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1. Introduction

A basic result in algebraic geometry is that the category Affk of affine schemes over 
a field k is equivalent to the opposite category Algop

k of the category of commutative 
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k-algebras. When one enhances Affk to affine group schemes over k, one obtains Hopf 
algebras as an enrichment of commutative k-algebras. In fact, Hopf algebras naturally 
appear in algebraic geometry, algebraic topology, representation theory, quantum field 
theory, and combinatorics. For a brief historical background for Hopf algebras, we refer 
readers to [3]. Our main interest in this paper is in Hopf algebras arising in combinatorics, 
namely those obtained from matroids, and more generally from matroids over hyperfields. 
A comprehensive introduction to Hopf algebras in combinatorics can be found in [8].

Matroids and their generalizations arise naturally in many areas of mathematics; this 
rich interplay with other areas of mathematics attests to their importance. For instance, 
N. Mnëv’s universality theorem [12] roughly states that any semi-algebraic set in Rn

is the moduli space of realizations of an oriented matroid up to homotopy equivalence. 
There is an analogue in algebraic geometry known as Murphy’s Law by R. Vakil [17]
for ordinary matroids. Valuated matroids are analogous to “linear spaces” in the setting 
of tropical geometry. Dressians, i.e. moduli spaces of valuated matroids, have received 
much attention.

Hopf algebras arising in combinatorics are usually created to encode the basic opera-
tions of an interesting class of combinatorial objects. The basic operations on matroids 
are deletion, contraction, and direct sum; an iterated sequence of deletions and contrac-
tions on a matroid results in a minor of the matroid. The Hopf algebra associated to 
a set of isomorphism classes of matroids closed under taking minors and direct sums is 
called a matroid-minor Hopf algebra. In this paper, we generalize the construction of the 
matroid-minor Hopf algebra to the setting of matroids over hyperfields, first introduced 
by M. Baker and N. Bowler in [4].

Remark 1.1. In fact, many combinatorial objects posses notions of “deletion” and “con-
traction” and hence one can associate Hopf algebras. In [7], C. Dupont, A. Fink, and 
L. Moci associate a universal Tutte character to such combinatorial objects specializing 
to Tutte polynomials in the case of matroids and graphs generalizing the work [10] of 
T. Krajewski, I. Moffatt, and A. Tanasa. See §6.2 in connection with our work.

M. Krasner first introduced Hyperfields in his work [11] on an approximation of a 
local field of positive characteristic by using local fields of characteristic zero. Krasner’s 
motivation was to impose, for a given multiplicative subgroup G of a commutative ring 
A, a “ring-like” structure on the set of equivalence classes A/G, where G acts on A by 
left multiplication. Krasner abstracted algebraic properties of A/G, ultimately defining 
hyperfields. Roughly speaking, hyperfields are fields with multi-valued addition. After 
Krasner’s work, hyperfields have been studied mainly in applied mathematics. Recently 
several authors have investigated hyperstructures in the context of algebraic geometry 
and number theory. Recently M. Baker (later with N. Bowler) employed hyperfields 
in combinatorics: Baker and Bowler found a beautiful framework which simultaneously 
generalizes the notion of linear subspaces, matroids, oriented matroids, and valuated ma-
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troids. In light of various fruitful applications of Hopf algebra methods in combinatorics, 
we ask the following.

Question. Can we generalize matroid-minor Hopf algebras to matroids over hyperfields?

We answer this question in the affirmative, following [4] definitions of minors for 
matroids over hyperfields which generalize the definition of minors for ordinary matroids.

Theorem A (§3). Let H be a hyperfield. There are two cryptomorphic definitions, circuits 
and Grassmann-Plücker functions, of minors of matroids over H. Furthermore, if M is 
a weak (resp. strong) matroid over H, then all minors of M are weak (resp. strong).

Next, we generalize the notion of direct sums to matroids over hyperfields and prove 
that direct sums preserve the type (weak or strong) of matroids over hyperfields in the 
following sense.

Theorem B (§3). Let H be a hyperfield. There are two cryptomorphic definitions, circuits 
and Grassmann-Plücker functions, of direct sums of matroids over H. Furthermore, if 
M1 and M2 are (weak or strong) matroids over H, then the direct sum M = M1 ⊕M2
is always a weak matroid over H and M is strong if and only if both M1 and M2 are 
strong.

Appealing to the above results, we define Hopf algebras for matroids over hyperfields 
in §5. Finally, in §6, we list some future directions for our work.
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2. Preliminaries

In this section, we recall definitions and basic properties of the key players in the 
paper. Throughout, we let N = Z≥0 denote the natural numbers.

2.1. Matroids

This section is intended as a brief refresher on the basic notions and operations in 
matroid theory. We refer readers to [13] and [18] for further details and proofs of the 
facts from this section.
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Matroids encode and generalize the combinatorics of linear independence in a finite 
dimensional vector space; similarly, matroids generalize properties of cycles in finite 
graphs. While there are several “cryptomorphic” definitions for matroids, chief among 
these are the notions of bases and circuits.

Let E be a finite set, the ground set of a matroid. A nonempty collection B ⊆ P(E), 
where P(E) is the power set of E, is a set of bases of a matroid when B satisfies the 
basis exchange axiom, given below.

(B) For all X, Y ∈ B and all x ∈ X \ Y there is an element y ∈ Y \ X such that 
(X \ {x}) ∪ {y} ∈ B.

Every pair of bases B1, B2 of a finite dimensional vector space satisfies this property by 
the Steinitz Exchange Lemma. In the context of finite graphs, this is a corollary of the 
Tree Exchange Property satisfied by the edge sets of spanning forests.

A collection C ⊆ P(E) is a set of circuits of a matroid on E when C satisfies the 
following three axioms.

(1) (Nondegeneracy) ∅ /∈ C.
(2) (Incomparability) If X, Y ∈ C and X ⊆ Y , then X = Y .
(3) (Circuit elimination) For all X, Y ∈ C and all e ∈ X ∩ Y , there is a Z ∈ C such that 

Z ⊆ (X ∪ Y ) \ {e}.

For finite graphs, circuits are precisely the edge sets of cycles in the graph. Circuits 
correspond with minimal dependence relations on a finite set of vectors in a vector 
space.

Remark 2.1. There is a natural correspondence between sets of circuits of a matroid on 
E and sets of bases of a matroid on E. Given a set C of circuits of a matroid, the set of 
maximal subsets of E not containing any element of C is the set of bases of a matroid. 
Likewise, given a set B of bases of a matroid, the set of minimal nonempty subsets of E
which are not contained in any element of B is the set of circuits of a matroid. Moreover, 
the constructions above are inverse to one another. In this sense a set of bases B and the 
corresponding set of circuits C carry the same information; these are said to determine 
the same matroid on E “cryptomorphically.”

Example 2.2. The motivating examples of matroids are given as follows.

(1) Let V be a finite dimensional vector space and E ⊆ V a spanning set of vectors. 
The bases of V contained in E form the bases of a matroid on E, and the minimal 
dependent subsets of E form the circuits of a matroid on E. Furthermore, these are 
the same matroid.
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(2) Let Γ be a finite, undirected graph with edge set E (loops and parallel edges are 
allowed). The sets of edges of spanning forests in Γ form the bases of a matroid on 
E, and the sets of edges of cycles form the circuits of a matroid on E. Furthermore, 
these are the same matroid.

Definition 2.3. Let M1 (resp. M2) be a matroid on E1 (resp. E2) defined by a set B1
(resp. B2) of bases. We say that M1 is isomorphic to M2 if there exists a bijection 
f : E1 → E2 such that f(B) ∈ B2 if and only if B ∈ B1. In this case, f is said to be an 
isomorphism.

Example 2.4. Let Γ1 and Γ2 be finite graphs and M1 and M2 be the corresponding ma-
troids. Every graph isomorphism between Γ1 and Γ2 gives rise to a matroid isomorphism 
between M1 and M2, but the converse need not hold.

Given any base B ∈ B(M) and any element e ∈ E \B, there is a unique fundamental 
circuit CB,e of e with respect to B such that CB,e ⊆ B ∪ {e}.

Definition 2.5 (Direct sum of matroids). Let M1 and M2 be matroids on E1 and E2 given 
by bases B1 and B2 respectively. The direct sum M1 ⊕ M2 is the matroid on E1 	 E2
given by bases B = {B1 	B2 | Bi ∈ Bi for i = 1, 2}.

Definition 2.6 (Dual, Restriction, Deletion, and Contraction). Let M be a matroid on a 
finite set EM with the set BM of bases and the set CM of circuits. Let S be a subset of 
EM .

(1) The dual M∗ of M is a matroid on EM given by bases

BM∗ = {EM −B | B ∈ BM} .

(2) The restriction M |S of M to S is a matroid on S given by circuits

CM |S = {D ⊆ S | D ∈ CM} .

(3) The deletion M \ S of S is the matroid M \ S = M |(E \ S).
(4) The contraction of M by S is M/S = (M∗ \ S)∗.

Each operation above results in a matroid. A minor of a matroid M is any matroid 
obtained from M by a series of deletions and/or contractions. Basic properties relating 
these operations are given below.

Proposition 2.7. Let M be a matroid on E. We have the following for all disjoint subsets 
S and T of E.
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(1) M/∅ = M = M \ ∅.
(2) (M \ S) \ T = M \ (S ∪ T ).
(3) (M/S)/T = M/(S ∪ T ).
(4) (M \ S)/T = (M/T ) \ S.

2.2. Matroids over hyperfields

In this section, we review basic definitions and properties for matroids over hyperfields 
first introduced by Baker and Bowler in [4]. Let’s first recall the definition of a hyperfield. 
By a hyperaddition on a nonempty set H, we mean a function +: H ×H → P∗(H) such 
that +(a, b) = +(b, a) for all a, b ∈ H, where P∗(H) is the set of nonempty subsets of 
H. We will simply write a + b for +(a, b). A hyperaddition + on H is associative if the 
following condition holds: for all a, b, c ∈ H,

a + (b + c) = (a + b) + c. (1)

For subsets A and B of H, we write A + B :=
⋃

a∈A,b∈B a + b; thus the notation in (1)
makes sense. We also write singleton {a} as a when confusion is unlikely.

Definition 2.8. Let H be a nonempty set with an associative hyperaddition +. We say 
that (H, +) is a canonical hypergroup when the following conditions hold:

(1) (Identity) ∃! 0 ∈ H such that a + 0 = a for all a ∈ H.
(2) (Inverse) ∀ a ∈ H, ∃! b (=: −a) ∈ H such that 0 ∈ a + b.
(3) (Reversibility) ∀ a, b, c ∈ H, if a ∈ b + c, then c ∈ a + (−b).

We will write a − b instead of a + (−b) for brevity of notation.

Definition 2.9. By a hyperring, we mean a nonempty set H with a binary operation ·
and hyperaddition + such that (H, +, 0) is a canonical hypergroup and (H, ·, 1) is a 
commutative monoid satisfying the following conditions: for all a, b, c ∈ H,

a · (b + c) = a · b + a · c, 0 · a = 0, and 1 �= 0.

When (H − {0}, ·, 1) is a group, we call H a hyperfield.

Definition 2.10. Let H1 and H2 be hyperrings. A homomorphism of hyperrings from H1
to H2 is a function f : H1 → H2 such that f is a monoid morphism with respect to 
multiplication satisfying the following conditions:

f(0) = 0 and f(a + b) ⊆ f(a) + f(b), ∀a, b ∈ H1.

The following are some typical examples of hyperfields found in the literature.
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Example 2.11 (K; Krasner hyperfield). Let K := {0, 1} and impose the usual multiplica-
tion 0 · 0 = 0, 1 · 1 = 1, and 0 · 1 = 0. Hyperaddition is defined as 0 + 1 = 1, 0 + 0 = 0, 
and 1 + 1 = K. The structure K is the Krasner hyperfield.

Remark 2.12. For every hyperfield H there is a unique homomorphism κ : H → K, 
sending every nonzero element to 1 and 0 to 0. Thus K is final in the category of 
hyperfields.

Example 2.13 (S; hyperfield of signs). Let S := {−1, 0, 1} and impose multiplication in 
a usual way following the rule of signs; 1 · 1 = 1, (−1) · 1 = (−1), (−1) · (−1) = 1, and 
1 · 0 = (−1) · 0 = 0 · 0 = 0. Hyperaddition also follows the rule of signs as follows:

1 + 1 = 1, (−1) + (−1) = (−1), 1 + 0 = 1, (−1) + 0 = (−1), 0 + 0 = 0, 1 + (−1) = S.

The structure S is the hyperfield of signs.

Example 2.14 (P ; phase hyperfield). Let P := S1∪{0}, where S1 is the unit circle in the 
complex plane. The multiplication on P is the usual multiplication of complex numbers. 
Hyperaddition is defined by:

a+b =
{

{−a, 0, a} if a = −b(−b as a complex number),
the shorter open arc connectinga and b if a �= −b.

The structure P is the phase hyperfield.

Example 2.15 (T ; tropical hyperfield). Let G be a (multiplicative) totally ordered abelian 
group. Then one can enrich the structure of G to define a hyperfield. To be precise, let 
Ghyp := G ∪ {−∞} and define multiplication via the multiplication of G together with 
the rule g · (−∞) = −∞ for all g ∈ G. Hyperaddition is defined as follows:

a + b =
{

max{a, b} if a �= b

[−∞, a] if a = b,

where [−∞, a] := {g ∈ Ghyp | g ≤ a} with −∞ the smallest element. Then Ghyp is a 
hyperfield. For R the set of real numbers with the usual addition and ordering, we obtain 
the tropical hyperfield T := Rhyp.

In what follows, let (H, �, �) be a hyperfield, H× = H − {0H}, r a positive integer, 
[r] = {1, . . . , r}, x an element of Er such that x(i) ∈ E is the ith coordinate of x. Now 
we recall the two notions (weak and strong) of matroids over hyperfields introduced by 
Baker and Bowler. These notions are given cryptomorphically by structures analogous to 
the bases and circuits of ordinary matroids. Their definition simultaneously generalizes 
several existing theories of “matroids with extra structure,” evidenced by the following 
examples:
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Example 2.16. Matroids over the following hyperfields have been studied in the past:

• A (strong or weak) matroid over a field k is a linear subspace of kr.
• A (strong or weak) matroid over the Krasner hyperfield K is an ordinary matroid.
• A (strong or weak) matroid over the hyperfield of signs S is an oriented matroid.
• A (strong or weak) matroid over the tropical hyperfield T is a valuated matroid.

We first recall the generalization of bases to the setting of matroids over hyperfields. 
This is done via Grassmann-Plücker functions.

Definition 2.17. Let H be a hyperfield, E a finite set, r a nonnegative integer, and Σr

the symmetric group on r letters with a canonical action on Er (acting on indices).

(1) A function ϕ : Er → H is a nontrivial H-alternating function when:
(G1) The function ϕ is not identically zero.
(G2) For all x ∈ Er and all σ ∈ Σr we have ϕ(σ · x) = sgn(σ)ϕ(x).
(G3) If x ∈ Er has x(i) = x(j) for some i < j, then ϕ(x) = 0H .

(2) A nontrivial H-alternating function ϕ : Er → H is a weak-type Grassmann-Plücker 
function over H when:
(WG) For all a, b, c, d ∈ E and all x ∈ Er−2 we have

0H ∈ ϕ(a, b,x)ϕ(c, d,x) − ϕ(a, c,x)ϕ(b, d,x) + ϕ(b, c,x)ϕ(a, d,x).

(3) A nontrivial H-alternating function ϕ : Er → H is a strong-type Grassmann-Plücker 
function over H when:
(SG) For all x ∈ Er+1 and all y ∈ Er−1 we have

0H ∈
r+1∑
k=1

(−1)kϕ(x|[r+1]\{k})ϕ(x(k),y).

(4) The rank of a Grassmann-Plücker function ϕ : Er → H is r.
(5) Two Grassmann-Plücker functions ϕ, ψ : Er → H are equivalent when there is an 

element a ∈ H× with ψ = a � ϕ.

A matroid over H is an H×-equivalence class [ϕ] of a Grassmann-Plücker function ϕ.
Before presenting circuits of matroids over hyperfields, we need a technical definition.

Definition 2.18. Let S be a collection of inclusion-incomparable subsets of a set E. A 
modular pair in S is a pair of distinct elements X, Y ∈ S such that for all A, B ∈ S, if 
A ∪B ⊆ X ∪ Y , then A ∪B = X ∪ Y .
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Having Definition 2.18, we can now give definitions of collections of circuits for ma-
troids over hyperfields. In what follows, we will simply write 

∑
instead of � if the context 

is clear.

Definition 2.19. Let E be a finite set, (H, �, �) a hyperfield, HE the set of functions 
from E to H. For any X ∈ HE , we define supp(X) := {a ∈ E | X(a) �= 0H}.

(1) A collection C ⊆ HE is a family of pre-circuits over H when it satisfies the following 
axioms:
(C1) 0 /∈ C
(C2) H× � C = C
(C3) For all X, Y ∈ C, if supp(X) ⊆ supp(Y ), then Y = a �X for some a ∈ H×.

(2) A pre-circuit set C over H is a weak-type circuit set when it satisfies the following 
additional axiom:
(WC) For all X, Y in C such that {supp(X), supp(Y )} forms a modular pair in 

supp(C) := {supp(X) | X ∈ C} and for all e ∈ supp(X) ∩ supp(Y ), there is a 
Z ∈ C such that

Z(e) = 0H and Z ∈ X(e) � Y − Y (e) �X,

i.e., for all f ∈ E, Z(f) ∈ X(e) � Y (f) − Y (e) �X(f).
(3) A pre-circuit set C over H is a strong-type circuit set when it satisfies the following 

additional axioms:
(SC1) The set supp(C) is the set of circuits of an ordinary matroid MC.
(SC2) For all bases B ∈ BC and all X ∈ C we have

X ∈
∑

e∈E\B
X(e) � YB,e,

where YB,e is the (unique) element of C such that YB,e(e) = 1 and supp(YB,e)
is the fundamental circuit of e with respect to B.

Remark 2.20. The definition of strong-type circuit sets given above is not the original 
definition. This is equivalent to the original definition by [4, Theorem 3.8, Remark 3.9]. 
For our purposes, we shall use the definition given above.

The following result is proved in [4]:

Proposition 2.21. Let H be a hyperfield. The H×-orbits of Grassmann-Plücker functions 
over H are in natural one-to-one correspondence with the H-circuits of a matroid, pre-
serving both ranks and types (weak and strong).

The correspondence is described as follows:
Given a Grassmann-Plücker function ϕ over H, one first shows that the collection of 
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subsets B ⊆ E for which an ordering B has ϕ(B) �= 0H forms a set of bases for an 
ordinary matroid Mϕ. Next, one can define a set of H-circuits by defining for all ordered 
bases B of Mϕ and all e ∈ E \ B a function X = XB,e supported on the fundamental 
circuit for e by B via the equality

X(B(i))X(e)−1 = (−1)iϕ(e,B|[r]\{i})ϕ(B)−1 (2)

This equality uniquely determines X : E → H, up to the multiplicative action of H×. 
The collection of all such X is a collection of H-circuits of the same type as ϕ.

Constructing a Grassmann-Plücker function from circuits is more difficult to describe, 
and requires the additional notion of dual pairs. An explicit description of this construc-
tion is unnecessary for our purposes; the interested reader is referred to [4].

We now describe the duality operation for matroids over hyperfields in terms of 
Grassmann-Plücker functions and subsequently in terms of circuits. It should be noted 
that the duality described in [4] incorporates a notion of conjugation generalizing the 
complex conjugation. This changes the duality operation, but the change is equally well 
described by another operation (called “pushforward through a morphism”) as noted in 
a footnote in [4, §6]. Our treatment will also assume that the conjugation is trivial.

Fix a total ordering ≤ of E. A dual of a Grassmann-Plücker function ϕ over H
is defined by the equation ϕ∗(B) := sgn≤(B, E \ B)ϕ(E \ B) for all cobases B of the 
underlying matroid of ϕ, using the convention that S denotes the ordered tuple with 
coordinates the elements of S arranged according to our fixed total ordering on E and 
sgn≤(B, E \ B) denotes the sign of the permutation given by the word (B, E \ B) with 
respect to the ordering ≤. The definition can be uniquely extended to the set E#E−r by 
alternation and the degeneracy conditions for Grassmann-Plücker functions over H. It is 
relatively easy to see that if ϕ is a Grassmann-Plücker function, then ϕ∗ is a Grassmann-
Plücker function of the same type. Notice that this duality is well-defined up to the 
chosen ordering; a different ordering will induce a Grassmann-Plücker function which is 
multiplied by the sign of the permutation used to translate between the two orderings. 
In particular, this notion of duality is constant on the level of H×-orbits of Grassmann-
Plücker functions, and thus sends an H-matroid M to an H-matroid M∗ of the same 
type despite the fact that there is no canonical dual to the original Grassmann-Plücker 
function.

The dual of a circuit set requires some more care to define; it is here that the contrast 
between weak and strong H-matroids is most stark.

Definition 2.22. Let H be a hyperfield and E a finite set.

(1) The dot product of two functions X, Y : E → H is the following subset of H:

X · Y :=
∑

X(e)Y (e).

e∈E
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(2) Two functions X and Y are strong orthogonal, denoted X ⊥s Y , when

0H ∈ X · Y.

(3) Two functions X and Y are weak orthogonal, denoted X ⊥w Y , when either X ⊥s Y

or the following condition holds:

#(supp(X) ∩ supp(Y )) > 3.

(4) Let C be a set of strong H-circuits on E, we define the following subset of HE:

C⊥s := {X : E → H | X ⊥s Y for all Y ∈ C} .

(5) Let C be a set of weak H-circuits, we define the following subset of HE :

C⊥w := {X : E → H | X ⊥w Y for all Y ∈ C} .

For ease of notation the symbol ⊥ is to be understood in context as either ⊥s or ⊥w.

Definition 2.23. Let H be a hyperfield and M be a weak (resp. strong) H-matroid with 
the set C of weak type (resp. strong type) H-circuits. The cocircuits of C, denoted by C∗, 
are the elements of the perpendicular set C⊥w (resp. C⊥s) with minimal support.

Remark 2.24. In [4, §6.6], Baker and Bowler show that this determines an H-matroid 
with the properties supp(C∗) = (supp(C))∗ and C∗∗ = C; in other words, the underlying 
matroid of the dual is the dual of the underlying matroid and the double dual is identical 
to the original H-matroid.

Remark 2.25. From an algebraic geometric view point, Baker and Bowler’s definition of 
matroids over hyperfields can be considered as points of a Grassmannian over a hyperfield 
H. Motivated by this observation, in [9], the second author proves that certain topological 
spaces (the underlying spaces of a scheme, Berkovich analytification of schemes, real 
schemes) are homeomorphic to sets of rational points of a scheme over a hyperfield. Also, 
recently L. Anderson and J. Davis defined and investigated hyperfield Grassmannians in 
connection to the MacPhersonian (from oriented matroid theory) in [1].

2.3. Matroid-minor Hopf algebras

In this subsection we recall the definition of matroid-minor Hopf algebras. First we 
briefly recall the definition of commutative Hopf algebras; interested readers are referred 
to [6] for more details.

Definition 2.26. Let k be a field. A commutative k-algebra A is a Hopf algebra if A is 
equipped with maps
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(1) (Comultiplication) Δ: A → A ⊗k A,
(2) (Counit) ε : A → k,
(3) (Antipode) S : A → A

such that the following diagrams commute:

A⊗k A A⊗k A⊗k A

A A⊗k A,

Δ⊗id

Δ

Δ id⊗Δ

A⊗k A k ⊗k A

A A,

ε⊗id

id

Δ �

A⊗k A A

A k,

μ◦(S⊗id)

Δ

ε

i

where μ : A ⊗k A → A is the multiplication of A and η : k → A is the unit map. If A is 
only equipped with Δ and ε satisfying the first two commutative diagrams, then A is a 
bialgebra.

Definition 2.27. Let (A, μ, Δ, η, ε) be a bialgebra over a field k.

(1) A is graded if there is a grading A =
⊕

i∈N Ai which is compatible with the bialgebra 
structure of A, i.e., μ, Δ, η, and ε are graded k-linear maps.

(2) A is connected if A is graded and A0 = k.

Definition 2.28. Let A1 and A2 be Hopf algebras over a field k. A homomorphism of 
Hopf algebras is a k-bialgebra map α : A1 → A2 which preserves the antipodes, i.e., 
SA1α = αSA2 .

The following theorem shows that indeed there is no difference between bialgebra 
maps and Hopf algebra maps.

Theorem 2.29. [6, Proposition 4.2.5.] Let A1 and A2 be Hopf algebras over a field k. 
Let α : A1 → A2 be a morphism of k-bialgebras. Then α is a homomorphism of Hopf 
algebras.

We also introduce the following notation:

Definition 2.30. Let A be a Hopf algebra over a field k and i ∈ Z≥1.

(1) (Iterated multiplication): μi : A⊗(i+1) → A is defined inductively as

μi := μ ◦ (id⊗μ(i−1)).

(2) (Iterated comultiplication): Δi : A → A⊗(i+1) is defined inductively as

Δi := (id⊗Δ(i−1)) ◦ Δ.



818 C. Eppolito et al. / Journal of Algebra 556 (2020) 806–835
Now, let’s recall the definition of matroid-minor Hopf algebras, first introduced by 
W. R. Schmitt in [14]. Let M be a collection of matroids which is closed under taking 
minors and direct sums. Let Miso be the set of isomorphism classes of matroids in M. 
For a matroid M in M, we write [M ] for the isomorphism class of M in Miso. One can 
enrich Miso to a commutative monoid with the direct sum

[M1] · [M2] := [M1 ⊕M2],

under which the identity is [∅], the equivalence class of the empty matroid. Let A be the 
monoid algebra k[Miso] over a field k.

For any matroid M , let EM denote the ground set of M . Consider the following maps:

• (Comultiplication)

Δ: k[Miso] → k[Miso] ⊗k k[Miso], [M ] �→
∑

S⊆EM

[M |S ] ⊗ [M/S].

• (Counit)

ε : k[Miso] → k, [M ] �→
{

1 if EM = ∅
0 if EM �= ∅.

Under the above maps, k[Miso] becomes a connected bialgebra; k[Miso] is graded by 
cardinalities of ground sets. It follows from the result of M. Takeuchi [16] that k[Miso]
has a unique Hopf algebra structure with a unique antipode S given by

S =
∑
i∈N

(−1)iμi−1 ◦ π⊗i ◦ Δi−1, (3)

where μ−1 is the unit map η : k → k[Miso], Δ−1 := ε, and π : k[Miso] → k[Miso] is the 
projection map defined by

π|An

{
id if n ≥ 1
0 if n = 0,

and extended linearly to k[Miso], where An is the nth graded piece of A.

3. Minors and sums of matroids over hyperfields

In this section we explicitly write out the constructions of restriction, deletion, con-
traction, and direct sums for matroids over hyperfields. We do this cryptomorphically 
via both circuits and Grassmann-Plücker functions in both the weak and strong cases. 
Primarily, we define the restriction, and subsequently use our characterization to derive 
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the other cryptomorphic descriptions of minors. It should be noted that formulas for 
deletion and contraction in the case of phirotopes are given for phased matroids in [2]
and for general Grassmann-Plücker functions without proof in [4].1 For completeness, 
we give full proofs and expand the previous work by giving formulas for the circuits of 
these objects as well.

3.1. Circuits of H-matroid restrictions

Let H be a hyperfield, E be a finite set, C be a set of (either weak-type or strong-type) 
H-circuits on E, and S ⊆ E. Recall that HS is the set of functions from S to H. We 
make the following notation.

C |S :=
{
X|S ∈ HS

∣∣ X ∈ C and supp(X) ⊆ S
}
. (4)

Proposition 3.1. Let C be a set of weak-type (resp. strong-type) H-circuits of a matroid 
M over H on a ground set E.

(1) For all S ⊆ E, the set C |S is a set of weak-type (resp. strong-type) H-circuits on S.
(2) The underlying matroid of the H-matroid M determined by C |S is precisely the 

restriction of the underlying matroid supp(M)|S. In other words, the restriction 
commutes with the push-forward operation to the Krasner hyperfield K.

Proof. If C is a set of circuits of an H-matroid, then supp(C |S) = supp(C)|S and hence 
supp(C |S) is the set of circuits of the restriction of the ordinary matroid; in particular, 
the second statement follows immediately from the first statement.

Now we prove the first statement. Let X, Y ∈ C have supp(X) and supp(Y ) ⊆ S. 
Thus

supp(X|S) = supp(X) and supp(Y |S) = supp(Y ). (5)

We first show that if C is a set of pre-circuits over H on E, then C |S is also a set of 
pre-circuits over H on S. Indeed, since supp(X) ⊆ S and X �= 0, we have that X|S �= 0
and (a �X|S) ∈ C |S for all a ∈ H×. Finally, if supp(X|S) ⊆ supp(Y |S), then

supp(X) = supp(X|S) ⊆ supp(Y |S) = supp(Y )

yields Y = a � X for some a ∈ H× and hence Y |S = a � X|S as desired. This proves 
C|S is a set of pre-circuits over H on S.

1 Note that [2] accidentally assumes Axiom (WG) implies Axiom (SG); as a result, the results therein fail 
to take account of differences in the weak and strong cases. While [4] fixes this issue, many results refer 
their proofs back to [2] without presenting the required adjustments.
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Next we prove that if C is a set of weak-type H-circuits on E, then C |S is also a set 
of weak-type H-circuits on S. In fact, if X|S and Y |S form a modular pair in C |S, then 
(5) implies X and Y are a modular pair in C. More precisely, in this case, the condition

A ∪B ⊆ supp(X) ∪ supp(Y ) ⊆ S, A,B ⊂ supp(C)

implies A, B ⊆ S. Thus for all e ∈ supp(X) ∩ supp(Y ), there is a Z ∈ C such that

Z(e) = 0 and Z ∈ X(e)Y − Y (e)X. (6)

On the other hand, if a /∈ supp(X) ∪ supp(Y ), then X(e)Y (a) − Y (e)X(a) = {0}. Thus, 
for A ∈ C, A ∈ X(e)Y − Y (e)X implies supp(A) ⊆ supp(X) ∪ supp(Y ) ⊆ S. Hence 
supp(Z) ⊆ S and Z|S ∈ C|S , and C |S inherits (WC) from C. Thus C|S is a set of 
weak-type H-circuits.

Finally, we show that if C is a set of strong-type H-circuits on E, then C |S is also a 
set of strong-type H-circuits on S. As we mentioned before, supp(C |S) = supp(C)|S is 
a set of circuits of a matroid as these are given by the same formula and supp(C) is a 
set of circuits of an ordinary matroid; in particular C |S satisfies axiom (SC1). Let BC |S
(resp. BC) be the set of bases of an underlying matroid MC |S (resp. MC) given by the 
set supp(C |S) (resp. supp(C)) of circuits. If B ∈ BC |S , then we have that B = B̃ ∩ S for 
some B̃ ∈ BC . Applying (SC2) to C with B̃ and X, we obtain

X ∈
∑

e∈E\B̃

X(e) � YB̃,e. (7)

Now YB̃,e|S = YB,e by incomparability of circuits in ordinary matroids, and thus (7)
implies

X|S ∈
∑

e∈E\B
X|S(e) � YB,e.

Thus Axiom (SC2) holds for C |S and hence C |S is a strong-type H-circuit set, as 
claimed. �

Now, thanks to Proposition 3.1, the following definition makes sense.

Definition 3.2. Let M be a matroid over hyperfield H on a ground set E given by weak 
(resp. strong) H-circuits C, and let S be a subset of E. The restriction of matroid M to 
S is the matroid M |S over H given by weak (resp. strong) H-circuits C |S.

3.2. Grassmann-Plücker functions of H-matroid restrictions

We now describe restriction of H-matroids via Grassmann-Plücker functions. Let H
be a hyperfield, E a finite set, r a positive integer, and ϕ a (weak-type or strong-type) 
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Grassmann-Plücker function over H on E of rank r. Let Mϕ denote the underlying 
matroid of ϕ given by bases

Bϕ = {{b1, . . . , br} ⊆ E | ϕ(b1, . . . , br) �= 0} .

Recall that for any ordered basis B = {b1, b2, . . . , bk} of Mϕ/S, we let

B = (b1, b2, . . . , bk) ∈ Ek.

For any subset S ⊆ E and any (ordered) basis B = {b1, b2, . . . , bk} of Mϕ/S, we define

ϕB : Sr−k −→ H, A �→ ϕ(A,B).

Proposition 3.3. Let ϕ be a weak-type (resp. strong-type) Grassmann-Plücker function 
over H on E of rank r and let S ⊆ E. For all ordered bases B of Mϕ/S, the function 
ϕB is a weak-type (resp. strong-type) Grassmann-Plücker function. Moreover, all such 
ϕB determine the H-circuits C |S of M |S.

Proof. For notational convenience, let [n] = {1, 2, . . . , n} and regard B as a function 
B : [k] → E. First, one can observe that ϕB is a nontrivial H-alternating function as ϕB

is a restriction of a nontrivial H-alternating function to a subset containing a base of 
Mϕ. We claim that if ϕ is a weak-type Grassmann-Plücker function over H, then ϕB is 
also a weak-type Grassmann-Plücker function over H. To see this, let a, b, c, d ∈ E and 
Y : [r − k − 1] → E be given. Applying Axiom (WG) to a, b, c, d ∈ E and x = (Y, B) ∈
Er−2, we obtain

0H ∈ ϕ(a, b,Y,B)ϕ(c, d,Y,B) − ϕ(a, c,Y,B)ϕ(b, d,Y,B) + ϕ(a, d,Y,B)ϕ(b, c,Y,B)

= ϕB(a, b,Y)ϕB(c, d,Y) − ϕB(a, c,Y)ϕB(b, d,Y) + ϕB(a, d,Y)ϕB(b, c,Y).

This shows that Axiom (WG) holds for ϕB and hence ϕB is a weak-type Grassmann-
Plücker function over H.

We next show that if ϕ is a strong-type Grassmann-Plücker function over H, then ϕB

is also a strong-type Grassmann-Plücker function over H. Indeed, let X : [r−k+1] → S

and Y : [r− k− 1] → S be given. Applying Axiom (SG) to x := (X, B) and y := (Y, B), 
we obtain the following:

0H ∈
∑

j∈[r−k+1]

(−1)jϕ(X|[r−k+1]\{j},B)ϕ(X(j),Y,B)

+
∑
j∈[k]

(−1)r−k+1+jϕ(X,B|[k]\{j})ϕ(B(j),Y,B)

=
∑

(−1)jϕ(X|[r−k+1]\{j},B)ϕ(X(j),Y,B) +
∑

(−1)r−k+1+j0H

j∈[r−k+1] j∈[k]
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=
∑

j∈[r−k+1]

(−1)jϕB(X|[r−k+1]\{j})ϕB(X(j),Y)

This shows that Axiom (SG) holds for ϕB and hence ϕB is a strong-type Grassmann-
Plücker function over H.

Finally, we show ϕB′ determines the same set of circuits as ϕB for all ordered bases 
B and B′ of Mϕ/S. Indeed, we show the circuits determined by ϕB are precisely C |S. 
Fix an ordered base A of Mϕ|S. Now, y := (A, B) is an ordered base of Mϕ. Moreover, 
for all e ∈ S \A, the fundamental H-circuit X = XA∪B,e satisfies

X|S(A(i))X|S(e)−1 = X(y(i))X(e)−1

= (−1)iϕ(e,A|[r−k]\{i},B)ϕ(A,B)−1

= (−1)iϕB(e,A|[r]\{i})ϕB(A)−1,

for all i ∈ [r − k] by the cryptomorphism relating C and ϕ. On the other hand, X|S =
XA∪B,e|S is the fundamental H-circuit for e by the basis A in C |S. Hence C |S is the set 
of H-circuits determined by the Grassmann-Plücker function ϕB for all ordered bases B
of Mϕ/S. �

We summarize our results from this section as follows:

Proposition 3.4. The restriction of an H-matroid to a subset is well-defined, and admits 
cryptomorphic description in terms of Grassmann-Plücker functions over H and H-
circuits. Furthermore, this correspondence preserves types and all such restrictions have 
underlying matroid the ordinary restriction. Finally, we have the following:

(1) The restriction M |S is given by H-circuits

C |S = {X|S | X ∈ C and supp(X) ⊆ S} .

(2) The restriction M |S is obtained by fixing any base B = (b1, b2, . . . , bk) of Mϕ/S and 
defining

ϕB : Sr−k −→ H, x �→ ϕ(x,B).

In particular, the H-matroid M |S is determined by the H×-class [ϕB] of any such B.

3.3. Deletion and contraction

As noted previously, deletion and contraction for H-matroids were defined by Baker 
and Bowler in [4] by using Grassmann-Plücker functions. In this section, we also provide 
a cryptomorphic definition for deletion and contraction via H-circuits by appealing to 
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the definitions of dual H-matroids and restrictions. Throughout let H be a hyperfield, 
E a finite set, r a positive integer, and M be a matroid over H on ground set E of rank 
r with circuits C and a Grassmann-Plücker function ϕ.

Definition 3.5. Let S be a subset of E.

(1) The deletion M \ S of S from M is the H-matroid M |(E \ S).
(2) The contraction M/S of S from M is the H-matroid (M∗ \ S)∗.

Remark 3.6. It follows from Definition 3.5 that if M is weak type (resp. strong type), 
then the deletion M \S and the contraction M/S are also weak type (resp. strong type).

Proposition 3.7. Let S be a subset of E.

(1) The deletion M \ S is given by H-circuits

C |(E \ S) =
{
X|E\S

∣∣ X ∈ C and S ∩ supp(X) = ∅
}
. (8)

(2) The deletion M \ S is obtained by fixing base B = (b1, b2, . . . , br−k) of Mϕ/(E \ S)
and letting ϕB : (E \S)k → H, x �→ ϕ(x, B). The H-matroid M \S is determined 
by the H×-class [ϕB] for any such B.

Proof. The first statement is immediate from the definition of the deletion and the second 
statement directly follows from Proposition 3.4. �

A description of contractions is slightly more complicated.

Proposition 3.8. Let S be a subset of E.

(1) The contraction M/S is given by H-circuits C /S = (C∗ |(E \ S))∗. More explicitly

C /S = min
{
Z ∈ HE\S \ {0}

∣∣∣∣ Z ⊥ X|E\S for all X ∈ HE \ {0}
with supp(X) ∩ S = ∅ and X ⊥ Y for all Y ∈ C

}
.

(9)
(2) The contraction M/S is given by the class of Grassmann-Plücker functions 

((ϕ∗)|E\S)∗. More explicitly, let B = (b1, . . . , bk) be an ordered basis of Mϕ|S. A 
representative of the H×-orbit of Grassmann-Plücker functions determining M/S is 
given by

ϕB : (E \ S)r−k −→ H, x �→ ϕ(B,x). (10)

The formula for ϕB in (10) is given in [4], with proof deferred to [2]; we give a full 
proof.
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Proof. Proof of (1): Since M/S := (M∗ \ S)∗, the formula C /S = (C∗ |(E \ S))∗ follows 
from the duality cryptomorphism and the restriction constructions of Propositions 3.4
and 3.7. Recall

C∗ = min
{
X ∈ HE \ {0}

∣∣ X ⊥ Y for all Y ∈ C
}
,

where “min” takes elements of minimal support. The following shows (9).

(C∗ |(E \ S))∗

= (min
{
X ∈ HE \ {0}

∣∣ X ⊥ Y for all Y ∈ C∗} |(E \ S))⊥

= min
{
X|E\S ∈ HE\S

∣∣∣∣ X ∈ HE \ {0} and supp(X) ∩ S = ∅
and X ⊥ Y for all Y ∈ C∗

}⊥

= min
{
Z ∈ HE\S \ {0}

∣∣∣∣ Z ⊥ X|E\S for all X ∈ HE \ {0}
with supp(X) ∩ S = ∅ and X ⊥ Y for all Y ∈ C

}
Proof of (2): We prove that ϕB is the Grassmann-Plücker function determined by C /S. 
Let B be a base of the ordinary matroid Mϕ|S. Then, for any base A of the ordinary 
matroid Mϕ/S, A ∪ B is a base of Mϕ. Let e ∈ (E \ S) \ A be given, and let C̃A∪B,e

be the fundamental circuit of e with respect to A ∪B in M (see (2) and the paragraph 
before it). Now suppose X ∈ HE \ {0} satisfies supp(X) ∩ S = ∅ and X ⊥ Y for all 
Y ∈ C. In particular, X ⊥ C̃A∪B,e since C̃A∪B,e ∈ C. On the other hand, as X(s) = {0}
for all s ∈ S, we have

X|E\S ⊥ C̃A∪B,e|E\S .

Hence C̃A∪B,e|E\S = CA,e is the fundamental H-circuit of e ∈ E \ S with respect 
to A in M/S by incomparability of supports of elements in C /S and the fact that 
supp(C̃A∪B,e|E\S) is precisely the fundamental circuit of e by A in the underlying matroid 
of the contraction. The following computation completes the proof.

(−1)iϕB(e,A|[r−k]\{i})ϕB(A)−1 = (−1)iϕ(B, e,A|[r−k]\{i})ϕ(B,A)−1

= C̃A∪B,e(A(i))C̃A∪B,e(e)−1

= CA,e(A(i))CA,e(e)−1 �
3.4. Elementary properties of minors

We summarize the constructions of the preceding sections below for easy reference.

Proposition 3.9. Let H be a hyperfield, E a finite set, r a positive integer, and M be a 
matroid over H of rank r with circuits C and a Grassmann-Plücker function ϕ. Let S be 
a subset of E.
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(1) The restriction M |S is given by H-circuits:

CS = {X|S | X ∈ C and supp(X) ⊆ S} .

(2) The restriction M |S is obtained by fixing an ordered base B = (b1, b2, . . . , bk) of the 
underlying matroid Mϕ/(E \ S) and defining:

ϕB : Sr−k −→ H, x �→ ϕ(x,B).

In particular, the H-matroid M |S is determined by the H×-class [ϕB] of any such B.
(3) The deletion M \ S is given by H-circuits:

C |(E \ S) =
{
X|E\S

∣∣ X ∈ C and S ∩ supp(X) = ∅
}
.

(4) The deletion M \ S is obtained by fixing an ordered base B = (b1, b2, . . . , br−k) of 
Mϕ/S and defining

ϕB : (E \ S)k −→ H, x �→ ϕ(x,B).

In particular, the H-matroid M \ S is determined by the H×-class [ϕB] of any B.
(5) The contraction M/S is given by H-circuits C = (C∗ |(E \ S))∗. More explicitly,

C /S =
{
Z ∈ HE\S \ {0}

∣∣∣∣ Z ⊥ X|E\S for all X ∈ HE \ {0}
with supp(X) ∩ S = ∅ and X ⊥ Y for all Y ∈ C

}
(6) The contraction M/S is given by the class of Grassmann-Plücker functions 

((ϕ∗)|E\S)∗. More explicitly, let B = (b1, . . . , bk) be an ordered basis of Mϕ|S. A 
representative of the H×-orbit of Grassmann-Plücker functions determining M/S is 
given by

ϕB : (E \ S)r−k −→ H, x �→ ϕ(B,x).

Via the above constructions we obtain simple proofs of the following properties of 
minors, extending those of ordinary matroids.

Corollary 3.10. Let M be an H-matroid on E with S, T ⊆ E disjoint. We have

(1) M/∅ = M = M \ ∅.
(2) (M \ S) \ T = M \ (S ∪ T ).
(3) (M/S)/T = M/(S ∪ T ).
(4) (M \ S)/T = (M/T ) \ S.
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Proof. Let C and ϕ denote the circuits and a Grassmann-Plücker function of M respec-
tively. Preserve the notation from Proposition 3.9, with some self-explanatory adjust-
ments.

Proof of Part (1): This follows immediately from the corresponding fact on Mϕ.
Proof of Part (2): Let BS = (a1, a2, . . . , ak) and BT = (b1, b2, . . . , bl) be ordered bases 

of Mϕ/S and Mϕ/T respectively, and let m = r − k − l. Note that the concatenation 
BTBS is an ordered basis of Mϕ/(S ∪ T ). We complete the proof via the following 
computation for x ∈ ((E \ S) \ T )m = (E \ (S ∪ T ))m.

(ϕS)T (x) = (ϕS)(x,BT ) = ϕ(x,BT ,BS) = ϕ(x,BTBS) = ϕTS(x)

Proof of Part (3): Let BS = (a1, a2, . . . , ak) be an ordered basis of Mϕ|S, let BT =
(b1, b2, . . . , bl) be an ordered basis of Mϕ|T such that the concatenation BSBT is an 
ordered basis of Mϕ|(S ∪ T ), and let m = r − k − l. We complete the proof via the 
following computation for x ∈ ((E \ S) \ T )m = (E \ (S ∪ T ))m.

(ϕS)T (x) = (ϕS)(BT ,x) = ϕ(BS ,BT ,x) = ϕ(BSBT ,x) = ϕST (x)

Proof of Part (4): Let BS = (a1, a2, . . . , ak) and BT = (b1, b2, . . . , bl) be ordered bases 
of Mϕ/S and Mϕ|T respectively such that the concatenation BSBT is an independent 
(k + l)-tuple of Mϕ, and let m = r − k − l. We complete the proof via the following 
computation for x ∈ (E \ (S ∪ T ))m.

(ϕS)T (x) = ϕS(BT ,x) = ϕ(BT ,x,BS) = ϕT (x,BS) = (ϕT )S(x) �
Remark 3.11. The proofs of parts (2) and (3) above are very similar; having proved 
either, one may apply the duality cryptomorphism to the dual H-matroid M∗ to obtain 
a proof of the other.

Finally, we obtain that restriction, deletion, and contraction commute with pushfor-
wards.

Corollary 3.12. The following all hold.

(1) The pushforward of a restriction is the restriction of the pushforward.
(2) The pushforward of a deletion is the deletion of the pushforward.
(3) The pushforward of a contraction is the contraction of the pushforward.

Proof. Let f : H1 → H2 be a hyperfield morphism, let ϕ be a Grassmann-Plücker func-
tion for H1-matroid M , and let S ⊆ E.

Proof of Part (1): Let B be an ordered basis of Mϕ/(E \ S). We compute

(fϕ)B(x) = (fϕ)(x,B) = f(ϕ(x,B)) = f(ϕB(x)) = (fϕB)(x).
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Proof of Part (2): This follows from part (1) as deletion is restriction to a complement.
Proof of Part (3): Let B be an ordered basis of Mϕ|S. We compute

(fϕ)B(x) = (fϕ)(B,x) = f(ϕ(B,x)) = f(ϕB(x)) = (fϕB)(x). �
Example 3.13. Let H be a hyperfield and κ : H → K be the canonical map. For any 
H-matroid M , the pushforward κ∗M is the underlying matroid of M . In this case, 
Corollary 3.12 states that each of these operations corresponds with the operation of the 
same name on the underlying matroid.

3.5. Direct sums of matroids over hyperfields

For matroids over hyperfields, we provide two cryptomorphic definitions (Grassmann-
Plücker functions and circuits) for direct sum. Let M and N be H-matroids. To state a 
precise formula for a sum of Grassmann-Plücker functions, we will need some additional 
notation. Fix a total order ≤ on EM 	 EN such that x < y whenever x ∈ EM and 
y ∈ EN . Now for every x ∈ (EM 	 EN )rM+rN either x has exactly rM components in 
EM or not. If so, we let σx denote the unique permutation of [rM + rN ] such that σx · x
is monotone increasing with respect to ≤.

Proposition 3.14. Let H be a hyperfield and M (resp. N) be an H-matroid of rank rM
(resp. rN ) given by a Grassmann-Plücker function ϕM (resp. ϕN ). The function ϕM ⊕
ϕN , defined by formula (a) is a weak-type Grassmann-Plücker function.

ϕM ⊕ ϕN : (EM 	 EN )rM+rN → H,

x �→
{

0, if x does not have precisely rM components in EM

sgn(σx)ϕM ((σx · x)|[rM ])ϕN ((σx · x)|[rM+rN ]\[rM ]), otherwise.
(a)

Moreover, ϕM ⊕ ϕN is strong type precisely when both ϕM and ϕN are strong type. 
Furthermore, the H×-class of ϕM ⊕ ϕN depends only on M and N .

We verify this result via several lemmas. Let ϕ := ϕM ⊕ ϕN in what follows.

Lemma 3.15. The function defined in (a) is nondegenerate and H-alternating.

Proof of Lemma 3.15. Note ϕ is clearly nontrivial. To see ϕ is H-alternating, we let τ be 
an arbitrary permutation of [rM + rN ]; note that x has precisely rM components in EM

if and only if τ ·x has precisely rM components in EM . If x has precisely rM components 
in EM , then στ ·x = σxτ

−1 and the following computation completes the proof of our 
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claim.

ϕ(τ · x) = sgn(στ ·x)ϕM ((στ ·x · τ · x)|[rM ])ϕN ((στ ·x · τ · x)|[rM+rN ]\[rM ])

= sgn(σx · τ−1)ϕM ((σx · τ−1 · τ · x)|[rM ])ϕN ((σx · τ−1 · τ · x)|[rM+rN ]\[rM ])

= sgn(τ) sgn(σx)ϕM ((σx · x)|[rM ])ϕN ((σx · x)|[rM+rN ]\[rM ])

= sgn(τ)(ϕM ⊕ ϕN )(x) �
To prove ϕ satisfies Grassmann-Plücker relations, we need a technical lemma.

Lemma 3.16. Suppose x ∈ Er+1 and y ∈ Er−1 are nondecreasing where r = rM + rN
and E = EM 	 EN . The Grassmann-Plücker sum corresponding to the pair (x, y) can 
be expressed as a constant times a Grassmann-Plücker sum in either M or N .

This lemma takes care of all Grassmann-Plücker relations for M⊕N (weak and strong 
where applicable) up to permuting coordinates.

Proof. Let ϕP (z) = 0 if z does not have all components in EP . Fix the following nota-
tions.

xk := x|[r+1]\{k}, yk := (x(k),y),

zM := z|[rM ], zN := z|[rM+rN ]\[rM ].

We may assume x has either exactly rM + 1 components in EM or exactly rN + 1
components in EN ; otherwise ϕ(xk) = 0 for all k. Without loss (i.e. up to switching 
the roles of M and N below), we assume x has exactly rM + 1 components in EM . 
Similarly, we assume y has exactly rM − 1 components in EM lest the corresponding 
Grassmann-Plücker sum is uniformly 0.

Next make several observations. Note σxk
is the identity for all k, and (σyk

·yk)N = yNk
for all k ≤ rM + 1; thus (σyk

· yk)M = σyM
k
· yM

k . Moreover, xN
k and yN

k are constant for 
k ≤ rM + 1, and xk has rM + 1 components in EM for k > rM + 1. We now compute as 
follows using formula (a).

r+1∑
k=1

(−1)kϕ(xk̂)ϕ(yk)

=
r+1∑
k=1

(−1)kϕM (xM
k )ϕN (xN

k ) sgn(σyk
)ϕM ((σyk

· yk)M )ϕN ((σyk
· yk)N )

=
rM+1∑

(−1)k sgn(σyk
)ϕM (xM

k )ϕM ((σyk
· yk)M )ϕN (xN

k )ϕN (yN
k )
k=1
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+
rM+rN+1∑
k=rM+2

(−1)kϕM (xM
k ) sgn(σyk

)ϕM ((σyk
· yk)M )ϕN (xN

k )ϕN ((σyk
· yk)N )

= ϕN (xN
k )ϕN (yN

k )
rM+1∑
k=1

(−1)kϕM (xM
k ) sgn(σyM

k
)ϕM (σyM

k
· yM

k )

= ϕN (xN
k )ϕN (yN

k )
rM+1∑
k=1

(−1)kϕM (xM
k )ϕM (yM

k )

The last equality above yields a scalar times a Grassmann-Plücker sum in M as de-
sired. �
Proof of Proposition 3.14. By Lemma 3.15 we have that the ϕ of formula (a) is nontrivial 
and H-alternating. By Lemma 3.16 we have ϕ satisfies the same type of Grassmann-
Plücker relations satisfied by both M and N . Finally, αϕM ⊕ βϕN = αβ(ϕM ⊕ ϕN ) for 
all α, β ∈ H× yields H×-class invariance. �
Proposition 3.17. Let M and N be H-matroids of rank rM and rN on disjoint ground 
sets EM and EN given by H-circuits CM and CN respectively. Define

CM ⊕CN =
{
X : EM 	EN → H

∣∣∣∣∣ either both
or both

X|EM
∈ CM and X|EN

= 0
X|EM

= 0 and X|EN
∈ CN

}

Then, CM ⊕ CN is a set of H-circuits. Furthermore, CM ⊕ CN is strong type exactly when 
both CM and CN are strong type.

Proof. That CM ⊕ CN is a set of pre-circuits over H follows trivially from its definition. 
Moreover, we observe

supp(CM ⊕CN ) = supp(CM ) 	 supp(CN ) (11)

and hence the underlying matroid of the H-matroid determined thereby is the direct 
sum of the underlying matroids of the summands. It follows that every modular pair 
in CM ⊕ CN reduces to modular pair in either CM or CN . Thus (WC) holds by noting 
that any modular pair with nontrivial intersection is either a modular pair in CM or a 
modular pair in CN . If CM and CN are both strong, then by (11), (SC1) holds. Moreover 
(SC2) holds by noting that the computation reduces to a computation in precisely one 
of CM or CN . �

The next result shows that the direct sum of H-matroids admits the cryptomorphic 
descriptions given in this section.

Proposition 3.18. Let M be an H-matroid given by H-circuits CM and Grassmann-
Plücker function ϕM on EM and N be an H-matroid given by H-circuits CN and 
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Grassmann-Plücker function ϕN on EN such that EM ∩ EN = ∅. Then, ϕM ⊕ ϕN

and CM ⊕ CN both determine the same H-matroid under cryptomorphism. Furthermore, 
this H-matroid has underlying matroid the direct sum of the underlying matroids of M
and N .

Proof. We must verify that CM ⊕ CN is cryptomorphically determined by ϕM ⊕ϕN . Let 
BM and BN be any bases of the underlying matroids of M and N , respectively. Notice 
that for all e ∈ (EM 	EN ) \ (BM 	BN ), the fundamental circuit XBM∪BN ,e has support 
contained in EM or in EN . Thus, the cryptomorphism relation required reduces to the 
relation on the fundamental circuit of the part containing e ∈ EM 	EN . Hence ϕM ⊕ϕN

and CM ⊕ CN determine the same H-matroid as desired. �
Corollary 3.19. The pushforward of a direct sum of H-matroids is the direct sum of the 
pushforwards. In other words, direct sum commutes with pushforward.

Proof. Let M1 and M2 be H1-matroids with H1-circuits C1 and C2 respectively, and let 
f : H1 → H2 be a hyperfield morphism. The following computation completes the proof.

f(CM ⊕CN )

= H×
2

{
fX : EM 	 EN → H

∣∣∣∣∣ either both
or both

X|EM
∈ CM and X|EN

= 0
X|EM

= 0 and X|EN
∈ CN

}

= H×
2

{
fX : EM 	 EN → H

∣∣∣∣∣ either both
or both

(fX)|EM
∈ f CM and (fX)|EN

= 0
(fX)|EM

= 0 and (fX)|EN
∈ f CN

}
= (f C1) ⊕ (f C2) �

Remark 3.20. Part of the proof of Proposition 3.18 was to notice this property holds for 
the pushforward to the Krasner hyperfield K, i.e., taking underlying matroids.

4. Isomorphisms of matroids over hyperfields

In this section, we introduce a notion of isomorphisms of matroids over hyperfields 
which generalizes the definition of isomorphisms of ordinary matroids. We will subse-
quently use this definition to construct matroid-minor Hopf algebras for matroids over 
hyperfields in §5.

Definition 4.1 (Isomorphism via Grassmann-Plücker function). Let E1 and E2 be finite 
sets, r be a positive integer, and H be a hyperfield. Let M1 (resp. M2) be a matroid on 
E1 (resp. E2) of rank r over H which is represented by a Grassmann-Plücker function 
ϕ1 (resp. ϕ2). We say that M1 and M2 are isomorphic if there is a bijection f : E1 → E2
and an element α ∈ H× such that the following diagram commutes.
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Er
1 H

Er
2 H

ϕ1

fr 
α

ϕ2

(12)

Proposition 4.2. Definition 4.1 is well-defined.

Proof. Let ϕ′
1 and ϕ′

2 be different representatives of M1 and M2. In other words, there 
exist β, γ ∈ H× such that ϕ′

1 = β � ϕ1 and ϕ′
2 = γ � ϕ2. In this case we have

γ−1 � ϕ′
2 ◦ fr = ϕ2 ◦ fr = α� ϕ1 = (α� β−1) � ϕ′

1.

It follows that ϕ′
2 ◦ fr = (γ�α� β−1) �ϕ′

1 and hence Definition 4.1 is well-defined. �
Proposition 4.3. Let H and K be hyperfields and g : H → K be a morphism of hyperfields. 
If M1 and M2 are matroids over H which are isomorphic, then the pushforwards g∗M1

and g∗M2 are isomorphic as well.

Proof. Let M1 (resp. M2) be represented by a Grassmann-Plücker function ϕ1 (resp. ϕ2). 
Since M1 and M2 are isomorphic, there exist a ∈ H× and a bijection f : E1 → E2 such 
that ϕ2 ◦ fr = a �ϕ1. Notice that the pushforward g∗M1 (resp. g∗M2) is represented by 
the Grassmann-Plücker function g ◦ ϕ1 (resp. g ◦ ϕ2), we obtain

(g ◦ ϕ2) ◦ fr = g ◦ (ϕ2 ◦ fr) = g ◦ (a� ϕ1) = g(a) � (g ◦ ϕ1). �
Note that in the special case K = K, the underlying matroids of two isomorphic 

matroids are isomorphic in the classical sense. Therefore, our definition of isomorphisms 
generalizes the definition of isomorphisms of ordinary matroids.

Proposition 4.4. If M and M ′ (resp. N and N ′) are isomorphic H-matroids, then M⊕N

and M ′ ⊕N ′ are isomorphic H-matroids.

Proof. Consider Grassmann-Plücker functions ϕM , ϕM ′ , ϕN , and ϕN ′ . By assumption 
there are bijections fM : EM → EM ′ and fN : EN → E′

N and constants αM , αN ∈ H×

such that αM �ϕM = ϕM ′ ◦ frM
M and αN �ϕN = ϕN ′ ◦ frN

N . Let fM 	 fN : EM 	EN →
EM ′ 	 EN ′ denote the obvious bijection. Then, we have

αMαN � (ϕM ⊕ ϕN ) = (αM � ϕM ) ⊕ (αN � ϕN )

= (ϕM ′ ◦ frM
M ) ⊕ (ϕN ′ ◦ frN

N )

= (ϕM ′ ⊕ ϕN ′) ◦ (fM 	 fN )rM+rN . �
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5. Matroid-minor Hopf algebra associated to matroids over a hyperfield

In this section, by appealing to Definition 4.1, Propositions 3.14 and 3.17, we generalize 
the classical construction of matroid-minor Hopf algebras to the case of matroids over 
hyperfields. Let H be a hyperfield. Let M be a set of matroids over H which is closed 
under taking direct sums and minors. Let Miso be the set of isomorphism classes of 
elements in M, where the isomorphism class is defined by Definition 4.1. Then, Miso

has a canonical monoid structure as follows:

· : Miso ×Miso → Miso, ([M1], [M2]) �→ [M1 ⊕M2]. (13)

Note that (13) is well-defined by Proposition 4.4 and the isomorphism class of the empty 
matroid [∅] is the identity element. Let k be a field. Then we have the monoid algebra 
k[Miso] over k with the unit map η : k → k[Miso] sending 1 to [∅] and the multiplication

μ : k[Miso] ⊗k k[Miso] → k[Miso], generated by [M1] ⊗ [M2] �→ [M1 ⊕M2].

Proposition 5.1. Let k be a field and H be a hyperfield. Let (Miso, ·) be the monoid and 
k[Miso] be the monoid algebra over k as above. Then H := k[Miso] is a bialgebra with 
the following maps.

• (Comultiplication)

Δ: H −→ H ⊗k H , [M ] �→
∑
A⊆E

[M |A] ⊗k [M/A]. (14)

• (Counit)

ε : H −→ k, [M ] �→
{

1 if EM = ∅
0 if EM �= ∅. (15)

Furthermore, H is graded and connected and hence has a unique Hopf algebra structure.

Proof. There is a canonical grading on H via the cardinality of the underlying set of 
each element [M ] and this is clearly compatible with the bialgebra structure of H . In 
this case, [∅] has degree 0 and hence H is connected. The last assertion follows from the 
result of [16]. �
Example 5.2. Let H be an arbitrary hyperfield and let k be a field. Consider the uniform 
rank-1 matroid on two elements, denoted U1

2 . Let Miso be the smallest set of matroid 
isomorphism classes containing [U1

2 ] and closed under taking direct sums and minors; 
then Miso is a monoid with multiplication given by direct sum. Observe that Miso is 
the free monoid generated by two elements, namely [U1

1 ] and [U1
2 ].
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Let H be the matroid-minor Hopf algebra associated to Miso. As an algebra, H is 
isomorphic to the polynomial algebra k[X, Y ], where X = [U1

1 ] and Y = U1
2 . Note that

Δ(X) = X ⊗ 1 + 1 ⊗X, Δ(Y ) = 1 ⊗ Y + 2(X ⊗ 1) + Y ⊗ 1.

Let MH
iso be the set of isomorphism classes of those H-matroids with pushforward in 

Miso, and let M1, M2 be H-matroids. If M1 and M2 both pushforward to U1
1 , then M1 =

M2 as U1
1 has a unique basis. Suppose M1 has pushforward U1

2 and let ϕ : {a, b} → H be 
a Grassmann-Plücker function for M1; as the pushforward of M1 is U1

2 , we have ϕ(a) �=
0H �= ϕ(b). Thus ϕ is uniquely determined by the ratio q := ϕ(b)ϕ(a)−1 ∈ H×. If M1
and M2 both pushforward to U1

2 , then M1 and M2 are isomorphic if and only if q2 = q1
as the only nontrivial automorphism of U1

2 is a transposition, and this isomorphism lifts 
to an isomorphism of M1 → M2 if and only if ϕ1 = αϕ2 for some α ∈ H×.

The above argument yields every H-matroid M with pushforward U1
2 is determined 

up to isomorphism by the H×-ratio qM . Thus the monoid MH
iso is the free monoid on 

generators {S} ∪{Tq | q ∈ H×}, where S is the isomorphism class of the H-matroid with 
pushforward U1

1 , and Tq is the isomorphism class of the H-matroid with pushforward 
U1

2 and having ratio q. Hence the Hopf algebra k[MH
iso] is k[S, Tq]q∈H× as a k-algebra. 

We have a map

π : k[MH
iso] = k[S, Tq]q∈H −→ k[Miso] = k[X,Y ], S �→ X and Tq �→ Y,

which is trivially a surjection. Moreover, ker(π) is generated by elements of the form 
Tq − Tr for q, r ∈ H×.

6. Future directions

6.1. Relation to matroids over partial hyperfields

We review Baker and Bowler’s more generalized framework, namely matroids over 
partial hyperfields [5] and briefly explain how our work generalizes to this setting.

Definition 6.1. [5, §1] A tract is an abelian group G together with a designated subset 
NG of the group semiring N[G] such that

(1) 0N[G] ∈ NG and 1G /∈ NG.
(2) ∃ ! ε ∈ G such that 1 + ε ∈ NG.
(3) G ·NG = NG.

In this generalization, ε plays the role of −1 and NG encodes “non-trivial dependence” 
relations; in the case of fuzzy rings, one has a designated subset K0 of “zeros”, however, 
by using ε one can always change K0 to NG as above.
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For a hyperfield (H, �, �), one can canonically associate a tract (G, NG) by setting 
G = H× and letting f =

∑
aigi ∈ N[G] be in NG if and only if

0H ∈ �(ai � gi) (as elements of H). (16)

Recall that partial fields are introduced by C. Semple and G. Whittle in [15] to study 
realizability of matroids. A partial field (G ∪ {0R}, R) consists of a commutative ring R
and a multiplicative subgroup G of R× such that −1 ∈ G and G generates R. Inspired 
by this definition (along with hyperfields), Baker and Bowler define the following.

Definition 6.2. [5, §1] A partial hyperfield is a hyperdomain R (a hyperring without zero 
divisors) together with a designated subgroup G of R×.

One can naturally associate a tract to a partial hyperfield (G, R) in a manner similar 
to the previous association of a tract to a hyperfield by stating that 

∑
aigi ∈ N[G] if 

and only if (16) holds.
With tracts (or partial hyperfields), Baker and Bowler generalize their previous work 

on matroids over hyperfields. Their main idea is that in their proofs for matroids over 
hyperfields, one only needs the three conditions of tracts given in Definition 6.1. Although 
we focus on matroids over hyperfields, our results readily generalize to matroids over 
partial hyperfields.

6.2. Tutte polynomials of Hopf algebras and universal Tutte characters

The Tutte polynomial is one of the most interesting invariants of graphs and matroids. 
In [10], T. Krajewsky, I. Moffatt, and A. Tanasa introduced Tutte polynomials associated 
to Hopf algebras. More recently, C. Dupont, A. Fink, and L. Moci introduced universal 
Tutte characters generalizing [10]. In fact, both [7] and [10] consider the case when one 
has combinatorial objects which have notions of “deletion” and “contraction” (e.g. graphs 
and matroids). In the context of our work, the following is straightforward.

Proposition 6.3. Let H be a hyperfield. A set Miso of isomorphism classes of matroids 
over H, which is stable under taking direct sums and minors, satisfies the axioms of a
minor system in [10].

Proof. This directly follows from Corollary 3.10. �
The notion of minors system is used in [7] to define universal Tutte characters. The 

following is an easy consequence of §3.

Proposition 6.4. Let H be a hyperfield and MatH be the set species such that MatH(E)
is the set of matroids over H with an underlying set E. Then MatH is a connected 
multiplicative minors system as in [7].
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Proof. Let S := MatH . As the empty matroid over H is the only object of S[∅], S
is connected. The multiplicative structure of S comes from direct sums, and Axioms 
(M1)–(M3), (M4’)–(M8’) are easy to check. �

The construction in [10, §2] can be applied to define the Tutte polynomial for k[Miso]
by our above observations. One can also associate universal Tutte characters in our 
setting.

Remark 6.5. Rank-type axioms are not currently known for matroids over hyperfields, 
and the traditional Tutte polynomials are defined in terms of this feature. This construc-
tion of Tutte polynomials circumvents the issue, replacing rank axioms by access to the 
Hopf algebra.
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