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We study the structural and homological properties of graded
Artinian modules over generalized Weyl algebras (GWAs), and
this leads to a decomposition result for the category of graded
Artinian modules. Then we define and examine a category of
graded modules analogous to the BGG category O. We discover
a condition on the data defining the GWA that ensures O has a
system of projective generators. Under this condition, O has nice
representation-theoretic properties. There is also a decomposition
result for O. Next, we give a necessary condition for there to
be a strongly graded Morita equivalence between two GWAs. We
define a new algebra related to GWAs, and use it to produce some
strongly graded Morita equivalences. Finally, we give a complete
answer to the strongly graded Morita problem for classical GWAs.
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1. Introduction

Generalized Weyl algebras (GWAs) are defined simply by generators and relations.

Definition (Generalized Weyl algebra). Let R be a finitely generated C algebra, σ ∈ AutC(R) a C linear
automorphism, and v ∈ R an element. We refer to such a triple (R, σ , v) as GWA data. This data
determines an algebra T (R, σ , v) that is generated by R , t+, and t− subject to the relations

rt+ = t+σ(r), σ (r)t− = t−r, t−t+ = σ(v), t+t− = v (1)

for any r ∈ R . R is naturally a subring of T (R, σ , v).
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Any GWA has a natural Z grading and throughout the article we will view GWAs in the graded
context. The grading is determined by assigning the following degrees to the generators

deg(t+) = 1, deg(t−) = −1, deg(r) = 0, r ∈ R.

To deal with graded objects we abide by some standard conventions. We denote the ith homogeneous
component of M by Mi , define the n-shift M[n] of M by the grading rule M[n]i = Mi+n , and we set
δ(M) = {i ∈ Z: Mi �= 0}. We use the notation Homgr for the space of module maps that preserve
degree, so a module homomorphism φ is in Homgr(M, M ′) if φ(Mi) ⊂ M ′

i .
In addition to the study of arbitrary GWAs, we will be interested in a certain special case.

Definition (Classical GWAs). The GWAs determined by data of the form (C[h], τ , v) where τ (p(h)) =
p(h + 1) are called classical GWAs. We introduce a simpler notation for the classical GWAs: T (v) =
T (C[h], τ , v). From now on τ will always refer to the above automorphism of C[h].

GWAs have been well studied in a series of papers by V. Bavula and others, including [2,1,3]. One
motivation for the study of GWAs is the fact that the classical Weyl algebra of differential operators on
C[h] is isomorphic to T (h). In addition, Hodges studied the classical GWAs in [6] as noncommutative
deformations of Kleinian singularities. There, he posed the Morita problem. While certain necessary
conditions are known, e.g. [8], the Morita problem remains open. Motivated by these results, we
introduce a version of the Morita problem that incorporates the natural grading on the GWAs.

Definition. Let A and B be graded rings. A strongly graded Morita equivalence is a C-linear equivalence
of categories F : B-grMod �−→ A-grMod such that for any graded B module M , F (M[1]) ∼= F (M)[1].

In Section 4 we discover both a necessary condition for there to be a strongly graded Morita
equivalence between two GWAs and a method for constructing such equivalences. Along the way,
we define an algebra that generalizes both the GWAs and the preprojective algebra. The main result
of the paper is the following theorem, where “type” refers to a certain explicit equivalence relation
on C[h].

Theorem 4.8. T (v1) and T (v2) are strongly graded Morita equivalent if and only if for some b, v1(h + b) and
v2(h) have the same type.

It seems to be well known that the graded simple modules of GWAs can be classified in a straight-
forward manner if one knows the maximal ideals of R and understands the action of σ on them.
However, we show that using only the abstract structure of the category of graded modules, one can
recover when two simple modules are related by the action of σ . This is one of the observations at
the heart of the theorem above. In Section 2 we will study graded Artinian modules and eventually
show that the homological algebra of the category of graded Artinian modules reveals information
about the action of σ .

In Section 3 we define a certain category of modules, O+ , and we are not aware of any other
treatment of this category in the literature in the case of GWAs. The idea behind the category is well
known and goes back to [4]. In fact, Khare [7] gives a very general treatment of a category analogous
to O+ when the algebra of study has a “triangular” decomposition. The GWAs are not triangular,
however they are quotients of triangular algebras. Although we do not spell out a comparison in this
article, our O+ and the category O defined by Khare have many properties in common, at least in
the classical case. It turns out to be highly structured and preserved under strongly graded Morita
equivalences. We understand the strongly graded Morita equivalences in part by studying how they
mutate the structure of O+ . O+ has analogues of the familiar representation theoretic properties of
the BGG category O. We introduce a condition (∗) that holds trivially in the classical case, under
which O+ is well behaved. For example, when (∗) holds, O+ has enough projectives and when (∗)
fails, O+ may not have enough projectives. We use the geometry of the zero set of v to give a
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decomposition of O+ . Also, this subcategory “localizes” on the zero set of v , at least when (∗) holds,
since it is equivalent to the module category of a finite (but not necessarily commutative) R/(v)

algebra.
Finally, in Section 4 we study strongly graded Morita equivalence in earnest. We construct a map

from R into the center of the category of graded modules over a GWA and it turns out that any
strongly graded Morita equivalence induces a map between the centers of the graded module cate-
gories which is compatible with these embeddings. In fact, under a mild condition what we prove
implies that if T (R1, σ1, v1) and T (R2, σ2, v2) are strongly graded Morita equivalent, then not only
are R1 and R2 isomorphic, but the zero set of v1 has a locally closed partition such that translating
the parts by iterates of σ gives the zero set of v2. The notion of “type”, introduced in Section 4,
illustrates this in the case when the zero sets of v1 and v2 are collections of points.

We are also able to describe a method for producing many strongly graded Morita equivalences
between GWAs, which leads to a generalization of a sufficient condition for Morita equivalence dis-
covered by Hodges. The main tool is a “many-vertex” version of a GWA, which has the property that
attached to each vertex is an ordinary GWA and there is a simple criterion for when two of the vertex
GWAs are strongly graded Morita equivalent.

2. Artinian graded modules

In this section, we will study the structure and certain homological properties of Artinian graded
modules over GWAs. Artinian modules are examples of what are known as weight modules and one
can find a general treatment with constructions and structure theory in [5]. However for the sake of
completeness, we will reproduce the results we need. The connection between simple graded modules
and MaxSpec R; and the homological properties that we develop will be used in Section 4 to prove
the main results. Lemma 2.1 is used frequently throughout the paper. We will always use the term
“map” to mean homomorphism. As a final preliminary remark, every module will be graded, every
sub- and quotient module will be graded, and every map will be degree preserving.

Let R be a finitely generated commutative C algebra. Fix a σ ∈ Aut(R) and an element v ∈ R , and
let A := T (R, σ , v). Let Z = Spec R/(v) = {p ∈ Spec R: v ∈ p} and Zσ = {σ n(p): p ∈ Z , n ∈ Z}. We will
think of these sets as spaces with their Zariski (subspace) topology but will not need to think of Z as
a scheme, and Zσ might not even have an evident scheme structure. It will be helpful to think of Ai
as an (R, R) bimodule generated by ti+ or ti− . Note that Ai is isomorphic to R as both a left and right
module. From now on, we reserve the notations λ and μ for maximal ideals of R .

Definition. For each λ ∈ MaxSpec R we can view λ as a subset λ ⊂ A0 and define a graded
left A-module Aλ = A/Aλ. These modules will play a very prominent role. Note that Aλ = λ ⊕⊕

n>0 tn+λ ⊕ tn−λ and therefore for all i ∈ Z we have dimC Aλ
i = 1. Since the images of tn± are nonzero

for any n � 0, the quotient map gives the identification

A ⊃
⊕
n>0

Ctn− ⊕ C ⊕
⊕
n>0

Ctn+
�−→ Aλ

of C vector spaces. As a left R module we have

Aλ ∼=
⊕
n>0

(
R/σ n(λ)

) · tn− ⊕ R/λ ⊕
⊕
n>0

(
R/σ−n(λ)

) · tn+.

Set χλ = {k ∈ Z: σ k(v) ∈ λ}. For k ∈ χλ set

Aλ,k :=
{⊕

i<k Aλ
i , k � 0,⊕

Aλ, k > 0.
i�k i
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For any k ∈ χλ , Aλ,k is a submodule of Aλ . Clearly, t− Aλ
i ⊂ Aλ

i−1 and t+ Aλ
i ⊂ Aλ

i+1. For i � 0,

t− Aλ
i = Aλ

i−1 and for i � 0, t+ Aλ
i = Aλ

i+1. Therefore Aλ,k is a submodule if t− Aλ
k = 0 when k > 0

or t+ Aλ
k−1 = 0 when k � 0. In the first case we have t−tk+ = tk−1+ σ k(v) = 0 and in the second case

t+t1+|k|
− = t|k|

− σ k(v) = 0 since k ∈ χλ .

Right multiplication by t+ and t− defines left module maps φ̃+ : A → A[1] and φ̃− : A[1] → A,
respectively. Observe that φ̃+(Aλ) = Aλt+ = At+σ(λ) ⊂ Aσ(λ) and similarly φ̃−(Aσ(λ)) ⊂ Aλ. Thus
right multiplication by t+ and t− induce a pair of maps φ+ : Aλ → Aσ(λ)[1] and φ− : Aσ(λ)[1] → Aλ

given by

φ+(x) = xt+, φ−(x) = xt−.

Moreover for homogeneous x, φ+ ◦φ−(x) = σ 1−deg(x)(v)x and φ− ◦φ+(x) = σ−deg(x)(v)x. Finally, recall
that if M is a graded A module we define δ(M) := {i ∈ Z: Mi �= 0}. The following lemma is a version
of Theorem 5.8 in [5].

Lemma 2.1.

(i) Let M ⊂ Aλ be a proper, nontrivial, graded submodule. Then either M = Aλ,k for some k ∈ χλ or M =
Aλ,k ⊕ Aλ,k′

for k,k′ ∈ χλ with k � 0 < k′ .
(ii) Aλ is Artinian if and only if χλ is finite. It is simple if and only if χλ = ∅, or put another way λ /∈ Zσ .

(iii) There is a unique maximal submodule of Aλ . Let Sλ be the quotient of Aλ by this maximal submodule.
Note that Sλ is simple. Every simple graded A module is isomorphic to Sλ[i] for some λ ∈ MaxSpec R and
some i ∈ Z.

(iv) If λ /∈ Z then Aλ ∼= Aσ(λ)[1].

Proof. (i) Let M ⊂ Aλ be a proper, nontrivial, graded submodule. Since the homogeneous compo-
nents of Aλ are one dimensional the set δ(M) determines M . Since Aλ is cyclic and hence generated
by Aλ

0, 0 /∈ δ(M). Let i ∈ δ(M). If i > 0 and j > i then j ∈ δ(M) since t j−i
+ Aλ

i = Aλ
j . Similarly if i < 0

and j < i then j ∈ δ(M). Hence δ(M) is determined by k1 = max{k ∈ δ(M): k < 0} and k2 = min{k ∈
δ(M): k > 0}. Suppose that k1 exists. Since k1 + 1 /∈ δ(M) we must have t+ Aλ

k1
= 0 and therefore

t+t−k1− = t−k1−1
− σ k1+1(v) = 0 so σ k1+1(v) ∈ λ. But this means that k1 + 1 ∈ χλ so Aλ,k1+1 ⊂ M . Simi-

larly if k2 exists then Aλ,k2 ⊂ M . Thus M = Aλ,k1+1, M = Aλ,k2 , or M = Aλ,k1+1 ⊕ Aλ,k2 , depending on
whether k1 or k2 or both exist.

(ii) Immediate from (i).
(iii) The first assertion is clear from (i). Suppose S is a simple graded A module and that i ∈ δ(S).

Then there is a surjection A � S[i]. Let J be the kernel of this surjection and let λ ∈ MaxSpec R be a
maximal ideal containing J0. Consider J + Aλ. Since S[i] is simple the image of this left ideal must be
either 0 or S[i]. Because ( J + Aλ)0 = λ it follows that J + Aλ ⊂ J and therefore that Aλ ⊂ J . Hence,
our surjection factors through a map Aλ � S[i]. Since Sλ is the only simple quotient of Aλ it follows
that the previous map factors through Sλ → S[i]. Of course, Sλ[−i] and S are both simple so the map
Sλ → S[i] has to be an isomorphism. We conclude that S ∼= Sλ[−i].

(iv) Consider the maps φ+ : Aλ → Aσ(λ)[1] and φ− : Aσ(λ)[1] → Aλ from above. We have φ+ ◦
φ−(x) = xσ(v) and φ− ◦φ+(x) = xv . Since v �= 0 modulo λ or equivalently σ(v) �= 0 modulo σ(λ) we
have xσ(v) �= 0 and xv �= 0. But this means that φ+ ◦φ− and φ− ◦φ+ coincide with multiplication by
a nonzero element of C. So φ+ and φ− are isomorphisms. �

Let λ ∈ MaxSpec R . We want to locate all of the simple subquotients of Aλ . First, if χλ = ∅ then
Aλ is already simple. So assume that χλ �= ∅. Let Aλ,+ and Aλ,− be the maximal positively and
negatively graded submodules, respectively. Lemma 2.1 implies that A/(Aλ,+ ⊕ Aλ,−) is simple and
that the submodules of Aλ,+ and Aλ,− form decreasing filtrations. So every simple subquotient of Aλ
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except Sλ is either of the form Aλ,k/Aλ,l for l > k > 0 consecutive elements of χλ , or of the form
Aλ,l/Aλ,k for k < l � 0 consecutive elements of χλ . From this we see that if S and T are distinct
simple subquotients of Aλ then δ(S) ∩ δ(T ) = ∅. Hence each homogeneous component of Āλ := ⊕

S ,
where the sum runs over the simple subquotients of Aλ , is one dimensional, and Āλ = Aλ unless
λ ∈ Zσ .

Now, let us examine part (iv) of Lemma 2.1 and its proof more closely. Suppose that λ ∈ Z . This
means that v ∈ λ and so 0 ∈ χλ . Hence Aλ and Aσ(λ)[1] have special submodules Aλ,0 and Aσ(λ),1[1].
We see from the proof that φ+ ◦ φ− and φ− ◦ φ+ are both zero in this situation. However, for i � 0
we have φ+(Aλ

i ) = Aσ(λ)
i+1 and for i � 0 we have φ−(Aσ(λ)

i ) = Aλ
i−1. It follows that φ+ induces an iso-

morphism Aλ/Aλ,0 �−→ Aσ(λ),1[1] and that φ− induces an isomorphism Aσ(λ)[1]/Aσ(λ),1[1] �−→ Aλ,0.
Hence

Aλ,0 ⊕ Aλ/Aλ,0 ∼= ((
Aσ (λ)/Aσ (λ),1) ⊕ Aσ (λ),1)[1].

Lemma 2.2.

(i) Āλ ∼= Āσ(λ)[1]. Therefore if λ = σ n(λ) then Āλ ∼= Āλ[n].
(ii) There exist simple subquotients S, T of Aλ such that S ∼= T [n] if and only if λ = σ n(λ). In particular if σ

acts freely on MaxSpec R then the simple subquotients of Aλ are distinct.

Proof. (i) First, if λ /∈ Z then Aλ ∼= Aσ(λ)[1] and therefore Āλ ∼= Āσ(λ)[1]. Now suppose λ ∈ Z . For any
A module M we can form M̄ = ⊕

S where the sum is over simple subquotients of M . Of course, if
M ′′ = M/M ′ then M̄ = M̄ ′ ⊕ M̄ ′′ . In the previous paragraph we saw that

Aλ,0 ⊕ Aλ/Aλ,0 ∼= ((
Aσ (λ)/Aσ (λ),1) ⊕ Aσ (λ),1)[1]

and therefore Āλ ∼= Āσ(λ)[1].
(ii) Suppose that S → T [n] is an isomorphism and that Si �= 0. Observe that as left R modules,

Si ∼= Aλ
i

∼= R/σ−i(λ) and Ti+n ∼= Aλ
i+n

∼= R/σ−i−n(λ). Since R/σ−i(λ) = Si → Ti+n = R/σ−i−n(λ) is an
isomorphism of R modules we see that λ = σ n(λ). The converse follows from part (i). �
Remark 2.3. Write Āλ = · · · ⊕ S−1 ⊕ Sλ ⊕ S1 ⊕ · · · , where each S j is simple. Let k = min δ(S1). By 2.2,

Āλ ∼= Āσ−k(λ)[−k]. Therefore S1 ∼= Sσ−k(λ)[−k]. Similarly, if k = max δ(S−1) then S−1 ∼= Aσ−k(λ)[−k]. To
compute the relevant integers we note that Aλ has a unique maximal submodule which splits into a
possibly trivial direct sum M− ⊕ M+ where δ(M−), δ(M+) consist of negative and positive integers
respectively. Each of M−, M+ has a decreasing filtration F i M−, F i M+ with simple quotients. Now
F i M−/F i+1M− = S−i and F i M+/F i+1M+ = Si . By 2.1, if we enumerate χλ = {· · · < k−2 < k−1 � 0 <

k1 < k2 < · · ·} then max δ(F i M−) = k−i − 1 and min δ(F i M+) = ki . Therefore

Āλ =
( ⊕

k∈χλ,k�0

Sσ 1+|k|(λ)
[
1 + |k|]) ⊕ Sλ ⊕

( ⊕
k∈χλ,k>0

Sσ−k(λ)[−k]
)

.

We can view A[n] as an (A, R) bimodule as follows. The left action of A is just the usual left action.
Let x ∈ A[n] and let r ∈ R then x · r = xσ n(r) where the undotted action is just multiplication. We
can identify Homgr(A[n], A[m]) ∼= Am−n , where a ∈ Am−n corresponds to the map x �→ xa. Therefore,
to check that the maps Homgr(A[n], A[m]) are compatible with the right R module structure, we
only need to check that φ+ and φ− , corresponding to right multiplication by t+ and t− respect this
structure. For x ∈ A and r ∈ R we have φ+(x · r) = φ+(xr) = xrt+ = xt+σ(r) = φ+(x) · r. A similar check
verifies that φ− respects the right R module structure. We can formulate the relations (1) as

φ+ ◦ φ−(x) = x · v, x ∈ A[1], φ− ◦ φ+(x) = x · v, x ∈ A. (2)
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Now, because A[n] are projective generators for the category of graded A modules, any graded A
module is naturally an (A, R) bimodule.

If x1, . . . , xk are homogeneous generators of a graded A module M then the set {t|i−deg x j |
+ x j,

t
| deg x j−i|
− x j} generates Mi as both a left and right R module. Therefore each Mi is a finitely gen-

erated left and right R module. Let M be a graded A module equipped with this bimodule struc-
ture. Recall that if M̄ is a finitely generated R module then we have the support supp(M̄) = {p ∈
Spec R: ann(M̄) ⊂ p}. For x ∈ Mi and r ∈ R we have rx = xσ i(r). So the support of Mi as a left module
differs from the support of Mi as a right module by the action of σ i on Spec R . This means that many
of the properties of the support, such as dimension do not depend on whether we view M as a left
or right module. We will use this bimodule structure as a matter of course in Sections 3, 4. We can
think of this natural right module structure as giving a map of C algebras from R to the center of the
category A-grMod.

Lemma 2.4. If M is an Artinian graded A module then for every i the support of Mi in Spec R is finite. If χλ is
finite for every λ ∈ MaxSpec R then the converse is true.

Proof. Assume that M is an Artinian graded A module. Then for any ideal J ⊂ R and i ∈ Z, the chain
of modules M ⊃ M J ⊃ · · · ⊃ M Jk ⊃ · · · has to stabilize. Since M is Artinian, M is finitely generated
so Mi is finitely generated. Specializing to J = λ ∈ MaxSpec R we see that Mλn = Mλn+1 for some n.
Either Mλ = M or else for every i, λn Mi = 0 by Nakayama’s lemma. This means that every maximal
ideal of R/ann(M) is nilpotent and we conclude that Mi has to have finite support.

Now we prove the converse under the additional assumption that χλ is finite for every λ ∈
MaxSpec R . Since M is generated by finitely many cyclic modules it is enough to show that a cyclic
module whose components have finite support is Artinian. So consider A/ J where J is a homoge-
neous left ideal. Note that J0 contains an ideal of the form

∏
λ

ei
i for some λi ∈ MaxSpec R . We replace

J by A
∏

λ
ei
i so that A/ J = ⊕

i A/Aλ
ei
i . A/Aλ

ei
i clearly has a finite filtration by modules such that the

quotients are Aλi . By 2.1, Aλi is Artinian if and only if χλi is finite. �
Corollary 2.5. Suppose that χλ is finite for every λ ∈ MaxSpec R. Let J be a homogeneous left ideal of A such
that A/ J is Artinian. Then A/(A · J0) is Artinian.

Proof. By 2.4 we know that A0/ J0 has finite support. Also by 2.4, it is sufficient to check that
(A/A J0)i has finite support for all i. Finally note that (A/A J0)i ∼= (A/A J0)i+1 as a right R mod-
ule. �
Corollary 2.6. If M is a finitely generated, Artinian, graded A module then there is an N = N(M) such that
dimC Mn � N for all n.

Proof. It is sufficient to show that this is true for an Artinian graded quotient of A itself. Let J
be a homogeneous left ideal such that A/ J is Artinian. By 2.4, J contains J ′ = A

∏
λ

ei
i for some

λi ∈ MaxSpec R and thus A/ J ′ = ⊕
i A/Aλ

ei
i maps onto A/ J . Finally note that (A/Aλ

ei
i ) j is isomorphic

to R/λ
ei
i as a right R module and therefore dimC(A/ J ) j � dimC(A/Aλ

ei
i ) j = dimC R/λ

ei
i < ∞. �

We now describe a duality functor for graded Artinian modules. Let ι : A → Aop be the anti-
involution of A which is the identity on R and satisfies ι(t+) = t− , ι(t−) = t+ . Note that ι reflects
the grading in the sense that ι(An) = A−n . We define the duality functor taking M �→ M∗ where
M∗

n = HomC(Mn,C) and for x ∈ Ai , φ ∈ M∗
j and m ∈ Mi+ j we have (xφ)(m) = φ(ι(x)m). The right

module structure is the obvious one, (φa)(m) = φ(ma). Observe that (M[n])∗ = M∗[n] and that M∗ is
simple if and only if M is simple. Of course, M∗ is defined for any graded A module M , but M∗∗ will
not be isomorphic to M if M does not have finite dimensional homogeneous components.

Let C gr
Art be the category of Artinian, graded A modules. As an application of the last two lemmas

and a few more, we will show how to decompose C gr
Art using points of MaxSpec R and the σ action.
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Say that two simple subquotients S, T of Aλ are adjacent if δ(S ⊕ T ) is an interval. An interval is a
subset of Z of the form {k ∈ Z: n � k � N} where we allow n = −∞ and N = ∞. Recall that if S and
T are distinct simple subquotients then δ(S) ∩ δ(T ) = ∅. Therefore we can define a total order on the
simple subquotients by setting S < T if i < j for any i ∈ δ(S) and j ∈ δ(T ). Intuitively, S sits to the left
of T . Then the adjacent modules are those which are adjacent with respect to this ordering. We say
that an arbitrary pair of simple A modules S, T is adjacent if they are adjacent simple subquotients
for some Aλ .

In order to do some homological algebra, let us fix notation. For graded left A modules M, N
let Homgr(M, N) be the space of degree preserving module maps. Let Ext∗gr be the derived func-

tor of Homgr in the category of all graded modules. As in the ungraded situation, Extp
gr(M, N) is

the space of equivalence classes of extensions of length p of M by N . Observe that for M ′ , M ′′
Artinian graded modules if 0 → M ′ → M → M ′′ → 0 is a short exact sequence then dimC Mi < ∞
for each i. Combining this with the fact that (−)∗ is exact we see that (−)∗ gives an isomorphism
Ext1

gr(M ′′, M ′) ∼= Ext1
gr(M ′ ∗, M ′′ ∗).

Lemma 2.7. If S is a simple module then S ∼= S∗ .

Proof. By Lemma 2.1, every simple module is a shift of a module of the form Sλ . Therefore it suffices
to check that (Sλ)∗ ∼= Sλ . Let 0 �= φ ∈ (Sλ)∗0 and let A � (Sλ)∗ be the homomorphism defined by
a �→ aφ. Then for m ∈ (Sλ)0 we have (aφ)(m) = φ(am) = 0 for all a ∈ λ. Hence (Sλ)∗ is a simple
quotient of Aλ and must be isomorphic to Sλ . �
Lemma 2.8. Given two adjacent simple subquotients S, T of Aλ there is a nonzero extension class in
Ext1

gr(S, T ).

Proof. Every simple subquotient of Aλ other than the simple quotient is a subquotient of Aλ,k for
some k ∈ χλ . Since Ext1

gr(S, T ) = Ext1
gr(T ∗, S∗) = Ext1

gr(T , S), we can interchange T and S if we want.

We suppose that S < T . We deal with two cases. Say T < Sλ . Then there are Aλ,k and Aλ,l such that
we have a short exact sequence 0 → S → Aλ,k/Aλ,l → T → 0. This cannot be split because there are
no incomparable submodules of Aλ,k , or in other words Lemma 2.1 implies that if M, M ′ ⊂ Aλ,k then
M ⊂ M ′ or M ′ ⊂ M . Thus the exact sequence determined by the module is nontrivial in Ext1

gr(T , S). If

Sλ < S then a similar construction gives a nonzero extension class in Ext1
gr(S, T ). Suppose that S = Sλ .

Then there is a submodule M and a short exact sequence 0 → T → Aλ/M → S → 0. If this were split
then Aλ = M1 + M2 for two proper submodules. Since Aλ has a unique maximal submodule, this
cannot occur. Thus, our exact sequence defines a nonzero class in Ext1

gr(S, T ). We find ourselves in

similar circumstances when T = Sλ , and obtain a nonzero class in Ext1
gr(T , S). �

Theorem 2.9. Let λ,μ ∈ MaxSpec R. If μ �= σ n(λ) then Ext1
gr(Sλ, Sμ[n]) = 0. If μ = σ n(λ) and λ /∈ Zσ then

Ext∗gr(Sλ, Sμ[n]) ∼= Ext∗R(R/λ, R/λ). If λ ∈ Zσ and we set μ = σ n(λ), then Ext1
gr(Sλ, Sμ[n]) �= 0 only if Sλ

and Sμ[n] are either adjacent or isomorphic.

Proof. Let λ,μ ∈ MaxSpec R and assume that μ �= σ n(λ). Consider an extension

0 → Sμ[n] → M → Sλ → 0. (3)

Note that M must have finite support. Hence, there exists an ideal J ⊂ R such that R/ J is Artinian
and M , Sλ, and Sμ[n] are all R/ J modules. There are distinct maximal ideals λ = λ0, λ1, . . . , λN = μ

and positive integers e j such that R/ J = ⊕N
j=1 R/λ

e j

j . Let π ∈ R/ J be the idempotent corresponding
to 1 ∈ R/λe0 . Then we have two exact sequences
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0 → Sμ[n] · π → M · π → Sλ · π → 0,

0 → Sμ[n] · (1 − π) → M · (1 − π) → Sλ · (1 − π) → 0

whose sum is (3). Since Sλ · (1 − π) = 0 and Sμ[n] · π = 0, this means that (3) is split. Now, (3) was
arbitrary so we see that Ext1

gr(Sλ, Sμ[n]) = 0.
Suppose that λ /∈ Zσ and let μ = σ n(λ). Let F • � R/λ be a free resolution of R modules. Then

since A is R-free on the right, A ⊗R F • � Aλ = Sλ is a free resolution. Since μ = σ n(λ) we know that
n ∈ δ(Sμ) and therefore Homgr(A, Sμ[n]) = HomR(R, R/σ−n(μ)) and it follows that H∗(Homgr(A ⊗R

F •, Sμ[n])) = Ext∗R(R/λ, R/σ−n(μ)) = Ext∗R(R/λ, R/λ).
Finally, let S and T be simple. Suppose that the extension 0 → T → M → S → 0 is not split.

We can shift S until S ∼= Sλ for some λ. The map A � S lifts to a map A → M . This map must be
surjective since otherwise our extension would be split. Therefore M = A/ J for some homogeneous
left ideal J ⊂ A. If dimC M0 = 1 then M is in fact a quotient of Aλ and S and T are adjacent. Otherwise
dimC M0 = 2 and M is a quotient of A/A J0 where J0 ⊂ λ has codimension 1. If

√
J0 �= λ then R/ J0 =

R/λ ⊕ R/λ′ and M = S ⊕ T . Otherwise Aλ/A J0 = A ⊗R λ/ J0 ∼= Aλ because λ/ J0 ∼= R/λ. This means
that there is a map Aλ � T and since T is simple T ∼= Sλ and S ∼= T . �
Remark 2.10. One consequence of this theorem is that it is possible to tell from the homological alge-
bra alone whether or not a simple graded module is a subquotient of Aλ for some λ ∈ Zσ . Recall that
if λ /∈ Zσ then Sλ ∼= Sσn(λ)[n]. By Theorem 2.9 this means that whenever T is a simple graded module
such that Ext1

gr(Sλ[n], T ) �= 0 we have T ∼= Sλ[n]. On the other hand, by Lemmas 2.8 and 2.1 if λ ∈ Zσ

then there is a simple graded module T � Sλ[n] (but adjacent to Sλ[n]) such that Ext1
gr(Sλ[n], T ) �= 0.

So a simple graded module S corresponds to λ /∈ Zσ if and only if whenever Ext1
gr(S, T ) �= 0 for a sim-

ple module T we have S ∼= T . The following is a consequence of Lemmas 2.2, 2.8, and Theorem 2.9.

Proposition 2.11. For λ ∈ MaxSpec R and n ∈ Z let Cλ,n be the full subcategory of Artinian graded modules
whose simple subquotients are among the simple subquotients of Aλ[n], i.e. summands of Āλ[n]. We have
Cλ,n = Cμ,m if and only if μ = σm−n(λ). Any Artinian graded module M can be decomposed as a direct sum⊕

Mλ,n with Mλ,n ∈ Cλ,n. Let λ /∈ Zσ . If λ is a regular point of MaxSpec R then the homological dimension of
Cλ,n is finite and dim Cλ,n � dimλ Spec R, the Krull dimension of the local ring Rλ .

Proof. The first and last assertions are immediate from Lemma 2.2 and Theorem 2.9, respectively.
The second assertion follows from the observation if μ �= σm−n(λ) and M ∈ Cλ,n and N ∈ Cμ,m then
supp(M) = {σ−n(λ)} and supp(N) = {σ−m(μ)} so supp(M) ∩ supp(N) = ∅. �
3. Category O

We introduce a category O+ , the category of graded A modules M with the property that for every
m ∈ M , tn−m = 0 for n � 0. Such a module is called locally nilpotent. We define O to be the category
of ungraded locally nilpotent A modules. A finitely generated graded A module M belongs to O+ if
and only if −∞ < inf δ(M). Our category O+ behaves very similarly to the familiar one associated
to a semisimple Lie algebra if Spec R is one dimensional. See [4]. We reformulate some of the usual
properties of O+ so that they carry over to the situation when dim Spec R > 1. The category O+ is
our main object of interest and we will only mention O a few times, in order to compare it to O+ .
One remarkable property of O is that if our condition (∗) below holds then instead of being Artinian,
O is “graded” in the sense that it has a system of projective generators which are graded and such
that every homomorphism between them is necessarily degree preserving. Also, Theorem 3.8 gives a
block decomposition for O+ parameterized by pairs of a connected component of Z and an integer.
Finally, we will need the fact that A is noetherian, see [2].

The idea of support and the induced action of σ on Spec R will play a major role below. Recall
that σ induces an action Ξ on Spec R by Ξ(p) = σ−1(p). For a graded A module M , we think of M
as an (A, R) bimodule. Let ann(M) denote the annihilator of M as a right R module and supp(M) =
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{p ∈ Spec R: ann(M) ⊂ p} is the support as a right module. Since shifting changes the right module
structure, ann(M[n]) = σ−n(ann(M)) and supp(M[n]) = Ξn(supp(M)). For a subset X ⊂ R let Z(X) =
{p ∈ Spec R: X ⊂ p} be the associated closed subset of Spec R , the zero locus of X . For p ∈ Spec R ,
Z(p) is the closure of the point p and is an irreducible subset of Spec R .

Let M be a graded A module. If supp(M) is disconnected then the right R module structure on
M factors through a quotient ring of the form

∏
W RW where W runs over the set of connected

components of supp(M). We use an orthogonal system of idempotents 1W = (0, . . . ,1, . . . ,0) in the
quotient ring to define submodules MW = M · 1W such that M = ⊕

W MW . From now on we say that
MW is the summand of M supported on W .

There are Verma modules in this situation, however they sit very deep inside O+ . Let λ ∈
MaxSpec R and recall that Aλ,−1 := ⊕

i<0 Aλ
i is a graded submodule of Aλ if and only if λ ∈ Z . In

this case, define V λ := Aλ/Aλ,−1 viewed as a graded module concentrated in non-negative degrees.
The Verma modules fit into a larger class of modules called big Verma modules that are defined
in a similar way, except that instead of corresponding to maximal ideals, the big Verma modules
correspond to arbitrary prime ideals.

Definition (Big Verma modules). Let p ∈ Spec R such that v ∈ p and set Ap = A ⊗R R/p = A/Ap. Then
Ap,−1 = ⊕

i<0 Ap

i is a submodule since t+t− = v = 0 in R/p. Set V p = Ap/Ap,−1 and observe that V p

is a non-negatively graded module. We define χp = {k ∈ Z: k > 0, σ k(v) ∈ p} and χ ′
p = χp ∪ {∞}.

The big Verma modules are spread more evenly through O+ . We make this precise in Proposi-
tion 3.2.

Lemma 3.1. Let k � 0. V p,k = ⊕
i�k V p

i is a submodule of V p if and only if k ∈ χp .

Proof. V p,k is a submodule of V p if and only if t−(V p)k = 0. Since V p

k is generated by tk+ as an R

module and t−tk+ = σ(v)tk−1+ = tk−1+ σ k(v) we see that t−V p

k = 0 if and only if σ k(v) ∈ p. �
Definition. It will be convenient to have uniform notation for certain quotients. Let k ∈ χ ′

p and set

Q p,k = V p/V p,k for k < ∞ and Q p,∞ = V p . Note that supp(Q p,k[n]) = Z(σ−n(p)) = Ξn Z(p) and this
is a subset of Zσ that is closed in Spec R .

Proposition 3.2. A finitely generated, graded module M in O+ has a finite filtration where each successive
quotient has the form Q p,k[n] for some nonzero prime p ∈ Spec R, k ∈ χ ′

p , and n ∈ Z.

Proof. Because A is noetherian, it suffices to show that any finitely generated module in O+ has a
submodule of the desired type. Let k be the smallest degree such that Mk �= 0. Since R is noetherian,
as a right module, Mk has an associated prime, which we write as σ k(p) for convenience. This prime
must be nonzero since vMk = t+t−Mk ⊂ t+Mk−1 = 0 so v ∈ σ k(p). Let x ∈ Mk be an element such that
ann(x) = σ k(p). Then A · x[k] ∼= V p/ J where J ⊂ V p is a submodule such that J0 = 0. If J = 0 then
A · x ∼= Q p,∞[−k] has the desired form. Otherwise, let l = min δ( J ). Observe that the maps V p

i → V p

i+1

given by x �→ t+x are all isomorphisms. Let y ∈ V p

0 be such that tl+ y ∈ Jl . Then the submodule of
V p/ J generated by y is isomorphic to V p/V p,l . This corresponds to a submodule of A · x isomorphic
to Q p,l[−k]. �

Suppose that M is a finitely generated graded A module belonging to O+ . Then M has a finite
filtration such that the associated graded is isomorphic to

⊕N
j=1 (V p j /V p j ,k j )[n j] where p j ∈ Spec R

and k j ∈ χ ′
p . Therefore supp(M) = ⋃N

j=1 Ξn j (Z(p j)) and this is a closed subset of Spec R contained
in Zσ . Zσ could have many connected components and M decomposes into summands supported on
each of the connected components of Zσ . We will introduce an assumption that makes sure Zσ has
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many connected components that are easy to describe. From now on, we assume that the following
property (∗) holds.

Assumption. (∗) For every connected component W of Z and every n, W ∩ Ξn(Z) is either empty or
is a connected component of Z and for n � 0, W ∩ Ξn(Z) = ∅.

Example 3.3. There are two examples of GWA data satisfying (∗), inspired by geometric consid-
erations. First, let R be a ring let f1, . . . , fk ∈ R be any invertible elements. Let σ be the auto-
morphism of R[h1, . . . ,hk] be defined by σ(hi) = hi + f i . Suppose that s1, . . . , sk, r1, . . . , rn ∈ R be
such that

∑k
i=1 f i si is a unit in R and let v(h1, . . . ,hk) = ∏n

i=1 (
∑k

j=1 s jh j − ri). Then the GWA data
(R[h1, . . . ,hk], σ , v(h1, . . . ,hk)) satisfies (∗). Geometrically, R[h1, . . . ,hk] is the total space of the triv-
ial rank k vector bundle on Spec R , f̄ = ( f1, . . . , fk) is a section, and σ is translation by this section.
To see v geometrically, let φ be a vector bundle map from Spec R ×Ak → Spec R ×A1 that restricts to
an isomorphism on the subbundle spanned by ( f1, . . . , fk). Then v is the pullback along φ of a func-
tion on Spec R × A1 that does not vanish on any fiber. This class of examples includes the classical
case where R = C[h], k = 1, and f1 = 1 so that σ(h) = h + 1 and v ∈ C[h] is some polynomial.

Example 3.4. We can construct another class of examples using dilation. Let R• = ⊕
i�0 Ri be a graded

ring generated by R1 over R0 = C. For γ ∈ C, not a root of unity, let σ be defined on homogeneous
x by σ(x) = γ deg(x)x. Then for v = h − 1 where h ∈ R1, the GWA data (R•, σ , v) will satisfy (∗). Of
course, Spec R• embeds in Spec SymC R1 as a cone and the action of σ is induced by dilation by γ .
Note that in this case Spec R/(v) ⊂ Spec R is an affine hyperplane section that corresponds to a dense
affine open in Proj R• .

We will now construct a system of projective generators for O+ . Notice that if M is in O+ then
any map A → M factors through a map A/Atn− → M because if m is the image of 1 then by assump-
tion tn−m = 0 for n � 0. Let Zσ+ = ⋃

n�0 Ξn(Z) ⊂ Zσ .

Definition. For each n > 0 let A(n) = A/Atn− . Recall that this is naturally an (A, R) bimodule. We
calculate that

(
Atn−

)
i =

⎧⎪⎨
⎪⎩

Ai, i � −n,

ti+ · R
∏n−1

j=i σ− j(v), −n < i � 0,

ti− · R
∏n−1

i=0 σ− j(v), i � 0.

(4)

Hence ann(A(n)) = (
∏n−1

j=0 σ− j(v)) and supp(A(n)) = ⋃n−1
j=0 Ξn(Z) ⊂ Zσ+ . By (∗), the connected com-

ponents of supp(A(n)) are Ξ translates of the components of Z . Let π0(Z) and π0(Zσ ) denote the
sets of connected components of Z and Zσ respectively. For each connected component W ∈ π0(Zσ )

let A(n)W be the summand of A(n) supported on W .

We now consider three maps. First we have the natural quotient map q : A(n + 1) → A(n). Sec-
ond and third we have the maps φ+ : A(n) → A(n + 1) and φ− : A(n + 1) → A(n) induced by the
endomorphisms φ+(x) = xt+ and φ−(x) = xt− of A.

The quotient restricts to a surjection qW : A(n + 1)W � A(n)W . If W ∩ Ξn(Z) = ∅ then qW is an
isomorphism. The kernel of qW is the summand of Atn−/Atn+1− that is supported on W . Using (4) we
calculate that

(
Atn−/Atn+1−

)
i
∼=

⎧⎪⎨
⎪⎩

0, i � −(n + 1),

R/((σ−n(v)) + ann(
∏n−1

j=i σ− j(v))), −n � i � 0,

R/((σ−n(v)) + ann(
∏n−1 σ− j(v))), i � 0,

(5)
j=0
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and conclude that supp(Atn−/Atn+1− ) ⊂ Ξn(Z). Hence (∗) implies that for n � 0, qW is an isomor-
phism. Let N � 0 be so large that for all n � N , W ∩ Ξn(Z) = ∅ and define AW = A(N). The previous
discussion justifies the notation since if we were to choose a different N with the same property
there would be a canonical isomorphism between the resulting AW ’s.

The maps φ+, φ− induce arrows φ+
W : A(n)Ξ(W ) → A(n + 1)W [1] and φ−

W : A(n + 1)W [1] →
A(n)Ξ(W ) . By construction we have φ+

W ◦ φ−
W (x) = xσ(v) = x · v and φ−

W ◦ φ+
W (x) = x · v . If Z ∩

Ξ(W ) = ∅ then v acts invertibly on A(n)Ξ(W ) and A(n + 1)W [1], since supp(A(n + 1)W [1]) = Ξ(W ).
Let W ∈ π0(Zσ+) \ π0(Z) and consider AW . It follows from (∗) that W = Ξk(W0) for some W0 ∈

π0(Z) and k > 0. We may assume that Ξn(W0) ∩ Z = ∅ for 0 < n � k. Let N � 0 be so large that
AW0 = A(N)W0 and AW = A(N + k)W . Then φ+ induces a string of isomorphisms

AW = A(N)Ξk(W0)
�−→ A(N + 1)Ξk−1(W0)[1] �−→ · · · �−→ A(N + k)W0 [k] = AW0 [k].

We conclude that the collection of AW , W ∈ π0(Zσ ) can be obtained as shifts of a finite set of
modules parameterized by π0(Z).

Definition (Projective generators). For each W ∈ π0(Z) let P W = AW .

Observe that, by construction, (P W )0 is an indecomposable right R module. Because P W is gener-
ated in degree zero, this implies that it is an indecomposable graded A module.

Proposition 3.5. The set {P W [n]} where W ∈ π0(Z) forms a system of projective generators for O+ . The set
{P W } where W ∈ π0(Z) also forms a system of projective generators for O.

Proof. Let M � M ′′ be a surjection of modules in O+ and let P W [n] → M ′′ . We will show that
there is a lift P W [n] → M . It will be convenient to replace this problem with the equivalent problem
obtained by applying [−n] to the maps and modules. Now, write P W = A(N)W for some N � 0. The
composite A → A(N) → A(N)W → M ′′ lifts to a map f : A → M . If −m < min(δ(M)), the map f
factors as A → A(m) → M . We can assume that m > N . There is a commutative square

A(m)
q

A(N)W

M M ′

Note that q : A(m)W → A(N)W is an isomorphism. Restricting the map A(m) → M to a map
A(m)W → M and composing with q gives the desired lift P W → M .

As we noticed in the previous paragraph, every map A → M with M an object of O+ factors
through a map A(n) → M for some n. Hence, the collection A(n)[m] is a system of generators for O+ .
But A(n) is a finite direct sum of A(n)W ′ where W ′ ranges over π0(Zσ ). Each of the A(n)W ′ is
a quotient of P W for some W ∈ π0(Z) such that Ξk(W ) = W ′ . Therefore the P W [m] also form a
generating set.

Forgetting the gradings, the same argument shows that P W are projective in O and generate since
the A(n) do. �
Example 3.6. Let us see what happens when (∗) is not satisfied. We take R = C[x, y], v = x, and σ
an irrational rotation of the plane, i.e. a rotation of infinite order. Consider the corresponding GWA.
We will see that O+ does not have enough projectives. Consider the surjections A(n + m) � A(n),
suppose that P is a projective in O+ with a map P → A(n). For every m there is a lift P → A(n + m)

that completes the commutative diagram
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P

A(n + m) A(n)

Fix a surjection
⊕

i A(ni)[ki] � P where i may range over an arbitrary index set. Let us calculate the
possibilities for the image of a map A(ni)[ki] → A(n) that factors through the quotient A(n + m) →
A(n). Since A(ni)[ki] is cyclic, Homgr(A(ni)[ki], A(n + m)) can be identified with the set of elements
x ∈ A(n + m)−ki such that tni− x = 0. Let λ0 = (x, y) and for X ⊂ Z a nonempty finite subset let p X =∏

j∈X σ j(v) and qX = ∏
j∈X σ− j(v). For l1 < l2 integers write [l1, l2] = {l1, l1 + 1, . . . , l2 − 1, l2}. Notice

that p X ,qX ∈ λ0 for any X . Assume that n +m > max{ni +ki,−ki −ni}+ 1. First, suppose ki > 0. Then
x = tki−r and tni− x = tni+ki− r = 0 if and only if r ∈ (q[ni+ki ,n+m]). Then the image under composition with

the quotient A(n+m) � A(n) is the submodule generated by tki−r which is contained in the submodule
generated on the right by q[ni+ki ,n+m] . We conclude that in this case the image is contained in A(n)λ0.

On the other hand, if ki < 0 then x = t−ki+ r and

tni−t−ki+ r =
{

t−ki−ni+ p[−ki−ni ,n+m]r, −ki � ni,

tni+ki− p[ni+ki ,n+m]r, ni + ki � 0.

These are zero in A(m + n) if and only if p[−ki−ni ,n+m]r ∈ (q[0,n+m−1]) or p[ni+ki ,n+m]r ∈ (q[ni+ki ,n+m])
respectively. Both situations imply that r ∈ (q[1,n+m−1]) and therefore that the image A(ni)[ki] → A(n)

is contained in A(n)λ0. We conclude that for each i there is an m such that if A(ni)[ki] → A(n)

factors through A(n + m) → A(n) then the image of the map is contained in A(n)λ0. By assumption,
for each i, the map A(ni)[ki] → P → A(n) factors through A(n + m) for every m and thus the image
of this map is contained in A(n)λ0. Therefore the image of P in A(n) is contained in A(n)λ0 and we
conclude that there is not a system of projective generators for O+ .

Proposition 3.7. If W1, W2 ∈ π0(Z) then Homgr(P W1 , P W2 [n]) = 0 unless W1 = Ξn(W2).

Proof. By construction supp(P W1 ) = W1 and supp(P W2 [n]) = Ξn(W2). By (∗), either W1 = Ξn(W2)

or else W1 ∩ Ξn(W2) = ∅. Clearly if W1 ∩ Ξn(W2) = ∅ then Homgr(P W1 , P W2 [n]) = 0. �
Note that HomA(P W1 , P W2 ) = ⊕

n∈Z Homgr(P W1 , P W2 [n]). By Proposition 3.7, if more than one
of these spaces is nonzero then W1 = Ξn1 (W2) = Ξn2 (W2) and thus W2 = Ξn1−n2 (W2). But
this implies that Ξm(n1−n2)(W2) ∩ Z �= ∅ for all m, contradicting (∗). Therefore every map in
HomA(P W1 , P W2 ) is automatically homogeneous of some particular degree.

Definition. Let π0(Z)/Ξ be the set of equivalence classes in π0(Z) for the equivalence relation W1 ∼
W2 if there is an n such that W2 = Ξn(W1). For each w ∈ π0(Z)/Ξ , fix W w ∈ w and set χw =
{n ∈ Z: Ξn(W w) ∈ π0(Z)}. For each n ∈ χw set P w,n = PΞ−n(W w )[n]. Finally, for w ∈ π0(Z)/Ξ let O+

w

be the thick subcategory generated by the projective modules P w,n , n ∈ χw . Define O+
Z to be the

thick subcategory of O+ generated by all of the O+
w . Note that the various O+

w are not closed under
shifting.

Definition. If A is an abelian category then
⊕

Z A[n] is the category whose objects are formal sums
of formal shifts

⊕
i ai[ni] for a and object of A and ni ∈ Z and where

Hom

(⊕
i

ai[ni],
⊕

j

b j[m j]
)

=
∏

i

⊕
j

Hom
(
ai[ni],b j[m j]

)
,
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and

Hom
(
a[n],b[m]) =

{
HomA(a,b), n = m,

0, otherwise.

Theorem 3.8. The functor which forgets the grading defines an equivalence between O+
Z and O. Moreover,

O+ ∼= ⊕
w∈π0(Z)/Ξ

⊕
n∈Z O+

w [n].

Proof. The forgetful functor O+
Z → O is exact and therefore fully faithful because we constructed the

P w,n so that Hom(P w1,n1 , P w2,n2 ) = Homgr(P w1,n1 , P w2,n2 ). By Proposition 3.5, the essential image
contains projective generators and therefore the forgetful functor is an equivalence.

To check the second assertion it suffices to show that Homgr(P w,n, P w ′,n′ [m]) = 0 unless w = w ′
and m = 0. If w �= w ′ then supp(P w,n) ∩ supp(P w ′,n′ [m]) = ∅ and therefore

Homgr
(

P w,n, P w ′,n′ [m]) = 0.

Assume that w = w ′ . By definition P w,n = PΞ−n(W w )[n] and P w,n′ [m] = P
Ξ−n′

(W w )
[n′ +m]. Now, Prop-

osition 3.7 implies that Homgr(PΞ−n(W w )[n], P
Ξ−n′

(W w )
[n′ + m]) = Homgr(PΞ−n(W w ), P

Ξ−n′
(W w )

[n′ −
n + m]) = 0 unless W w = Ξm(W w). By (∗), if W w = Ξm(W w) then m = 0. �

We cannot make this decomposition into thick subcategories finer. Indeed suppose that W1 =
Ξn(W2) and that n > 0. Then the map P W1 → P W2 [n] induced by right multiplication by tn+ on A is
nonzero. However, in general it will neither be injective or surjective.

Corollary 3.9. Set P = ⊕
W ∈π0(Z) P W . P is a projective generator of O. Hence, O is equivalent to the category

of right modules over the finite R/(v) algebra EndA(P ).

Proof. We just need to check that EndA(P ) is finite. However it follows from the preceding para-
graphs that

EndA(P ) =
⊕

w,w ′∈π0(Z)/Ξ

n∈χw ,n′∈χw′

Homgr(P w,n, P w ′,n′).

This is a finite direct sum and Homgr(P w,n, P w ′,n′ ) ⊂ Homleft
R ((P w,n)0, (P w ′,n′ )0), where Homleft

R is the
set of homomorphisms of left R-modules. Since R is noetherian and (P w,n)0, (P w ′,n′ )0 are cyclic left
R/(v) modules it follows that EndA(P ) is a finitely generated module over R/(v). �

Observe that there is a map π0(Z)/Ξ × Z → π0(Zσ ) defined by (w,n) �→ Ξn(W w). By (∗), this
is a bijection. So we can also think of this above decomposition as parameterized by π0(Zσ ). Let
W ∈ π0(Zσ ). We know that AW ∼= P W ′ [k] and by (∗), there is a unique n such that W ′ = Ξn(W ).
Therefore P W ′ = P w,n[−n] and it follows that AW ∼= P w,n[k − n] belongs to O+

w [k − n]. So unfortu-
nately, the parameterization of the decomposition of O+ disagrees with our parameterization of the
fundamental modules AW , W ∈ π0(Zσ ). Finally, we note that if (∗) holds then Theorem 3.8 implies
that Proposition 3.2 applies to O as well as O+ .

It follows from 2.1 that (∗) implies that for each λ ∈ MaxSpec R , if χλ �= ∅ then it is finite so Aλ is
Artinian. We introduce uniform notation by setting

Aλ,− =

⎧⎪⎨
⎪⎩

Aλ, χλ = ∅,

Aλ,minχλ, χλ �= ∅, minχλ � 0,

Aλ/Aλ,minχλ, χ �= ∅, minχ > 0.
λ λ
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Note that Aλ,− is simple and for n � 0, n ∈ δ(Aλ,−). The following lemma will be used in the next
section.

Lemma 3.10. The modules in O+ are exactly those graded A modules not having any Aλ,− as a subquotient.

Proof. First, note that O+ is closed under taking subquotients. Therefore if M belongs to O+ then
all simple subquotients belong to O+ . A simple module belongs to O+ if and only if it is not of the
form Aλ,− for any λ ∈ MaxSpec R .

Now, if M does not belong to O+ then there is some homogeneous m such that Am does not
belong to O+ . Of course, Am ∼= A/ J [n] and A/ J is not in O+ if and only if A/ J [n] is not in O+ .
Since the set of modules of the form Aλ,− is closed under the shift, Aλ,− ∼= Aσ(λ),−[1], it suffices to
show that if A/ J is not in O+ then A/ J has a subquotient of the form Aλ,− . As remarked before J
is automatically a right R submodule of A. Because R is noetherian, for n � 0 we have t− Jn = Jn−1.
Hence there is an ideal J̄ such that for n � 0, (A/ J )n ∼= R/ J̄ as a right R module. Since (A/ J )n �= 0
for n � 0, there is a λ ∈ MaxSpec R such that J̄ ⊂ λ. Therefore (A/ J ⊗R R/λ)n �= 0 for n � 0. But since
M ′ = A/ J ⊗R R/λ is a quotient of Aλ such that δ(M ′) is not bounded below, it must contain Aλ,−
either as a submodule or as a quotient. �
4. Graded Morita equivalence

For a graded ring A let A-grMod be the category of graded left A modules. This category is
equipped with an auto-equivalence (−)[1], the usual shift.

Definition. Let A and B be graded rings. A strongly graded Morita equivalence is a C-linear equivalence
of categories F : B-grMod �−→ A-grMod such that for any graded B module M , F (M[1]) ∼= F (M)[1].

Since B is projective in B-grMod, P = F (B) is projective in A-grMod. The monomorphisms in
A-grMod are exactly the injective module maps. Therefore we can detect whether or not an object
satisfies the ascending chain condition using only the abstract structure of the category A-grMod.
Suppose that B is noetherian. Then the graded B module B satisfies the ascending chain condition.
Therefore P also satisfies the ascending chain condition and we conclude that P is finitely gen-
erated. Note that Homgr(B, B[n]) = Bn and composition Homgr(B, B[n]) ⊗ Homgr(B[n], B[n + m]) →
Homgr(B, B[n + m]) is identified with multiplication Bn ⊗ Bm → Bn+m so that a ◦ b is identified with
ba in B . Therefore we can think of P as a right graded B module. The important thing is that the sin-
gle grading makes P both a graded A module and a graded B module. For any graded B module M ,
F (M) ∼= P ⊗B M . In this section, we will study the notion of strongly graded Morita equivalence for
GWAs.

Now, consider a map rings f : R → S and suppose that σR ∈ Aut(R) and σS ∈ Aut(S). Say that f
is σ equivariant if σS ◦ f = f ◦ σR . Given GWA data (R, σ , v) and a σ equivariant automorphism ψ ∈
Aut(R) we can construct an isomorphism Ψ : T (R, σ , v) → T (R, σ ,ψ(v)) extending ψ and satisfying
Ψ (t+) = t+ and Ψ (t−) = t− . We can view a graded T (R, σ ,ψ(v)) module as a graded T (R, σ , v)

module through Ψ and this sets up a strongly graded Morita equivalence between these two GWAs.
We will see that any strongly graded Morita equivalence leads to an equivariant isomorphism of the
ground rings.

Theorem 4.1. For j = 1,2 let (R j, σ j, v j) be GWA data. Assume that there is some λ ∈ MaxSpec R j such that
λ∩{σ n

j (v j): n ∈ Z} = ∅. Suppose that T (R1, σ1, v1) and T (R2, σ2, v2) are strongly graded Morita equivalent.
Then there is an equivariant isomorphism ρ : R1 → R2 such that λ ∈ MaxSpec R2 contains a σ2 translate of
v2 if and only if ρ−1(λ) contains a σ1 translate of v1 . Moreover, the equivalence restricts to an equivalence
between O+

1 and O+
2 .

Proof. Set A = T (R1, σ1, v2) and B = T (R2, σ2, v2). Let P be the finitely generated, projective, graded
A-module corresponding to B under a strongly graded Morita equivalence F : B-grMod → A-grMod.
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Note that since P is a summand of
⊕

j A[n j] each graded piece Pi is a projective left R1 module. Re-

call that P is an (A, R1) bimodule such that for any p ∈ Pi , r ∈ R1 we have rp = pσ i(r). Thus Pi has
the same rank as a left module and as a right module. For now, assume that for each P0 has rank 1.
Then EndR1 (P0) = P∨

0 ⊗R1 P0
�−→ R1. Note that Homgr(P , P [n]) = Homgr(B, B[n]) = Bn and in partic-

ular Endgr(P ) = B0 = R2. Recall that every degree preserving map of graded A modules respects the
(A, R) bimodule structure. Therefore we can define maps ρ : R1 → Endgr(P ) = R2 by ρ(r)(p) = pr and
φ : Endgr(P ) → EndR1 (P0)

�−→ R1 by restriction. By definition, for p ∈ P0 and f ∈ Endgr(P ) we have
f (p) = pφ( f ). Let us check that ρ ◦ σ−1

1 = σ−1
2 ◦ ρ . First note that if x ∈ Endgr(P , P [1]) corresponds

to t+ in B1 then for any f ∈ Endgr(P ) we have f [1] ◦ x = x ◦ σ−1
2 ( f ) and x ◦ f = 0 if and only if

f = 0. Hence it suffices to show that x ◦ ρ(σ−1
1 (r)) = ρ(r)[1] ◦ x. Observe that ρ(r)[1] is not right

multiplication by r but instead right multiplication by σ−1
1 (r). Now for any r ∈ R1 and p ∈ P we

compute

(
x ◦ ρ

(
σ−1(r)

))
(p) = x

(
p · σ−1(r)

) = x(p) · σ−1(r) = (
ρ(r)[1] ◦ x

)
(p).

We conclude that ρ ◦ σ1 = σ2 ◦ ρ .
Clearly φ ◦ ρ = idR1 . Hence, ρ is injective and φ is surjective. Interchanging the roles of A and B

we obtain ρ ′ : R2 → R1 and φ′ : R1 → R2, injective and surjective respectively. Now any surjective ring
endomorphism of a noetherian ring is automatically an automorphism. Thus φ′ ◦φ is an isomorphism.
This implies that φ is injective and it follows that ρ and φ are inverse isomorphisms. Therefore ρ is
the equivariant isomorphism that we wanted.

Next we will show that P0 does indeed have rank 1, using the Lemmata from Section 2. The
hypothesis and Lemma 2.1 imply that there is a λ ∈ MaxSpec R2 such that Bλ is simple. As mentioned
in Remark 2.10, if T is a simple B module such that Ext1

gr(T , Bλ) �= 0 then Bλ ∼= T . Therefore F (Bλ)

is a simple module with the same property, and so we must have F (Bλ) = Aμ for some μ such that
Aμ is simple.

Fix a presentation
⊕

j A[n j] � P . Now A[n j] ⊗ R/μ = Aσ
n j (μ)[n j] ∼= Aμ by Lemma 3.8. Hence we

get a surjection
⊕

j A[n j] ⊗R1 R/μ = ⊕
j Aμ � P/Pμ is a surjection. Since Aμ is simple, this implies

that P/Pμ ∼= (Aμ)⊕m where m = dimC P0/P0μ. Under the Morita equivalence, this corresponds to a
surjection B � (Bλ)⊕m . However, up to scaling there is only one graded map B → Bλ , and therefore
any map B → (Bλ)⊕m factors as B � Bλ → (Bλ)⊕m , which is not surjective unless m = 1. We conclude
that m = dimC P0/P0μ = 1 so P0 has rank 1 as a projective module.

Now, set μ = ρ−1(λ). As we argued above, if λ does not contain a σ2 translate of v2 then Bλ is
simple and F (Bλ) = P/λ(P ) = P/Pμ ∼= Aμ is simple, so μ does not contain a σ1 translate of v1.

We must argue that F preserves O+ . Note that for a graded B module M , we compute δ(M) =
{n ∈ Z: Homgr(B, M[n]) �= 0}. Therefore δ(M) = {n ∈ Z: Homgr(P , F (M)[n]) �= 0}. Now, among graded
simple modules, those of the form Bλ,− are characterized by the property that δ(Bλ,−) is not bounded
below. Let S be a simple graded A module. Returning to our presentation

⊕
j A[n j] � P we see that

Homgr(P , S[n]) ⊂ ⊕
j Homgr(A[n j], S[n]) ∼= Sn−n j as C vector spaces. So {n ∈ Z: Homgr(P , S[n]) �= 0} is

unbounded below if and only if δ(S[n]) is not bounded below if and only if S[n] is of the form Aμ,−
for some μ ∈ MaxSpec R1. It follows that for every λ ∈ MaxSpec R2 there is a μ ∈ MaxSpec R2 such
that F (Bλ,−) ∼= Aμ,− . By 3.10, if M is not in O+

2 then M contains some Bλ,− as a subquotient. But
then F (M) contains some Aμ,− as a subquotient, so F (M) is not in O+

1 . Applying the same reasoning
to an inverse equivalence, we see that F restricts to an equivalence O+

2 → O+
1 . �

Recall that the classical GWAs are defined by data (C[h], τ , v) where τ (p(h)) = p(h +1). In an arti-
cle by Bavula and Jordan we find the following theorem [3, Theorem 3.8] concerning the isomorphism
problem.

Theorem. Let v1, v2 ∈ C[h]. Then T (v1) ∼= T (v2) if and only if there exist η,ν ∈ C with η �= 0 such that
v2(h) = ηv1(ν ± h).
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One consequence of Lemma 4.4 (or Hodges [6, Lemma 2.4]) is that T (C[h], σ ,h(h + 1)) and
T (C[h], σ ,h(h + 2)) are strongly graded Morita equivalent but by the theorem above they are not
isomorphic.

Now we are going to develop a technique to produce strongly graded Morita equivalences between
GWAs. First we define an algebra. Consider the oriented cycle Q of length n > 0 viewed as a quiver.
Let I be the vertex set with an action of Z generated by the automorphism which sends a vertex
to the next vertex along the cycle, written as i �→ i + 1. Let ai be the edge joining i to i + 1. Form
the double quiver Q̄ which is constructed from Q by adding, for every edge a ∈ Q , a dual edge a∗
with the opposite orientation. So a∗

i joins i + 1 to i. Let R be a finitely generated commutative C
algebra. We first form the path algebra R Q̄ . Let RI be the R algebra generated by central orthogonal
idempotents {1i}i∈I . Let R Ē be the free symmetric R bimodule generated by the edges of Q̄ . R Ē has
an R I bimodule structure determined by the condition that 1ie1 j is equal to e if source(e) = i and
tail(e) = j and is zero otherwise. The path algebra is defined by R Q̄ = T ⊗

RI RE and has an R module
basis identified with paths in Q̄ as follows. To a path e1e2 · · · en through Q̄ we associate e1 ⊗e2 ⊗· · ·⊗
en ∈ (RE)⊗n . Now let σ̂ be an automorphism of RI satisfying σ̂ (ei) = ei+1. Observe that σ̂ (

∑
i∈I riei) =∑

i∈I σi(ri)ei+1 for some collection {σi}i∈I of automorphisms of R . So we can also think of σ̂ by
assigning an automorphism σi of R to each edge ai of Q .

Definition. Given r = ∑
i∈I riei ∈ RI there is an algebra Π = Π(R, σ̂ , r) defined to be the quotient of

the path algebra by the relations

xai = aiσi(x), σi(x)a∗
i = a∗

i x, aia
∗
i = riei, a∗

i ai = σi(ri)ei+1, (6)

for any x ∈ R .

If n = 1 then Π = T (R, σ , r). For each i ∈ I , let Πi = eiΠei . Note that both Π and Πi naturally
contain R as a subring. Moreover the path algebra has a natural grading with deg(RI) = 0, deg(a) = 1

n ,

and deg(a∗) = − 1
n for a ∈ Q . The relations above are homogeneous and thus the grading descends to

a grading on Π and Πi .
We define an automorphism θi of R and an element vi by

θi = σi−1 ◦ · · · ◦ σi+1 ◦ σi, (7)

vi = ri · σ−1
i (ri+1) · (σ−1

i ◦ σ−1
i+1

)
(ri+2) · · · (σ−1

i ◦ · · · ◦ σ−1
i−2

)
(ri−1). (8)

Informally, one obtains θi by composing the automorphisms σ j in a circle starting at vertex i, and
similarly one obtains vi by pulling back r j by the composition of the σ ’s on the backwards arc from i
to j and multiplying all of these together. There is a natural map f : T (R, θi, vi) → Πi . We define the
map on generators by f (r) = rei for r ∈ R and f (t+) = ã := aiai+1 · · ·ai−1 and f (t−) = ã∗ := a∗

i−1 · · ·a∗
i .

It is easy to check that f (t+) and f (t−) satisfy the necessary relations. Therefore we get a map
f : T (R, θi, vi) → Πi which respects the natural grading on both sides.

Lemma 4.2. The natural map T (R, θi, vi) → Πi is an isomorphism.

Proof sketch. Since aa∗ and a∗a are in RI for any edge a, the ring Πi is generated over R by ã and ã∗ .
Therefore f is surjective. Note that f is injective if and only if R acts without torsion on Rãk and
R(ã∗)k for any k. To prove this, we consider the twisted path algebra of Q̄ . Let (R Ē)σ̂ be the RI
bimodule obtained from RE by redefining the left action by a · e = σ̂ (a)e. Then S = T ⊗

R I (R Ē)σ̂ is the
twisted path algebra. As a left (and right) R module S ∼= R ⊗C CQ̄ . This algebra is like the path algebra
except that instead of containing R as a central subalgebra, we have rai = aiσi(r) and σi(r)a∗

i = a∗
i r.

Note that S has a bigrading with deg(ei) = (0,0),deg(ai) = (1,0), and deg(a∗
i ) = (0,1). Set the total

degree equal to the sum of the bidegrees. Let xi = aia∗
i − riei and yi = a∗

i ai − σi(ri)ei+1. Then Π is a
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quotient of S by the ideal J = (xi, yi)i∈I . Now we will show that if sãk ∈ J then s = 0 and similarly
for (ã∗)k .

For paths p,q say that q < p if the total degree of p is greater than the total degree of q and p
is equal to a multiple of q modulo J . For q < p there are elements r(p,q) ∈ R such that p = r(p,q)q
modulo J and if q′ < q < p then r(p,q′) = r(p,q)r(q,q′). Note that if ei pe j = p then eiqe j = q for all
q < p. Now, write p = ∑

q<p sq p where
∑

sq = 1. Then
∑

q<p sq p = ∑
q<p sqr(p,q)q = sq0 r(p,q0)q0

if and only if for all q �= q0, sqr(p,q) = 0. Now r(p,q0) = r(p,q)r(q,q0) so sqr(p,q0) = 0 for all q0 <

q < p and sq0 = 1 − ∑
q0 �=q<p sq . So if q0 is minimal then sq0 r(p,q0) = (1 − ∑

q0 �=q<p sq)r(p,q0) =
r(p,q0). The minimal q0 for p of degree (nk + l, l) satisfying ei pei = p is ãk . This means that given
a path p of degree (nk + l, l) satisfying ei pei = p, there is a well defined element r(p,k) ∈ R such
that if p = sãk mod J then s = r(p,k). Suppose that sãk = 0 modulo J . Then we can write zero as
0 = ∑

p, j sp, j p such that for each path p,
∑

j sp, j = 0 and ei pei = p; and sãk = ∑
p, j sp, jr(p,k)ãk . But∑

p, j sp, jr(p,k) = 0 and therefore s = 0. We deal with (ã∗)k in a similar way. Hence no multiples of

ãk or (ã∗)k are zero in Π . So we see that f is injective as well. �
Example 4.3. Let α = ∑

i∈I αiei ∈ CI . Then the deformed preprojective algebra of type A denoted
Πα(Q ) is the quotient of the path algebra CQ by the relation

∑
i∈I [ai,a∗

i ] − α. Take R = C[h], σi to
be translation by αi+1, and r = h · 1 = ∑

i∈I hei . Then S = Π(R, σ̂ , r) is isomorphic to Πα(Q ). Indeed,
there is an obvious map f : CQ → S given by f (ei) = ei, f (ai) = ai and f (a∗

i ) = ai . The defining
relations (6) of S imply that f factors through the preprojective algebra. On the other hand, there is
a homomorphism g : S → Πα(Q ) defined by g(ei) = ei, g(h) = ∑

i∈I aia∗
i , g(ai) = ai , and g(a∗

i ) = a∗
i .

The reader should check that g respects the defining relations (6). Clearly f and g are mutually
inverse.

Let Πi j denote the (Πi,Π j) bimodule eiΠe j . Notice that Πi j ⊗Π j Π ji = eiΠe jΠei ⊂ Πi . It is
straightforward to compute that

αi j = aiai+1 · · ·a j−1a∗
j−1 · · ·a∗

i = ri · σ−1
i (ri+1) · (σ−1

i ◦ σ−1
i+1

)
(ri+2) · · · (σ−1

i ◦ · · · ◦ σ−1
j−2

)
(r j−1),

βi j = a∗
i−1a∗

i−2 · · ·a∗
j a j · · ·ai−1 = σi−1(ri−1) · (σi−1 ◦ σi−2)(ri−2) · · · (σi−1 ◦ · · · ◦ σ j)(r j)

and these elements belong to the ideal eiΠe jΠei ⊂ Πi . Furthermore, with the notation of (8), we see
that vi = αi jθ

−1
i (βi j). Set θi j = σi−1 ◦ · · · ◦ σ j+1 ◦ σ j and observe that θi j ◦ θ ji = θi and

θi(αi j) = θi j(β ji), βi j = θi j(α ji),

θ j(α ji) = θ ji(βi j), β ji = θ ji(αi j).

Lemma 4.4. Let (R, θ, v) be GWA data. Suppose that there is a factorization v = uw such that the pairs u, w
and u, θ(w) are relatively prime. Then T (R, θ, v) and T (R, θ, θ(w)u) are (graded) Morita equivalent.

Proof. Let Q be the oriented cycle of length 2. Set σ1 = θ and σ2 = id. Let r1 = u and r2 = θ(w) and
Π = Π(R, σ , r). Then T (R, θ, v) ∼= Π1 and T (R, θ, θ(w)u) ∼= Π2. Using the notation above, we have

α12 = u, β12 = θ(w),

α21 = θ(w), β21 = θ(u).

By hypothesis the pairs α12, β12 and α21, β21 are coprime and therefore Πi j ⊗ Π ji = Πi and Π ji ⊗
Πi j = Π j . This means that the functors Πi j ⊗ − and Π ji ⊗ − induce inverse equivalences. �
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Lemma 4.4 is a generalization of Theorem 2.3 and Lemma 2.4 in [6], where Hodges treats only the
classical case. In classical case we can get a more precise version of 4.1. First we need to define an
equivalence relation on polynomials in C[h]. Let q : C → C/Z be the quotient map.

Definition (Root type). Let Z f [h] ⊂ Z[h] be the subset of totally factorizable integer polynomials
Z f [h] = {u(h) = ∏

i(h − ni): ni ∈ Z}. Let u1 < u2 < · · · < un and v1 < v2 < · · · < vm and put
u(h) = ∏n

i=1 (h − ui)
di and v(h) = ∏m

i=1 (h − vi)
ei . We say that u and v have the same type u ∼ v

if n = m and di = ei for all i. This defines an equivalence relation on Z f [h]. Now let u, v be poly-
nomials in C[h] and write v(h) = ∏

vi(h − ai), u(h) = ∏
u j(h − b j) with vi, u j ∈ Z f [h] such that the

collections {ai} and {b j} are distinct modulo Z. We say that u and v have the same type, u ∼ v if
there is a bijection i �→ j(i) such that

• q(ai) = q(b j(i)) and
• ui ∼ v j(i) .

Loosely speaking, two polynomials have the same root type if they have the same classes of roots
modulo Z and if in each class of roots modulo Z considered under the natural ordering, the multiplic-
ities occur in the same order.

In order to prove Theorem 4.8 (below) we need to know more about Artinian modules over
classical GWAs. Let A be a classical GWA, with polynomial v ∈ C[h]. The connected components of
Spec C[h]/(v) are just the roots of v . Since (∗) is satisfied, we have projective generators Pν for O+
indexed by the roots of v and their simple quotients Sν . We also have the small Verma modules
V ν = A/A(t−, (h − ν)). By 2.1, V ν has a submodule for each integer k � 0 such that ν + k is a root
of v .

Definition. Say that a graded module M is ν-small if M has exactly one filtration M = F 0M ⊃ F 1M ⊃
· · · ⊃ F n−1M ⊃ F n M = 0 such that F i M/F i+1M ∼= V ν . We set �(M) = n, the length of the unique
filtration F • with V ν quotients.

Lemma 4.5. Define Mν := Pν/A P−1 . Then Mν is ν-small and �(Mν) = mult(ν, v). If M is ν-small then any
map Pν → M factors through a map Mν → M.

Proof. Write Pν = A(N)ν = A/A(tN−, (h − ν) f ) where f = mult(ν,
∏N−1

j=0 v(h − j)). Then Mν is the
quotient of Pν by the submodule of Pν generated by t− . The degree zero part is generated by tn+tn− =∏n−1

j=0 v(h − j) for 1 � n < N . So if we set e = mult(ν, v), then (Mν)i ∼= C[h]/(h − ν)e as a right C[h]
module for i � 0 and is zero otherwise. Let F • be the filtration F i Mν = Mν(h − ν)i , 0 � i � e. Clearly,
F i Mν/F i+1Mν = V ν . So if Mν is ν-small then �(Mν) = e = mult(ν, v).

Let Gi , 0 � i � n be a filtration such that Gi Mν/Gi+1Mν
∼= V ν . Suppose that Gi Mν = F i Mν so

that Gi Mν = Mν(h − ν)i and dimC(Gi Mν/Gi+1Mν)0 = 1. It follows that Gi+1Mν contains (h − ν)i+1.
But then Gi+1Mν contains F i+1Mν and since V ν is not a nontrivial subquotient of itself, Gi+1Mν =
F i+1Mν . Since G0Mν = F 0Mν = Mν we conclude that G = F and that Mν is ν-small of length
mult(ν, v).

Suppose M is ν-small and consider a map g : Pν → M . Since M is ν-small, Mi = 0 for i < 0.
Therefore P−1 is contained in the kernel of g so g descends to a map Mν → M . �
Lemma 4.6. Let ν be a root of v. If M is a ν-small module then �(M) is equal to the multiplicity of Sν as a
composition factor of M and �(M) � mult(ν, v).

Proof. Suppose that M is a ν-small module. Let Gi , 0 � i � N be the unique filtration from the defi-
nition of ν-small. For each i we have a surjection Gi � V ν . Since Pν is projective, the map Pν � V ν

lifts to a map Pν → Gi . Adding all these maps together we get a surjection P⊕N
ν � M . By the previous
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lemma this map factors through a map M⊕N
ν � M . Let F̃ i , 0 � i � mult(ν, v) be the filtration on M⊕N

ν

induced by the filtration F i on Mν . We have F̃ i/ F̃ i+1 ∼= (V ν)⊕N . Let F i also denote the image in M
of F̃ i . For each i we have F̃ i/ F̃ i+1 ∼= (V ν)⊕N � F i/F i+1. Let Ki be the kernel of this map. The simple
subquotients of V ν are naturally ordered S1, . . . , Sk such that if j � l then mult(S j, Ki) � mult(Sl, Ki).
Now if Ki contains Sk as a subquotient, it must contain a direct summand. Since the simple subquo-
tients of M all have the same multiplicity, �(M), we see that F i/F i+1 ∼= (V ν)⊕Ni . Of course if Ni > 1
for any i then M has infinitely many filtrations with successive quotients isomorphic to V ν . Therefore
Ni � 1 for all i, so e � N . �
Lemma 4.7. V ν is the only module M in O+ such that i) Sν is a quotient, ii) δ(M) is not bounded above, and
iii) whenever M ′ and M ′′ are submodules of M, either M ′ ⊂ M ′′ or M ′′ ⊂ M ′ .

Proof. Let M be a module satisfying conditions i)–iii). The surjection Pν � Sν lifts to a map Pν → M .
This map must be surjective by iii). Since the multiplicity of Sν as a subquotient is 1, the map Pν fac-
tors through a map V ν � M . Finally, no proper quotient of V ν satisfies condition ii), so V ν ∼= M . �
Theorem 4.8 (Classical case). T (v1) and T (v2) are strongly graded Morita equivalent if and only if for some b,
v1(h + b) and v2(h) have the same type.

Proof. (Only if.) Let T j = T (v j) and assume that F : T1-grMod → T2-grMod is a strongly graded
Morita equivalence. Theorem 4.1 uses F to construct a τ equivariant automorphism ψ such that ν
is an integer translate of a root of v1 if and only if ψ(ν) is an integer translate of a root of v2.
Let Ψ : T1 → T ′

1 = T (ψ(v1)) be the isomorphism constructed just before Theorem 4.1. We can view
any graded T ′

1 module M as a graded T1 module via Ψ and this operation gives a strongly graded
Morita equivalence Ψ∗ : T ′

1-grMod → T1-grMod. Now, F ◦ Ψ∗ is a strongly graded Morita equivalence,
but the equivariant automorphism associated to it is simply the identity. Now, since ψ commutes
with integer translation, it must be a translation itself. Therefore ψ(v1)(h) = v1(h + b) for some b.
Thus, we are reduced to the case when v1 and v2 have the same classes of roots modulo Z and
supp(F (M)) = supp(M).

Let ν i
w be the smallest root in each Z equivalence class of roots w ∈ C/Z of vi . According to

Theorem 3.8, we can form categories Bi
w := O+

w(T (vi)) for w ∈ C/Z (where Bi
w = 0 if w is not a class

of roots ofvi modulo Z) and we decompose O+(T (vi)) = ⊕
n∈Z, w∈C/Z Bi

w [n]. We will show that there

is an nw ∈ Z such that F restricts to an equivalence between B1
w and B2

w [nw ]. Indeed, B1
w is the thick

subcategory generated by the indecomposable projectives P w,k . Since P w,k is indecomposable, so is
F (P w,k) and supp(F (P w,k)) = supp(P w,k) so that F (P w,k) ∈ B2

w [nw ] for some nw . For each k,k′ ∈ χw

one of Homgr(P w,k, P w,k′) or Homgr(P w,k′ , P w,k) is nonzero and it follows that F (B1
w) ⊂ B2

w [nw ].
Parallel considerations for an inverse equivalence to F imply that F indeed restricts to an equivalence
between B1

w and B2
w [nw ].

According to 2.9, two nonisomorphic simple modules S, T are adjacent if and only if Ext1(S, T ) �= 0.
Therefore nonisomorphic simple modules S, T ∈ B1

w are adjacent if and only if F (S) and F (T ) are ad-
jacent. Now, the simple modules in B1

w are in bijection with the roots of v1 congruent to w modulo Z.
Let f be a bijection between the roots of v1 and v2 such that F (Sν) = S f (ν) . There is exactly one
isomorphism class of simple module S in B1

w such that δ(S) is unbounded above. As in the proof
of Theorem 4.1, F (S) is also simple and δ(F (S)) is unbounded above. Therefore f must identify the
largest root of v1 the equivalence class w with the largest root of v2 in w . Since Sν and Sν ′

are adja-
cent if and only if there is no root η of vi in the same equivalence class as ν , ν ′ such that ν < η < ν ′
or ν ′ < η < ν . This means that v1 and v2 have the same type if mult(ν, v1) = mult( f (ν), v2).

Observe that V νw +k[−k] is in B1
w for each k such that νw + k is a root of v1. By 4.6, mult(νw −

k, v1) is the maximum multiplicity of Sνw +k[−k] in any module M[−k] such that M is νw + k small.
Now, F (V ν) has S f (ν) as a quotient, δ(F (V ν)) is unbounded above, and it satisfies condition iii)
of Lemma 4.7. Therefore Lemma 4.7 implies that F (V ν) ∼= V f (ν) . So νw + k small modules go to
f (νw) + k small modules and the multiplicity of Sνw +k[−k] in M is the same as the multiplicity of
S f (ν)+k[−k] in F (M). We conclude that mult( f (νw) + k, v2) = mult(ν, v1).
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(If.) Assume that for some b, v1(h) and v2(h + b) have the same type. By the remarks at the
beginning of the section, T (v2) and T (v2(h + b)) are isomorphic as graded rings. So we can assume
that v1 and v2 have the same type. First suppose that ν is a root of v1 and η is a root of v2
with η − ν ∈ Z>0 and such that there is no root of v2 on the Z chain between ν and η − 1. Write
v2(h) = w(h)(h − η)e where w(η) �= 0. Then for each 0 � j � η − ν the pairs w(h), (h − η + j)e and
w(h), (h − η + j + 1)e are relatively prime. Hence the algebras T (w(h)(h − η + j)e) and T (w(h)(h −
η + j + 1)e) are graded Morita equivalent by 4.4. Now, replace v2(h) by v2(h + N) where N is a large
integer such that v2(h + N) and v1 have no common roots. We will “move” the roots of v2 to the
roots of v1. Using the previous argument we can move the smallest root of v2 to the smallest root of
v1 in the same Z and then the next smallest and so on. �

Let R and σ be given. Suppose that there is an automorphism ψ ∈ Aut(R) such that σψσ = ψ .
Then there is an isomorphism Ψ : T (R, σ , v) → T (R, σ ,ψ(σ (v)) which extends ψ and satisfies
Ψ (t+) = t− and Ψ (t−) = t+ . Evidently this isomorphism is anti-graded in the sense that deg(x) +
deg(Ψ (x)) = 0. For a Z graded ring T let ‘T be the graded ring satisfying ‘Tn = T−n . So Ψ defines an
isomorphism between T (R, σ , v) and ‘T (R, σ ,ψ(σ (v))). If we consider strongly anti-graded equiva-
lences, i.e. strongly graded Morita equivalences between T (R, σ , v) and ‘T (S, θ, u) then we can still
prove a version of 4.1 where the equivariant isomorphism is replaced by an anti-equivariant isomor-
phism.

According to [3] there are automorphisms of GWAs that are not graded or anti graded and there-
fore there are Morita equivalences that are not strongly graded or strongly anti-graded. In these cases,
however, the ordinary Morita equivalences can be replaced by strongly graded or strongly anti-graded
ones.

Question. If two classical GWAs are Morita equivalent, are they then also strongly graded or strongly anti-
graded Morita equivalent?
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