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Abstract

The notion of a topological Jordan decomposition of a compact element of a reductive p-adic group
has proven useful in many contexts. In this paper, we generalise it to groups defined over fairly general
discretely valued fields and prove the usual existence and uniqueness properties, as well as an analogue of
a fixed-point result of Prasad and Yu.
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0. Introduction

In [15], Kazhdan defines the notions of f-semisimplicity and f-unipotence of an element of
GLn(F0), where F is a discretely valued locally compact field with ring of integers F0 and
residue field f (see the definition on p. 226 of [15]). An arbitrary element of GLn(F0) can be de-
composed as a commuting product of an f-semisimple and an f-unipotent element (see Lemma 2
on p. 226 of [15]). Furthermore, stably conjugate f-semisimple elements are actually GLn(F0)-
conjugate (see Lemma 3 on p. 226 of [15], where the result is proven for rationally conjugate
elements, and Lemma 13.1 of [13]).

Kazhdan uses this last result in his calculation of the ε-twisted orbital integral I�(f ) (see
Theorem 1 on p. 224 of [15], and the definition immediately preceding it). A detailed exposi-
tion appears in [14, Section 5]; see especially [14, Section 5.6]. An analogous result is used by
Waldspurger in his computation of Shalika germs for GL(n) (see [26, Section 5]).
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In [13], Hales defines absolute semisimplicity and topological unipotence (the analogues of
f-semisimplicity and f-unipotence) for elements of unramified groups, and shows that every
strongly compact element can be decomposed as a commuting product of an absolutely semi-
simple and a topologically unipotent element (the topological Jordan decomposition). He then
defines transfer factors on unramified groups, and shows that the transfer factor at a strongly
compact element may be expressed in terms of the transfer factor for the centraliser of its ab-
solutely semisimple part, evaluated at its topologically unipotent part (see Theorem 10.18 and
Lemma 13.2 of [13]). This suggests that the topological Jordan decomposition is important for
the fundamental lemma. Indeed, in [12], Flicker uses a twisted analogue of the decomposition to
prove a special case of the fundamental lemma (see the theorem on p. 509 of [12]).

The topological Jordan decomposition is also useful in character computations. Recall that
the character of a Deligne–Lusztig representation of a finite group of Lie type is expressed by
a reduction formula in terms of the (ordinary) Jordan decomposition (see Theorem 4.2 of [11]).
The topological Jordan decomposition plays the same rôle for the characters of depth-zero su-
percuspidal representations of p-adic groups arising via compact induction from representations
which are inflations of Deligne–Lusztig representations of reductive quotients (see Lemma 10.0.4
of [10]).

In [2, Section 5], as preparation for the (positive-depth) character computations of [3], Adler
and the author define the notion of a normal approximation of an element of a reductive p-adic
group, a refinement of the topological Jordan decomposition. However, for the results of that
paper, one needs notions of absolute semisimplicity and topological unipotence that make sense
over a discretely valued field F which is not necessarily locally compact.

In this paper, we offer two generalisations of these notions, the first an abstract one adapted to
profinite groups, and the second adapted to the setting in which we are most interested, of reduc-
tive groups over discretely valued fields F as above. We prove the usual existence (Propositions
1.8 and 2.36) and uniqueness (Propositions 1.7 and 2.24) results for these decompositions. In
the familiar case where F is locally compact, these definitions have significant overlap; see, for
example, Lemmata 2.21, 2.28, and 2.30. Our main result, Theorem 2.38, is a strong existence
result which is the analogue of item (7) in the list of properties of topological Jordan decomposi-
tions given in [13, Section 3]. An important ingredient in its proof is an analogue of a fixed-point
result of Prasad and Yu (see Proposition 2.33).

1. Abstract groups

Fix a prime p, a Hausdorff topological group G, and a closed normal subgroup N . Note that
G/N is also Hausdorff. For g,γ ∈ G, we define gγ := gγg−1.

Definition 1.1. An element or subgroup of G is compact modulo N if its image in G/N belongs
to a compact subgroup. If N is the trivial subgroup, we shall omit “modulo N .”

Definition 1.2. The group G is ind-locally-compact (respectively, ind-locally-profinite; respec-
tively, ind-locally-pro-p) if it is an inductive limit of a directed system of locally compact
(respectively, locally profinite; respectively, locally pro-p) groups.

The main example we will have in mind of an ind-locally-compact group is the set of F -
rational points of a linear algebraic F -group G, where F is an algebraic extension of a locally
compact field (see Remark 2.12). Another example is GL∞(F ) := lim GLn(F ), where F is a
−→
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locally compact field; the limit is taken over positive integers n; and, for a given n, the map
GLn(F ) → GLn+1(F ) comes from the natural embedding of GLn into the Levi subgroup GLn ×
GL1 of GLn+1.

Definition 1.3. An element γ ∈ G is absolutely p-semisimple if it has finite, coprime-to-p order.
It is topologically p-unipotent if limn→∞ γ pn = 1. If the projection of γ to G/N is absolutely
p-semisimple (respectively, topologically p-unipotent), then we will say that γ is absolutely
p-semisimple modulo N (respectively, topologically p-unipotent modulo N ).

Remark 1.4. Any power of an absolutely p-semisimple modulo N (respectively, topologically
p-unipotent modulo N ) element is absolutely p-semisimple modulo N (respectively, topologi-
cally p-unipotent modulo N ). A p-power root of a topologically p-unipotent modulo N element
is again topologically p-unipotent modulo N .

Remark 1.5. Clearly, an absolutely p-semisimple element is compact. Suppose that γ ∈ G is
topologically p-unipotent and G is ind-locally-compact. Then γ belongs to a locally compact
subgroup of G, so, since γ pn → 1, there is some n ∈ Z>0 such that γ pn

belongs to a compact
subgroup of G. Thus γ is compact.

Definition 1.6. A topological p-Jordan decomposition modulo N of an element γ ∈ G is a pair
of commuting elements (γas, γtu) of G such that

• γ = γasγtu,
• γas is absolutely p-semisimple modulo N , and
• γtu is topologically p-unipotent modulo N .

We will sometimes just say that γ = γasγtu is a topological p-Jordan decomposition modulo N .
If N is the trivial subgroup, we will omit “modulo N .”

In the statement of the following result, recall that p is fixed. It is certainly possible for an
element to have distinct p- and �-decompositions for � a prime distinct from p (although it is
an easy consequence of Remark 1.9 that, if G is ind-locally-pro-p, then this happens only for
finite-order elements).

Proposition 1.7. Suppose that γ ∈ G has a topological p-Jordan decomposition γ = γasγtu.

(1) If γ = γ ′
asγ

′
tu is a topological p-Jordan decomposition, then γas = γ ′

as and γtu = γ ′
tu.

(2) The closure of the group generated by γ contains γas and γtu.
(3) If G′ is another Hausdorff topological group, and f :G → G′ is a continuous homomor-

phism, then f (γ ) = f (γas)f (γtu) is a topological p-Jordan decomposition.
(4) For g ∈ G, we have that gγ = (gγas)(

gγtu) is a topological p-Jordan decomposition.

A special case of the above was introduced in [13, Section 3] (especially items (3) and (4) of
the list there), and Lemma 2 on [15, p. 226]. We omit the (straightforward) proof.
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Proposition 1.8. If G is ind-locally-profinite, then an element γ ∈ G is topologically p-unipotent
if and only if it belongs to a pro-p subgroup of G. If G is ind-locally-pro-p, then an element
γ ∈ G has a topological p-Jordan decomposition if and only if it is compact.

Proof. Suppose that G is ind-locally-profinite. Note that G is ind-locally-compact and totally
disconnected. Denote by K the closure of the subgroup of G generated by γ . Then K is also
totally disconnected. By Proposition I.1.1.0 of [22], if K is compact, then it is profinite. In this
case, since K is Abelian, by Proposition I.1.4.3 of [22] it has a unique Sylow pro-� subgroup for
each prime �. Let Kp be its Sylow pro-p subgroup, and Kp′ the direct product of its Sylow pro-�
subgroups, taken over all � �= p. Then Kp and Kp′ are profinite Abelian groups, of p-power and
prime-to-p order, respectively. It is an easy consequence of Proposition I.1.4.4(b) of [22] that
K = Kp × Kp′ . Write γ = γpγp′ , with γp ∈ Kp and γp′ ∈ Kp′ .

The ‘if’ direction of the first statement is obvious.
For the ‘only if’ direction of the first statement, suppose that γ is topologically p-unipotent.

By Remark 1.5, K is compact. By the first paragraph of the proof, it is profinite. For any open
subgroup U ′ of Kp′ , we have that the map g �→ gp is an isomorphism on Kp′/U ′. (Here, we

have used commutativity of Kp′ .) Since γ
pn

p′ ∈ U ′ for some n ∈ Z>0, we have that γp′ ∈ U ′.
Since U ′ was arbitrary and Kp′ is Hausdorff, we have that γp′ = 1; i.e., γ = γp ∈ Kp . Since Kp

is closed, in fact K = Kp; i.e., K is a pro-p group.
Now suppose that G is ind-locally-pro-p. The ‘only if’ direction of the second statement

follows from Remark 1.5.
For the ‘if’ direction of the second statement, suppose that γ (equivalently, K) is compact. By

the first paragraph of the proof, K is profinite. Then the intersection of Kp′ with an open ind-pro-
p subgroup of H is an open ind-pro-p subgroup of Kp′ . However, Kp′ contains no non-trivial
pro-p subgroup, so this intersection is the trivial subgroup of Kp′ . Thus Kp′ is discrete, so finite.
Put γas = γp′ and γtu = γp . By the first statement of the lemma, γtu is topologically p-unipotent.
Since Kp′ is finite, γas is absolutely p-semisimple. �
Remark 1.9. We isolate from the preceding proof a more refined, but technical, version of Propo-
sition 1.8. Suppose that G is ind-locally-profinite, γ is a compact element of G, and K is the
closure in G of the group generated by γ . Then K is profinite, and we may write K = Kp ×Kp′ ,
where Kp and Kp′ are profinite groups of p-power and prime-to-p order, respectively. Write
γ = γpγp′ , with γp ∈ Kp and γp′ ∈ Kp′ . Then

• γ is topologically p-unipotent if and only if γp′ = 1, in which case Kp′ = {1}.
• γ has a topological p-Jordan decomposition if and only if γp′ has finite order, in which case

Kp′ is finite and we may take the topologically p-semisimple and topologically p-unipotent
parts of γ to be γp′ and γp , respectively.

• If G is ind-locally-pro-p, then Kp′ is finite, so γ has a topological p-Jordan decomposition.

2. Algebraic groups

2.1. Unipotent elements

The adjective “unipotent” has sometimes carried several meanings (see [1, Section 3.7.1]). We
begin by defining our notion of unipotence, then give a general result, essentially due to Kempf,
relating the different meanings.
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Definition 2.1. If F is a field, G is a linear algebraic F -group, and γ ∈ G(F ), then γ is unipotent
if there is an embedding G ↪→ GLn, for some n ∈ Z�0, such that the image of γ is an upper
triangular matrix, with 1s on the diagonal.

Lemma 2.2. If F is a field, G is a connected reductive F -group, and γ ∈ G(F ) is unipotent,
then there are a finite separable extension E/F and a unipotent radical U of a parabolic E-
subgroup of G such that γ ∈ U(E). If E is equipped with a topology making it a non-discrete
Hausdorff topological field, then there is a one-parameter subgroup λ of G, defined over E, such
that limt→0

λ(t)γ = 1 in the E-analytic topology on G(E).

Since G embeds as a closed subset of the affine space AN for some N ∈ Z�0, we may regard
G(E) as a subset of EN . By definition, the E-analytic topology on G(E) is just the subspace
topology. This topology is finer than the Zariski topology on G(E). By [9, Appendix B] (espe-
cially Theorem B.1), it is independent of the choice of embedding.

Proof. By Lemma 3.1 and Theorem 3.4 of [16], there is a one-parameter subgroup λ of G such
that limt→0

λ(t)γ = 1 in the Zariski topology. (Indeed, in the notation of Theorem 3.4(c) of [16],
any λ ∈ ΔS={1},x=γ will do.) There is a finite separable extension E/F such that G is E-split
and λ is defined over E. Then γ ∈ U(λ)(E), in the notation of [16, p. 305]. By Theorem 13.4.2(i)
and Lemma 15.1.2(ii) of [23], U(λ) is the unipotent radical of a parabolic E-subgroup of G.

Now let T be an E-split maximal torus containing the image of λ, and Φ(G,T) the root
system of T in G. Put Φ+

λ = {α ∈ Φ(G,T) | 〈α,λ〉 > 0}. By Proposition 14.4(2)(a) of [4], U(λ)

is (as a variety) the Cartesian product of the root subgroups Uα of G associated to roots α ∈
Φ+

λ . By Theorem 18.7 of [4], there are E-isomorphisms eα : Add → Uα for α ∈ Φ+
λ such that

τ eα(s) = eα(α(τ)s) for s ∈ E and τ ∈ T(E). There are elements sα ∈ E (for α ∈ Φ+
λ ) such that

γ = ∏
α∈Φ+

λ
eα(sα). Now suppose that E is equipped with a topology making it a non-discrete

Hausdorff topological field. By Theorem B.1 of [9], the maps eα :E → Uα(E) ⊆ G(E) are
continuous for the E-analytic topology on G(E), so

lim
t→0

λ(t)γ =
∏

α∈Φ+
λ

lim
t→0

λ(t)eα(sα) =
∏

α∈Φ+
λ

eα

(
lim
t→0

t 〈α,λ〉sα
)

=
∏

α∈Φ+
λ

eα(0) = 1

in the E-analytic topology on G(E), as desired. �
2.2. Algebraic groups: basic definitions and notation

Let

• F be a field, with non-trivial discrete valuation ord, that is an algebraic extension of a com-
plete field with perfect residue field,

• F an algebraic closure of F ,
• F un/F the maximal unramified subextension of F/F ,
• F tame/F the maximal tame subextension of F/F ,
• F0 the ring of integers of F ,
• F0+ the maximal ideal of F0,
• F× = F0 � F0+,
0
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• F×
0+ = 1 + F0+,

• f the residue field F0/F0+,
• p = char f,
• (F×)p

∞ = ⋂∞
n=0(F

×)p
n
,

• G a connected reductive F -group,
• N a closed normal F -subgroup of G, and
• G̃ the quotient G/N.

(Many of our results apply to any Henselian field with perfect residue field; but we restrict our
attention slightly so that we do not have to re-prove the results of [2, Section 2] in this generality.)
We denote by Z(G) the centre of G; by X∗(G) and X∗(G) the characters and cocharacters,
respectively, of G; and by X∗

F (G) and XF∗ (G) those characters and cocharacters, respectively,
defined over F . If necessary, we will write fF in place of f to indicate the dependence on the
field F .

We will assume without further mention that any algebraic extension of F is contained in F .
If E/F is such an extension, then we denote again by ord the unique extension of ord to a (not
necessarily discrete) valuation on E; and by E0, etc., the analogues for E of F0, etc., above.

We will write G = G(F ) and N = N(F ), and similarly for other F -groups.

Definition 2.3. If γ ∈ G is semisimple, then the character values of γ (in G) are the elements of
the set {χ(γ ) | χ ∈ X∗(T)}, where T is any maximal torus in G containing γ .

Definition 2.4. An element γ ∈ G is F -tame if there exists an F tame-split torus (equivalently, by
Lemmata 3.2 and A.2 of [2], an F tame-split F -torus) S in G such that γ ∈ S(F tame).

Definition 2.5. Let B(G,F ) be the (enlarged) Bruhat–Tits building of G over F and, for
x ∈ B(G,F ), let Gx and G+

x be the parahoric subgroup associated to x and its pro-unipotent
radical, respectively. (In general, the parahoric subgroup may be strictly smaller than the sta-
biliser of x (but see Lemma 2.32). In the language of Proposition 4.6.28(i) of [7], it is the fixateur
connexe of the facet containing x.) Let Gx be the (not necessarily connected) fF -group such that
Gx(fF̃ ) = stabG(F̃ )(x)/G(F̃ )+x for all unramified extensions F̃ /F . If necessary, we will write

GF
x in place of Gx to indicate the dependence on the field F . Put G0 = ⋃

x∈B(G,F ) Gx and
G0+ = ⋃

x∈B(G,F ) G
+
x .

Remark 2.6. We have G◦
x(fF̃ ) = G(F̃ )x/G(F̃ )+x for all unramified extensions F̃ /F .

Definition 2.7. An element or subgroup of G is bounded if its orbits in B(G,F ) are bounded (in
the sense of metric spaces). An element or subgroup of G is bounded modulo N if its image in
G̃ is bounded. If G = T is a torus, then denote by Tb the maximal bounded subgroup of T .

Remark 2.8. If G̃ is semisimple, then the building B(G̃,F ) is canonical. In general, we “canon-
ify” it as in [25, Sections 1.2 and 2.1]. Since we will be concerned almost exclusively with the
case N = Z(G)◦, this “canonification” will not usually be necessary.

Remark 2.9. Consider a bounded element or subgroup of G and a non-empty, closed, convex,
G-stable subset S of B(G,F ). By Proposition 3.2.4 of [6], the element or subgroup fixes a point
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x of the image of S in the reduced building Bred(G,F ); hence, by boundedness, actually fixes
any lift to S of x. On the other hand, since G acts on B(G,F ) by isometries, an element or
subgroup of G which fixes a point of B(G,F ) is bounded.

Remark 2.10. If F is locally compact, then a subgroup of G is bounded modulo N if and only if
its closure is compact modulo N . If F is an algebraic extension of a locally compact field, then
an element of G is bounded modulo N if and only if it belongs to a compact modulo N subgroup
of G. Indeed, the ‘if’ direction is obvious. For the ‘only if’ direction, suppose that γ ∈ G is
bounded modulo N. Then, by Lemma 2.2 of [2], there is some locally compact subfield F ′ of F

such that G, N, and γ are all defined over F ′. Thus γ is contained in a compact modulo N(F ′)
subgroup of G(F ′), hence a fortiori a compact modulo N subgroup of G.

Remark 2.11. If G = T is a torus, then T0 = Tx and T0+ = T +
x for any x ∈ B(T,F ). Concretely,

Tb is the group of elements of T whose character values lie in E×
0 (by Lemme 4.2.19 of [7]) and

T +
x is the group of elements of Tx whose character values lie in E×

0+, where E/F is the splitting
field of T. If T is F -split, then Tx = Tb; so T +

x is the group of elements of T whose character
values lie in F×

0+.

Remark 2.12. If F is an algebraic extension of a locally compact field, then p > 0 and, by
Lemma 2.2 of [2], we have G = lim−→ G(F ′), the limit taken over all locally compact subfields F ′
of F over which G is defined. For such a subfield, G(F ′)+x is an open pro-p subgroup of G(F ′)
(for any x ∈ B(G,F ′)). Thus, G is ind-locally-pro-p.

Remark 2.13. Suppose that γ ∈ G is unipotent. By Lemma 2.2, there are a finite separable exten-
sion E/F (which we may take, by passing to a further finite separable extension if necessary, to
be a splitting field for G) and a one-parameter subgroup λ ∈ XE∗ (G) such that limt→0

λ(t)γ = 1.
Since G(E)0+ is a neighbourhood of 1, there is an element t ∈ E× such that λ(t)γ ∈ G(E)0+.
Then γ ∈ λ(t)−1

G(E)0+ = G(E)0+, so γ is topologically F -unipotent in the sense of Defini-
tion 2.15.

2.3. A lifting of f×

In this section, we will define a Gal(F un/F )-stable subgroup F(F ) of (F un)×0 such that the
map F(F ) → f× is an isomorphism. Let F ′ be a complete subfield of F such that F/F ′ is
unramified. (Such a subfield exists, by Lemma 2.2 of [2].)

If p > 0, then put F(F ) := ⋃
L/F ′ finite unramified(L

×)p
∞

. We have that F(F )∩(F un)×0+ = {1},
so that the map F(F ) → f× is injective. By Lemma 7 of [8], since f is perfect, (L×)p

∞
maps

onto f
×
L for every finite unramified extension L/F ′; so the map F(F ) → f× is also surjective,

hence again an isomorphism. Note that the pnth power map on F(F ) is also an isomorphism
for all n ∈ Z�0. Note that, if E/F ′ is an arbitrary finite extension with maximal unramified
subextension L/F ′, then (E×)p

∞
contains (L×)p

∞
, and both map isomorphically onto fE =

fL; so, in fact, (E×)p
∞ = (L×)p

∞
, and we could take the union defining F(F ) over all finite

extensions E/F ′.
The definition of F(F ) is slightly more complicated if p = charF . Let f′F be a subfield of F ′

0
satisfying the following property.

(CFF ) The restriction to f′F of the natural map F ′
0 → fF is an isomorphism onto fF .

By Theorem 9 of [8], f′ exists.
F
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If L/F is a finite unramified extension, say of degree n, then fL/fF is separable, so there
exists a primitive element θ for fL/fF , say with minimal polynomial m(x) over fF . Since fL/fF
is separable, so is m(x). Let m(x) be the unique preimage in f′F [x] of m(x), and θ the unique
root of m(x) lifting θ . Note that F ′[θ ] is a finite unramified extension of F ′, hence complete.

Suppose that there exists a subfield f′L of L0, containing f′F , with property (CFL). Then
[f′L : f′F ] = n, and there is a lift θ ′ in f′L of θ , say with minimal polynomial m′(x) over f′F . Then
degm′(x) � [f′L : f′F ] = n and θ is a root of the image in fF [x] of m′(x), so m′(x) is the preimage
in f′F [x] of m(x); that is, m′(x) = m(x). Thus θ ′ = θ , so f′L = f′F [θ ]. Note that f′L lies in the
complete field F ′[θ ].

Since f′F [θ ] clearly has property (CFL), we have shown that it is the unique subfield of L0
containing f′F with this property. In particular, if L/F is Galois (which is not automatic, since
we have not assumed that fF is finite), then f′L ⊆ L is Gal(L/F)-, hence Gal(F un/F )-, stable.
Put F(F ) := ⋃

L/F finite unramified(f
′
L)×. By Theorem 10(b) of [8], if p > 0 (in addition to p =

charF ), then this definition coincides with the one given above.
It is clear that F(F ) ∪ {0} is a Gal(F un/F )-stable field satisfying (CFF un ) that contains f′F

and is contained in (F un)×0 .

Remark 2.14. It is easy to verify that the group F(F ) does not depend on the choice of F ′.
However, for p = charF , it does depend on the choice of f′F (and, of course, of F ). Since f′F may
fail to be unique (see Theorem 10(a) of [8]), so may F(F ); but this ambiguity seems unavoidable.

Note that, regardless of the values of p and charF , we have F(F ) = F(E) for any discretely
valued algebraic extension E/F .

2.4. Absolute semisimplicity and topological unipotence: definitions and basic results

Definition 2.15. An element γ ∈ G is topologically F -unipotent (in G) if it belongs to G(E)0+
for some finite extension E/F . It is absolutely F -semisimple (in G) if it is semisimple and its
character values belong to F(F ). If the image of γ in G̃ is absolutely F -semisimple (respec-
tively, topologically F -unipotent), then we will say that γ is absolutely F -semisimple modulo N
(respectively, topologically F -unipotent modulo N).

Note that an absolutely F -semisimple element need not belong to G0, and a topologically
F -unipotent element need not belong to G0+ (but see Proposition 2.43). We will show later (see
Corollary 2.37) that an absolutely F -semisimple element must be F -tame.

Remark 2.16. Any power of an absolutely F -semisimple modulo N (respectively, topologically
F -unipotent modulo N) element is again absolutely F -semisimple modulo N (respectively, topo-
logically F -unipotent modulo N).

Remark 2.17. It is clear that a topologically F -unipotent element of G is bounded. The character
values of an absolutely F -semisimple element lie in F(F ) ⊆ (F un)×0 ; so, by Remark 2.11, γ

is bounded. It is an easy consequence that an element which is absolutely F -semisimple or
topologically F -unipotent modulo N is bounded modulo N.

Lemma 2.18. If γ, δ ∈ G commute, γ is bounded, and δ lies in G0+, then there is a point x ∈
B(G,F ) such that γ · x = x and δ ∈ G+.
x
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Proof. Let ε be a positive real number such that S := {x ∈ B(G,F ) | δ ∈ Gx,ε} is non-empty.
(Here, Gx,ε is a Moy–Prasad filtration subgroup. See [19, Section 2.6] and [20, Section 3.2].)
Certainly, S is also closed and convex. If x ∈ S , then δ = γ δ ∈ Gγ ·x,ε , so γ · x ∈ S . That is, S is
γ -stable. By Remark 2.9, γ fixes a point of S . �
Lemma 2.19. Suppose that γ ∈ G has (ordinary) Jordan decomposition γ = γssγun, and that
γss, γun ∈ G. Then γ is topologically F -unipotent modulo N if and only if γss is.

Proof. Clearly, it suffices to prove this in case N is the trivial subgroup.
Suppose that δ, δ+ ∈ G commute, δ is topologically F -unipotent, and δ+ is unipotent. There

is a finite extension E/F such that δ ∈ G(E)0+; say z ∈ B(G,E) is such that δ ∈ G(E)+z . By
Remark 2.13, there is a finite separable extension K/E such that δ+ ∈ G(K)0+. By Lemma 2.5
of [2], δ ∈ G(K)+z . In particular, δ is bounded, so, by Lemma 2.18, there is a point y ∈ B(G,K)

such that δ · y = y and δ+ ∈ G(E)+y . By Lemma 2.9 of [2], δ ∈ G(E)y . By Lemma 2.8 of [2], for
x ∈ (y, z) sufficiently close to y, we have that δ ∈ G(E)+x . If, in addition, x is so close to y that it
is contained in a facet whose closure contains y, then G(E)+y ⊆ G(E)+x , so δδ+ ∈ G(E)+x . That
is, δδ+ is topologically F -unipotent.

If we take δ = γss and δ+ = γun, then we see that the topological F -unipotence of γss implies
that of γ . If we take δ = γ and δ+ = γ −1

un , then we see that the topological F -unipotence of γ

implies that of γss. �
Remark 2.20. Suppose that γ ∈ G has (ordinary) Jordan decomposition γ = γssγun. Put H̃ =
CG(γss) and H = H̃◦.

(1) If charF = 0, then γss ∈ G. By Propositions 1.2(a), 9.1(1), and 13.19 of [4], H is a connected
reductive F -group. Certainly, γss ∈ H and γun ∈ H̃ . Since the image of γun in the component
group (H̃/H)(F ) is unipotent and has finite order, it is trivial. That is, γun ∈ H , so γ ∈ H .

(2) If charF > 0, then, by [4, Section 4.1(a)], there is some a ∈ Z�0 such that γ
pa

un = 1. Then

γ
pa

ss = γ pa ∈ G. Since an easy GLn calculation shows that H̃ = CG(γ
pa

ss ), hence that H =
CG(γ

pa

ss )◦, we have again that H is a connected reductive F -group. We have γ pa = γ
pa

ss ∈
H(F ) ∩ G = H .

Lemma 2.21. Suppose that p > 0. Then an element of G is topologically F -unipotent modulo N
if and only if it is topologically p-unipotent modulo N .

Proof. Recall that, for every finite extension E/F , Moy and Prasad have defined (in [19, Sec-
tion 2.6] and [20, Section 3.2]), for each x ∈ B(G,E), an exhaustive filtration (G(E)x,r )r∈R�0

of G(E) by subgroups such that G(E)x,0 = G(E)x and G(E)x,ε = G(E)+x for sufficiently small
positive ε. Since G(E)x,r/G(E)x,r+ is a p-group for (x, r) ∈ B(G,E) × R>0, we have that a
topologically F -unipotent modulo N element is topologically p-unipotent modulo N .

If γ ∈ G is topologically p-unipotent modulo N , then its image in G̃ is topologically p-
unipotent. Thus it suffices to prove that, if γ is topologically p-unipotent, then it is topologically
F -unipotent. Let γss and γun be the semisimple and unipotent parts, respectively, of the (ordinary)
Jordan decomposition of γ ; and put H = CG(γss)

◦.
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If charF = 0, then, by Remark 2.20, we have γ, γun ∈ H . By Remark 2.13, there is a finite
separable extension E/F such that H is E-split and γun ∈ H(E)0+; say x ∈ B(H,E) is such that
γun ∈ H(E)+x .

If charF > 0, then, again by Remark 2.20, there is a ∈ Z�0 such that γ pa ∈ H and γ
pa

un = 1.
In this case, let E/F be a finite separable extension such that H is E-split, and x any point of
B(H,E).

In either case, γ pn ∈ γ
pn

ss H(E)+x for all sufficiently large integers n. Since also γ pn ∈ H(E)+x
for all sufficiently large n (by topological p-unipotence), we have that γ

pn

ss ∈ H(E)+x for some
n ∈ Z�0. Let T be an E-split maximal torus in H (hence in G) such that x belongs to the

apartment of T in B(H,E). By Lemma 2.6 of [2], we have that γ
pn

ss ∈ T(E)0+. Let K/E be
a finite extension such that γss ∈ G(K). By Remark 2.11, the character values of γ

pn

ss lie in
E×

0+ ⊆ K×
0+, so the character values of γss lie in K×

0+, so γss ∈ T(K)0+. By another application
of Lemma 2.6 of [2], γss ∈ G(K)0+. Thus γss is topologically K-unipotent. By Lemma 2.19, γ

is topologically K-unipotent. It is then clear from the definition (see Definition 2.15) that it is
topologically F -unipotent. �
Remark 2.22. Let E/F be a discretely valued algebraic extension. Since F(F ) = F(E), an
element of G is absolutely F -semisimple modulo N if and only if it is absolutely E-semisimple
modulo N. If p = 0, then Lemma 2.7 of [2] shows that an element of G is topologically F -
unipotent modulo N if and only if it is topologically E-unipotent modulo N. If p > 0, then, by
Lemma 2.21, the topological F -unipotence and topological E-unipotence of an element of G are
both equivalent to its topological p-unipotence, hence to one another. Thus an element of G is
topologically F -unipotent modulo N if and only if it is topologically E-unipotent modulo N.

Our definition of topological F -Jordan decompositions is almost the analogue one would
expect of the definition of a topological p-Jordan decomposition (see Definition 1.6), except for
one somewhat surprising condition about tori. Proposition 2.42 will show that this condition can
be omitted.

Definition 2.23. A topological F -Jordan decomposition modulo N of an element γ ∈ G is a pair
of commuting elements (γas, γtu) of G such that

• the images of γss and γas in G̃(F ) belong to a common F -torus there,
• γ = γasγtu,
• γas is absolutely F -semisimple modulo N, and
• γtu is topologically F -unipotent modulo N.

We will sometimes just say that γ = γasγtu is a topological F -Jordan decomposition modulo N.
If N is the trivial subgroup, then we will omit “modulo N.”

2.5. Uniqueness of topological Jordan decompositions

Proposition 2.24. An element of G has at most one topological F -Jordan decomposition.
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Proof. Suppose that γasγtu = γ = γ ′
asγ

′
tu are two topological F -Jordan decompositions of an

element γ ∈ G. By Remark 2.22, they remain topological F -Jordan decompositions if we replace
F by a finite extension, so we do so whenever necessary.

Since γas and γ ′
as are semisimple and commute with γtu and γ ′

tu, respectively, we have that
(γtu)un = γun = (γ ′

tu)un. Upon replacing F by a finite extension, we may, and hence do, as-
sume that γss (hence also (γtu)ss and (γ ′

tu)ss) lie in G. By Lemma 2.19, (γtu)ss and (γ ′
tu)ss are

topologically F -unipotent. Thus γas(γtu)ss = γss = γ ′
as(γ

′
tu)ss are two topological F -Jordan de-

compositions of γss, so we may, and hence do, assume that γ is semisimple.
We show that γ , γas, and γ ′

as (hence also γtu and γ ′
tu) lie in a common torus. Let T and T′

be maximal F -tori in G such that γ, γas ∈ T(F ) and γ, γ ′
as ∈ T′(F ) (hence γ ′

tu ∈ T′(F )). Upon
replacing F by a finite extension, we may, and hence do, assume that T′ is F -split and γ ′

tu ∈ G0+.
By Lemma 2.6 of [2], we have γ ′

tu ∈ T ′
0+, so that, by Remark 2.11, the character values of γ ′

tu lie
in F×

0+. If α is a root of T′ in CG(γ )◦, then α(γ ) = 1, so α(γ ′
as) = α(γ ′

tu)
−1 ∈F(F )∩F×

0+ = {1}.
That is, γ ′

as and γ ′
tu are central in CG(γ )◦, hence belong to T.

Now the character values of γas and of γ ′
as, hence of γ ′−1

as γas, lie in F(F ); and those of γtu and
of γ ′

tu, hence of γ ′
tuγ

−1
tu , lie in F×

0+; so, since F(F ) ∩ F×
0+ = {1}, we have that γ ′−1

as γas = γ ′
tuγ

−1
tu

equals 1. �
It is an easy observation that, if G′ is a connected reductive F -group and f : G → G′ is an

F -morphism, then f (γ ) is absolutely F -semisimple as long as γ is. Although we do not do so
here, one can formulate a condition on f such that f (γ ) is topologically F -unipotent as long as
γ is. We record three consequences.

Lemma 2.25. If γ = γasγtu is a topological F -Jordan decomposition, then γas, γtu ∈ Z(CG(γ )).

Proof. Fix g ∈ CG(γ ). Then γ = gγ = (gγas)(
gγtu) is a topological F -Jordan decomposition.

By Proposition 2.24, gγas = γas and gγtu = γtu. �
Lemma 2.26. Suppose that

• γ ∈ G,
• E/F is a discretely valued separable extension, and
• γ = γasγtu is a topological E-Jordan decomposition.

Then γas, γtu ∈ G, and γ = γasγtu is a topological F -Jordan decomposition.

Proof. By Remark 2.22, γ = γasγtu is a topological Ẽ-Jordan decomposition, where Ẽ/F is the
Galois closure of E/F . Then γ = σ(γas)σ (γtu) is also a topological Ẽ-Jordan decomposition for

σ ∈ Gal(Ẽ/F ). By Proposition 2.24, γas, γtu ∈ G(Ẽ)Gal(Ẽ/F ) = G. The last statement follows
from another application of Remark 2.22. �
Corollary 2.27. With the notation and hypotheses of Lemma 2.26, suppose that g ∈ G(E) is such
that gγ ∈ G. Then gγas,

gγtu ∈ G, and gγ = (gγas)(
gγtu) is a topological F -Jordan decomposi-

tion.

Proof. It is clear that gγ = (gγas)(
gγtu) is a topological E-Jordan decomposition. Now the result

is an immediate consequence of Lemma 2.26. �
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2.6. Relationship between algebraic and abstract groups

We now relate the abstract setting of Section 1 to our present setting. We have already seen that
topological F - and p-unipotence are equivalent when p > 0 (see Lemma 2.21). We prove below
the analogous results for absolute F -semisimplicity and topological F -Jordan decompositions;
but note that the formulations are slightly more complicated.

Lemma 2.28. Suppose that p > 0 and γ ∈ G. If γ is absolutely p-semisimple modulo N , then
it is absolutely F -semisimple modulo N. If γ is absolutely F -semisimple modulo N, then it is
absolutely p-semisimple modulo N if and only if some finite power of it is topologically p-
unipotent modulo N .

Proof. Suppose that γ is absolutely p-semisimple modulo N . Certainly, some finite power of it
is topologically p-unipotent modulo N (in fact, lies in N ). Further, its image γ in G̃ has finite,
prime-to-p order, say M , hence is semisimple. (Indeed, the unipotent part (γ )un of γ also has
finite, prime-to-p order. If charF = 0 (respectively, charF > 0), then any non-trivial unipotent
element has infinite (respectively, p-power) order; so (γ )un = 1.) By Lemma 2.2 of [2], there is
a complete subfield F ′ of F such that

• F/F ′ is unramified,
• G̃ is defined over F ′, and
• γ ∈ G̃(F ′).

Let

• T̃ be a maximal F ′-torus in G̃ such that γ ∈ T̃(F ′),
• E/F ′ the splitting field of T̃, and
• a an integer such that ap ≡ 1 (mod M).

Then, for χ ∈ X∗(T), we have χ(γ ) = χ(γ am
)p

m ∈ (E×)p
m

for all m ∈ Z�0, so χ(γ ) ∈
(E×)p

∞ ⊆ F(F ). That is, γ is absolutely F -semisimple, so γ is absolutely F -semisimple mod-
ulo N.

Suppose that γ is absolutely F -semisimple modulo N, and M ∈ Z>0 is such that γ M is topo-
logically p-unipotent modulo N . Write M = pmM ′, with m ∈ Z�0 and M ′ ∈ Z>0 such that M ′
is coprime to p. Then γ M ′

is also topologically p-unipotent modulo N , hence (by Lemma 2.21)
topologically F -unipotent modulo N. On the other hand, by Remark 2.16, γ M ′

is absolutely F -
semisimple modulo N. By Proposition 2.24, the image of γ M ′

in G̃ is trivial, so γ M ′ ∈ N ; that
is, γ is absolutely p-semisimple modulo N . �
Corollary 2.29. If F is an algebraic extension of a locally compact field, then an element of G

is absolutely F -semisimple modulo N if and only if it is absolutely p-semisimple modulo N .

Proof. The ‘if’ direction is clear. For the ‘only if’ direction, suppose that γ ∈ G is absolutely
F -semisimple modulo N. By Remark 2.17, γ is bounded modulo N; so, by Remark 2.9, it fixes
some point x ∈ B(G̃,F ). By Lemma 2.2 of [2], there is a locally compact subfield F ′ of F such
that



L. Spice / Journal of Algebra 319 (2008) 3141–3163 3153
• G and N are defined over F ′,
• γ ∈ G(F ′), and
• x ∈ B(G̃,F ′).

Then the image of γ in G̃(F ′) lies in stabG̃(F ′)(x). By Remarks 2.9 and 2.10, stabG̃(F ′)(x)

is bounded, hence compact; so its open subgroup G̃(F ′)+x has finite index. That is, some
(finite) power of γ is topologically p-unipotent modulo N . Now the result follows from
Lemma 2.28. �
Lemma 2.30. Suppose p > 0 and γas, γtu ∈ G. If (γas, γtu) is a topological p-Jordan decomposi-
tion modulo N , then it is a topological F -Jordan decomposition modulo N. If it is a topological
F -Jordan decomposition modulo N, then it is a topological p-Jordan decomposition modulo N

if and only if γas is absolutely p-semisimple.

Proof. It is clear from Lemma 2.21 that, if (γas, γtu) is a topological F -Jordan decomposition
modulo N, then it is a topological p-Jordan decomposition modulo N if and only if γas is ab-
solutely p-semisimple.

Suppose that (γas, γtu) is a topological p-Jordan decomposition modulo N . Put γ = γasγtu.
By Lemmata 2.21 and 2.28, γas is absolutely F -semisimple modulo N and γtu is topologically
F -unipotent N. Let E/F be a finite extension such that γss (hence (γtu)ss) belongs to G(E). By
Lemmata 2.19 and 2.21, (γtu)ss is topologically p-unipotent modulo N(E). Since γas commutes
with γtu, it commutes also with (γtu)ss, so γss = γas(γtu)ss is a topological p-Jordan decompo-
sition modulo N(E). By Proposition 1.7(2), the image of γas in G̃(E) belongs to any maximal
F -torus containing the image there of γss. Thus γ = γasγtu is a topological F -Jordan decompo-
sition modulo N. �
Corollary 2.31. If F is an algebraic extension of a locally compact field, then a topological
F -Jordan decomposition modulo N is a topological p-Jordan decomposition modulo N , and
conversely.

2.7. Stabilisers and parahorics

It is a minor inconvenience in our arguments that the stabiliser of a point in B(G,F ) may be
strictly larger than the associated parahoric subgroup. The next result shows that, under some
circumstances, we may bring an element of the stabiliser into the parahoric by passing to a tame
extension.

Lemma 2.32. Suppose that

• x ∈ B(G,F ),
• g ∈ stabG(x), and
• gn ∈ Gx for some n ∈ Z>0 indivisible by p.

Then there exists a finite tame extension L/F such that g ∈ G(L)x .

Proof. Upon replacing F by the splitting field of a maximal F tame-split torus, we may, and
hence do, assume that G is F -quasisplit. Let S be a maximal F -split (hence maximal F tame-
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split) torus in G such that x belongs to the apartment A(S,F ) of S, and T the maximal F -torus
in G containing S. If a is a root of S in G, then let α be a root of T in G restricting to α,
and write Fa for the fixed field in F sep of stabGal(F sep/F )(α) (the field denoted by La in [7,
Sections 4.1.8 and 4.1.14]). Up to F -isomorphism, this field does not depend on the choice of
α. By replacing F by a further finite tame extension if necessary, we may, and hence do, assume
that F contains the nth roots of unity in F sep, and all the extensions Fa/F are totally wildly
ramified. Let L′/F be a totally (tamely) ramified extension of degree n. Note that S is still a
maximal L′-split torus. Fix a root a of S in G. With the obvious notation, L′

a is the fixed field in
F sep of stabGal(F sep/L′)(α) = Gal(F sep/L′)∩stabGal(F sep/F )(α)—that is, L′

a = L′Fa . Since Fa/F

is totally wildly ramified and L′/F is tamely ramified, it follows that L′
a/Fa is a totally ramified

extension of degree n.
Choose a chamber C in A(S,F ) containing x in its closure, and a special vertex o in the clo-

sure of C. By regarding o as an origin, we may, and hence do, identify A(S,F ) with X∗(S)⊗Z R,
hence the affine F -roots on A(S,F ) (in the sense of [19, Section 2.5], not [2, Section 2.2]) with
certain functions on X∗(S) ⊗Z R of the form y �→ 〈a, y〉 + r with a a root of S in G and r ∈ R.
(Here, 〈·,·〉 is the usual pairing between X∗(S) and X∗(S).) Specifically, r must belong to the
set denoted by Γ ′

a in [6, Section 6.2.2]. By [7, Section 4.2.21] (adapted to our choice of origin,
which is different from the one in [7, Section 4.2.2]), we have Γ ′

a = ord(F×
a ). Denote by FH the

collection of zero-sets of affine F -roots.
We have that F Waff := NG(T )/Tb, viewed as a group of affine transformations of A(S,F ), is

isomorphic to the semi-direct product F Λ � F W , where F Λ = T/Tb is a lattice of translations,
and F W ∼= NG(T )/T is the finite group generated by the reflections through the hyperplanes
in FH passing through o. Let F W ′ be the (normal) subgroup of F Waff generated by reflections
through the hyperplanes in FH. Then F W ′ ∩ F Λ is generated by translations by elements of the
form γ ′a∨, where a is a root of S in G, a∨ is the associated coroot, and γ ′ ∈ ord(F×

a ). We will
denote by a left subscript L′ the analogues over L′ of the objects defined over F above. Then the
fact that ord(L′

a
×
) = 1

n
ord(F×

a ) and the obvious analogue for L′ of our discussion above for F

show that

(∗) if τ ∈ F Λ satisfies τn ∈ F W ′, then τ ∈ L′W ′.

Let Ω be the image of {x} in the reduced building Bred(G,F ), and f = f ′
Ω the optimisation

of the function fΩ of [7, Section 4.6.26]. Then, by Proposition 4.6.28(i) and Définition 5.2.6
of [7], the group of integer points of the scheme G0

f of [7, Section 4.6.2] is the parahoric Gx .
By Corollaire 4.6.12 of [7], there exists, for each root a ∈ Φf , an affine transformation wa ∈ Wf

such that the linear part of wa is reflection in the zero-set of a; and Wf is generated by the
elements wa . Here, Φf is the set of gradients of affine F -roots vanishing at x, and Wf is as
in [7, 4.6.3(6)]. Fix a ∈ Φf , and let ψ be the affine F -root with gradient a that vanishes at x.
Since wa fixes x, it must actually be reflection in the zero-set of ψ . That is, Wf is generated by
the reflections through hyperplanes in FH passing through x. By Proposition V.3.2 of [5], it is
actually the stabiliser of x in F W ′. Since NG(T )∩Gx = N0

f , in the notation of [5, 4.6.3(5)], and

since Wf is the image in F Waff of N0
f , we have that

(∗∗F ) the image of NG(T ) ∩ Gx in F Waff is the stabiliser in F W ′ of x.

Of course, there is an analogous statement, which we will denote by (∗∗L′ ), when F is replaced
by L′.
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By Proposition 4.6.28 of [7], NG(T ) ∩ gGx �= ∅. We may, and hence do, replace g by an
element of this intersection. Then write w(g) for the image of g in F Waff, and let τ ∈ F Λ be
such that w(g) ∈ τ · F W ′. Then w(g)n ∈ τn · F W ′. Since gn ∈ NG(T ) ∩ Gx , we have by (∗∗F )
that w(g)n ∈ F W ′. Thus, τn ∈ F W ′. By (∗), we have that τ ∈ L′W ′, so

(∗∗∗) w(g) ∈ τ · F W ′ ⊆ L′W ′.

Since w(g) stabilises x, we have by (∗∗L′ ) and (∗∗∗) that it belongs to the image of
NG(T)(L′) ∩ G(L′)x in L′Waff. That is, g ∈ (NG(T)(L′) ∩ G(L′)x)T(L′)b. In particular,
G(L′)x · g contains an element of T(L′), say t . Then tn ∈ G(L′)x . By Lemma 2.6 of [2], we
have that tn ∈ T(L′)0. Now we imitate the proof of Lemma 2.4 of [2] to show that there is a finite
tame extension L/L′ such that t ∈ T(L)0. Denote by M a totally ramified extension of L′un of
degree n. Then, in the notation of [17, Section 7.3] (except that our M and L′ are Kottwitz’s L′
and L, respectively; so β is the inclusion of T(L′) in T(M)), we have by (7.3.2) of [7] that

α
(
wT(M)

(
β(t)

)) = α
(
N

(
wT(L′)(t)

)) = nwT(L′)(t) = wT(L′)
(
tn

)
.

By Lemma 2.3 of [21], T(L′)0 = kerwT(L′) and T(M)0 = kerwT(M). In particular,
α(wT(M)(β(t))) = 0, so, since α is an injection, t = β(t) ∈ T(M)0. Now let L/L′ be any fi-

nite subextension of M/L′ such that M/L is unramified. Then t ∈ T(M)
Gal(M/L)

0 = T(L)0.
By Lemma 2.6 of [2], we have that t ∈ G(L)x , so g ∈ G(L)x · t = G(L)x . �

2.8. Existence of topological Jordan decompositions

The following two results show that the answers are “yes” to the analogues of the ques-
tions posed in [18, Sections 5.7 and 5.10], where semisimplicity and unipotence are replaced by
absolute F -semisimplicity and topological F -unipotence. We must impose at first a somewhat
artificial tameness hypothesis, but Corollary 2.37 below will show that it can be omitted.

Proposition 2.33. If γ is absolutely semisimple and F -tame, then B(CG(γ ),F ) = {x ∈
B(G,F ) | γ · x = x}.

Proof. Denote the right-hand set above by B(γ ). By Proposition 3.4 of [2], we have that
CG(γ ) is a compatibly filtered F -subgroup of G, in the sense of Definition 3.3 of [2]. In
particular, B(CG(γ ),E) may be regarded non-canonically as a subset of B(G,E) for all dis-
cretely valued tame extensions E/F , so that the statement makes sense. Since B(CG(γ ),F ) =
B(CG(γ ),E)Gal(E/F) for any discretely valued, tame, Galois extension E/F , we may, and hence
do, assume that F is strictly Henselian (hence that G is F -quasisplit) and that γ belongs to a max-
imal F -split torus S in G. Since γ is bounded (by Remark 2.17) and Sb = S0 (by Remark 2.11),
we have γ ∈ S0 ⊆ G0 and B(CG(γ ),F ) ⊆ B(γ ).

Suppose that x ∈ B(CG(γ ),F ), and y ∈ B(γ ) lies in a facet of B(G,F ) whose closure con-
tains x. Denote by g �→ g the reduction map Gx → G◦

x(f).
We have that G+

x ⊆ G+
y ⊆ Gy ⊆ Gx , and the images in G◦

x(f) of Gy and G+
y are the groups

of f-points of a parabolic f-subgroup Py and of its unipotent radical Uy , respectively. Let T be
the f-split maximal torus in G◦

x such that the image of S0 in G◦
x(f) is T(f). By Lemma 2.9 of [2],

we have that γ ∈ Gy ⊆ Gx , so γ ∈ T(f) ∩ Py(f) is semisimple. Thus it lies in a maximal f-torus
T′ of Py .
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We claim that there is an F -split torus S′ in CG(γ )◦ such that x lies in the apartment of
S′ and the image of S′

0 in G◦
x(f) is T′(f). Indeed, since S is F -split, there is an isomorphism

i : X∗(S) → X∗(T) such that, for all χ ∈ X∗(S), the image in f× of χ(γ ) ∈ F×
0 is i(χ)(γ ).

By Proposition 3.5.4 of [24], CGx (γ )◦(f) is generated by T(f) and the f-points of those root
subgroups corresponding to roots of T in G◦

x that vanish at γ . Let α be such a root. By Corol-
laire 4.6.12(i) of [7] (applied to the function f = f ′

Ω occurring in the proof of Lemma 2.32),
α := i−1(α) is a root of S in G. Let U ⊆ Uα ∩ Gx be the affine root subgroup of G that maps
onto the f-points of the root subgroup Uα of G◦

x . Since the image of α(γ ) in f× is α(γ ) = 1, we
have that α(γ ) ∈F(F ) ∩ F×

0+ = {1}. By Proposition 3.5.4 of [24], α is a root of S in CG(γ )◦, so
U ⊆ CG(γ )◦ ∩ Gx . That is, the image in G◦

x(f) of CG(γ )◦ ∩ Gx includes CGx (γ )◦(f). (Although
we do not need to do so here, one can show that the image is precisely CG◦

x
(γ )(f).) Since T and

T′ are maximal f-tori in CGx (γ )◦ and f is algebraically closed, there is an element c ∈ CGx (γ )◦(f)
such that T′ = cT. Let c ∈ CG(γ )◦ ∩ Gx be an element whose image in G◦

x(f) is c. Then S′ := cS
certainly contains x in its apartment, and has the property that the image of S′

0 in G◦
x(f) is T′(f).

Note that we may, and hence do, also regard T′ as a torus in Py/Uy = G◦
y . By Proposition

5.1.10 of [7], there is an F -split torus S′′ in G such that the apartment of S′′ contains y and the
image of S′′

0 in G◦
y(f) is T′(f). Since y lies in a facet whose closure contains x, the apartment of S′′

also contains x. By Proposition 4.6.28(iii) of [7], there is an element k ∈ Gx such that S′′ = kS′.
Since S′′

0 and S′
0 have the same image, namely T′(f), in G◦

x(f), we have that k ∈ NG◦
x
(T′)(f).

As in the proof of Lemma 2.32, one sees from Corollaire 4.6.12(ii) of [7] that k lies in the
image in G◦

x(f) of NG(S′) ∩ Gx . Thus, there are k+ ∈ G+
x ⊆ G+

y and n ∈ NG(S′) ∩ Gx such that

k = k+n. Then y = k−1+ y belongs to the apartment of k−1+ S′′ = nS′ = S′, hence is contained in
B(CG(γ ),F ).

We have shown that B(CG(γ ),F ) is open in B(γ ). Since it is a union of apartments, it is also
closed there. Since B(γ ) is connected (even convex), and since B(CG(γ ),F ) is non-empty, we
have the desired equality. �
Lemma 2.34. Suppose that

• x ∈ B(G,F ),
• γas, γtu ∈ stabG(x) are absolutely F -semisimple and topologically F -unipotent, respectively,

and
• γas is F -tame.

Then the images of γas and γtu in Gx(f) are semisimple and unipotent, respectively.

Proof. We first show that the image of γtu is unipotent. If p > 0, then we have by Lemma 2.21
that γtu is topologically p-unipotent, hence that the image of γtu in Gx(f) has p-power order. By
[4, Section 4.1(a)], it is unipotent.

If p = 0, then let E/F be a finite extension such that γtu ∈ G(E)0+. Since E/F is tame,
we have by Lemma 2.7 of [2] that γtu ∈ G0+. Choose z ∈ B(G,F ) such that γtu ∈ G+

z . By
Lemma 2.9 of [2], γtu ∈ Gx . By Lemma 2.8 of [2], there is a point y ∈ (x, z) such that γtu ∈ G+

y

and y belongs to a facet of B(G,F ) whose closure contains x. Then the image of G+
y in Gx is

the group of f-points of the unipotent radical of a parabolic f-subgroup of G◦
x . In particular, the

image of γtu is unipotent.
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Now we show that the image of γas is semisimple. Let L/F un be a finite tame extension such
that γas belongs to an L-split torus. By Lemma 2.5 of [2], G(L)+x ∩ G(F un) = G(F un)+x , so

Gx(f) = stabG(F un)(x)/G
(
F un)+

x
⊆ stabG(L)(x)/G(L)+x = GL

x (f);

that is, Gx is an f-subgroup of GL
x . Thus we may, and hence do, assume, upon replacing F by L,

that γas belongs to an F -split torus. By Proposition 2.33, we have that there is a maximal F -split
torus S whose apartment contains x such that γas ∈ S. Since γas is bounded (by Remark 2.17)
and Sb = S0 (by Remark 2.11), we have γas ∈ S0. Then the image of γas in Gx(f) belongs to the
image of S0 there, which is the group of f-rational points of an f-torus. �
Lemma 2.35. If γ = γasγtu is a topological F -Jordan decomposition, then a point x of B(G,F )

is fixed by γ if and only if it is fixed by γas and γtu.

Proof. The ‘if’ direction is obvious, so we need only prove the ‘only if’ direction. By Re-
mark 2.22, it suffices to prove this result over any finite extension of F ; so we may, and hence
do, assume that γas belongs to an F -split maximal torus in G.

Denote by B(γ ) the fixed points of γ , and similarly for γas and γtu. Suppose that x ∈ B(γas)∩
B(γtu) ⊆ B(γ ), and y ∈ B(γ ) belongs to a facet whose closure contains x. Denote by g �→ g the
reduction map Gx → G◦

x(f).
The image of Gy in G◦

x(f) is the group of f-points of a parabolic f-subgroup Py of G◦
x . Since

γ normalises Gy , γ normalises Py(f); so, by Theorem 11.16 of [4], γ ∈ Py(f). Then also (γ )ss ∈
Py(f) and (γ )un ∈ Py(f). By Lemma 2.34, (γ )ss = γas and (γ )un = γtu. Since the preimage of
Py(f) in Gx is Gy , we have that γas and γtu lie in Gy . In particular, y ∈ B(γas) ∩ B(γtu). That
is, B(γas) ∩ B(γtu) is open in B(γ ). Since it is also closed, and since B(γ ) is connected (even
convex), we have equality, as desired. �

Now we are in a position to prove an existence result for topological F -Jordan decompositions
analogous to Proposition 1.8. A more refined version of this result appears as Theorem 2.38
below.

Proposition 2.36. An element γ ∈ G has a topological F -Jordan decomposition γ = γasγtu if
and only if it is bounded. In this case, γas is F -tame.

Proof. Suppose that γ = γasγtu is a topological F -Jordan decomposition. By Remark 2.17, γas
and γtu are bounded. By Lemma 2.18, there is a point x ∈ B(G,F ) fixed by both, so γ · x = x.
By Remark 2.9, γ is bounded.

Now suppose that γ is bounded. By Remark 2.22 and Lemma 2.26, we may, and hence
do, replace F by discretely valued tame extensions as necessary. In particular, we will assume
throughout that F = F un. Put H = CG(γss)

◦.
If p > 0, then, as in Remark 2.20, let a ∈ Z�0 be so large that γ pa

and γ
pa

un belong to H .
Let E/F be a finite separable extension such that H is E-split. By Proposition 3.4 of [2], H
is a compatibly filtered E-subgroup of G, in the sense of Definition 3.3 of [2]. In particular,
the building of B(H,E) may be embedded isometrically and γ pa

-equivariantly into B(G,E).
Thus the orbits of γ pa

in B(H,E), hence in B(H,F ), are bounded; that is, γ pa
is bounded (in

H ). By Remark 2.9, there is a point x ∈ B(H,F ) fixed by γ pa
. Denote by h �→ h the reduction
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map stabH (x) → Hx(f). Let b ∈ Z�0 be so large that the order of γ pa+b ∈ stabH (x) modulo
Hx is indivisible by p. By Lemma 2.32, we may, and hence do, assume, upon replacing F by

a finite tame extension, that γ pa+b ∈ Hx . By Remark 2.13 and Lemma 2.21, γ
pa+b

un is topolog-

ically p-unipotent. Let c ∈ Z�0 be so large that γ
pa+b+c

un ∈ H+
x , and put n = a + b + c. Since

γ
pn

ss ∈ Z(H) and f is algebraically closed, we have that γ
pn

ss ∈ Z(H◦
x(f)) = Z(H◦

x)(f). Let T be

a maximal f-torus (necessarily f-split) in H◦
x , so that γ

pn

ss ∈ T(f). By Proposition 5.1.10 of [7],
there exists a maximal F -split torus S in H such that x is contained in the apartment of S, and

the image of S0 in H◦
x(f) is T(f). Let δ be a preimage in S0 of γ

pn

ss , so that δ−1γ
pn

ss ∈ H+
x . For

χ ∈ X∗(S), let s′
χ be the unique element of F(F ) such that χ(δ) ≡ s′

χ (mod F×
0+), and sχ the

unique element of F(F ) such that s
pn

χ = s′
χ . Finally, let γas be the unique element of S such

that χ(γas) = sχ for all χ ∈ X∗(S). Clearly, γas is absolutely F -semisimple and F -tame (even

F -split, in the obvious language). Put (γss)tu := γ −1
as γss. By Remark 2.11, γ

−pn

as δ ∈ S0+ ⊆ H+
x .

Thus (γss)
pn

tu = γ
−pn

as γ
pn

ss ∈ H+
x , so (γss)tu is topologically p-unipotent. By Lemma 2.21, (γss)tu

is topologically K-unipotent (where K/F is a finite extension such that γss ∈ H(K)). Thus,
γss = γas(γss)tu is a topological K-Jordan decomposition. By Lemma 2.25, γas and (γss)tu

commute with CG(K)(γss); in particular, with γun. Put γtu := γ −1
as γ = (γss)tuγun ∈ G. Since

γ
pn

tu = (γss)
pn

tu γ
pn

un ∈ H+
x , we have that γtu is topologically p-unipotent, hence, by another ap-

plication of Lemma 2.21, topologically F -unipotent. Thus, γ = γasγtu is the desired topological
F -Jordan decomposition.

If p = 0, then γun ∈ H . By Remark 2.13, we may, and hence do, assume, upon replacing F

by a finite (necessarily tame) extension, that γun ∈ H0+ and H is F -split. By Lemma 2.18, there
is a point x ∈ B(H,F ) such that γ · x = x and γun ∈ H+

x . Let T be an F -split maximal torus in
H whose apartment contains x. Then γss ∈ T fixes x, hence is bounded. By Remark 2.11, the
character values of γss lie in F×

0 . For χ ∈ X∗(T), let sχ be the unique element of F(F ) such
that χ(γss) ≡ sχ (mod F×

0+). In particular, sα = 1 for all roots α of T in H. Let γas be the unique
element of T such that χ(γas) = sχ for all χ ∈ X∗(T). In particular, α(γas) = 1 for all roots α of
T in H, so γas ∈ Z(H). Clearly, γas is F -tame and absolutely F -semisimple, and belongs to an
F -torus containing γss. Moreover, by Remark 2.11, γ −1

as γss ∈ T +
0 ⊆ H+

x . Thus γtu := γ −1
as γ =

(γ −1
as γss)γun ∈ H+

x . By Proposition 3.4 of [2], H is a compatibly filtered F -subgroup of G, in
the sense of Definition 3.3 of [2]. In particular, we may regard x (non-canonically) as a point of
B(G,F ). Then H+

x ⊆ G+
x , so γtu is topologically F -unipotent (in G). Clearly, γtu ∈ H commutes

with γas ∈ Z(H). Thus, γ = γasγtu is the desired topological F -Jordan decomposition. �
Now we show that we can drop the tameness hypotheses of Proposition 2.33 and Lemma 2.34.

Corollary 2.37. If γ ∈ G is absolutely F -semisimple, then it is F -tame.

Proof. By Remark 2.17, γ is bounded. By Proposition 2.36, there is a topological F -Jordan
decomposition γ = γasγtu with γas F -tame. By Proposition 2.24, γ = γas. �

The following rather technical result, which is now an immediate consequence of Lem-
mata 2.34 and 2.35 and Proposition 2.36, is really the heart of the paper. It should be viewed
as a quite precise existence result about topological F -Jordan decompositions.
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Theorem 2.38. If x ∈ B(G,F ) and γ ∈ stabG(x), then there is a topological F -Jordan decompo-
sition γ = γasγtu such that γas and γtu project to the semisimple and unipotent parts, respectively,
of the image of γ in Gx(f).

Remark 2.39. If F is an algebraic extension of a locally compact field, then the proof of
Theorem 2.38 can be considerably simplified. Indeed, in this case G is ind-locally-pro-p, by
Remark 2.12; so, by Propositions 1.7(2) and 1.8, an element γ ∈ stabG(x) has a topological p-,
hence F -, Jordan decomposition γ = γasγtu with γas, γtu ∈ stabG(x). Now Lemma 2.34 shows
that the images of γas and γtu in Gx(f) are as desired.

Corollary 2.40. For x ∈ B(G,F ), any normal subgroup of Gx consisting entirely of topologi-
cally F -unipotent elements lies in G+

x .

Proof. Suppose that H ⊆ Gx is normal and consists entirely of topologically F -unipotent ele-
ments. By Lemma 2.34, the image of H in G◦

x(f) consists entirely of unipotent elements. Denote
by H its Zariski closure in G◦

x . Then H◦ is a connected, normal, unipotent subgroup of the reduc-
tive group G◦

x , hence trivial. By Lemma 22.1 of [4], H is central in G◦
x , hence consists entirely

of semisimple elements. Since we have already observed that it consists entirely of unipotent
elements, H is trivial. �

We already have an existence result (Proposition 2.36) for topological F -Jordan decomposi-
tions modulo the trivial group. The next result handles such decompositions modulo any group N,
for some fields F .

Proposition 2.41. Suppose that F is an algebraic extension of a locally compact field. Then the
following statements about an element γ ∈ G are equivalent.

(1) γ has a topological p-Jordan decomposition modulo N .
(2) γ has a topological F -Jordan decomposition modulo N.
(3) γ is bounded modulo N.

Proof. By Corollary 2.29 and Lemma 2.30, a topological p-Jordan decomposition modulo N is a
topological F -Jordan decomposition modulo N, and conversely. Thus the equivalence (1) ⇔ (2)
is clear.

Denote by g �→ g the natural map G → G̃. By Remark 2.12, G̃ is ind-locally-pro-p, so we
have by Proposition 1.8 that γ has a topological p-Jordan decomposition if and only if γ is
compact; that is, if and only if γ is compact modulo N (equivalently, by Remark 2.10, bounded
modulo N). Thus, to prove the equivalence (1) ⇔ (3), it suffices to prove that γ has a topological
p-Jordan decomposition modulo N if and only if γ has a topological p-Jordan decomposition.

The ‘only if’ direction is easy. For the ‘if’ direction, suppose that γ has a topological p-
Jordan decomposition γ = (γ )as(γ )tu. Denote by H the closure of the group generated by γ . By
Remark 3.1 of [2], the image in G̃ of H is closed. By Proposition 1.7(2), (γ )as belongs to this
image. Let γas be a preimage of (γ )as in H . Then γtu := γ −1

as γ is a preimage of (γ )tu, and clearly
γas and γtu commute. Thus, γ = γasγtu is a topological p-Jordan decomposition modulo N . �

We close by showing that the “common torus” condition of Definition 2.23 can be omitted.
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Proposition 2.42. Suppose that γ ∈ G and (γas, γtu) is a pair of commuting elements of G such
that

• γ = γasγtu,
• γas is absolutely F -semisimple modulo N, and
• γtu is topologically F -unipotent modulo N.

Then (γas, γtu) is a topological F -Jordan decomposition modulo N.

Proof. It remains only to show that the images of γss and γas in G̃(F ) belong to a common
F -torus there. We will show the equivalent statement that the images of γas and (γtu)ss belong to
a common F -torus. Clearly, it suffices to assume that N is the trivial subgroup, so we do so. By
Remark 2.22, the hypotheses remain valid if we replace F by a finite extension, so we may, and
hence do, make such replacements as necessary.

Upon replacing F by a finite extension, we may, and hence do, assume that γss (hence (γtu)ss)
lies in G and γas is F -split. By Lemma 2.19, (γtu)ss is topologically F -unipotent. Thus, upon
replacing F by a finite extension, we may, and hence do, assume that (γtu)ss ∈ G0+. By Re-
mark 2.17 and Lemma 2.18, there is an element x ∈ B(G,F ) such that γas · x = x and γtu ∈ G+

x .
By Proposition 3.4 of [2], H := CG(γas) is a compatibly filtered F -subgroup of G, in the sense of
Definition 3.3 of [2]. Thus, B(H,F ) may be regarded (non-canonically) as a subset of B(G,F ) in
such a way that G+

z ∩H = H+
z for z ∈ B(H,F ). By Proposition 2.33, we have that x ∈ B(H,F ),

so (γtu)ss ∈ G+
x ∩H = H+

x ⊆ H ◦. In particular, (γtu)ss belongs to some maximal F -torus T in H.
Since γas is central in H, it also belongs to T. �
2.9. Topological unipotence and tameness

We have already seen that an absolutely F -semisimple element is F -tame (see Corol-
lary 2.37). Of course, a topologically F -unipotent element need not be F -tame (or even semi-
simple). In the next result, we see that, for F -tame topologically F -unipotent elements, it is not
necessary to introduce the finite extension E/F of Definition 2.15.

Proposition 2.43. The topologically F -unipotent part of a bounded and F -tame element belongs
to G0+.

Proof. Let γ be a bounded and F -tame element. By Proposition 2.36, it has a topological F -
Jordan decomposition γ = γasγtu with γas F -tame. By Lemma 2.7 of [2], we may, and hence do,
replace F by a finite tame extension so that G is F -quasisplit, and γ and γas belongs to F -split
tori.

If p = 0, then let E/F be a finite extension such that γtu ∈ G(E)0+. By another application
of Lemma 2.7 of [2], γtu ∈ G0+.

If p > 0, then let

• S be a maximal F -split torus containing γ ,
• T the maximal torus containing S, and
• E/F the splitting field of T.
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By Lemma 2.25, γas ∈ Z(CG(γ )) ⊆ T . Thus, S commutes with γas, hence is a maximal F -split
torus in CG(γas)

◦. By Lemma A.2 of [2], we have γas ∈ S. Therefore γtu ∈ S also. Since γtu is
bounded (by Remark 2.17) and Sb = S0 (by Remark 2.11), we have γtu ∈ S0. By Lemma 2.21, γtu
is topologically p-unipotent, hence has p-power order modulo S0+. On the other hand, S(f) =
S0/S0+ is the group of f-rational points of an f-split torus, hence contains no non-trivial elements
of p-power order. That is, γtu ∈ S0+. By Lemma 2.4 of [21], we have S0 ⊆ T0. By Remark 2.11,
we have S(E)0+ ⊆ T(E)0+. By Lemmata 2.4 and 2.6 of [2],

S0+ = S0 ∩ S(E)0+ ⊆ T0 ∩ T(E)0+ = T0+ ⊆ G0+.

In particular, γtu ∈ G0+, as desired. �
2.10. Lifting

In this subsection, put G̃ = G/Z(G)◦. (This is consistent with the notation in the earlier part
of the paper, as long as we take N = Z(G)◦.) Denote by g �→ g the natural map G → G̃.

We show that elements of G̃ which are absolutely F -semisimple or topologically F -unipotent
can be lifted, upon passing to suitable finite extensions E/F , to elements of G(E) which are
absolutely E-semisimple or topologically E-unipotent, respectively.

Proposition 2.44. If γ ∈ G is absolutely F -semisimple modulo Z(G)◦, then there is a finite
separable extension E/F such that γZ(G)◦(E) contains an absolutely E-semisimple element.

Proof. Since γ is semisimple, the unipotent part of γ lies in Z(G)◦(F ), hence is trivial. That is,
γ is semisimple. Let

• T be an F -torus such that γ ∈ T ,
• E/F the splitting field of T, and
• eγ the homomorphism X∗(T) → ord(E×) sending χ ∈ X∗(T) to ord(χ(γ )).

By Remark 2.17, γ is bounded modulo Z(G)◦, so eγ is trivial on Ỹ∗ := X∗(T/(Z(G)◦ ∩ T)).
Since ord(E×) is torsion-free and Y∗ := X∗(T/(Z(G) ∩ T)◦) has finite index in Ỹ∗, also eγ is
trivial on Y∗, hence induces a homomorphism λ from X∗(T)/Y∗ ∼= X∗((Z(G)∩T)◦) to ord(E×).
By choosing a uniformiser for E, hence an isomorphism ord(E×) ∼= Z, we may, and hence do,
regard λ as an element of X∗((Z(G) ∩ T)◦). Denote by z ∈ Z(G)◦ the value of λ at the chosen
uniformiser, so that ord(χ(z)) = eγ (χ) = ord(χ(γ )) for all χ ∈ X∗(T). Then δ := γ z−1 ∈ T(E)

is bounded.
By Proposition 2.36, there exists a topological E-Jordan decomposition δ = δasδtu. Notice that

δas and δtu belong to a common F -torus (namely, the image in G̃ of any F -torus in G containing
both δas and δ). Clearly, δas is absolutely E-semisimple. As in the proof of Proposition 2.24, the
character values of δtu lie in K×

0+ for some finite extension K/E. The character values of δtu,
being a subset of those of δtu, thus also belong to K×

0+. By replacing K by a further finite (sep-
arable) extension if necessary, we may, and hence do, assume that T/Z(G)◦ is K-split, so that
Remark 2.11 gives δtu ∈ (T/Z(G)◦)(K)0+. By Lemma 2.8 of [2], we have that δtu ∈ G̃(K)0+,
so δtu is topologically E-unipotent. That is, γ = δ = δas · δtu is a topological E-Jordan decom-
position of γ . By Proposition 2.24, δtu = 1, so δtu ∈ Z(G)◦(E). Thus γZ(G)◦(E) contains an
absolutely E-semisimple element, namely δas = γ z−1δ−1

tu , as desired. �
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Remark 2.45. The field E/F occurring in Proposition 2.44 may be taken to be the splitting field
for any F -torus containing γ . In particular, if γ is F -tame, then E/F may be chosen to be tame.
(Notice that Corollary 2.37 only guarantees that γ , not γ itself, is F -tame.) We do not know
an equally satisfactory answer to when the field extension E/F in the next proposition may be
taken to be tame.

Proposition 2.46. If γ ∈ G is topologically F -unipotent modulo Z(G)◦, then there is a finite
extension E/F such that γZ(G)◦(E) contains a topologically E-unipotent element.

Proof. By Remark 2.22, we may, and hence do, replace F by a finite extension so that G is
F -split and γ ∈ G̃0+; say x ∈ B(G,F ) is such that γ ∈ G̃+

x (where x is the image of x in
Bred(G,F ) = B(G̃,F )), and T is an F -split maximal torus in G whose apartment contains x.

It suffices to show that the image of G+
x under the natural map G → G̃ includes G̃+

x . By
Remark 2.1 of [2], since the affine root subgroups of G̃ are naturally isomorphic to those of G,
it suffices to show that the image of T0+ includes T̃0+ (where T̃ := T/Z(G)◦). The following
square commutes:

T0+ HomZ(X∗(T),F×
0+)

T̃0+ HomZ(X∗(T̃),F×
0+)

(where the vertical maps are the obvious ones, the top horizontal map takes t ∈ T0+ to the “eval-
uation at t” homomorphism, and the bottom horizontal map is the analogous map for T̃). By
Remark 2.11, the top and bottom horizontal arrows are isomorphisms. The cokernel of the
right-hand vertical map is Ext1

Z
(X∗(Z(G)◦),F×

0+), which is trivial since X∗(Z(G)◦) is a free
Z-module. Thus the left-hand map is surjective, as desired. �
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