,27,41]) of 
integer-valued polynomial rings over Dedekind domains, almost Dedekind domains, Krull 
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domains, domains of Krull type, and PVMDs. Proposition 8.7, for instance, provides in 
the case where D is a Dedekind domain a plethystic interpretation of Theorems V.2.10 
and V.3.1 of [10], which for certain domains D provide a correspondence between the 
completion D̂p and the set of prime ideals of Int(D) lying above p, for any maximal ideal 
p of D.

Our efforts to prove and generalize Theorem 2.4 (see Theorem 7.11 for a generaliza-
tion) motivated our study of the idempotent plethories, which are singled out by the 
equivalent conditions of the following proposition (proved in Section 4).

Proposition 2.5. Let k be a ring and P a k-plethory. The following conditions are equiv-
alent.

1. The natural transformation WP −→ WP ◦WP is an isomorphism.
2. The natural transformation P � (P �−) −→ (P �−) is an isomorphism.
3. The k-algebra homomorphism P −→ WP (P ) is an isomorphism.
4. The k-algebra homomorphism P � P −→ P is an isomorphism.

Thus, a k-plethory P is idempotent if and only if the comonad WP is idempotent, if 
and only if the monad P �− is idempotent, both in the sense of [2], [4, Definition 4.1.1],
[18,33]. Indeed, these are restatements of conditions (1) and (2), respectively, of the 
proposition. Conditions (3) and (4) are equivalent to conditions (1) and (2), respectively, 
essentially by the fact that P represents the comonad WP .

Trivially, the trivial k-plethory k[e] is idempotent. We also prove in Section 4 that a 
k-plethory P is idempotent if and only if the unit k[e] −→ P is a k-plethory epimorphism.

By Theorem 2.4, if Int(k) has the structure of a k-plethory with unit given by the 
inclusion k[X] −→ Int(k), then the k-plethory Int(k) is idempotent. More generally, we 
have the following.

Proposition 2.6. Let k be a ring with total quotient ring K and let P be any k-plethory 
contained in K[e]. Then P is closed under composition of polynomials in K[e], and the 
k-plethory composition in P coincides with composition of polynomials in K[e]. Moreover, 
P is a k[e]-subalgebra of Int(k) and P is idempotent.

In particular, if Int(k) has a canonical k-plethory structure, then in fact it is the 
largest k-plethory contained in K[e]. This motivates the following problems.

Problem 2.7. Let k be a ring with total quotient ring K.

1. Classify the idempotent k-plethories.
2. Classify the k-plethories contained in K[e].
3. For which k does Int(k) have the structure of a k-plethory?
4. For which k is Int(k) the largest idempotent k-plethory?
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5. For which k does there exist a largest idempotent k-plethory (or equivalently an 
epimorphic hull of k[e] in the category of k-plethories), and how can one construct 
it?

6. For which k is every idempotent k-plethory isomorphic to a k[e]-subalgebra of K[e]?

Regarding Problem 2.7(4–6) above we make the following conjecture.

Conjecture 2.8. Let D be a Dedekind domain of characteristic zero with quotient field 
K. Then every idempotent D-plethory is contained in K[e], or, equivalently, Int(D)
is the largest idempotent D-plethory and is therefore the epimorphic hull of the trivial 
D-plethory.

Sections 7 and 8 reveal further connections between idempotent plethories and integer-
valued polynomial rings. The moral is that both theories motivate each other. For 
example, we show in Section 7 that, for any Krull domain D with quotient field K
and any domain D′ with D ⊆ D′ ⊆ K, the D[X]-algebras

Int(D) ∩D′[X] ⊇ Int(∞)(D) ∩D′[X] ⊇ Int[∞](D) ∩D′[X]

are all D-plethories, where Int(∞)(D) denotes the ring of all polynomials f in K[X]
such that f and all of its derivatives lie in Int(D), and where Int[∞](D) is the ring 
of all polynomials f in K[X] whose finite differences Δh1Δh2 · · ·Δhn

f of all orders n, 
for all h1, . . . , hn ∈ D, lie in Int(D) [10, Chapter IX]. It is known, for example, that 
Int(∞)(Z) = Int[∞](Z) is free as a Z-module with Z-basis c0, c1X, c2

(
X
2
)
, c3

(
X
3
)
, . . . , where 

cn =
∏

p≤n prime p
�n/p� for all n. In particular, Int(∞)(Z) is not of the form Int(Z) ∩D′[X]

for any subring D′ of Q. Furthermore, one has

Int(Z[i]) � Int(∞)(Z[i]) � Int[∞](Z[i]) � Z[i][X],

so likewise these define Z[i]-plethories whose study requires nontrivial results from the 
theory of integer-valued polynomials.

If η : k[X] −→ R is a k[X]-algebra, then we say that a k-algebra A is η-reflective, or 
R-reflective if the k[X]-algebra structure on R is understood, if for every a ∈ A there 
is a unique k-algebra homomorphism R −→ A sending η(X) to a, or equivalently if 
every k-algebra homomorphism k[X] −→ A factors uniquely through η. For example, 
R itself is η-reflective if and only if η is a reflection map in k- Alg, in the sense of [9, 
p. 199], for example, and in Corollary 8.10 we show that a Z-algebra is Int(Z)-reflective 
if and only if it is a binomial ring. We denote by η-Refl, or R- Refl, the category of 
R-reflective k-algebras, full in k-Alg. If P = R is a k-plethory, then we say that A is 
P -reflective if A is η-reflective, where η is the unit k[e] −→ P , or equivalently if the 
k-algebra homomorphism WP (A) −→ A is an isomorphism. Thus P is idempotent if 
and only if P is P -reflective.
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In Section 6 we show that the forgetful functor from the category of idempo-
tent k-plethories to k[X]- Alg is an isomorphism onto its image. Thus an idempotent 
k-plethory structure can be thought of as a property of the underlying k[X]-algebra 
rather than as a structure in and of itself. Moreover, if P is idempotent, then the for-
getful functor from the category of P -rings—which are the (Eilenberg–Moore) algebras 
of the monad P � − and are studied in Section 5—to the category k-Alg is an isomor-
phism onto P -Refl, so likewise a P -ring may be considered a property of the underlying 
k-algebra. This fact allows us to define left and right adjoints to the inclusion from P -Refl
to k- Alg. (For k = Z and P = Int(Z), the right adjoint to this inclusion is precisely the 
functor Bin, and the left adjoint is the functor BinU of [20, Theorem 7.1].) Moreover, it 
allows us to uniquely characterize any idempotent plethory P via its category P -Refl, 
and vice versa, using the plethory reconstruction theorem of [5, Introduction], as in 
Theorem 2.9 below.

A category is said to be complete (resp., cocomplete, bicomplete) if it has all limits 
(resp., all colimits, all limits and colimits). For any k-plethory P , the category P -Rings
of P -rings is bicomplete, and the forgetful functor from P -Rings to k- Alg preserves all 
limits and colimits [5, 1.10]. (Thus, for example, the tensor product over k of a collection 
of P -rings is a P -ring.) Moreover, the forgetful function from P -Rings to k- Alg is an 
isomorphism onto P -Refl. It follows that P -Refl is also bicomplete with all limits and 
colimits computed as they are in k- Alg.

A subcategory C of a category D is said to be reflective (resp., coreflective, bireflective) 
if the inclusion from C to D has a left adjoint (resp., a right adjoint, both left and right 
adjoints). For example, the category of binomial rings is bicomplete and bireflective in 
Z- Alg [20, Sections 5, 7, and 9], and if the category C is as in Problem 2.2, then C is a 
coreflective subcategory of D-Alg.

Theorem 2.9. A category C is a full, bicomplete, and bireflective subcategory of k-Alg if 
and only if C = P -Refl for a (necessarily unique and idempotent) k-plethory P .

If C is a subcategory of k-Alg, then we denote by C the isomorphic closure of C in 
k- Alg, that is, the full subcategory of k- Alg whose objects are the objects of k-Alg that 
are isomorphic to some object in C. Our results on idempotent plethories, particularly 
Theorem 6.7, lead to the following solution to Problem 2.3.

Theorem 2.10. Let k be a ring. The following conditions are equivalent.

1. Int(k) has the structure, necessarily unique and idempotent, of a k-plethory with unit 
given by the inclusion k[X] −→ Int(k).

2. Int(k) has the structure, necessarily unique, of a k-k-biring such that the inclusion 
k[X] −→ Int(k) is a homomorphism of k-k-birings.
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3. There exists a full subcategory C of k-Alg such that Int(k) represents a right adjoint 
FC to the inclusion IC from C to k-Alg for which the map FC(Int(k)) −→ Int(k) is 
an isomorphism.

4. There exists a full subcategory k- alg of k-Alg such that Int(k) represents a right 
adjoint FD to the inclusion ID from D to k-Alg for which the counit ID◦FD −→ idk- Alg
acts by evaluation at X ∈ Int(k).

5. Int(k) represents an endofunctor F of k-Alg such that evaluation at X ∈ Int(k)
defines a natural transformation from F to idk- Alg.

6. There is an idempotent k-plethory structure on Int(k).
7. The category of Int(k)-reflective k-algebras is a full, bicomplete, and bireflective sub-

category of k-Alg.
8. The k-algebra Int(k)⊗n is Int(k)-reflective for all positive integers n.
9. The k-algebra Int(k)⊗n is Int(k)-reflective for n = 2, 3.

Suppose that the above conditions hold. Then C = D = Int(k)-Refl and IC ◦ FC ∼= F =
WInt(k) = ID ◦FD. In particular, Int(k)-Refl is the largest subcategory C of k-Alg satisfy-
ing (3) or D of k-Alg satisfying (4). Moreover, there is a unique k-algebra automorphism 
ι of Int(k) such that the correspondence − ◦ ι : IC ◦ FC −→ ID ◦ FD is a natural isomor-
phism, and one has ι(X) = uX + b for some u ∈ k∗ and b ∈ k.

Theorem 2.4 provides large classes of domains k for which Int(k) is a k-plethory 
(that is, for which the equivalent conditions of the above theorem hold). Moreover, in 
Section 7 we show that Int(k) is not a k-plethory if k = Z[ε] = Z[T ]/(T 2) is the ring
of dual numbers over Z, yet Int(k) is a k-plethory, where k = Z + εQ[ε] (which is a 
non-Noetherian ring in which every finitely generated or regular ideal is principal) is the 
integral closure of Z[ε] in its total quotient ring Q[ε]. Evidently certain questions remain 
unanswered, namely, Problems 2.7, 8.5, 8.6, 8.12, and, most crucially, the following.

Problem 2.11.

1. Does there exist a ring k such that Int(k) is not a k-plethory (that is, such that the 
equivalent conditions of Theorem 2.10 do not hold) and such that k is also (a) an 
integral domain? (b) an integrally closed ring? (c) an integrally closed domain?

2. Is every idempotent Z-plethory contained in Int(Z)?
3. Classify the idempotent Z-plethories.

3. Plethories

In this section we recall some basic definitions from the theory of plethories. The 
reader familiar with [5] may skip to Section 4. We assume familiarity with the language 
of monads (or triples), comonads (or cotriples), and the Eilenberg–Moore category of 
algebras over a monad, and coalgebras over a comonad, as found, for example, in [1,3,4].
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Let T = (T, ε, μ) be a monad on a category C, so in particular T : C −→ C is 
a functor and ε : idC −→ T and μ : T ◦ T −→ T are natural transformations. (We 
often blur the distinction between a monad T and the functor T .) We denote by CT the 
Eilenberg–Moore category of algebras over the monad T. One says that the monad T is 
idempotent if it satisfies the equivalent conditions of the following proposition.

Proposition 3.1 ([4, Proposition 4.2.3]). Let T = (T, ε, μ) be a monad on a category C. 
The following conditions are equivalent.

1. The multiplication μ : T ◦ T −→ T of the monad T is an isomorphism.
2. The forgetful functor CT −→ C is full and faithful.
3. For every algebra (X, ξ) over the monad T, the morphism ξ : T (X) −→ X in C is 

an isomorphism.

One also says that a comonad is idempotent if it satisfies the equivalent conditions of 
the dual statement of the above proposition for comonads.

A (commutative unital) ring is equivalently an abelian group A together with a cocom-
mutative comonad structure on the covariant functor HomAb(A, −) that it represents, or 
equivalently a commutative monad structure on its left adjoint, A ⊗−. Let k be a ring. 
A k-module is equivalently a coalgebra over the comonad HomAb(k, −), or equivalently 
an algebra over the monad k ⊗ −. A (commutative unital) k-algebra is equivalently a 
k-module M together with a cocommutative comonad structure on the covariant func-
tor Homk- Mod(M, −) that it represents, or equivalently a commutative monad structure 
on its left adjoint, M ⊗k −. Carrying these definitions one step further, one defines 
a k-plethory to be a k-algebra P together with a comonad structure on the covariant 
functor Homk- Alg(P, −) that it represents.

Note that HomAb(A, −) and Homk- Mod(M, −), for A ∈ Ab and M ∈ k- Mod, respec-
tively, are at least endofunctors of Ab and k-Mod, as the respective hom sets are enriched 
with natural abelian group and k-module structures, both linear, in this sense. By con-
trast, however, Homk- Alg(P, −) need not carry with it a natural k-algebra structure for 
P ∈ k- Alg. In this sense the k-plethories are a non-linear analogue of the k-algebras.

Also note that an endofunctor of the categories Ab, k- Mod, and k-Alg is representable 
if and only if it has a left adjoint. Thus, for example, we may define a k-plethory to be 
a representable comonad on k-Alg, or equivalently a comonad on k-Alg that possesses a 
left adjoint, which by adjunction is a monad. Equivalently still, a k-plethory is a monad-
comonad left-right adjoint pair on k-Alg. Under these modified definitions, a k-plethory 
is determined only up to unique isomorphism.

The categorical definitions of k-plethories above can be made more concrete, as follows 
[5]. Let k and k′ be rings. A k-k′-biring is a k-algebra R together with a lift of the functor 
Homk- Alg(R, −) from k- Alg to Sets to a functor WR, called the R-Witt ring functor, from 
k- Alg to k′- Alg. A k-k′-biring is equivalently a k-algebra R together with a structure on 
R of a k′-algebra object in the opposite category of k-Alg. In other words, a k-k′-biring 
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is a k-algebra R equipped with two binary co-operations Δ+, Δ× : R −→ R⊗k R, called 
coaddition and comultiplication, a cozero and counit ε+, ε× : R −→ k, and a coadditive 
coinverse σ : R −→ R, satisfying laws dual to those defining commutative rings, along 
with a ring homomorphism β : k′ −→ WR(k), which is called the co-k′-linear structure. 
See [3,5,40] for further details.

The polynomial ring k[X], for example, has a canonical k-k-biring structure as it 
represents the identity functor from k-Alg to itself. Coaddition acts by X �−→ X ⊗ 1 +
1 ⊗X, comultiplication by X �−→ X⊗X, and the co-k-linear structure k −→ Wk[X](k) =
Homk[X]- Alg(k[X], k) by a �−→ (f �−→ f(a)). We note the following.

Lemma 3.2. Let k be a ring, R a k-k-biring with coaddition Δ+, comultiplication Δ×, 
and co-k-linear structure β. Let η : k[X] −→ R be a k-algebra homomorphism, and let 
e = η(X). The following conditions are equivalent.

1. η is a homomorphism of k-k-birings.
2. e is ring-like in R, that is, Δ+(e) = e ⊗ 1 + 1 ⊗ e, Δ×(e) = e ⊗ e, and β(c)(e) = c

for all c ∈ k.
3. The map WR(A) −→ A acting by ϕ �−→ ϕ(e) is a k-algebra homomorphism for every 

k-algebra A.
4. The map WR(A) −→ A acting by ϕ �−→ ϕ(e) is a k-algebra homomorphism for 

A = k and A = R⊗2.

Moreover, every natural transformation from WR to idk- Alg acts by ϕ �−→ ϕ(a) for a 
unique ring-like element a of R.

If {Ri}i∈I is an indexed family of k-algebras, then, Homk- Alg(
⊗

i∈I Ri, −) ∼=∏
i∈I Homk- Alg(Ri, −), so if the Ri are k-k-birings then the tensor product 

⊗
i∈I Ri

over k (the coproduct in k- Alg) has a natural k-k-biring structure. Thus, for exam-
ple, the polynomial ring k[X] over k in any set X of formal variables has a canonical 
k-k-biring structure.

By [5, 1.4–5], for any k-k′-biring R, the lifted functor WR from k-Alg to k′-Alg has 
a left adjoint, denoted R � −, and � distributes over arbitrary coproducts, both from 
the left and from the right. The k-algebra R � A for any k′-algebra A is the k-algebra 
generated by the symbols r � a for all r ∈ R and a ∈ A, subject to the relations [5, 
1.3.1–2], namely,

(r + s) � a = (r � a) + (s� a), (rs) � a = (r � a)(s� a), c� a = c,

r � (a + b) =
∑
i

(r+
i1 � a)(r+

i2 � b), r � (ab) =
∑
i

(r×i1 � a)(r×i2 � b)

r � c′ = β(c′)(r)
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for r, s ∈ R, a, b ∈ A, c ∈ k, c′ ∈ k′, where coaddition and comultiplication Δ+, Δ× :
R −→ R⊗k R act by

Δ+ : r �−→
∑
i

r+
i1 ⊗ r+

i2, Δ× : r �−→
∑
i

r×i1 ⊗ r×i2,

respectively, and where β : k′ −→ WR(k) is the co-k′-linear structure.
A k-plethory is equivalently a k-k-biring R together with a comonad structure on 

the endofunctor WR of k-Alg. By the adjunction (R � −) 
 WR, a k-plethory is also 
equivalently a k-k-biring R together with a monad structure on the endofunctor R�−
of k- Alg.

If R and S are k-k-birings, then Homk- Alg(R�S, −) lifts to the endofunctor WS ◦WR

of k- Alg, so R�S is naturally a k-k-biring. Moreover, the category of k-k-birings equipped 
with the operation � is monoidal with unit k[X]. It follows that a k-plethory is equiv-
alently a monoid object in that monoidal category, that is, it is a k-k-biring P together 
with a homomorphism ◦ : P � P −→ P of k-k-birings, called composition, that is asso-
ciative and possesses a unit k[X] −→ P . We write r ◦ s for ◦(r � s), and we denote the 
image of X in P by e.

The trivial k-plethory is the k-plethory P = k[e] for which WP is the identity functor 
on k- Alg. It is an initial object in the category of k-plethories.

If P is a k-plethory, then the functor P�− is a monad, and the functor WP a comonad, 
on the category k-Alg. A P -ring is an (Eilenberg–Moore) algebra of the monad P �−, 
or equivalently a coalgebra of the comonad WP . A P -ring is equivalently a k-algebra A
together with a k-algebra homomorphism ◦ : P �A −→ A such that (r◦s) ◦a = r◦(s ◦a)
and e ◦ a = a for all r, s ∈ P and all a ∈ A [5, 1.9]. Such a map ◦ is said to be a left 
action of P on A. For example, P itself has a structure of a P -ring, as do the k-algebras 
P �A and WP (A) for any k-algebra A, with left actions given by

P � (P �A) −→ P �A, r � (s� a) �−→ (r ◦ s) � a

and

P �WP (A) −→ WP (A), r � ϕ �−→ ϕ(− ◦ r),

respectively [5, 1.10].
We let P -Rings denote the category of P -rings, with P -ring morphisms as k-algebra 

homomorphisms that are compatible with the action of P , in the obvious sense. (This is 
just the Eilenberg–Moore category of the monad P �−.) The functors P �− and WP

from k-Alg to P -Rings are left and right adjoints, respectively, to the forgetful functor 
from P -Rings to k- Alg [5, 1.10]. Therefore P �A is the free P -ring on A and WP (A) is 
the cofree P -ring on A for any k-algebra A. Thus, for example, P ∼= P � k[X] is the free 
P -ring on one generator, and P⊗X ∼= P�k[X]⊗X ∼= P�k[X] is the free P -ring generated 
by X for any set X. In particular, every P -ring is isomorphic, for some set X, to the 
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quotient of P⊗X by some P -ideal [5, Section 5] of P⊗X. The P -ring WP (A) is called the 
P -Witt ring of A. This terminology comes from the fact that, if P is the Z-plethory Λ of 
[5, Remark 2.11], then WP is isomorphic to the universal λ-ring functor Λ, and a P -ring 
is equivalently a λ-ring.

Plethories may be thought of as a non-linear generalization of the cocommutative 
bialgebras [5]. In particular, the category of cocommutative k-bialgebras is naturally 
equivalent to the category of linear k-plethories [5, 2.2–2.6], which we now define.

For the remainder of this section, all algebras and bialgebras are not assumed com-
mutative. Let k be a ring. A k-coalgebra is a k-module C together with a coassociative 
comultiplication C −→ C⊗kC possessing a counit C −→ k. Equivalently, C is a k-module 
together with the structure of a monad on the functor Homk- Mod(C, −) that it represents.

The tensor algebra T (M) and symmetric algebra S(M) of a k-module M are graded 
k-algebras and are, respectively, the free k-algebra on M and the free commutative 
k-algebra on M . If A is a k-algebra, then there is a graded k-algebra homomorphism 
T (A) −→ k + XA[X] induced by the multiplication maps A⊗kn −→ A for n ≥ 1. This 
homomorphism factors through the homorphism T (A) −→ S(A) if and only if A is 
commutative, in which case the homomorphism S(A) −→ k+XA[X] is an isomorphism.

If C is a cocommutative k-coalgebra, then, by [5, 2.2], the k-algebra S(C) has a natural 
k-k-biring structure. A k-bialgebra is a monoid object in the category of k-coalgebras, or 
equivalently a comonoid object in the category of k-algebras. If C and C ′ are cocommu-
tative k-coalgebras, then by [5, 2.3] there is an isomorphism S(C) �S(C ′) ∼= S(C⊗k C

′)
of k-k-birings, where a � b corresponds to a ⊗ b for all a ∈ C and b ∈ C ′. Thus, if A is 
a cocommutative k-bialgebra, then the multiplication map A ⊗k A −→ A and unit map 
k −→ A of k-coalgebras induce maps

S(A) � S(A) ∼= S(A⊗k A) −→ S(A)

k[X] ∼= S(k) −→ S(A)

of k-k-birings that give S(A) the structure of a k-plethory. A k-plethory isomorphic to 
one of the form S(A) for a cocommutative k-bialgebra A is said to be linear. By [5, 
2.2–6], the functor S(−) induces an equivalence between the category of cocommutative 
k-bialgebras and the category of linear k-plethories, and for any k-bialgebra A there is 
an equivalence between the Eilenberg–Moore category of the monad A ⊗k − and that of 
the monad S(A) �−.

4. Idempotence and linearity

Let k be a ring. We say that a k-plethory P is idempotent if the comonad WP is 
idempotent, or equivalently if the monad P � − is idempotent. Proposition 2.5, which 
characterizes the idempotent plethories, follows from the adjunction (P � −) 
 WP , 
Yoneda’s lemma, and the fact that P represents the comonad WP .
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Proof of Proposition 2.5. Statements (1) and (2) are equivalent by the adjunction 
(P �−) 
 WP . Statements (1) and (4) are equivalent because P represents the func-
tor WP and P � P represents the functor WP ◦ WP . (Also, statements (2) and (4) 
are equivalent because the map P � k[e] −→ P is an isomorphism.) By the adjunction 
(P�−) 
 WP we have a natural bijection Homk- Alg(P�P, A) ∼= Homk- Alg(P, WP (A)) for 
all k-algebras A. If (3) holds, then there is also a natural bijection Homk- Alg(P, WP (A)) ∼=
Homk- Alg(P, A), and therefore (4) holds by Yoneda’s lemma. Thus (3) implies (4). Fi-
nally, we show that (1) implies (3). If (1) holds, then the comonad WP is idempotent, 
and therefore by Proposition 3.1 the map A −→ WP (A) is an isomorphism for every 
coalgebra A over the comonad WP , that is, for every P -ring A. In particular, since P is 
a P -ring, the map P −→ WP (P ) is an isomorphism, that is, (4) holds. �

We will see that the idempotent k-plethories are the plethystic analogue of the 
k-epimorphs, which are the k-algebras defined by the following proposition.

Proposition 4.1 ([4, Proposition 4.2.3], [38, Theorem 1]). Let k be a commutative ring, 
and let A be a k-algebra, not necessarily commutative. The following conditions are 
equivalent.

1. The multiplication map A ⊗k A −→ A is a k-algebra isomorphism.
2. The monad A ⊗k − on k-Mod is idempotent.
3. The map A −→ Homk- Mod(A, A) is a k-algebra isomorphism.
4. The comonad Homk- Mod(A, −) on k-Mod is idempotent.
5. The forgetful functor from A-Mod to k-Mod is full and faithful.
6. Either of the k-algebra homomorphisms A −→ A ⊗k A is an isomorphism.
7. The two k-algebra homomorphisms A −→ A ⊗k A are equal.
8. One has a ⊗ b = b ⊗ a in A ⊗k A for all a, b ∈ A.
9. The tensor algebra T (A) of the k-module A is commutative.

10. The graded k-algebra homomorphism T (A) −→ S(A), where S(A) is the symmetric 
algebra of the k-module A, is an isomorphism.

11. The graded k-algebra homomorphism T (A) −→ k + XA[X] is an isomorphism.
12. One has A ⊗k coker(k → A) = 0 as k-modules.
13. The map k −→ A is an epimorphism of Z-algebras.
14. The map k −→ A is an epimorphism of commutative rings.

Proof. The equivalence of the first five conditions follows from Proposition 3.1 and the 
adjunction (A ⊗k −) 
 Homk- Mod(A, −), and the equivalence of the last nine conditions 
and condition (1) follows from [38, Theorem 1]. �
Example 4.2. Let k be an integral domain with quotient field K. A k-algebra A is a 
k-torsion-free k-epimorph if and only if A is isomorphic to a k-subalgebra of K and 
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A ⊗k A is k-torsion-free. In particular, if k ⊆ A ⊆ K and A is flat as a k-algebra, then 
A is a k-epimorph.

The following result provides some analogous characterizations of the idempotent 
plethories.

Theorem 4.3. Let k be a ring and P a k-plethory. The following conditions are equivalent.

1. P is idempotent.
2. Either of the k-algebra homomorphisms P −→ P � P is an isomorphism.
3. The two k-algebra homomorphisms P −→ P � P are equal.
4. The k-k-biring homomorphism Q(P ) −→ k[X] ⊗k

⊗∞
n=1 P

∼= k[X] ⊗k (P �
k[X1, X2, . . .]) induced by composition, where Q(R) =

⊗∞
n=0 R


n for any k-k-biring 
R denotes the free k-plethory on R [5, 2.1], is an isomorphism.

5. For every k-plethory Q there is at most one k-plethory homomorphism P −→ Q.
6. The map k[e] −→ P is an epimorphism of k-plethories.

Proof. Both homomorphisms id�e and e �id from P to P�P (acting by a �−→ a �e and 
a �−→ e � a, respectively) are sections of the composition map P � P −→ P . It follows 
that (1) ⇔ (2) ⇒ (3). Suppose that (3) holds, and let ϕ, ψ : P −→ Q be k-plethory 
homomorphisms. Then the commutative diagram

P � P

ϕ
ψ

P
id 
e e
id

ψϕ

P � P

ϕ
ψ

Q�Q Q Q�Q

shows that ϕ = ψ. Therefore (3) ⇒ (5), and clearly (5) ⇒ (3). Since k[e] is the initial 
k-plethory, one also has (5) ⇔ (6). Moreover, (1) ⇔ (4) follows by projecting all tensor 
coordinates, besides that for n = 2, onto k using the cozero P −→ k.

Thus it remains only to show that (3) ⇒ (1). Suppose that (3) holds, so that a � e =
e � a for all a ∈ P . Consider two maps P � P −→ P � P � P . One is the map

P � P −→ P � (P � P ), a� b �−→ a� (b� e) = a� (e� b),

and the other is the map

P � P −→ (P � P ) � P, a� b �−→ (a� e) � b = (e� a) � b.

It follows that, as maps from P�P to P�P�P , they are identical. Therefore a �b �e =
e � a � b in P � P � P for all a, b ∈ P . Composing the first two coordinates we see that 
(a ◦ b) � e = a � b. Therefore the composition P � P −→ P −→ P � P is the identity, 
whence both maps are isomorphisms and so P is idempotent. Therefore (3) ⇒ (1). �
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We now show that the trivial k-plethory is the only linear idempotent k-plethory.

Proposition 4.4. Let k be a ring. The following conditions are equivalent for any cocom-
mutative k-bialgebra A.

1. The linear k-plethory S(A) is idempotent.
2. The map k −→ A is a ring epimorphism, or equivalently, the underlying k-algebra 

of A is a k-epimorph.
3. The map k −→ A is a ring isomorphism.

In particular, the trivial k-plethory k[e] ∼= S(k) is the only linear idempotent k-plethory.

Proof. If (1) holds, then the map S(A ⊗kA) ∼= S(A) �S(A) −→ S(A) is an isomorphism 
of graded k-algebras and therefore induces a k-module isomorphism A ⊗k A −→ A

of the graded one components, whence (2) holds. Thus (1) ⇒ (2). Suppose that (2) 
holds. The ring epimorphism ϕ : k −→ A possesses a retraction ψ : A −→ k, so, since 
ϕ ◦ ψ ◦ ϕ = ϕ = idA ◦ϕ, one has ϕ ◦ ψ = idA. Therefore ϕ is a ring isomorphism. Thus 
(2) ⇒ (3), and that (3) ⇒ (1) is clear. �
Corollary 4.5. Let k be a ring. If every k-plethory is linear, then k[e] is the only idempo-
tent k-plethory.

Recently Magnus Carlson has shown that every k-plethory is linear if k is a field of 
characteristic zero [13, Theorem 1.1], answering a question posed in [3, p. 336]. It follows 
in this case that k[e] is the only idempotent k-plethory.

Finally, we mention two natural conditions on plethories that are stronger than idem-
potence. First, we say that a k-plethory P is strongly idempotent if P is k-torsion-free 
and the map WP (A) −→ A is injective for every k-torsion-free k-algebra A. Examples 
of strongly idempotent plethories, besides the trivial k-plethory and Int(Z), include the 
plethories discussed in Proposition 2.6 and in Sections 7 and 8 (e.g., Theorems 7.9 and 
7.11). Example 6.5 in Section 6 is an example of an idempotent Fp-plethory that is not 
strongly idempotent.

Proposition 4.6. Let k be a ring and P a k-plethory. Then P is strongly idempotent if 
and only if k[e] −→ P is an epimorphism in the category of k-torsion-free k-algebras. 
Moreover, if either condition holds, then P is idempotent.

Proof. The map WP (A) −→ A is injective if and only if for every a ∈ A there is at 
most one k-algebra homomorphism P −→ A sending e to a. The equivalence of the 
two conditions then follows. From the two conditions it follows that the surjective map 
WP (P ) −→ P is also injective, whence P is idempotent. �
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By Theorem 8.9, the binomial plethory Int(Z), and more generally the D-plethory 
Int(D) for any Dedekind domain D with finite residue fields, also satisfies the conditions 
in the following proposition.

Proposition 4.7. Let k be a ring and P a k-plethory. The following conditions are equiv-
alent.

1. Every P -ring is k-torsion-free.
2. WP (A) is k-torsion-free for every k-algebra A.
3. P �A is k-torsion-free for every k-algebra A.

Moreover, if P is idempotent, then the above conditions hold if and only if every 
P -reflective k-algebra is k-torsion-free.

Proof. Clearly (1) ⇒ (2) and (1) ⇒ (3). Let A be a P -ring, so there are inclusions 
A −→ WP (A) and A −→ P � A, whence A is k-torsion-free if either WP (A) or P � A

are. Therefore (2) ⇒ (1) and (3) ⇒ (1). Finally, the last statement of the proposition 
follows from Corollary 5.3 of the next section. �
5. Eilenberg–Moore category

Let T : F −→ G be a natural transformation from a functor F : C −→ D to a functor 
G : C −→ D, where C and D are categories. We say that an object A of C is a fixed 
component of T if T (A) : F (A) −→ G(A) is an isomorphism in D, and we call the full 
subcategory of C whose objects are the fixed components of T the fixed category of T . 
This terminology is borrowed from [18,33].

Let k be a ring, and let η : S −→ R be a k-algebra homomorphism. We will say 
that a k-algebra A is η-reflective if A is a fixed component of the natural transformation 
− ◦ η : Homk- Alg(R, −) −→ Homk- Alg(S, −), where the given hom functors are from 
k- Alg to Sets. Equivalently, A is η-reflective if and only if − ◦ η : Homk- Alg(R, A) −→
Homk- Alg(S, A) is a bijection, if and only if every k-algebra homomorphism S −→ A

factors uniquely through η. If R itself is η-reflective, then one says that η is a reflection 
map in k- Alg [9]. We denote by η-Refl, or R-Refl, the full subcategory of k-Alg with the 
η-reflective k-algebras as objects.

Applying this to S = k[X], where X is a set, we see that, if η : k[X] −→ R is 
a k-algebra homomorphism, then a k-algebra A is η-reflective if and only if for every 
(aX)X∈X ∈ AX there is a unique k-algebra homomorphism R −→ A sending η(X) to 
aX for all X ∈ X.

Example 5.1. For any integral domain D with quotient field K and any set X, if 
iX : D[X] −→ Int(DX) denotes the natural inclusion, then Int(E, D) is an iX-reflective 
D-algebra for any set Y and any subset E of KY.
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If η : S −→ R a homomorphism of k-k-birings, then a k-algebra A is η-reflective if 
and only if A is a fixed component of the natural transformation − ◦ η : WR −→ WS . 
In particular, if P is an idempotent k-plethory, then P -Refl is just the fixed category of 
the natural transformation WP −→ idk- Alg. For example, k[e]- Refl is the category k- Alg, 
and, as we will see in Section 8, Int(Z)- Refl is the category of binomial rings. By the 
corollary to the following proposition, the forgetful functor from P -Rings to k- Alg is an 
isomorphism onto P -Refl.

Proposition 5.2. The following are equivalent for any ring k and any k-plethory P .

1. P is idempotent.
2. P is P -reflective.
3. Every P -ring is P -reflective.
4. The map A −→ WP (A) is an isomorphism for every P -ring A.
5. The map P �A −→ A is an isomorphism for every P -ring A.
6. The forgetful functor from P -Rings to k-Alg is full and faithful.
7. WP (ε) = ε(WP ) as natural transformations WP ◦WP −→ WP , where ε is the natural 

transformation WP −→ idk- Alg.
8. WP (δ) = δ(WP ) as natural transformations WP ◦WP −→ WP ◦WP ◦WP , where 

δ : WP −→ WP ◦WP is the comonad structure on WP .
9. (P �−)(η) = η(P �−) as natural transformations P �− −→ P � P �−, where η

is the natural transformation idk- Alg −→ P �−.
10. (P �−)(μ) = μ(P �−) as natural transformations P � P � P �− −→ P � P �−, 

where μ : P � P �− −→ P �− is the monad structure on P �−.

Proof. The equivalence of conditions (1) and (2) follows immediately from Proposi-
tion 2.5, and statements (3) and (4) are trivially equivalent. By Proposition 3.1, then, 
it follows that statements (1) through (6) are equivalent. Finally, the equivalences 
(1) ⇔ (9) ⇔ (10) follow from the corresponding equivalences (i) ⇔ (iv) ⇔ (v) of [34, 
Proposition] for idempotent monads in general, and the equivalences (1) ⇔ (7) ⇔ (8)
follow from the corresponding dual statements for idempotent comonads. �
Corollary 5.3. Let k be a ring and P an idempotent k-plethory, and let A be a k-algebra. 
The following conditions are equivalent.

1. A is P -reflective.
2. There is a unique P -ring structure on A.
3. There is a P -ring structure on A.

Moreover, if A and A′ are P -reflective k-algebras, then Homk- Alg(A, A′) =
HomP - Rings(A, A′). Therefore, the forgetful functor from P -Rings to k-Alg is an iso-
morphism onto P -Refl.
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Proof. Suppose that (1) holds. Let ε : WP −→ idk- Alg denote the counit of the comonad 
WP . Reversing the arrows in the commutative diagram

WP (WP (A))
WP (ε(A))

ε(WP (A))

WP (A)

ε(A)

WP (A)
ε(A)

A

of k-algebra isomorphisms shows that A has the structure of a P -ring. Uniqueness follows 
from the fact that any P -ring structure A −→ WP (A) is a section of the isomorphism 
WP (A) −→ A. Thus (1) ⇒ (2). That (2) ⇒ (3) is clear, and (3) ⇒ (1) by Proposi-
tion 5.2. Finally, the last statement of the corollary follows since the forgetful functor 
from P -Rings to k- Alg is full and faithful. �
Corollary 5.4. Let k be a ring and P an idempotent k-plethory. Then P � A ∈ P -Refl
and WP (A) ∈ P -Refl for every k-algebra A, so that P �− and WP define functors from 
k-Alg to P -Refl. Moreover, we have the following.

1. The functor P�− from k-Alg to P -Refl is a left adjoint to the inclusion from P -Refl
to k-Alg.

2. The functor WP from k-Alg to P -Refl is a right adjoint to the inclusion from P -Refl
to k-Alg.

3. A k-algebra A is P -reflective if and only if the k-algebra homomorphism A −→ P�A

is an isomorphism, if and only if A is a fixed component of the natural transformation 
idk- Alg −→ P �−. In that case, the inverse map P �A −→ A acts by r�a �−→ ia(r), 
where ia is the unique map P −→ A sending e to a.

4. In particular, P -Refl is the fixed category of both natural transformations WP −→
idk- Alg and idk- Alg −→ P �−.

Proof. The k-algebras P � A and WP (A) have natural P -ring structures, so they are 
P -reflective by Corollary 5.3. The functors P � − and WP from k-Alg to P -Rings are 
left and right adjoints, respectively, to the forgetful functor from P - Rings to k- Alg. 
Therefore (1) and (2) follow from Corollary 5.3. Finally, statements (3) and (4) follow 
from Proposition 5.2 and Corollary 5.3. Alternatively, to prove (3), note first that if 
A −→ P � A is an isomorphism, then A is P -reflective since P � A is. Conversely, 
suppose that A is P -reflective. Then we have natural bijections

Homk- Alg(P �A,−) ∼= Homk- Alg(A,WP (−))

= HomP - Rings(A,WP (−))
∼= Homk- Alg(A,−).
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Therefore we have an isomorphism P�A −→ A (corresponding to idA ∈ Homk- Alg(A, A)) 
acting by r � a �−→ ia(r) that is an inverse of the map A −→ P �A. �

If C is a subcategory of a category D, then we denote by C the isomorphic closure of 
C in D, that is, the full subcategory of D whose objects are the objects of D that are 
isomorphic to some object in C. (Below we assume D = k- Alg.)

Corollary 5.5. Let k be a ring and P an idempotent k-plethory.

1. Let C be a full subcategory of k-Alg with P �A ∈ C for all A ∈ k-Alg. Then P �−
defines a left adjoint to the inclusion from C to k-Alg if and only if C is a subcategory 
of P -Refl, if and only if C = P -Refl.

2. Let C be a full subcategory of k-Alg with WP (A) ∈ C for all A ∈ k-Alg. Then 
WP defines a right adjoint to the inclusion from C to k-Alg if and only if C is a 
subcategory of P -Refl, if and only if C = P -Refl.

Proof. We prove (2), and then (1) follows by adjunction.
Let the category C be as in (2). Suppose that C is a subcategory of P -Refl. Then by 

Corollary 5.4(2) we have for B ∈ C and A ∈ k- Alg natural bijections

HomC(B,WP (A)) = Homk- Alg(B,WP (A)) ∼= Homk- Alg(B,A).

Therefore WP defines a right adjoint to the inclusion C −→ k- Alg. Conversely, suppose 
that WP defines such a right adjoint. Let A ∈ C. Then we have natural bijections

HomC(−,WP (A)) ∼= Homk- Alg(−, A) = HomC(−, A),

so the map WP (A) −→ A is an isomorphism, whence A ∈ P -Refl. Thus C is a subcate-
gory of P -Refl.

Suppose now that C is a subcategory of P -Refl. Let A ∈ P - Refl. Then, since WP (A)
is in C and is isomorphic to A, it follows A ∈ C. Therefore P -Refl is a subcategory of C. 
Since C ⊆ P - Refl ⊆ C, it follows that C = P -Refl. Conversely, if C = P -Refl, then C is a 
subcategory of P -Refl. �
6. Idempotent plethory structures

In this section we address issues surrounding the existence and uniqueness of idem-
potent plethory structures.

Theorem 6.1. Let k be a ring and η : k[X] −→ R a k[X]-algebra.

1. An idempotent k-plethory structure on R with unit η, if it exists, is unique.
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2. If R is an η-reflective k-algebra, then any k-k-biring structure on R such that η
is a homomorphism of k-k-birings extends uniquely to a (necessarily idempotent) 
k-plethory structure on R with unit η.

Proof.

1. Let P and P ′ be idempotent k-plethory structures on R with unit η. Consider the 
categories P -Refl and P ′- Refl. Both of these categories are equal to the category C of 
k-algebras A such that every k-algebra homomorphism k[X] −→ A factors uniquely 
through η. Since the inclusion from C to k- Alg has a left and a right adjoint and C
is bicomplete, by the reconstruction theorem of [5, Introduction], C is the category 
of Q-rings for a k-plethory Q that is unique up to isomorphism. Thus there must 
exist an isomorphism P −→ P ′ of k-plethories, which is necessarily induced by 
a k[X]-automorphism of R. But Homk[X]- Alg(R, R) ∼= Homk[X]- Alg(P, P ′) is trivial 
since R is η-reflective, whence P = P ′.

2. Suppose that R is η-reflective and has a k-k-biring structure such that η is a ho-
momorphism of k-k-birings. The map WR(R) −→ R acting by ϕ �−→ ϕ(η(X)) is a 
bijection, hence a k-algebra isomorphism. By adjunction, its inverse R −→ WR(R)
induces a k-algebra homomorphism ◦ : R � R −→ R sending a � b to a ◦ b = ib(a), 
where ib is the unique k-algebra endomorphism of R sending e = η(X) to b. As 
in the proof in Section 4 of Proposition 2.5—specifically the proof that condition 
(3) of the proposition implies condition (4)—it follows from the fact that the map 
R −→ WR(R) is an isomorphism that the map ◦ : R � R −→ R is also an iso-
morphism. Now, since the map η is by assumption a homomorphism of k-k-birings, 
the map R ∼= R � k[X] −→ R � R given by r �−→ r � e is also a homomorphism 
of k-k-birings, and therefore its inverse ◦ is also a homomorphism of k-k-birings. 
We claim that the map ◦ is associative. Indeed, one has a ◦ (b ◦ c) = iic(b)(a) while 
(a ◦ b) ◦ c = ic(ib(a)), and since iic(b)(η(X)) = ic(b) = (ic ◦ ib)(η(X)), one has 
iic(b) = ic ◦ ib and therefore a ◦ (b ◦ c) = (a ◦ b) ◦ c. Likewise, one easily checks that 
a ◦e = a = e ◦a. Therefore R has the structure of a k-plethory with composition ◦ and 
unit η(X). Finally, since ◦ is an isomorphism, the k-plethory R is idempotent. �

Corollary 6.2. Let k be a ring and η : k[X] −→ R a k[X]-algebra. Then there exists 
a (necessarily unique) idempotent k-plethory structure on R with unit η if and only if 
R is an η-reflective k-algebra and there is a k-k-biring structure on R such that η is a 
homomorphism of k-k-birings.

Let us say that a k[X]-algebra η : k[X] −→ R (or R, if the k[X]-algebra structure 
is clear) is (plethystic) idempotent if the equivalent conditions of Corollary 6.2 hold, 
that is, if there exists a (necessarily unique) idempotent k-plethory structure on R with 
unit η. An idempotent k-plethory may be thought of as a property—namely, plethystic 
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idempotence—of the underlying k[X]-algebra rather than as a structure in and of itself. 
Specifically, we have the following.

Corollary 6.3. Let k be a ring. The forgetful functor from the category of idempotent 
k-plethories to the category of idempotent k[X]-algebras (both with the obvious mor-
phisms) is an isomorphism.

The following theorem provides a useful characterization of the idempotent k[X]-alge-
bras.

Theorem 6.4. Let η : k[X] −→ R be a k[X]-algebra. Then R is an idempotent 
k[X]-algebra if and only if R⊗n is an η-reflective k-algebra for 0 ≤ n ≤ 3.

Proof. If R is an idempotent k[X]-algebra, then R, and therefore every tensor power 
of R, is η-reflective. Therefore it remains only to prove sufficiency. Let e = η(X). By 
Lemma 3.2, a k-k-biring structure on R compatible with η (in the sense that η is a 
k-k-biring homomorphism) exists if and only if there exist k-algebra homomorphisms

Δ+ : R −→ R⊗2

ε+ R −→ k

σ : R −→ R

Δ× : R −→ R⊗2

ε× : R −→ k

sending X, respectively, to Δ+(e) = e ⊗ 1 + 1 ⊗ e, ε+(e) = 0, σ(e) = −e, Δ×(e) = e ⊗ e, 
and ε×(e) = 1, together satisfying the appropriate commutative diagrams, as well as a 
ring homomorphism

β : k −→ WR(k)

which when composed with the map WR(k) −→ k is the identity. These homomorphisms 
are, respectively, the coaddition, cozero, coadditive coinverse, comultiplication, counit, 
and co-k-linear structure of a k-k-biring structure on R compatible with η.

Suppose that, for 0 ≤ n ≤ 3, the nth tensor power R⊗n of R is η-reflective, so 
that, for any a ∈ R⊗n there is a unique k-algebra homomorphism ϕ : R −→ R⊗n

sending η(X) to a. The existence and uniqueness of the homomorphisms Δ+, ε+, σ, 
Δ×, and ε× thus follow. In other words, the k-Z-biring co-operations on k[X] extend 
uniquely to the given co-operations on R. Moreover, since R⊗n is η-reflective for 0 ≤
n ≤ 3, all of the commutative diagrams (as listed in [40, Appendix A], for example) 
required of the co-operations on k[X] to make k[X] into a K-Z-biring lift uniquely to 
the same commutative diagrams for the co-operations on R. Therefore, the extended 
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co-operations on R make R into a k-Z-biring. Finally, since k = R⊗0 is η-reflective, the 
map WR(k) −→ k acting by ϕ �−→ ϕ(e) is an isomorphism of Z-algebras, and therefore 
its inverse β is a co-k-linear structure on the k-Z-biring R. Therefore R has a k-k-biring 
structure compatible with η. �

The following example provides an application of Theorem 6.4 to the construction of 
the perfect closure of a ring of prime characteristic.

Example 6.5 (Perfect closure and perfection). Let p be a prime. A ring A of characteristic 
p is said to be perfect if the Frobenius endomorphism f = (−)p of A is an isomorphism, 
that is, if every element of A has a unique p-th root. The inclusion from the category 
Fp- Perf of perfect rings of characteristic p to the category Fp- Alg has both a left adjoint 
l and right adjoint r. The ring l(A) = Ap−∞ is known as the perfect closure of A. The 
ring r(A) is known as the perfection of A and is the inverse limit of the inverse system 

· · · f−→ A 
f−→ A 

f−→ A. By Theorem 2.9, it follows that there is an Fp-plethory P , 
unique up to isomorphism, for which Fp- Perf = P -Refl. Using Theorem 6.4, we may 
construct the plethory P without assuming the existence of l and r, as follows. First, 
note that if P is to exist then one must have P = l(Fp[X]), so as a ring P must be 
equal to the perfect closure Fp[X, X1/p, X1/p2

, . . .] of Fp[X]. Let P be this ring. For any 
Fp-algebra A there is a natural bijection

Φ : HomFp- Alg(P,A) −→ r(A) := {(a0, a1, . . .) : an ∈ A, a0 = ap1, a1 = ap2, . . .}.

Thus an Fp-algebra A is P -reflective, that is, HomFp- Alg(P, A) −→ HomFp- Alg(Fp[X], A)
is a bijection, if and only if A is perfect. Thus, since P⊗n is perfect, hence P -reflective, for 
all n, it follows from Theorem 6.4 that P is an idempotent Fp[X]-algebra. Therefore P has 
a unique (idempotent) plethory structure with unit given by the inclusion Fp[X] −→ P . 
Moreover, Φ : WP −→ r(−) is a natural isomorphism, and therefore by its universal 
property the functor P � − is isomorphic to the functor l = (−)p−∞ . This therefore 
provides an alternative construction of the perfect closure.

The following result provides another characterization of the idempotent k[X]-algebras.

Proposition 6.6. Let k be a ring and R a k-algebra. Then R has the structure of an 
idempotent k[X]-algebra for some ring homomorphism η : k[X] −→ R if and only if 
there exists a full subcategory C of k-Alg such that R represents a right adjoint F to 
the inclusion I from C to k-Alg such that the corresponding map F (R) −→ R is an 
isomorphism. Moreover, if both of these conditions hold, then C = R-Refl and I ◦ F =
WR, where R has the unique induced k-plethory structure with unit η.

Proof. The forward direction of the equivalence is clear. Suppose that the second 
condition holds. Then, since F is represented by R, the k-algebra R has the unique 
structure of a k-k-biring for which WR = I ◦ F . Moreover, by Lemma 3.2, the counit 
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WR = I ◦ F −→ idk- Alg of the given adjunction is given by evaluation at e for a 
unique ring-like element e of R. It follows, again from Lemma 3.2, that the unique 
map η : k[X] −→ R of k-algebras sending X to e is a homomorphism of k-k-birings. 
Since the map WR(R) −→ R is evaluation at e = η(X) and is by assumption an isomor-
phism, it follows that R is η-reflective. Therefore, by Corollary 6.2, η : k[X] −→ R is an 
idempotent k[X]-algebra, and by Corollary 5.5 one has C = R-Refl. �

By the above proposition, if η : k[X] −→ R is an idempotent k[X]-algebra, then we 
may say unambiguously that a k-algebra is R-reflective if it is η-reflective. In particular, 
another k[X]-algebra structure θ : k[X] −→ R on R is idempotent if and only if R
is θ-reflective, if and only if there is a (necessarily unique) automorphism of R sending 
η(X) to θ(X). Thus, an idempotent k[X]-algebra η : k[X] −→ R may be loosely identified 
with the k-algebra R. Such a k-algebra R has a set of distinguished elements, namely, 
the set of universal elements of the functor Homk- Alg(R, −), or, equivalently, the orbit 
in R of e = η(X) under the action of the group Autk- Alg(R), which is anti-isomorphic 
via the map ϕ �−→ ϕ(e) to the group of plethystic units of R, that is, the group of 
units of the monoid R, ◦. For example, the group of plethystic units of k[X] is the group 
{aX + b : a ∈ k∗, b ∈ k} under ◦, which is isomorphic to k � k∗.

The following theorem, which immediately implies Theorem 2.10 of Section 2, sum-
marizes the results of this section.

Theorem 6.7. Let k be a ring and η : k[X] −→ R a k[X]-algebra, and suppose that R is 
η-reflective. Then the following conditions are equivalent.

1. η : k[X] −→ R is an idempotent k[X]-algebra, that is, R has the structure, necessarily 
unique, of an idempotent k-plethory with unit η.

2. R has the structure, necessarily unique, of a k-k-biring such that η is a homomor-
phism of k-k-birings.

3. R represents an endofunctor F of k-Alg for which evaluation at η(X) ∈ R defines a 
natural transformation from F to idk- Alg.

4. There exists a full subcategory D of k-Alg such that R represents a right adjoint FD
to the inclusion I from D to k-Alg for which the counit ID ◦ FD −→ idk- Alg acts by 
evaluation at η(X) ∈ R.

5. There exists a full subcategory C of k-Alg such that R represents a right adjoint FC to 
the inclusion IC from C to k-Alg such that the map FC(R) −→ R is an isomorphism.

6. R has the structure of an idempotent k[X]-algebra for some ring homomorphism 
θ : k[X] −→ R.

7. The category of η-reflective k-algebras is a full, bicomplete, and bireflective subcate-
gory of k-Alg.

8. R⊗n is an η-reflective k-algebra for all n.
9. R⊗n is an η-reflective k-algebra for 0 ≤ n ≤ 3.
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Suppose that the above conditions hold. Then C = D = η-Refl and IC ◦ FC ∼= F =
WR = ID ◦ FD. In particular, η-Refl is the largest subcategory D of k-Alg satisfying (4) 
or C of k-Alg satisfying (5). Moreover, there is a unique k-algebra automorphism ι of R
such that the correspondence − ◦ ι : IC ◦ FC −→ ID ◦ FD is a natural isomorphism, or 
alternatively such that θ = ι ◦ η, and one has ι = − ◦ a for a unique plethystic unit a
of R.

Let P be a k-plethory. If k′ a P -ring, then it follows from the base change of plethories 
[5, 1.13] that k′ ⊗k P has the structure of a k′-plethory with unit given by k′[e] =
k′ ⊗k k[e] −→ k′ ⊗k P . By the following proposition, whose proof is clear, plethory base 
changes respect idempotence.

Proposition 6.8. Let k be a ring, R an idempotent k[X]-algebra, and k′ an R-reflective 
k-algebra. Then R′ = k′ ⊗k R is an idempotent k′[X]-algebra. Moreover, if A is an 
R-reflective k-algebra, then k′ ⊗k A is an R′-reflective k′-algebra; dually, if A′ is an 
R′-reflective k′-algebra, then A′ is R-reflective as a k-algebra; and, furthermore, the 
functor k′ ⊗k − : R-Refl −→ R′-Refl is a left adjoint to the restriction of scalars functor 
R′-Refl −→ R-Refl.

7. Plethories of univariate polynomials

Recall that Int(k) for any ring k with total quotient ring K denotes the subring 
{f ∈ K[X] : f(k) ⊆ k} of K[X]. If Int(k) has the structure of a k-plethory with unit 
given by the canonical inclusion k[X] −→ Int(k), then we denote by e the image of 
X in Int(k) and K[X], so that Int(k) = {f ∈ K[e] : f(k) ⊆ k} as a k-plethory, and 
K[e] ∼= K ⊗k Int(k) is the trivial K-plethory. In this section we study the k-plethories 
contained in K[e], which is the situation described in Proposition 2.6.

Proof of Proposition 2.6. Write � for composition in P and ◦ for composition of poly-
nomials in K[e]. Let f, g ∈ P . There exists a non-zerodivisor c ∈ k so that cf ∈ k[e]. 
Then

c(f � g) = (cf) � g = (cf) ◦ g = c(f ◦ g)

in K[e], and therefore f �g = f ◦g. Now let ϕ : P −→ P be any k-algebra homomorphism 
with ϕ(e) = 0. Then ϕ(f) = f(0) = f ◦ 0 for all f ∈ k[X]. Let f ∈ P , so there exists a 
non-zerodivisor c ∈ k so that cf ∈ k[e]. Then

cϕ(f) = ϕ(cf) = (cf)(0) = cf(0)

in K, whence ϕ(f) = f(0) = f ◦ 0. Thus ϕ = 0 in WP (P ). Therefore the k-algebra 
homomorphism WP (P ) −→ P is injective, hence an isomorphism. Thus P is idempotent. 
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Finally, for all f ∈ P one has f(c) = f ◦ c = β(c)(f) ∈ k for all c ∈ k, whence P is a 
subring of Int(k). �

The following is a weak converse to Proposition 2.6.

Proposition 7.1. Let k be a ring with total quotient ring K, and let P be a k-plethory. 
Each of the following conditions implies the next.

1. P is isomorphic to a k[e]-subalgebra of K[e].
2. P is strongly idempotent and K is P -reflective.
3. P is idempotent and k-torsion-free and K is P -reflective.

Moreover, the three conditions are equivalent if K[e] is, up to isomorphism, the only 
idempotent K-plethory (which holds, for example, if k is a domain of characteristic 
zero).

Proof. Suppose that (1) holds. Then P is k-torsion-free, and if ϕ(e) = 0 for some 
ϕ ∈ WP (A), where A is a k-torsion-free k-algebra, then ϕ extends to the unique map 
K[e] ∼= P ⊗k K −→ A ⊗k K sending e to 0, which restricts to ϕ since P and A are 
k-torsion-free, and so ϕ = 0 in WP (A). Thus P is strongly idempotent. That K is 
P -reflective follows from Lemma 7.3(2) below. Thus, (1) implies (2). That (2) implies 
(3) follows from Proposition 4.6. Finally, suppose that (3) holds and K[e] is the only 
trivial K-plethory. By Proposition 6.8, K ⊗k P has the structure of an idempotent 
K-plethory, and therefore K ⊗k P is isomorphic as a K-plethory to K[e]. Then, since P
is k-torsion-free, it follows that P is isomorphic to a k[e]-subalgebra of K[e]. �
Remark 7.2. The total quotient ring of k need not have the structure of a P -ring for every 
k-plethory P , even if k = Q[X]. Let Q = Q[e, f, f◦f, . . .] be the Q-plethory generated by a 
ring-like element f [5, Example 2.7]. A Q-ring is equivalently a Q-algebra A together with 
an endomorphism f of A. Let k be the Q-ring Q[X] with the endomorphism f sending X
to 0. Consider the k-plethory P = k⊗QQ. A P -ring is equivalently a k-algebra A together 
with an endomorphism of A that is compatible with f , that is, that sends X to 0. Thus, 
the total quotient ring Q(X) of k is not a P -ring since there is no endomorphism of 
Q(X) sending X to 0.

Rings R between k[X] and K[X], or k[X]-subalgebras of K[X], are called polynomial 
overrings of k[X]. For such k[X]-algebras R we have the following elementary charac-
terizations of the k-torsion-free R-reflective k-algebras.

Lemma 7.3. Let k be a ring with total quotient ring K and let R be a k[X]-subalgebra of 
K[X].
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1. A k-torsion-free k-algebra A is R-reflective if and only if for every a ∈ A there is a 
k-algebra homomorphism R −→ A sending X to a, if and only if R ⊆ Int(A).

2. A is R-reflective for any K-algebra A.
3. R is R-reflective if and only if R is closed under composition.
4. k is R-reflective if and only if R ⊆ Int(k).
5. If R is R-reflective, then k is R-reflective if and only if R ∩K = k.

Proof. Clear. �
By the above lemma and Theorem 6.7 we have the following.

Proposition 7.4. Let k be a ring with total quotient ring K, and let R be a k[X]-subalgebra 
of K[X]. The following conditions are equivalent.

1. R has the (necessarily unique) structure of a k-plethory such that the unit k[e] −→ R

is the natural inclusion.
2. R is closed under composition, and R has the (necessarily unique) structure of a 

k-k-biring such that the inclusion k[X] −→ R is a homomorphism of k-k-birings.
3. R⊗n is R-reflective for 0 ≤ n ≤ 3.
4. R is contained in Int(k) and is closed under composition and R⊗2 and R⊗3 are 

R-reflective.

Moreover, if these conditions hold for R = Intl(k) for some overring l of k, then R =
Intl(k) is the largest k-plethory contained in l[X].

There is for any k[X]-subalgebra R of K[X] and for any set X a canonical k-algebra 
homomorphism θX : R⊗X −→ K[X], where the tensor power is over k. We write R(⊗X) =
im θX, and if X is of finite cardinality n we write R(⊗n) = R(⊗X).

Proposition 7.5. Let k be a ring with total quotient ring K and let R be a k[X]-subalgebra 
of K[X] with R ∩K = k. The following conditions are equivalent.

1. R(⊗X) is closed under pre-composition by any element of R for any set X.
2. R(⊗X) is R-reflective for every set X.
3. R(⊗n) is R-reflective for some integer n > 1.
4. R(⊗2) is R-reflective.
5. R is R-reflective, and for all f ∈ R, the polynomials f(X + Y ) and f(XY ) lie in 

R(⊗2), that is, they can be written as sums of polynomials of the form g(X)h(Y ) for 
g, h ∈ R.

6. R is R-reflective, and the compositum of any collection of R-reflective k-algebras 
contained in some k-torsion-free k-algebra is again R-reflective.
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Moreover, the above conditions hold if R is idempotent; and, conversely, if the above 
conditions hold and R⊗n is k-torsion-free for n = 2, 3, then R is idempotent.

Proof. Clearly we have (1) ⇔ (2) ⇒ (3) and (6) ⇒ (2). Moreover, the last statement 
of the proposition is clear. Thus we need only show that (3) ⇒ (4) ⇒ (5) ⇒ (6). 
Suppose that statement (3) holds, and let f(X, Y ) ∈ R(⊗2). We may assume without 
loss of generality that the variables in R(⊗n) are X, Y, X3, X4, . . . , Xn, whence R(⊗2) is 
a subring of R(⊗n) and f(X, Y ) ∈ R(⊗n). Now, let g ∈ R. Then by (3) g(f(X, Y )) lies in 
R(⊗n). Thus we can write

g(f(X,Y )) =
∑
i

fi1(X)fi2(Y )fi3(X3) · · · fin(Xn),

where fij ∈ R for all i, j. Setting Xi = 0 for all i > 2, we see that

g(f(X,Y )) =
∑
i

fi1(X)fi2(Y )fi3(0) · · · fin(0),

whence g(f(X, Y )) ∈ R(⊗2). Thus R(⊗2) is an R-reflective k-algebra. Therefore we have 
(3) ⇒ (4). The proof that (4) ⇒ (5) is similar. Suppose that statement (5) holds. To 
prove (6), it suffices to show that the compositum C of two R-reflective k-algebras B
and B′ of k contained some k-torsion-free k-algebra is again an R-reflective k-algebra. 
Let f ∈ R, and let b ∈ B and b′ ∈ B′. By (5) the polynomials f(X +Y ) and f(XY ) can 
be written in the form 

∑n
i=1 gi(X)hi(Y ), where the gi and hi are in R. It follows that 

f(b + b′) and f(bb′) lie in the compositum C. Since this holds for all b ∈ B and b′ ∈ B′, 
we have f(C) ⊆ C. Therefore C is an R-reflective k-algebra. �
Corollary 7.6. Let k be a ring with total quotient ring K and let R be a k[X]-subalgebra 
of K[X]. If R is an idempotent k[X]-algebra, then R is closed under composition, R ⊆
Int(k), and for all f ∈ R the polynomials f(X+Y ) and f(XY ) in K[X, Y ] can be written 
as sums of polynomials of the form g(X)h(Y ) for g, h ∈ R. Moreover, the converse holds 
if R⊗n is k-torsion-free for n = 2, 3.

The above corollary provides rather explicit criteria for R to be an idempotent 
k[X]-algebra in the case where R⊗2 and R⊗3 are k-torsion-free (e.g., when R is flat 
as a k-module). It will be exploited later in this section to construct various k-plethories 
contained in K[e].

Next we investigate the functors P�− and WP restricted to the category of k-torsion-
free k-algebras for the idempotent k-plethories P contained in K[e].

Proposition 7.7. Let k be a ring with total quotient ring K, and let R be a k[X]-subalgebra 
of K[X]. Let A be a k-torsion-free k-algebra.
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1. A is contained in a smallest k-torsion-free R-reflective k-algebra wR(A), equal to the 
intersection of all R-reflective k-algebras containing A and contained in K ⊗k A.

2. One has wR(A) = A if and only if A is R-reflective.
3. One has wR(A) ∼= wR(k[X])/(K kerϕ ∩ wR(k[X])) for any surjective k-algebra ho-

momorphism ϕ : k[X] −→ A.
4. The association A �−→ wR(A) defines a functor from the category of k-torsion-free 

k-algebras to the category of k-torsion-free R-reflective k-algebras that is a left adjoint 
to the inclusion functor.

Proof. The proof is similar to the proof of [21, Proposition 8.6] and the proof of Propo-
sition 7.8 below. �
Proposition 7.8. Let k be a ring with total quotient ring K, and let R be a k[X]-subalgebra 
of K[X]. Assume that R ∩ K = k and that R(⊗2) is an R-reflective k-algebra. (Equiv-
alently, assume that the equivalent conditions of Proposition 7.5 hold.) Let A be a 
k-torsion-free k-algebra.

1. A contains a largest R-reflective k-algebra wR(A), equal to the compositum of all 
R-reflective k-algebras contained in A.

2. One has wR(A) = A if and only if A is R-reflective.
3. One has wR(A) = {a ∈ A : a = ϕ(X) for some ϕ ∈ Homk- Alg(R, A)}.
4. The association A �−→ wR(A) defines a functor from the category of k-torsion-free 

k-algebras to the category of k-torsion-free R-reflective k-algebras that is a right 
adjoint to the inclusion functor.

Proof.

1. This follows from Proposition 7.5 and the fact that k itself is an R-reflective k-algebra.
2. This is clear from (1).
3. Let a ∈ A. Suppose that a ∈ wR(A). Then there is a k-algebra homomorphism 

ψ : K[X] −→ K sending f to f(a) for all f ∈ K[X], where K is the quotient 
field of k, and ψ restricts to a k-algebra homomorphism ϕ : R −→ wR(A) ⊆ A

sending X to a. Conversely, suppose that there exists a k-algebra homomorphism 
ϕ : R −→ A sending X to a. Tensoring with K we see that ϕ is evaluation at a, that 
is, ϕ(f) = f(a) ∈ K ⊗k A for all f ∈ R. Since imϕ ⊆ A it follows that f(a) ∈ A for 
all f ∈ R. Thus we also have g(ϕ(f)) = g(f(a)) = ϕ(g ◦ f) ∈ A for all f, g ∈ R. It 
follows that imϕ ⊆ A is an R-reflective k-algebra and therefore a ∈ imϕ ⊆ wR(A).

4. Functoriality follows easily from (3). To prove adjointness, we must show that the 
natural map

Homk- Alg(A,wR(B)) −→ Homk- Alg(A,B)
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is a bijection for any k-torsion-free k-algebras A and B, where A is R-reflective. But 
this is clear from functoriality and (2). �

As a corollary of Propositions 7.7 and 7.8, we obtain the following.

Theorem 7.9. Let k be a ring with total quotient ring K, and let R be any k-k-biring with 
k[X] ⊆ R ⊆ K[X] such that the inclusion k[X] −→ R is a k-k-biring homomorphism.

1. For any k-torsion-free k-algebra A, the k-algebra homomorphism R�A −→ K⊗kA ∼=
K ⊗k (R � A) acting by f � a �−→ f(a) has image equal to wR(A). Therefore the 
functor wR is isomorphic to the functor T-freek(R�−) restricted to the category of 
k-torsion-free k-algebras, where T-freek = im(− −→ K⊗k−) denotes the left adjoint 
to the inclusion from the category of k-torsion-free k-algebras to k-Alg.

2. The map R ∼= R � k[X] −→ wR(k[X]) is an isomorphism. In particular, R is 
R-reflective and is therefore an idempotent k[X]-algebra. Moreover, the map R⊗X ∼=
R� k[X] −→ wR(k[X]) = R(⊗X) is surjective for any set X and is an isomorphism 
if and only if R⊗X is k-torsion-free. For any surjective k-algebra homomorphism 
ϕ : k[X] −→ A, one has wR(A) ∼= R(⊗X)/K kerϕ ∩R(⊗X).

3. For any k-torsion-free k-algebra A, the k-algebra homomorphism WR(A) −→ A

acting by ϕ �−→ ϕ(X) is an inclusion with image equal to wR(A). In particular, the 
unique k-plethory structure on R with unit given by the inclusion k[X] −→ R is 
strongly idempotent, and the functor wR is isomorphic to the functor WR restricted 
to the category of k-torsion-free k-algebras.

Proof. Statement (1) follows from Proposition 7.7. The isomorphism R⊗X ∼= R � k[X]
of statement (2) follows from [5, Example 1.5(1)], from which it follows that the map 
R ∼= R�k[X] −→ wR(k[X]) is an isomorphism and therefore R is R-reflective and hence 
an idempotent k[X]-algebra by Corollary 6.2. The rest of statement (2) then follows from 
statement (1) and Proposition 7.7. Finally, statement (3) follows from Proposition 7.8
and the definition of strong idempotence. �

Statement (2) of the theorem implies the following (cf., Corollary 6.2 and Proposi-
tion 7.4).

Corollary 7.10. Let k be a ring with total quotient ring K, and let R be a k[X]-subalgebra 
of K[X]. Then R is an idempotent k[X]-algebra if and only if R has the structure, 
necessarily unique, of a k-k-biring such that the inclusion k[X] −→ R is a k-k-biring 
homomorphism, in which case R ∼= wR(k[X]) is R-reflective, hence closed under compo-
sition.

Thus, the k-plethories contained in K[e] are equivalently the k-k-birings containing 
k[X] and contained in K[X].

The remaining results of this section provide examples of k-plethories contained in 
K[e]. Let l be any overring of k, that is, a ring l with k ⊆ l ⊆ K. We define Intl(k) =
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Int(k) ∩ l[X] = {f ∈ l[X] : f(k) ⊆ k} and Intl(kn) = Int(kn) ∩ l[X1, X2, . . . , Xn] for any 
positive integer n. Also, for any set X we let Intl(kX) = {f ∈ l[X] : f(kX) ⊆ k}. The 
following result generalizes Theorem 2.4.

Theorem 7.11. Let k be a ring and l an overring of k. Each of the following conditions 
implies the next.

1. k is a Krull domain.
2. k is a domain of Krull type.
3. k is a PVMD and Int(kp) = Int(k)p for every maximal ideal p of k.
4. Intl(k)p is equal to Intlp(kp) and is free as a kp-module for every maximal ideal p

of k.
5. Intl(k) is free as a k-module, or Intl(k)p is equal to Intlp(kp) and is free as a 

kp-module for every maximal ideal p of k.
6. For every positive integer n the canonical k-algebra homomorphism Intl(k)⊗kn −→

Intl(kn) is an isomorphism.
7. The canonical k-algebra homomorphism Intl(k)⊗kn −→ Intl(kn) is an isomorphism 

for n = 2 and an inclusion for n = 3.
8. Intl(k) is an idempotent k[X]-algebra, that is, it has a unique k-plethory structure 

with unit given by the inclusion k[X] −→ Intl(k).

Proof. (1) ⇒ (2). This is clear.
(2) ⇒ (3). Since a domain k of Krull type has finite t-character, one has Int(k)p =

Int(kp) for all p by [24, Proposition 2.4].
(3) ⇒ (4). Let p be a maximal ideal of k. Then

Intl(k)p = Int(k)p ∩ lp[X] = Int(kp) ∩ lp[X] = Intlp(kp).

If Int(k)p = kp[X], then Intl(k)p = kp[X] is free as a kp-module. Suppose, on the other 
hand, that Int(k)p �= kp[X]. Then p is t-maximal by [22, Proposition 3.3], so, since k is a 
PVMD, kp is a valuation domain. Therefore, since Int(kp) �= kp[X] and kp is a valuation 
domain, by [10, Proposition I.3.16] the ideal pkp of kp is principal with finite residue 
field, generated, say, by π ∈ kp. Since kp is a valuation domain and kp ⊆ lp ⊆ K, where 
K is the quotient field of k, either (i) lp = kp or (ii) lp is the localization of kp at a prime 
ideal q � (π) of kp and so 1

π ∈ lp. In case (i), Intl(k)p = kp[X] is free as a kp-module. 
In case (ii), since kp is a local domain with principal maximal ideal (π), it follows from 
[10, Exercise II.16] that Int(kp) is freely generated as a kp-module by polynomials with 
coefficients in kp[ 1

π ] ⊆ lp, so Int(kp) ⊆ lp[X] and therefore Intl(k)p = Int(kp) is free as a 
kp-module in that case as well.

(4) ⇒ (5). This is clear.
(5) ⇒ (6). If Intl(k) is free as a k-module, then the argument in the proof of [10, 

Proposition XI.1.13] and also [21, Lemma 6.7], for example, shows that the canonical 
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map θn : Intl(k)⊗kn −→ Intl(kn) is an isomorphism for all n. Suppose, on the other 
hand, that Intl(k)p is equal to Intlp(kp) and is free as a kp-module for every maximal 
ideal p of k. This implies that Intl(k) is locally free, hence flat, as a k-module. Therefore 
the map θn is injective and so induces an isomorphism onto its image, Intl(k)(⊗kn). Given 
that Intlp(kp) is free as a kp-module, we have Intlp(knp ) = Intlp(kp)(⊗kpn), and therefore

Intl(kn)p ⊆ Intlp(knp ) = Intlp(kp)(⊗kpn) = (Intl(k)(⊗kn))p ⊆ Intl(kn)p,

for every maximal ideal p of k, whence Intl(kn) = Intl(k)(⊗kn). It follows that θn is an 
isomorphism for all n in this case as well.

(6) ⇒ (7). This is clear.
(7) ⇒ (8). Since by Lemma 7.3(1) the k-algebra Intl(kn) is Intl(k)-reflective for any n, 

it follows from (7) that Intl(k)(⊗k2) = Intl(k2) is Intl(k)-reflective. Condition (8) there-
fore follows from Corollary 7.6. �

Domains D such that Int(Dp) = Int(D)p for all maximal ideals p of D are studied 
in [15,24], for example, and are said to be polynomially L-regular. (The “L” stands for 
“localization.”) A domain D satisfies condition (3) of Theorem 7.11 if and only if it is a 
polynomially L-regular PVMD. If a domain D is not polynomially L-regular, then the 
technique of localization is of limited use in studying Int(D). However, any local do-
main is automatically polynomially L-regular, and for domains one has the implications 
Noetherian ⇒ Mori ⇒ TV ⇒ of finite t-character ⇒ polynomially L-regular [24], so the 
class of polynomially L-regular domains is substantial. Nevertheless, there exist almost 
Dedekind domains, that is, domains that are locally DVRs, that are not polynomially L-
regular, or alternatively that are polynomially L-regular but not Dedekind and therefore 
not of Krull type [15]. In particular, the implications Krull type domain ⇒ polynomial 
L-regular PVMD ⇒ PVMD are not reversible. Moreover, the polynomially L-regular 
domains, the polynomially L-regular PVMDs, or even just the polynomially L-regular 
almost Dedekind domains [15], are not easily characterized.

Corollary 7.12. Let k be a ring and l an overring of k. Suppose that for every positive 
integer n the canonical k-algebra homomorphism Intl(k)⊗kn −→ Intl(kn) is an isomor-
phism (which holds, for example, if k is a domain of Krull type). Then Intl(kX) for any 
set X has the unique structure of a k-k-biring such that the inclusion k[X] −→ Intl(kX)
is a homomorphism of k-k-birings.

Remark 7.13. Let k be a ring. Suppose that Int(k) is flat as a k-module and Int(k, k′) =
k′Int(k) for all flat k-algebras k′, which holds, for example, if k is a TV PVMD, by [24, 
Theorem 1.2]. By Theorem 7.11, Proposition 6.8, and the proof of [21, Theorem 3.12], 
one has the following.

1. For every positive integer n the canonical k-algebra homomorphism Int(k)⊗kn −→
Int(kn) is an isomorphism, and therefore Int(k) is an idempotent k[X]-algebra.
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2. Let k′ be a flat Int(k)-reflective k-algebra. Then Int(k′) = k′Int(k) = k′⊗kInt(k) is an 
idempotent k′[X]-algebra, Int(k′) is flat as a k′-module, and Int(k′, k′′) = k′′Int(k′)
for all flat k′-algebras k′′. Moreover, a k′-algebra is Int(k′)-reflective if and only if it 
is Int(k)-reflective as a k-algebra.

In the literature on integer-valued polynomial rings, no attention has been given to 
rings with zerodivisors. Using Theorem 7.11 and the following proposition, we may con-
struct idempotent k-plethories, even on Intl(k), for certain rings k with zerodivisors.

Proposition 7.14. Let k =
∏n

i=1 ki, where k1, k2, . . . , kn are rings, and let Ri be a 
ki[X]-algebra for all i. Then 

∏n
i=1 Ri is an idempotent k[X]-algebra if and only if Ri

is an idempotent ki[X]-algebra for all i. In particular, the idempotent k[X]-algebras are 
precisely those isomorphic to 

∏n
i=1 Ri, where each Ri is an idempotent ki[X]-algebra.

Proof. This follows from Theorem 6.4 and the fact that (
∏n

i=1 Ri)⊗m ∼=
∏n

i=1 R
⊗m
i for 

all m. �
Corollary 7.15. Let k =

∏n
i=1 ki and l =

∏n
i=1 li, where each ki is a ring and li is an 

overring of ki. Then Intl(k) is isomorphic as a k[X]-algebra to 
∏n

i=1 Intli(ki). More-
over, Intl(k) is an idempotent k[X]-algebra if and only if Intli(ki) is an idempotent 
ki[X]-algebra for all i. In particular, both conditions hold if ki is a domain of Krull type, 
or more generally a polynomially L-regular PVMD, for all i.

Let k be a ring with total quotient ring K. Let n be a positive integer, and let 
r = (r1, . . . , rn) ∈ (Z≥0 ∪ {∞})n, and let ∞∞∞ = (∞, . . . , ∞). Let

Int(r)(kn) =
{
f ∈ K[X1, . . . , Xn] : ∂i1+···+inf

∂Xi1
1 · · · ∂Xin

n

∈ Int(kn) if ik ≤ rk for all k
}
,

and for any overring l of k, we let Int(r)l (kn) = Int(r)(kn) ∩ l[X1, . . . , Xn]. Note that the 

rings Int(r)l (k) are closed under composition for all r ∈ Z≥0 ∪ {∞}.

Example 7.16. Int(∞)(Z) is free as a Z-module with Z-basis consisting of the polynomials 
c0, c1X, c2

(
X
2
)
, c3

(
X
3
)
, . . . , where cn =

∏
p≤n prime p

�n/p� for all n [10, Corollary IX.3.6],
[10, Remarks IX.4.9(ii)].

Lemma 7.17. Let k be a ring, and let l be an overring of k such that Int(∞)
l (k) is free as 

a k-module. Then the canonical k-algebra homomorphism Int(∞)
l (k)⊗kn −→ Int(∞∞∞)

l (kn)
is an isomorphism for all positive integers n.

Proof. We prove the lemma for n = 2. The general case is similar. Let f0, f1, f2, . . . be 
a k-basis of Int(∞)

l (k). Then it is also an l-basis of l[X] and an l[Y ]-basis of l[X, Y ]. Let 
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F ∈ Int(∞∞∞)
l (k2) ⊆ l[X, Y ]. Then there exist unique polynomials gj(Y ) ∈ l[Y ] such that 

F =
∑

i fi(X)gi(Y ). Let a ∈ k. One has

∑
i

f
(n)
i (X)g(m)

i (a) = ∂n+mF

∂Xn∂Y m
(X, a) ∈ Intl(k)

for all n, m, and therefore

∑
i

fi(X)g(m)
i (a) ∈ Int(∞)

l (k)

for all m. Since the fi form a k-basis for Int(∞)
l (k) and an l-basis for l[X], it follows 

that g(m)
i (a) ∈ k for all i. Therefore gi(Y ) ∈ Int(∞)

l (k) for all i. Thus for all i we may 
write gi(Y ) =

∑
j aijfj(Y ) for some aij ∈ k, and therefore F =

∑
i,j aijfi(X)fj(Y ). 

It follows, then, that the polynomials fi(X)fj(Y ) for all pairs i, j form a k-basis for 
Int(∞∞∞)

l (k2). Thus, the map Int(∞)
l (k)⊗k2 −→ Int(∞∞∞)

l (k2) is onto. Moreover, it is injective 

since Int(∞)
l (k) is free, hence flat, as a k-module. �

Lemma 7.18. Let k be a ring, and let l be an overring of k such that the canonical 
k-algebra homomorphism Int(∞)

l (k)⊗kn −→ Int(∞∞∞)
l (kn) is an isomorphism for n = 2 and 

an inclusion for n = 3. Then Int(∞)
l (k) is an idempotent k[X]-algebra.

Proof. Let K be the total quotient ring of k, and let R = Int(∞)
l (k). Note that R∩K = k, 

so k is R-reflective, and R is R-reflective because it is closed under composition of poly-
nomials. Let f ∈ R. Then clearly f(X +Y ), f(XY ) ∈ Int(∞∞∞)

l (k2), so both f(X +Y ) and 
f(XY ) are of the form 

∑
i gi(X)hi(Y ) for some gi, hi ∈ R. Moreover, R⊗kn is k-torsion-

free for n = 2, 3. Therefore, by Proposition 7.5, R is an idempotent k[X]-algebra. �
Lemma 7.19. Let D be an integral domain and r ∈ Z≥0 ∪ {∞}. If Int(r)(D)p �= Dp[X]
for some prime ideal p of D, then p is t-maximal with finite residue field. Moreover, if 
D is polynomially L-regular, then Int(r)(S−1D) = S−1Int(r)(D) for every multiplicative 
subset S of D.

Proof. This follows from the corresponding well-known results for Int(D) (e.g., [22, 
Proposition 3.3] and [10, Proposition IX.1.4]). �

Using the preceding three lemmas, one can readily adapt the proof of Theorem 7.11
to yield the following.

Theorem 7.20. Let k be a ring and l an overring of k. Each of the following conditions 
implies the next.
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1. k is a Krull domain.
2. k is a domain of Krull type such that Int(∞)(kp) is free as a kp-module for every 

maximal ideal p of k.
3. k is a PVMD and Int(∞)(kp) = Int(∞)(k)p is free as a kp-module for every maximal 

ideal p of k.
4. Int(∞)

l (k)p is equal to Int(∞)
lp

(kp) and is free as a kp-module for every maximal ideal 
p of k.

5. Int(∞)
l (k) is free as a k-module, or Int(∞)

l (k)p is equal to Int(∞)
lp

(kp) and is free as a 
kp-module for every maximal ideal p of k.

6. For every positive integer n the canonical k-algebra homomorphism Int(∞)
l (k)⊗kn −→

Int(∞∞∞)
l (kn) is an isomorphism.

7. The canonical k-algebra homomorphism Int(∞)
l (k)⊗kn −→ Int(∞∞∞)

l (kn) is an isomor-
phism for n = 2 and an inclusion for n = 3.

8. Int(∞)
l (k) is an idempotent k[X]-algebra.

Let l be an overring of a ring k. Let X be a set, r ∈ (Z≥0 ∪ {∞})X, and E a subset 
of KX. We define Int(r)l (E, k) ⊆ K[X] in the obvious way, and we set Int(r)l (kX) =
Int(r)l (kX, k). Then Int(r)l (E, k) is an i-reflective k-algebra, where i : k[X] −→ Int(∞)

l (k)
is the canonical inclusion. In particular, if Int(∞)

l (k) is a k-plethory with unit i, then 

Int(r)l (E, k) is Int(∞)
l (k)-reflective.

Corollary 7.21. Let k be a ring and l an overring of k. Suppose that for every positive 
integer n the canonical k-algebra homomorphism Int(∞)

l (k)⊗kn −→ Int(∞∞∞)
l (kn) is an 

isomorphism (which holds, for example, if k is a Krull domain). Then Int(∞∞∞)
l (kX) for 

any set X has the unique structure of a k-k-biring such that the inclusion k[X] −→
Int(∞∞∞)

l (kX) is a homomorphism of k-k-birings.

Proposition 7.22. Let k be a ring and r a positive integer.

1. Int(r)(k)(⊗kn) is Int(r)(k)-reflective for n = 0, 1.
2. Int(r)(k) = Int(∞)(k) if and only if Int(r)(k) = Int(r+1)(k), if and only if Int(r)(k) =

Int(s)(k) for some integer s > r.
3. If Int(r)(k) is an idempotent k[X]-algebra, then Int(r)(k) = Int(∞)(k).

Proof. Statements (1) and (2) are clear. Suppose Int(r)(k) �= Int(∞)(k). By (2) we may 
choose f ∈ Int(r)(k) − Int(2r)(k). Suppose to obtain a contradiction that Int(r)(k)(⊗k2)

is Int(r)(k)-reflective. Then f(X + Y ) ∈ Int(r)(k)(⊗k2). Thus we can write f(X + Y ) =∑
i gi(X)hi(Y ) for some gi, hi ∈ Int(r)(k). Then f (2r)(X + Y ) =

∑
i g

(r)
i (X)h(r)

i (Y ), 
whence f (2r)(X) =

∑
i g

(r)
i (X)h(r)

i (0) ∈ Int(k), which is a contradiction. Therefore 
Int(r)(k)(⊗k2) is not Int(r)(k)-reflective, so by Proposition 7.5 the k[X]-algebra Int(r)(k)
is not idempotent. �



68 J. Elliott / Journal of Algebra 463 (2016) 33–79
Corollary 7.23. Let D be a Krull domain of characteristic zero such that Dp has a finite 
residue field for some height one prime ideal p of D. Then Int(r)(D) properly contains 
Int(r+1)(k) and is therefore not an idempotent D[X]-algebra, for any positive integer r.

Proof. Since Dp is a characteristic zero DVR with finite residue field, by [10, 
Lemma IX.2.12] the domain Int(r)(D)p = Int(r)(Dp) properly contains Int(r+1)(D)p =
Int(r+1)(Dp), and therefore Int(r)(D) properly contains Int(r+1)(D), for all positive in-
tegers r. �

Note that if a ring k with total quotient ring K is of characteristic n > 0, then f (n) = 0
for all f ∈ K[X], and so Int(n−1)(k) = Int(∞)(k).

We now provide examples of rings k such that Int(k) is not a k-plethory.

Proposition 7.24. Let k be a ring, let k[ε] = k[T ]/(T 2), where ε denotes the image of T in 
k[T ]/(T 2), and let r be a nonnegative integer. Then Int(r)(k[ε]) = Int(r+1)(k) +Int(r)(k)ε. 
Suppose that Int(r+1)(k) �= Int(∞)(k). Then the ring Int(r)(k[ε]) is not an idempotent 
k[ε][X]-algebra.

Proof. Let R = Int(r)(k[ε]). The total quotient ring of k[ε] is the ring K[ε], where 
K is the total quotient ring of k. The equality Int(r)(k[ε]) = Int(r+1)(k) + Int(r)(k)ε
as subrings of K[ε][X] = K[X][ε] is proved in [26] and is straightforward to verify 
from the fact that f(a + bε) = f(a) + f ′(a)bε for all f ∈ K[X] and all a, b ∈ K. 
It follows from this that R(⊗k2) = Int(r+1)(k)(⊗k2) + Mε for some k[X, Y ]-submodule 
M of K[X, Y ]. We may choose f ∈ Int(r+1)(k) − Int(2(r+1))(k). Suppose to obtain a 
contradiction that R(⊗k2) is R-reflective. Then, since f ∈ R, one has f(X+Y ) ∈ R(⊗k2), 
whence f(X + Y ) ∈ Int(r+1)(k)(⊗k2). Thus we can write f(X + Y ) =

∑
i gi(X)hi(Y ) for 

some gi, hi ∈ Int(r+1)(k), which implies f (2(r+1))(X + Y ) =
∑

i g
(r+1)
i (X)h(r+1)

i (Y ) and 
therefore f (2(r+1))(X) =

∑
i g

(r+1)
i (X)h(r+1)

i (0) ∈ Int(k), a contradiction. �
Corollary 7.25. For any ring k, the k-algebra k[ε] is Int(r)(k)-reflective for any r ∈
Z≥1 ∪ {∞}, but it is Int(k)-reflective if and only if Int(k) = Int(∞)(k).

Corollary 7.26. Let D be a Krull domain of characteristic zero such that Dp has a finite 
residue field for some height one prime ideal p of D. Then Int(D[ε]) is not an idempotent 
D[ε][X]-algebra.

Conjecture 7.27. There exists an integral domain D such that Int(D) is not an (idempo-
tent) D-plethory.

As a corollary of Proposition 7.24, for any ring k one has

Int(∞)(k[ε]) = Int(∞)(k)[ε] ∼= k[ε] ⊗k Int(∞)(k).
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Moreover, k[ε] is an Int(∞)(k)-reflective k-algebra since Int(∞)(k) ⊆ Int(k[ε]). Therefore, 
by Proposition 6.8, we have the following.

Proposition 7.28. Let k be a ring. If Int(∞)(k) is an idempotent k[X]-algebra, then 
Int(∞)(k[ε]) = Int(∞)(k)[ε] is an idempotent k[ε][X]-algebra.

For any ring k with total quotient ring K and integral closure k (in K), the ring k[ε]
has total quotient ring K[ε] and integral closure k + εK[ε]. One has

Int(r)(k + εK[ε]) = Int(r)(k) + εK[X]

= (k + εK[ε])Int(r)(k)
∼= (k + εK[ε]) ⊗k Int(r)(k)

for any r ∈ Z≥0∪{∞}, where the given isomorphism holds since k+εK[ε] ∼= k⊕K is flat 
as a k-module. Moreover, k + εK[ε] is an Int(r)(k)-reflective k-algebra since Int(r)(k) ⊆
Int(k + εK[ε]). Therefore, by Proposition 6.8, we also have the following.

Proposition 7.29. Let k be a ring with total quotient ring K, and let r ∈ Z≥0 ∪ {∞}. If 
Int(r)(k) is an idempotent k[X]-algebra, then Int(r)(k+ εK[ε]) = Int(r)(k) + εK[X] is an 
idempotent (k + εK[ε])[X]-algebra.

One can show that the ring k+ εK[ε] for any Krull domain k is an example of a Krull 
ring with zerodivisors, in the sense of [31]. Given the above proposition, it is reasonable 
to conjecture the following.

Conjecture 7.30. Int(k) is an idempotent k[X]-algebra for any Krull ring k.

Finally, we provide analogues of Theorem 7.20 through Corollary 7.23 for the rings 
Int[r](k) of polynomials in K[X] that along with all of their finite differences of order 
up to r are integer-valued on k, for r ∈ Z≥0 ∪ {∞}, as studied for integral domains in 
[10, Chapter IX], [16] and defined for general rings k as follows. For all f ∈ k[X], we 
may write f(X +Y ) − f(X) = Y g(X, Y ) for a unique g ∈ k[X, Y ]. We write ΔY f(X) =
g(X, Y ) ∈ k[Y ][X], so that ΔY f(X) denotes f(X+Y )−f(X)

Y but is a polynomial in X and 
Y . We may then define Δhf(X) = g(X, h) ∈ k[X] for all h ∈ k. One has ΔY f(X) =
f ′(X) + Y G(X, Y ) for some G ∈ k[X, Y ], and therefore Δ0f(X) = f ′(X). One has the 
following generalization of the product and chain rules for derivatives:

ΔY (f · g)(X) = ΔY f(X) · g(X + Y ) + f(X) · ΔY g(X)

and

ΔY (f ◦ g)(X) = (Δg(X+Y ))−g(X)f)(g(X))ΔY g(X)
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for all f, g ∈ k[X]. We let

Int[1](k) = {f ∈ Int(k) : Δhf ∈ Int(k) for all h ∈ k}.

More generally, we let Int[0](k) = Int(k) and for all positive integers r we let

Int[r](k) = {f ∈ Int(k) : Δhf ∈ Int[r−1](k) for all h ∈ k}

= {f ∈ K[X] : Δh1 · · ·Δhs
f ∈ Int(k) for all s ≤ r and h1, . . . , hs ∈ k},

and we let Int[∞](k) =
⋂∞

r=0 Int[r](k). The generalized product and chain rules allow one 
to show that Int[r](k) is a k[X]-subalgebra of Int(r)(k) that is also closed under compo-
sition, for all r ∈ Z≥0 ∪ {∞}. Moreover, these rings generalize to analogues Int[r]l (kn) of 
the rings Int(r)l (kn) for all r ∈ (Z≥0 ∪ {∞})n in the obvious way.

Although one has Int[∞](k) = Int(∞)(k) for k = Z, the equality fails for many number 
rings k, including k = Z[i]. For example, equality holds for k = Z[ζ], where ζ is a primitive 
nth root of unity, if and only if n is squarefree; and equality holds for k = OK , where 
K = Q(

√
d) and d is a squarefree integer, if and only if d is congruent to 1 modulo 4 

[10, Exercise IX.15]. Dedekind domains (resp., number rings) k for which Int[∞](k) =
Int(∞)(k) are characterized in [10, Theorem IX.2.16] (resp., [10, Corollary IX.2.17 and 
Remark IX.2.18]).

The proofs of Theorems 7.11 and 7.20 can be adapted to yield the following.

Theorem 7.31. Let k be a ring and l an overring of k. Each of the following conditions 
implies the next.

1. k is a Krull domain.
2. k is a domain of Krull type such that Int[∞](kp) is free as a kp-module for every 

maximal ideal p of k.
3. k is a PVMD and Int[∞](kp) = Int[∞](k)p is free as a kp-module for every maximal 

ideal p of k.
4. Int[∞]

l (k)p is equal to Int[∞]
lp

(kp) and is free as a kp-module for every maximal ideal 
p of k.

5. Int[∞]
l (k) is free as a k-module, or Int[∞]

l (k)p is equal to Int[∞]
lp

(kp) and is free as a 
kp-module for every maximal ideal p of k.

6. For every positive integer n the canonical k-algebra homomorphism Int[∞]
l (k)⊗kn −→

Int[∞∞∞]
l (kn) is an isomorphism.

7. The canonical k-algebra homomorphism Int[∞]
l (k)⊗kn −→ Int[∞∞∞]

l (kn) is an isomor-
phism for n = 2 and an inclusion for n = 3.

8. Int[∞]
l (k) is an idempotent k[X]-algebra.

Corollary 7.32. Let k be a ring and l an overring of k. Suppose that for every positive 
integer n the canonical k-algebra homomorphism Int[∞]

l (k)⊗kn −→ Int[∞∞∞]
l (kn) is an iso-
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morphism (which holds, for example, if k is a Krull domain). Then Int[∞∞∞]
l (kX) for any set 

X has the unique structure of a k-k-biring such that the inclusion k[X] −→ Int[∞∞∞]
l (kX)

is a homomorphism of k-k-birings.

Proposition 7.33. Let k be a ring and r a positive integer.

1. Int[r](k)(⊗kn) is Int[r](k)-reflective for n = 0, 1.
2. Int[r](k) = Int[∞](k) if and only if Int[r](k) = Int[r+1](k), if and only if Int[r](k) =

Int[s](k) for some integer s > r.
3. If Int[r](k) is an idempotent k[X]-algebra, then Int[r](k) = Int[∞](k).

Corollary 7.34. Let D be a Krull domain such that Dp has a finite residue field, say, 
of characteristic p, for some height one prime ideal p of D. Then Int[r](D) is not an 
idempotent D[X]-algebra for any positive integer r less than p − 1.

Proof. If 1 ≤ r < p − 1, then Int[r+1](Dp) �= Int[r](Dp) by [10, Lemma IX.2.12]. The 
corollary follows, then, as in the proof of Corollary 7.23. �
Corollary 7.35. Let D be a Krull domain that has finite residue fields of arbitrarily 
large characteristic at the height one primes of D. Then Int[r](D) is not an idempo-
tent D[X]-algebra for any positive integer r.

If D is a DVR, or more generally a UFD, then Int(r)(D) and Int[r](D) are free as 
D-modules for all r ∈ Z≥0 ∪ {∞} [10, Exercise IX.18]. Moreover, if D is a valuation 
domain, then Int(D) �= D[X] if and only if the maximal ideal of D is principal with 
finite residue field.

Problem 7.36. For which valuation domains D is Int(∞)(D) (resp., Int[∞](D)) free as 
a D-module? (They are both necessarily free if D is a DVR, if D has a non-principal 
maximal ideal, or if D has an infinite residue field.)

If Int(∞)(D) (resp., Int[∞](D)) is in fact free as a D-module for all valuation do-
mains D, then, like Theorem 7.11, the final conclusion of Theorem 7.20 (resp., Theo-
rem 7.31) holds for all polynomially L-regular PVMDs, hence all domains of Krull type.

8. Integer-valued polynomial rings

In this section we apply the results of Sections 4–7 to the ring Int(D), where D is any 
integral domain. As we noted already, Theorem 6.7 immediately implies Theorem 2.10, 
and this to a certain degree solves Problem 2.3. Moreover, since D[X] ⊆ Int(D) ⊆ K[X], 
where K is the quotient field of D, and since Int(D)⊗n is Int(D)-reflective for n = 0, 1, 
all of the results in the previous section on rings of univariate polynomials apply.
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In [25] we defined a D-algebra A to be weakly polynomially complete, or WPC, if for 
every a ∈ A there exists a D-algebra homomorphism Int(D) −→ A sending X to a. 
A D-torsion-free D-algebra A is WPC if and only if A is Int(D)-reflective, if and only if 
Int(D) ⊆ Int(A). A ring is quasi-binomial if it is a WPC Z-algebra, or, equivalently, if it is 
a quotient of a binomial ring. In [25, Sections 6–8] we proved a number of generalizations 
of the results in [20] on binomial and quasi-binomial rings to the WPC D-algebras. 
However, the following problem is still open.

Problem 8.1 ([21, Section 7], [25, Section 6]). Let D be an integral domain. Is every 
WPC D-algebra a quotient of some Int(D)-reflective D-algebra?

The term “WPC,” though unfortunate, was motivated as follows. A subset S of an 
integral domain A such that Int(S, A) = Int(A) is said to be polynomially dense in A. 
Equivalently, S is polynomially dense in A if any polynomial with coefficients in the 
quotient field of A that maps S to A also maps A to A. If D is polynomially dense in an 
extension A, then, dually, and for lack of a better term, A is in some sense polynomially 
“complete” over D. Thus we defined, in [21], a domain extension A of a domain D to 
be polynomially complete, or PC, if D is polynomially dense in A. The WPC condition
is in turn a relaxation of the PC condition. Since these terms relate to several similarly 
defined notions defined elsewhere, we will continue to use them here.

If D is not finite, then for any set X the domain Int(DX) is the free PC extension of D
generated by X [21, Proposition 2.4], and it is also the polynomial completion with respect 
to D of D[X] [21, Proposition 8.2]. In [21], the smallest subring of Int(DX) containing 
D[X] that is closed under pre-composition by elements of Int(D) was denoted Intw(DX). 
In the notation of Proposition 7.7, this is just wInt(D)(D[X]). For any domain D (finite 
or infinite), the domain wInt(D)(D[X]) is the free WPC extension of D generated by X
[21, Proposition 7.2]. It is also the weak polynomial completion with respect to D of D[X], 
as defined in [21, Section 8].

A D-algebra A is said to be almost polynomially complete, or APC, if for every set 
X and for any (aX)X∈X ∈ AX there exists a D-algebra homomorphism Int(DX) −→ A

sending X to aX for all X ∈ X. Equivalently, A is APC if and only if A a D-algebra 
quotient of Int(DX) for some set X, if and only if A is a quotient of some Int(D)-reflective 
D-algebra. By [21, Propositions 7.4 and 7.7], if A is a domain extension of D, then A
is APC if and only if Int(Dn) ⊆ Int(An) for all positive integers n. Any PC domain 
extension of D is APC, but the converse is false since the extension Z[T/2] of Z[T ] is 
APC but not PC [21, Proposition 7.2 and Example 7.3]. Clearly any APC D-algebra is 
WPC. We suspect that the converse does not hold but do not know a counterexample. 
Also, Int(DX) is the free APC extension of D generated by X [21, Proposition 7.7]
(whether or not D is infinite). It is also the almost polynomial completion with respect 
to D of D[X] [21, Section 8].

In analogy with ordinary polynomial rings, there is for any set X a canonical D-algebra 
homomorphism θX : Int(D)⊗X −→ Int(DX), where the tensor power is over D. There 
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are several classes of domains for which θX is an isomorphism for all X, such as the Krull 
domains, the almost Newtonian domains [21, Section 5], and the polynomially L-regular 
PVMDs, hence the domains of Krull type as well. However, we do not know whether or 
not θX is an isomorphism for all X for every domain D, in that neither a proof nor a 
counterexample is known. As in [22–24] we say that a domain D is polynomially composite
if θX is an isomorphism for all X. [21, Section 6], [22, Section 4], and [24, Section 3.3]
provide several known classes of polynomially composite domains. Most notably, the 
condition holds if Int(D) is free as a D-module, or if D is polynomially L-regular and 
Int(D) is locally free as a D-module, or if D is polynomially F-regular [24] and Int(D)
is flat as a D-module. By Theorem 2.4, if D is polynomially composite, then Int(D) is 
an idempotent D[X]-algebra. However, an a priori weaker condition is relevant here. If 
Int(D)(⊗X) denotes the image of θX, then we have Int(D)(⊗X) ⊆ wInt(D)(D[X]), and 
equality holds for a given set X if and only if Int(D)(⊗X) is a WPC extension of D (or 
equivalently, is Int(D)-reflective). If equality holds for all X then we will say that D is 
weakly polynomially composite. Proposition 7.5 implies the following.

Proposition 8.2. The following conditions are equivalent for any domain D.

1. D is weakly polynomially composite.
2. Int(D)(⊗X) is a WPC extension of D for every set X.
3. Int(D)(⊗n) is a WPC extension of D for some integer n > 1.
4. Int(D)(⊗2) is a WPC extension of D.
5. For all f ∈ Int(D), the polynomials f(X + Y ) and f(XY ) lie Int(D)(⊗2), that is, 

they can be written as sums of polynomials of the form g(X)h(Y ) for g, h ∈ Int(D).
6. The compositum of any collection of WPC D-algebras contained in some D-torsion-

free D-algebra is again WPC.

Moreover, D is weakly polynomially composite if Int(D) is an idempotent D[X]-algebra, 
and the converse holds if Int(D)⊗n is D-torsion-free for n = 2, 3.

Corollary 8.3. Let D be an integral domain. Suppose that Int(D)⊗n is D-torsion-free for 
n = 2, 3. Then Int(D) is an idempotent D[X]-algebra if and only if Int(D)(⊗2) is a WPC 
extension of D (or equivalently, for all f ∈ Int(D) the polynomials f(X+Y ) and f(XY )
can be written as sums of polynomials of the form g(X)h(Y ) for g, h ∈ Int(D)).

By the following proposition, if D is weakly polynomially composite, then the map 
θX : Int(D)⊗X −→ Int(DX) is “almost” surjective. More precisely, θX is surjective for 
every set X if and only if every WPC extension of D is APC and D is weakly polynomially 
composite. By [24, Theorem 3.11], surjectivity follows if D is polynomially t-regular or 
polynomially L-t-regular [24, Section 3.1].

Proposition 8.4. The following conditions are equivalent for any infinite integral domain 
D with quotient field K.
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1. θX is surjective for every set X.
2. θX is surjective for some infinite set X.
3. θX is surjective for every finite set X.
4. Int(Int(DX)) is the Int(DX)-module generated by Int(D) for every (finite) set X.
5. Int(D)(⊗X) is a PC extension of D for every (finite) set X.
6. One has Int(D)(⊗X) = wInt(D)(D[X]) = Int(DX) for every (finite) set X.
7. For any element f of Int(D), the polynomials f(X +Y ) and f(XY ) lie in Int(D)⊗2, 

and for any n the domain Int(Dn) is the smallest subring of K[X1, X2, . . . , Xn]
containing D[X1, X2, . . . , Xn] that is closed under pre-composition by elements of 
Int(D).

8. D is weakly polynomially composite, and every WPC domain extension of D is APC.

Proof. The first four conditions are equivalent by [21, Proposition 6.3]. Conditions 
(1) and (5) are equivalent because Int(DX) is the polynomial completion of D[X]
with respect to X [21, Example 8.3]. Conditions (1) and (6) are equivalent because 
im θX = Int(D)(⊗X) ⊆ wInt(D)(D[X]) ⊆ Int(DX). Conditions (6) and (7) are equivalent 
by Proposition 8.2 and the definition of wInt(D)(D[X]). Finally, conditions (6) and (8) 
are equivalent by [21, Proposition 7.9]. �

Whether or not θX is injective for every set X depends on properties of the D-module 
Int(D). In particular, injectivity certainly follows if Int(D) is assumed flat as a D-module. 
The flatness hypothesis has been shown useful for studying integer-valued polynomial 
rings. (See, for example, [21, Propositions 6.8 and 7.10 and Corollaries 6.2 and 6.9] and 
[24, Theorems 3.6, 3.7, and 3.11].) Moreover, under a number of conditions, including 
[24, Theorems 1.2 and 3.8 and Lemma 2.8] and [25, Theorem 4.2], Int(D) is locally free, 
hence flat, as a D-module. These include the cases where D is a domain of Krull type or 
more generally polynomially L-regular PVMD. Remarkably, however, there is no known 
example of an integral domain D such that Int(D) is not free as a D-module.

Problem 8.5 ([22]). Do there exist integral domains D such that:

1. Int(D) is not free as a D-module?
2. Int(D) is not flat as a D-module?
3. Int(D)⊗n is not D-torsion-free for n = 2 or n = 3?

If M is a flat D-module, then every tensor power of M is D-torsion-free, and the 
converse holds if M is finitely generated [14,39]; however, Int(D) is not finitely generated. 
We are thus also led naturally to the following problems.

Problem 8.6. Let D be an integral domain.

1. Classify the domains D for which Int(D)⊗n an Int(D)-reflective D-algebra for all n
(or equivalently, for which D is Int(D) an idempotent D[X]-algebra).
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2. If Int(D)⊗n is an Int(D)-reflective D-algebra, then is it necessarily D-torsion-free?
3. Is every tensor power of Int(D) D-torsion free? If not, then for which domains D

does this hold?
4. If Int(D)⊗n is D-torsion free for n = 2, 3, then is every tensor power of Int(D)

necessarily D-torsion free?
5. If every tensor power of Int(D) is D-torsion free, then is Int(D) necessarily flat as a 

D-module?
6. In general, if A is a D-algebra such that every tensor power of A over D is D-torsion-

free, then is A necessarily flat as a D-module?

Finally, in the remainder of this section we examine the D-plethory Int(D) in the case 
where D is a Dedekind domain, where it is known that Int(D) is free as a D-module and 
therefore θX is an isomorphism for all X [10, Remark II.3.7(iii)], [21, Proposition 6.8].

By [20, Proposition 9.3] one has Bin(A) ∼= Zp for any integral domain A of char-
acteristic p, where Zp denotes the ring of p-adic integers, and in particular one has 
Bin(Fp) ∼= Zp. This generalizes as follows.

Proposition 8.7. Let D be a Dedekind domain, and let p be a maximal ideal of D with finite 
residue field. Then the map D̂p −→ WInt(D)(D/p) acting by α �−→ (f �−→ f(α) mod pD̂p)
is a D-algebra isomorphism. More generally, for any D-algebra A that is a domain with 
pA = 0, the diagram

D̂p WInt(D)(D/p)

WInt(D)(A)

is a commutative diagram of D-algebra isomorphisms.

Proof. By [10, Theorem V.2.10], the prime ideals of Int(D) lying above p are maximal 
and are in bijective correspondence with D̂p, where α ∈ D̂p corresponds to the maximal 
ideal pα = {f ∈ Int(D) : f(α) ∈ pD̂p} of Int(D). Given any such α, the D-algebra 
homomorphism evalα : Int(D) −→ D̂p acting by f −→ f(α) induces D-algebra isomor-
phisms Int(D)/pα ∼= D̂p/pD̂p

∼= D/p. It follows that the map D̂p −→ WInt(D)(D/p)
given in the statement of the proposition is a well-defined bijection. Moreover, this bi-
jection is D-linear, and one checks that it also preserves multiplication and unity and is 
therefore an isomorphism of D-algebras. Finally, if A is any D-algebra that is a domain 
with pA = 0, then the kernel of any ϕ ∈ WInt(D)(A) is a prime ideal of Int(D) lying 
over p and therefore is of the form pα for some α ∈ D̂p, whence ϕ factors through evalα. 
It follows, then, that the D-algebra homomorphism WInt(D)(D/p) −→ WInt(D)(A) is a 
bijection and therefore an isomorphism. �
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To verify, as claimed throughout this paper, that the binomial rings coincide with the 
Int(Z)-reflective Z-algebras, we must show that the latter are Z-torsion-free. In the next 
theorem we show more generally that, if D is a Dedekind domain with finite residue fields, 
then every Int(D)-reflective D-algebra is D-torsion-free. (Recall Proposition 4.7.) Given 
this fact, it follows that WInt(Z) is isomorphic to the functor Bin since both functors are 
right adjoints to the inclusion from binomial rings to rings.

Lemma 8.8. Let D be an integral domain and S a multiplicative subset of D. Then S−1D

is Int(D)-reflective.

Proof. A domain extension A of D is Int(D)-reflective if and only if A is a WPC extension 
of D, if and only if Int(D) ⊆ Int(A). By [10, Proposition I.2.5], one has Int(D) ⊆
Int(D, S−1D) = Int(S−1D), and in particular Int(D) ⊆ Int(S−1D). Therefore S−1D is 
an Int(D)-reflective extension of D. �
Theorem 8.9. If D is a Dedekind domain with finite residue fields, then every 
Int(D)-reflective D-algebra is D-torsion-free.

Proof. Note first that, by Theorem 2.4, there exists a unique D-plethory structure on 
Int(D) with unit given by the inclusion D[X] −→ Int(D).

We first reduce to the case where D is a DVR. Let A be an Int(D)-reflective D-algebra 
and p a maximal ideal of D. By the lemma, Dp is Int(D)-reflective. It follows, then, from 
Proposition 6.8 that Dp⊗D A = Ap is Int(D)p-reflective, hence Int(Dp)-reflective. Thus, 
since A is D-torsion-free if and only if Ap is Dp-torsion-free for all p, we may therefore 
assume that D is a DVR.

Since the D-plethory Int(D) is idempotent, an Int(D)-reflective D-algebra is equiv-
alently an Int(D)-ring. Let A be an Int(D)-ring. To show that A is D-torsion-free, it 
suffices to show that A has no π-torsion, where π is a generator of the maximal ideal of D. 
Now, D/(π) is by hypothesis a finite field, say, having q elements. The polynomial F =
(Xq−X)/π is then an element of Int(D). Note that f(X, Y ) = F (X+Y ) −F (X) −F (Y )
lies in (X, Y )D[X, Y ], and therefore

F ◦ 0 = F ◦ (0 + 0) = F ◦ 0 + F ◦ 0 + f(0, 0) = F ◦ 0 + F ◦ 0

in A, so F ◦ 0 = 0. Note also that F (πX) = πq−1Xq −X. Therefore, if πa = 0 for some 
a ∈ A, then

0 = F ◦ (πa) = F ◦ ((πX) ◦ a) = F (πX) ◦ a = πq−1aq − a = −a,

whence a = 0. �
Corollary 8.10. A ring is binomial if and only if it is an Int(Z)-reflective Z-algebra.
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Example 8.11. Let D be an integral domain and D′ an overring of D.

1. If D has only infinite residue fields, or more generally (by [10, Corollary I.3.7]) if 
Int(D) = D[X], then every D-algebra is Int(D)-reflective, and, in particular, not 
every Int(D)-reflective D-algebra is D-torsion-free.

2. If D is a Krull domain and p is a nonzero prime ideal of D such that D′ ⊆ Dp, then 
Dp/pDp is IntD′(D)-reflective but not D-torsion-free.

3. If D is a Krull domain and p is a nonzero prime ideal of D, then D[ε]/(pε) =
D[T ]/((T )2 + p(T )) is Int(∞)

Dp
(D)-reflective since Int(∞)

Dp
(D) ⊆ Int(D[ε]/(pε) [26], but 

is not D-torsion-free.

Problem 8.12.

1. Determine necessary and sufficient conditions on an integral domain D so that every 
Int(D)-reflective (resp., Int(∞)(D)-reflective) D-algebra is D-torsion-free.

2. Determine necessary and sufficient conditions (beyond those of Proposition 4.7) on 
a k-plethory P so that every P -ring is k-torsion-free.

To further emphasize the connection with binomial rings, we may combine Theo-
rem 8.9 with [21, Theorem 1.2 and Proposition 4.1], which are generalizations of the 
corresponding results for binomial and quasi-binomial rings (namely, [20, Theorem 4.2]), 
as follows.

Proposition 8.13. Let D be a Dedekind domain with finite residue fields and A a 
D-algebra. Then A is Int(D)-reflective if and only if A is D-torsion-free and A satisfies 
any of the following equivalent conditions.

1. A is a D-algebra quotient of Int(DX) for some set X.
2. A is a D-algebra quotient of an Int(D)-reflective D-algebra.
3. a|D/p| ≡ a (mod pA) for all a ∈ A (or equivalently, the endomorphism a �−→ a|D/p|

of A/pA is the identity) for every maximal ideal p of D.
4. For every maximal ideal p of D, the D-algebra A/pA is locally isomorphic to D/p.
5. For every maximal ideal p of D, the D-algebra A/pA is reduced and its residue fields 

are all isomorphic to D/p.
6. For every maximal ideal p of D, the D-algebra A/pA is isomorphic to a D-subalgebra 

of (D/p)X for some set X.
7. A is unramified, with trivial residue field extensions, at every maximal ideal of D.

Corollary 8.14. Let D = R be a Dedekind domain with finite residue fields. The 
R-plethory Int(R) coincides with the R-plethory ΛR,E of [6] modulo the relations ψm−id, 
where E is the set of all maximal ideals of R and where the ψm for m ∈ E are the 
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analogues of the Adams operations ψp of Λ = ΛZ,E. In particular, an Int(R)-reflective 
R-algebra is equivalently a ΛR,E-ring on which the ψm act trivially.

Proof. The Int(R)-reflective R-algebras coincide with the P -rings, where P is the 
R-plethory ΛR,E/(ψm − id), so the result follows from the reconstruction theorem of 
[5, Introduction]. �

One can generalize Proposition 8.13 and Corollary 8.14 to show that, for any Dedekind 
domain R with finite residue fields and any overring R′ of R (which is necessarily a 
localization of R at a saturated multiplicative subset of R), the R-plethory IntR′(R)
coincides with the R-plethory ΛR,E modulo the relations ψm − id for m ∈ E, where E is 
the set of all maximal ideals m of R such that mR′ = R′.
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