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In this paper we construct an algebra associated to a cubic curve C
defined over a field F of characteristic not two or three. We prove
that this algebra is an Azumaya algebra of rank nine. Its center is
the affine coordinate ring of an elliptic curve, the Jacobian of the
cubic curve C . The induced function from the group of F -rational
points on the Jacobian into the Brauer group of F is a group
homomorphism with image precisely the relative Brauer group of
classes of central simple F -algebras split by the function field of C .
We also prove that this algebra is split if and only if the cubic
curve C has an F -rational point. These results generalize Haile’s
work on the Clifford algebra of a binary cubic form.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let f be a form of degree d in n indeterminates over a field F , and let F {x1, . . . , xn} be the free
associative F -algebra in n indeterminates. The Clifford algebra A f (usually denoted by C f ) of f is the
F -algebra A f = F {x1, . . . , xn}/I , where I is the ideal generated by the relations defined by the formal
identity (α1x1 + · · · + αnxn)d = f (α1, . . . ,αn) in the αi . If d = 2, this is the classical Clifford algebra
of a quadratic form. If d > 2, this is the generalized Clifford algebra and has been studied by various
authors, including Heerema [10], Roby [15] and Childs [2]. Revoy [14], using results of Roby [15],
exhibited an explicit F -basis for the Clifford algebra of an arbitrary form. Using this basis it is easy
to see that if d > 3 or d = 3 and n > 2, then the Clifford algebra contains a free F -algebra on two
indeterminates. In particular, the algebra is not finitely generated over its center and hence is not
Azumaya.

Haile [6] proved that if the characteristic of F is not two or three and f is a non-degenerate
binary cubic form (n = 2, d = 3), then the Clifford algebra of f is an Azumaya algebra of rank 9
over its center, which, in turn, is the affine coordinate ring of the elliptic curve E0 given by the
Weierstrass equation s2 = r3 −27D f , where D f is the discriminant of f . The elliptic curve E0 is in fact
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the Jacobian of the cubic curve C0 given by the equation z3 − f (x, y) = 0. Kulkarni [11] generalized
this result to binary forms f (n = 2) of higher degree d > 3, describing the center of the Azumaya
algebra Ã f = A f /(

⋂
kerη), where the intersection is taken over all the kernels of representations of

dimension d, as the coordinate ring of an affine open set in the Jacobian of the projective curve C̃0
given by the equation zd − f (x, y) = 0. His work is in part based on Van den Burgh’s results [17]
which connect the Clifford algebra of a binary form f of degree d to certain vector bundles on the
projective curve C̃0. Up to this point, these all have the type of noncommutative linearization, in the
language of Van den Bergh, of a homogeneous form. In this paper, we present a construction not of
this type.

In the series of papers [6–9] on the Clifford algebra A f of a binary cubic from f , Haile also proved
that there is an induced group homomorphism from the group E0(F ) of F -rational points on E0 into
the Brauer group Br(F ) of F [6, Theorem 1.3′] with image the relative Brauer group Br(F (C0)/F ),
where F (C0) denotes the function field of the curve C0 [7, Theorem 1.2, Corollary 2.2]. Finally, he
proved in [9] that the algebra A f is split if and only if the set C0(F ) of F -rational points on C0 is
nonempty. In view of the work of Haile, the Clifford algebra of the binary cubic form f reflects the
nature of the cubic curve C0. It is thus natural to ask whether there are interesting algebras associated
to other cubic curves. We now generalize Haile’s work to the case of certain ternary cubic forms.

From now on we assume that the characteristic of F is not two or three. Let f (x, y) = ax3 +
3bx2 y + 3cxy2 + dy3 be a binary cubic form over F . Let C = z3 − exyz − f (x, y) be a ternary cubic
form over F . We also denote by C the nonsingular cubic curve given by the equation

z3 − exyz − f (x, y) = 0.

We will construct an F -algebra AC associated to the cubic curve C . More precisely, the algebra AC
depends on the specific equation of the curve C given by the form f and the parameter e as above.
We call AC the (non-usual) Clifford algebra of the ternary cubic form C . Note that AC is defined
differently from the usual Clifford algebra of the form C ; however, if e = 0, AC is the usual Clifford
algebra A f of f , the case studied by Haile. We show that if the ternary cubic form C is irreducible
over the algebraic closure F̄ of F , then AC is an Azumaya algebra of rank 9 (Theorem 2.15). Its
center is isomorphic as an F -algebra to the affine coordinate ring of an elliptic curve E , namely
the Jacobian of the curve C (Theorem 3.2). The simple homomorphic images of AC are in one-to-
one correspondence with the Galois orbits on the affine elliptic curve Ea (Corollary 3.4). The induced
function Φ from the group E(F ) of F -rational points on E into the Brauer group Br(F ) of F is a group
homomorphism (Theorem 4.1) with image the relative Brauer group Br(F (C)/F ) (Proposition 4.5). The
algebra AC is split if and only if the cubic curve C has an F -rational point (Theorem 4.6). Finally, for
the diagonal case, the case when b = 0 = c, we present an explicit expression for the function Φ

(Corollary 5.5).
We now outline the structure of this paper. In Section 2, we define the algebra AC and then prove

it is Azumaya. The center of AC is determined in Section 3. The connection between the algebra AC
and the curve C is presented in Section 4. Finally, in Section 5, we discuss the diagonal case.

2. The algebra AC

As in the introduction, let F be a field of characteristic not two or three, and let

f (x, y) = ax3 + 3bx2 y + 3cxy2 + dy3

be a binary cubic form over F with discriminant D f . Let C denote the ternary cubic form over F

C = z3 − exyz − f (x, y).

We define an algebra AC to be the free associative F -algebra on the two indeterminates x, y subject
to the relations deriving from the following formal identity in α and β
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(αx + β y)3 − eαβ(αx + β y) − f (α,β) = 0.

Thus

AC = F {x, y}/I,

where I is the ideal generated by the elements

x3 − a,

x2 y + xyx + yx2 − ex − 3b,

xy2 + yxy + y2x − ey − 3c,

y3 − d.

Notice that when e = 0 in the definition of AC , it is the usual Clifford algebra A f of the binary cubic
form f , defined as in the introduction. Abusing terminology, we call AC the Clifford algebra of the
ternary cubic form C .

We again use x and y to denote the images of x and y in AC , respectively. Let

δ =
[
(xy)2 − y2x2 − exy + e2

3

]
+

[
(yx)2 − x2 y2 − eyx + e2

3

]
.

Lemma 2.1. The element δ is in the center Z(AC ) of AC .

Proof. Let δ1 = (xy)2 − y2x2 − exy + e2/3 and δ2 = (yx)2 − x2 y2 − eyx + e2/3. It is easy to see that
δ1x = xδ2 and δ2 y = yδ1. Also,

δ2x = (yxy − ey)x2 − x2 y2x + e2

3
x = (

3c − xy2 − y2x
)
x2 − x2 y2x + e2

3
x

= x2(3c − xy2 − y2x
) − xy2x2 + e2

3
x = x2(yxy − ey) − xy2x2 + e2

3
x = xδ1;

similarly, δ1 y = yδ2. Thus δ = δ1 + δ2 commutes with x and y. �
Lemma 2.2. The algebra AC is generated as a module over the subring F [δ] of the center by the following 18
elements:

1,

x, y,

xy, yx, x2, y2,

x2 y, xy2, y2x, yx2,

x2 y2, xyxy, xyx2, y2xy,

x2 y2x, xyxy2,

x2 y2xy.
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Proof. We observe that all the monomials of degree less than 3 are on the list. Given the monomi-
als s of degree k on the list, for each 2 � k � 5, we try to express the monomials of the form sx or
sy as elements of the F [δ]-submodule generated by elements listed above of degree at most k + 1.
In addition, we also need to check if x2 y2xyx and x2 y2xy2 are elements of the F [δ]-submodule gen-
erated by these 18 elements. These are straightforward calculations. We will only verify this when
k = 5, assuming that it has been proved true for k � 4. We need to consider x2 y2x2, x2 y2xy, xyxy2x,
xyxy3. But x2 y2xy is on the list and xyxy3 = dxyx. Moreover,

x2 y2x2 = x2
(

(xy)2 + (yx)2 − x2 y2 − exy − eyx + 2e2

3
− δ

)

= ayxy + x2 yxyx − axy2 − eay − ex2 yx +
(

2e2

3
− δ

)
x2.

Since

x2 yxyx = x2(3c + ey − xy2 − y2x
)
x = 3ac + ex2 yx − ay2x − x2 y2x2,

we get

x2 y2x2 = 3ac +
(

e2

3
− δ

2

)
x2 − axy2 − ay2x.

Similarly,

xyxy2x = (9bc − ad) + 3ecx +
(

e2

3
− δ

2

)
xy − 3bxy2 − 3cyx2 − x2 y2xy. �

Let F̄ be a fixed algebraic closure of F and let ω ∈ F̄ be a fixed primitive cube root of unity.
Throughout this paper, let η = 2ω+1 ∈ F̄ . To study the algebra AC , we first assume that F contains ω.
Let

z = yx − ωxy − ω2ηe

3
and z̄ = yx − ω2xy + ωηe

3
.

In general, zz̄ �= z̄z. In fact,

zz̄ − z̄z = η(3by − 3cx).

Lemma 2.3. The elements z3 and z̄3 are in the center Z(AC ). In fact, we have the following identities:

xz = ωzx − 3bω, xz̄ = ω2 z̄x − 3bω2,

yz = ω2zy + 3c, yz̄ = ωz̄ y + 3c.

Proof. For the first equation,

xz − ωzx = x

(
yx − ωxy − ω2ηe

3

)
− ω

(
yx − ωxy − ω2ηe

3

)
x

= −ω
(
xyx + x2 y + yx2) + (1 − ω2)ηe

x

3
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= −ω(ex + 3b) + ωex

= −3bω.

It follows that xz2 = ω2z2x + 3bz and xz3 = z3x. The others are similar. �
Let γ ∈ F̄ be a fixed cube root of a. Let F (γ )(T )[R] be the polynomial ring in the indeterminate R

over the field F (γ )(T ) where T is an indeterminate. Consider the polynomial

hT (R) = R3 +
(

ω

γ
A + be

a

)
1

T
R2 − ωe

γ
T R +

(
ω

γ
A − ωbe

a

)(
ω

γ
A − ω2be

a

)
1

3T 2
R + T 3 + B,

where

A = 3c − 3b2

a
and B = −ωe

3γ

(
ω

γ
A + be

a

)
+

(
e3

27a
+ b3

a2
− d + b

a
A

)
.

Let K denote the ring

K = F (γ )(T )[R]/〈hT (R)
〉
.

Remark 2.4. When e �= 0, it is easy to prove by contradiction that the polynomial hT (R) is irreducible
over the field F (γ )(T ). When e = 0, hT (R) is irreducible over F (γ )(T ) if D f �= 0.

The following theorem gives an explicit model for AC .

Theorem 2.5. Let Ã be the F -subalgebra of M3(K ) generated by the matrices

x̃ =
⎛
⎝

γ 0 0

0 ωγ 0

0 0 ω2γ

⎞
⎠

and

ỹ =

⎛
⎜⎜⎜⎝

e
3γ + b

γ 2 R T

T eω2

3γ + ωb
γ 2 ωR + η(ωA

γ − ω2be
a ) 1

3T

ω2 R − η(ωA
γ − ωbe

a ) 1
3T T eω

3γ + ω2b
γ 2

⎞
⎟⎟⎟⎠ .

There is an F -algebra isomorphism from AC onto Ã sending x to x̃ and y to ỹ.

We will prove Theorem 2.5 as a result of a series of lemmas.

Lemma 2.6. There is an F -algebra homomorphism from AC onto Ã sending x to x̃ and y to ỹ.

Proof. One can check that the ideal I is in the kernel of the homomorphism from the free associative
F -algebra F {x, y} onto Ã sending x to x̃ and y to ỹ. �

Let ϕ : u �→ ũ denote this F -algebra homomorphism.
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Lemma 2.7. The element δ̃ is transcendental over F .

Proof. By direct computation,

δ̃ = 2ωγ 2
(

3RT + ωA

γ
+ be

a

)
. (1)

Thus δ̃ is transcendental over F . �
Lemma 2.8. The field F (δ̃, T 3) is a quadratic extension of F (δ̃).

Proof. Since T 6 − (R3 + T 3)T 3 + (RT )3 = 0, it follows from the choice of hT (R) that T 3 satisfies the
following polynomial in X :

X2 +
(

B − ωe

γ
RT

)
X +

(
ω

γ
A + be

a

)
(RT )2 +

(
ω

γ
A − ωbe

a

)(
ω

γ
A − ω2be

a

)
RT

3
+ (RT )3,

which, in turn by Eq. (1), equals

X2 +
(

e3

27a
+ b3

a2
− d + b

a
A − e

6a
δ̃

)
X + 1

216a2
δ̃3 − be A

18a2
δ̃ − 1

27a

(
A3 + b3e3

a2

)
.

Thus the result follows. �
Throughout this paper, if ω ∈ F , let (α,β)F denote the 9-dimensional symbol algebra over F with

generators u, v and relations u3 = α, v3 = β , and vu = ωuv .

Lemma 2.9. The algebra Ã is a free F [δ̃]-module of dimension 18.

Proof. Let ξ = z − ω2η(b/a)x2. Then

xξ = ωξx and ξ3 = z3 + 3η
b3

a
∈ Z(AC ).

A direct computation shows that

z̃3 = 3η

(
aT 3 − b3

a

)
, so ξ̃3 = 3ηaT 3. (2)

Thus the F (δ̃, T 3)-subalgebra of Ã F (δ̃, T 3) generated by x̃ and ξ̃ is the symbol algebra
(3ηaT 3,a)F (δ̃,T 3) . It follows that

dimF (δ̃,T 3) Ã F
(
δ̃, T 3) � 9

and hence by Lemma 2.8,

dimF (δ̃) Ã F
(
δ̃, T 3) = dimF (δ̃,T 3) Ã F

(
δ̃, T 3) · dimF (δ̃) F

(
δ̃, T 3) � 18.
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But by Eq. (2) and Lemma 2.8 again, Ã F (δ̃, T 3) = Ã F (δ̃). Moreover, by Lemma 2.2, Ã as an F [δ̃]-
module is generated by 18 elements. Therefore these generators, regarded as elements in Ã F (δ̃), form
an F (δ̃)-basis, and hence the result follows. �

From the proof of Lemma 2.9, we conclude the following result.

Lemma 2.10. The F (δ̃, T 3)-subalgebra Ã F (δ̃, T 3) of M3(K ) is the 9-dimensional symbol algebra
(3ηaT 3,a)F (δ̃,T 3) with generators ξ̃ and x̃. In particular, Z( Ã) ⊆ F (δ̃, ξ̃3).

We now can prove Theorem 2.5.

Proof of Theorem 2.5. Since by Lemma 2.2 AC is an F [δ]-module generated by 18 generators, it then
follows from Lemma 2.9 that the homomorphism ϕ from AC onto Ã sends these generators to an
F [δ̃]-basis of Ã. But by Lemma 2.7, the restriction of ϕ to F [δ] is an isomorphism onto F [δ̃]. Hence
the homomorphism ϕ itself is injective, and we are done. �
Remark 2.11. It follows from Theorem 2.5 and Lemma 2.10 that Z(AC ) ⊆ F (δ, ξ3).

Here let F be an arbitrary field, and let A be an F -algebra. An l-dimensional representation of A is
an F -algebra homomorphism φ : A → Ml(L), where L is an extension field of F . A representation is
algebraic if L is an algebraic extension of F . Now as usual again, let F be a field of characteristic of
not 2 or 3.

Example 2.12. The homomorphism ϕ gives rise to a 3-dimensional non-algebraic representation of
the F -algebra AC when e �= 0.

Proposition 2.13. Suppose the form C is irreducible over F̄ . Then the dimension of every algebraic representa-
tion of the Clifford algebra AC is at least 3.

Proof. Let φ : AC → Ml(L) be an arbitrary algebraic representation of AC , and let X, Y be the images
of x, y, respectively. Let α,β be two indeterminates over L. Then (αX + βY )3 − eαβ(αX + βY ) =
f (α,β). Hence αX + βY ∈ Ml(L(α,β)) satisfies the polynomial

h(t) = t3 − eαβt − f (α,β) ∈ L(α,β)[t],

which is irreducible over L(α,β), for otherwise, h(t) as a polynomial in L[α,β, t] would be reducible
over L, a contradiction to the irreducibility of C over F̄ . Hence h(t) is the minimal polynomial of
αX + βY over L(α,β), and so l is at least 3. �
Corollary 2.14. Every simple homomorphic image of the Clifford algebra AC has degree at least 3.

Proof. Let R be an arbitrary simple homomorphic image of AC , and let Z(R) denote the center of R .
It is well known that there exists a finite field extension L of Z(R) which splits R; that is, R ⊗Z(R) L ∼=
Ml(L), where l = deg R . Hence we obtain a representation of AC into Ml(L). By Proposition 2.13 it
suffices to prove that Z(R) is an algebraic extension of F . Recall that AC is finitely generated as a
module over F [δ]. Hence R , isomorphic to AC /m for some maximal ideal m of AC , is also finitely
generated as a module over F [δ]/(F [δ] ∩m). Thus R , and hence Z(R), is integral over F [δ]/(F [δ] ∩m).
Since F [δ] ∩ m is a prime ideal of F [δ], and so it is generated by an irreducible polynomial over F , it
follows that F [δ]/(F [δ] ∩ m) is a finite field extension of F . As a result, Z(R) is algebraic over F . �

We are now ready to prove the main theorem.
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Theorem 2.15. Suppose the form C is irreducible over F̄ . Then the Clifford algebra AC of the ternary cubic
form C is an Azumaya algebra of rank 9 over its center.

Proof. We first assume that ω ∈ F . Then by the Artin–Procesi theorem on polynomial identities (cf.
Rowen [16, Theorem 6.1.35]), it follows from Theorem 2.5 and Corollary 2.14 that AC is an Azumaya
algebra of rank 9. Now let F be an arbitrary field of characteristic not 2 or 3. Notice that the construc-
tion of the Clifford algebra AC is functorial in F ; that is, for any field extension L/F , AL

C = AC ⊗F L is
the Clifford algebra of the form C regarded as over L. If L = F [ω], we have seen that AL

C is an Azu-
maya algebra of rank 9. As a result, AC is an Azumaya algebra of rank 9 (cf. DeMeyer and Ingraham [4,
p. 45]). �
Remark 2.16. When e = 0, it is easily checked that C is irreducible over F̄ if and only if D f �= 0, the
assumption used in Haile [6].

Corollary 2.17. Each simple homomorphic image of the Clifford algebra AC is a central simple algebra of de-
gree 3.

We now prove that the irreducibility over F̄ of C = z3 − exyz − f (x, y) is a necessary condition for
the Clifford algebra AC to be Azumaya.

Proposition 2.18. If the Clifford algebra AC of the ternary cubic form C is Azumaya, then the form C is irre-
ducible over F̄ .

Proof. Suppose C = z3 − exyz − f (x, y) ∈ F [x, y, z] is reducible over F̄ . Then there exist u, v, w ∈
F̄ [x, y] such that

z3 − exyz − f (x, y) = (
z + u(x, y)

)(
z2 + v(x, y)z + w(x, y)

)
.

Hence f (x, y) = −(u(x, y))3 +exyu(x, y) and so u(x, y) = μx+ν y for some μ,ν ∈ F̄ . Thus there exists
a surjective F -algebra homomorphism from AC onto F (μ,ν) sending x to −μ and y to −ν . Let K be
the ring defined as right before Remark 2.4 with F replaced by F (ω). Let x̃ and ỹ be defined as in the
statement of Theorem 2.5, and let Ã be the F -subalgebra of M3(K ) generated by x̃ and ỹ. There is
an F -algebra homomorphism from AC onto Ã sending x to x̃ and y to ỹ. Since Ã is noncommutative
and hence so is AC , it follows that AC is not Azumaya, for otherwise, rankZ(AC ) AC > 1 would force
rankZ(R) R > 1 for any simple homomorphic image R , contradicting the case when R = F (μ,ν). �
Corollary 2.19. The Clifford algebra AC of the ternary cubic form C is Azumaya if and only if the form C is
irreducible over F̄ .

3. The center of AC

From now on, we assume that the form C = z3 − exyz − f (x, y) ∈ F [x, y, z] is irreducible over F̄ .
Let C also denote the nonsingular cubic curve given by the equation

z3 − exyz − f (x, y) = 0.

In this section we determine the center Z(AC ) of AC .
Throughout this section, let

A = 3c − 3b2

a
and D = e3

27a
+ b3

a2
− d + b

a
A.
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Lemma 3.1. Assume that F contains ω. Let ξ̄ = z̄ + ωη(b/a)x2 , where z̄ is defined as right before Lemma 2.3.
Then ξ̄x = ωxξ̄ and

(
ξ̄3 + ηe

2

δ

2
− 3

2
ηaD

)2

=
(

δ

2

)3

− 3e2

4

(
δ

2

)2

+
(

9e

2
aD − 3eb A

)
δ

2
− 27

4
a2 D2 − a

(
A3 + b3e3

a2

)
.

Proof. The first equation is straightforward. Consider ˜̄ξ , the homomorphic image of ξ̄ under the iso-
morphism ϕ defined as right before Lemma 2.7. A direct computation shows that

˜̄ξ3 = −3ηa

[
R3 +

(
ω

γ
A + be

a

)
R2

T
+

(
ω

γ
A − ωbe

a

)(
ω

γ
A − ω2be

a

)
R

3T 2

]
. (3)

Then by the choice of hT (R), defined as right before Remark 2.4, and Eq. (1),

˜̄ξ3 = −3ηa

[
ωe

γ
RT + ωe

3γ

(
ω

γ
A + be

a

)
− D − T 3

]

= −ηe
δ̃

2
+ 3ηaD + 3ηaT 3. (4)

Combining Eqs. (3) and (4), we have

˜̄ξ3 ˜̄ξ3 =
[
−ηe

δ̃

2
+ 3ηaD

]
˜̄ξ3

+ 27a2
[
(RT )3 +

(
ω

γ
A + be

a

)
(RT )2 +

(
ω

γ
A − ωbe

a

)(
ω

γ
A − ω2be

a

)
RT

3

]
. (5)

But by Eq. (1) again,

δ̃3 = 216a2
[
(RT )3 +

(
ωA

γ
+ be

a

)
(RT )2 +

(
ωA

γ
+ be

a

)2( RT

3

)
+

(
ωA

3γ
+ be

3a

)3]
. (6)

Therefore, it follows from Eqs. (1), (5) and (6) that

(
˜̄ξ3 + ηe

2

δ̃

2
− 3

2
ηaD

)2

= 27a2
[

δ̃3

216a2
−

(
ωA

3γ
+ be

3a

)3

−
(

ωA

γ

)(
be

a

)(
RT

3

)]
+

(
ηe

2

δ̃

2
− 3

2
ηaD

)2

=
(

δ̃

2

)3

− 3e2

4

(
δ̃

2

)2

+
(

9e

2
aD − 3eb A

)
δ̃

2
− 27

4
a2 D2 − a

(
A3 + b3e3

a2

)
. �

Theorem 3.2. The center of AC is isomorphic as an F -algebra to the affine coordinate ring of the elliptic curve E
given by the Weierstrass equation

Ea: s2 = r3 − 3

4
e2r2 +

(
9e

2
aD − 3eb A

)
r − 27

4
a2 D2 − a

(
A3 + b3e3

a2

)
.
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The elliptic curve E is the Jacobian of the nonsingular cubic curve C given by the equation

z3 − exyz − f (x, y) = 0.

Proof. Assume first that ω ∈ F . Let ξ̄ be defined as in the statement of Lemma 3.1. Then by Theo-
rem 2.5 and Eqs. (2) and (4), ξ̄3 = −ηeδ/2 + 3ηaD + ξ3 ∈ Z(AC ), and so by Remark 2.11, Z(AC ) ⊂
F (δ, ξ̄3). Let F [Ea] denote the affine coordinate ring of the elliptic curve E . Then F [Ea] = F [r, s] is a
Dedekind domain, where r and s are the Weierstrass coordinate functions on E . Let F [δ, ξ̄3] be the
F -subalgebra of AC generated by δ and ξ̄3. Then

F
[
δ, ξ̄3] ⊂ Z(AC ) ⊂ F

(
δ, ξ̄3).

By Lemma 3.1, we have a surjective F -algebra homomorphism from F [Ea] onto F [δ, ξ̄3] sending

r �→ δ

2
,

s �→ ξ̄3 + ηe

2

δ

2
− 3

2
ηaD.

Since every nonzero prime ideal of F [Ea] is maximal and F [δ, ξ̄3] is not a field, this homomorphism
must be an isomorphism. In particular, F [δ, ξ̄3] is integrally closed. But it follows from Lemma 2.2
that AC , and hence its center Z(AC ), is integral over F [δ, ξ̄3]. As a result, Z(AC ) = F [δ, ξ̄3] ∼= F [Ea].

Suppose now that ω /∈ F . Let L = F [ω]. Let σ be an F -automorphism of L sending ω to ω2, so
that Gal(L/F ) = 〈σ 〉. Then AC may be identified as the algebra of fixed elements in AC ⊗F L under
the automorphism 1 ⊗ σ . In particular,

Z(AC ) = Z(AC ⊗F L)1⊗σ = L
[
δ, ξ̄3]1⊗σ

.

But it is easy to see that δ and ξ̄3 + (ηe/2)(δ/2) − (3/2)ηaD are fixed by 1 ⊗ σ . Hence Z(AC ) =
F [δ, ξ̄3 + (ηe/2)(δ/2)− (3/2)ηaD], which is isomorphic as an F -algebra to F [Ea] by an argument like
the above.

The explicit Weierstrass equation of the Jacobian of a nonsingular plane cubic curve can be found
in An et al. [1, Section 3.2, (3.8)]. Their computations show that the elliptic curve E is the Jacobian of
the curve C . �
Corollary 3.3. Let F (E) be the function field of the elliptic curve E, and let ΣC = AC ⊗F [Ea] F (E). Then ΣC

is an F (E)-central simple algebra of degree 3. Furthermore, if ω ∈ F , then ΣC is the symbol algebra (a, s −
(ηe/2)r + (3/2)ηaD)F (r,s) with generators x and ξ̄ , where r and s are the Weierstrass coordinate functions
on E.

I am indebted to Prof. Adrian Wadsworth for pointing out the following fact: Let R be an integrally
closed integral domain with quotient field K and let L be a normal field extension of K , possibly
of infinite degree. Let G be the group of K -automorphisms of L and let T be the integral closure
of R in L. Then every automorphism in G maps T to itself and permutes the maximal ideals of T .
Moreover, G acts transitively on the set of maximal ideals of T contracting a given maximal ideal of R
(cf. [13, Theorem 9.3(iii), p. 66]). Therefore, the orbits under the action of G on the maximal ideals
of T are in one-to-one correspondence with the maximal ideals of R . Applying this to our case with
R = F [Ea] and T = F̄ [Ea], we derive the following corollary:

Corollary 3.4. There is a one-to-one correspondence between the simple homomorphic images of AC and the
Galois orbits of the set of points in F̄ × F̄ on the affine elliptic curve
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Ea: s2 = r3 − 3

4
e2r2 +

(
9e

2
aD − 3eb A

)
r − 27

4
a2 D2 − a

(
A3 + b3e3

a2

)
.

The correspondence is given as follows: Each Galois orbit containing the point p = (r0, s0) on the affine
curve Ea determines a maximal ideal mp in the center of AC , and the algebra AC /mp AC with center F (r0, s0)

is then the corresponding central simple algebra of degree 3.

Proof. Since AC is Azumaya, its simple homomorphic images are in one-to-one correspondence with
maximal ideals of its center F [Ea]. Thus the result follows. �
4. AC and the curve C

Define a function Φ from the group E(F ) of F -rational points on the elliptic curve E , the Jacobian
of the cubic curve C , into the Brauer group of F by sending the point O at infinity to 1 and sending
p ∈ Ea(F ) to the Brauer class of the specialization of AC at the point p, AC /mp AC , where mp is the
maximal ideal of Z(AC ) determined by p as described in Corollary 3.4. We shall prove that Φ is a
group homomorphism.

Theorem 4.1. The function Φ : E(F ) → Br(F ), sending

p ∈ Ea(F ) �→ [AC /mp AC ],
the point O at infinity �→ 1,

is a group homomorphism.

It was first proved true in [12] for the diagonal case (when b = 0 = c) by direct computation.
Here we apply a result of Ciperiani and Krashen [3, Theorem 2.3.1] to give a proof for any case. We
first present a brief description of their result: Let k be a field with k̄ a fixed separable closure of k.
Let X be a smooth projective curve over k, and let P ic X be the Picard variety of X . If x ∈ X(k), let
Br(X, x) denote the subgroup of the Brauer group Br(X) consisting of classes whose specialization at
x is trivial. Then there is a natural isomorphism A : H1(k, P ic X (k̄)) → Br(X, x), and in the case that
X = E is an elliptic curve, and x = O E is the origin of the curve, the map

H1(k, E (k̄)
) × E (k) → Br(k),

(α, p) �→ A(α)|p

coincides with the Tate paring. If we can extend the Clifford algebra AC to a Brauer class in Br(E) and
then show that the class has trivial specialization at the point O at infinity, then by this result, the
specialization map of the class, exactly the function Φ , is a group homomorphism.

We now proceed to prove that the Clifford algebra AC over the affine part Ea of the elliptic curve E
can be extended to a Brauer class in Br(E). I am indebted to Prof. Daniel Krashen for suggesting the
approach given as below for the following more general result.

Proposition 4.2. Suppose that X is a smooth projective curve over the field k. Let α ∈ Br(k(X)), where k(X)

is the function field of the curve X. If α is unramified except possibly at a single k-rational point x, then α is
unramified.
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To prove this proposition, we begin with some background. Let K = k(X), k̄ be a fixed separable
closure of k, K̄ = k̄(X) = k̄ ⊗k k(X) and G = Gal(k̄/k). Recall that for a k-rational point P on X , the
usual ramification map ramP : Br(X) → H1(G,Q/Z) is defined via the composition

H2
(
G, K̄ ×) valP

H2(G,Z)
∼=

H1(G,Q/Z),

where valP is induced from the valuation on K̄ × corresponding to the point P , and the isomorphism
is induced from the short exact sequence

0 → Z → Q → Q/Z → 0. (7)

In the case when we have a point P on X which is closed but not k-rational; that is, the residue field
of P , κ(P ), is not equal to k, let H P = Gal(k̄/κ(P )). We define the ramification map at P , ramP , via
the composition

H2
(
G, K̄ ×) res

H2
(

H P , K̄ ×) val P̃
H2(H P ,Z)

∼=
H1(H P ,Q/Z),

where P̃ can be chosen to be any κ(P )-point lying over P .
On the other hand, for each i � 0, the divisor map induces maps

Hi
(
G, K̄ ×) div

Hi
(
G,Div(X)

)
.

Note that as G-modules, we have

Div(X) =
⊕
P∈X0

( ⊕
Q �→P

Z

)
,

where X0 denotes the set of closed points on X , and the notation Q �→ P stands for the closed
points Q on X lying over P . Thus for each i � 0,

Hi(G,Div(X)
) =

⊕
P∈X0

Hi
(

G,
⊕

Q �→P

Z

)
, (8)

for cohomology commutes with direct sums. Also,

MG
H P

(Z) = HomH P

(
Z[G],Z

) ∼=
⊕

Q �→P

Z (9)

as G-modules. But Shapiro’s lemma states that for each i � 0,

Hi(G, MG
H P

(Z)
) ∼= Hi(H P ,Z). (10)

Thus by combining Eqs. (8), (9) and (10), we may rewrite each div map as

Hi(G, K̄ ×) →
⊕
P∈X

Hi(H P ,Z).
0
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But Hi(H P ,Z) ∼= Hi−1(H P ,Q/Z) for each i � 2, induced again from the short exact sequence in (7).
Therefore we get, for each i � 2 and P ∈ X0, a map

rP : Hi(G, K̄ ×) → Hi−1(H P ,Q/Z),

called the residue map associated with P (cf. Gille and Szamuely [5, Section 6.4]).
We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Consider the corestriction maps

CorP : Hi−1(H P ,Q/Z) → Hi−1(G,Q/Z)

for each closed point P . By [5, Theorem 6.4.4], we have complexes for all i � 1

Hi
(
G, K̄ ×) ∑

rP ⊕
P∈X0

Hi−1(H P ,Q/Z)

∑
CorP

Hi−1(G,Q/Z).

One can show that when i = 2, the residue map rP is precisely the ramification map ramP for each
closed point P . Thus the composition

H2
(
G, K̄ ×) ∑

ramP ⊕
P∈X0

H1(H P ,Q/Z)

∑
CorP

H1(G,Q/Z)

is zero. Suppose that the class α is unramified everywhere possibly except at the k-rational point x.
Since Corx is simply the identity map, it then follows that α must also be unramified at x. �
Corollary 4.3. The Brauer class of AC in Br(F (E)) is unramified everywhere. In particular, the Clifford alge-
bra AC can be extended to a Brauer class in Br(E).

Proof. Identify Br(F [Ea]) with a subgroup of Br(F (E)). This is immediate from Proposition 4.2, since
the only possible ramification of the Brauer class of AC in Br(F (E)) is at the point O at infinity, for it
is the only point not on Ea . �
Proposition 4.4. The Brauer class of AC in Br(E) has trivial specialization at the point O at infinity.

Proof. Let ΣC = AC ⊗F [Ea] F (E). We may assume that ω ∈ F . Then by Corollary 3.3, ΣC is the symbol
algebra (a, s − (ηe/2)r + (3/2)ηaD)F (r,s) = (a, t)F (r,s) , where t = (s − (ηe/2)r + (3/2)ηaD)r3/s3. Let v
be the discrete valuation on F (E) corresponding to the point O at infinity. Then v(r) = −1, and hence
v(s) = −3/2 by the Weierstrass equation Ea of E . Since v(a) = v(t) = 0, the specialization of ΣC at O
is (a, t̄)F , where t̄ is the image of t in the residue field of O . But

t =
(

s − ηe

2
r + 3

2
ηaD

)
r3

s3

=
(

1 − ηe

2

r

s
+ 3

2
ηaD

1

s

)(
1 + 3

4
e2 r2

s2
− D1

r

s2
− D2

1

s2

)
,

where D1 and D2 are the coefficient of r and the constant, respectively, in the Weierstrass equa-
tion Ea . Thus t̄ = 1, and hence the specialization at O of the class of AC is trivial. �
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We now conclude Theorem 4.1.

Proof of Theorem 4.1. As mentioned right below the statement of Theorem 4.1, it follows from Corol-
lary 4.3 and Proposition 4.4 that the function Φ is a group homomorphism. �

Next we prove that the image of this group homomorphism Φ is precisely the relative Brauer
group Br(F (C)/F ).

Proposition 4.5. A central division algebra D over F is a homomorphic image of AC if and only if D is split
by the function field of the curve C . Consequently, the image of the group homomorphism Φ : E(F ) → Br(F ) is
Br(F (C)/F ).

Proof. Let D be an F -central division algebra. Let λ be an indeterminate over F and let D(λ) =
D ⊗F F (λ). Suppose D is a homomorphic image of AC . Then D is of degree 3 by Corollary 2.17. Let
the map from AC onto D be denoted by u �→ ū. Let d(λ) = x̄λ + ȳ ∈ D(λ). The defining relations
for AC imply that d(λ) satisfies the polynomial in t over F (λ), h(t) = t3 − eλt − f (λ,1). But h(t) is
irreducible over F (λ). It then follows that F (λ)(d(λ)) is a maximal subfield of the division algebra
D(λ). As a result, F (C) ∼= F (λ)(d(λ)) splits D .

Conversely, suppose the F -central division algebra D is split by F (C). Then F (C) ∼= F (λ, ν), where
ν3 − eλν − f (λ,1) = 0, is a cubic extension of F (λ) that splits D(λ). Hence D(λ) is an F (λ)-central
division algebra of degree 3 and F (C) is isomorphic to a maximal subfield of D(λ). Thus there exists
some d(λ) ∈ D(λ) such that d(λ)3 − eλd(λ)− f (λ,1) = 0; that is, d(λ) is a root of h(t). Then the F [λ]-
subalgebra F [λ][d(λ)] of D(λ) as an F [λ]-module is finitely generated. Let B be a maximal F [λ]-order
in D(λ) containing F [λ][d(λ)]. Since D[λ] = D ⊗F F [λ] is also a maximal F [λ]-order in D(λ), and all
maximal F [λ]-orders are conjugate, then D[λ] also contains a root of h(t), say a(λ). Notice that a(λ)

must be linear because D is a division algebra. Let a(λ) = d1λ + d2, where d1,d2 ∈ D with d1 �= 0. We
have a homomorphism from AC into D sending x to d1 and y to d2. Since D is of degree 3, then by
Corollary 2.17 again, this homomorphism is surjective. The last statement of the proposition follows
immediately. �

We now recall that an Azumaya algebra A over a commutative ring R is said to be split if there
exists a finitely generated, faithful projective R-module P such that A ∼= EndR(P ). As mentioned in
the introduction, it was proved in Haile [9] that the usual Clifford algebra A f of the non-degenerate
binary cubic form f is split if and only if the curve C0, given by z3 − f (x, y) = 0, has an F -rational
point. We also extend this result to the Clifford algebras AC .

Theorem 4.6. The Clifford algebra AC is split if and only if the cubic curve C has an F -rational point.

It was first proved true in [12] for the diagonal case. To prove this theorem holds in any case,
recall the result of Ciperiani and Krashen [3, Theorem 2.3.1] as described right below the state-
ment of Theorem 4.1. A useful consequence is as follows: Suppose [C] ∈ H1(k, E (k̄)). If [C] �= 0, then
Br(Ck(E )/k(E )) �= 0, where Ck(E ) denotes the homogeneous space C regarded as over k(E ). This is part
of [3, Corollary 2.3.2].

Proof of Theorem 4.6. Suppose that the curve C has an F -rational point; C(F ) �= ∅. Since every F -
central division algebra split by F (C) is also split by the residue fields of points on C , it then follows
that Br(F (C)/F ) = 0, and hence by Proposition 4.5, the specialization of AC at any F -rational point
on E is split. As mentioned in the proof of Theorem 2.15, the construction of the Clifford algebra AC
is functorial in F . Thus for any field extension L/F , the specialization of AL

C = AC ⊗F L at any L-point
on E is split. Now, let L = F (E). By considering the generic point of the curve E as an L point on E
extended to the function field L, we conclude that ΣC = AC ⊗F [Ea] F (E), isomorphic to AL

C ⊗L[Ea] L,
is split. Therefore, the algebra AC itself is split, since the canonical homomorphism of Brauer groups
Br(F [Ea]) → Br(F (E)) is injective, for F [Ea] is a Dedekind domain.
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Conversely, if AC is split, then so is AL
C for any field extension L of F . Applying Proposition 4.5 to

the Clifford algebra AL
C , we see that the relative Brauer group Br(L(C)/L) is trivial. Again, let L = F (E).

Since the curve C is a homogeneous space for the elliptic curve E , it then follows from [3, Corol-
lary 2.3.2] that the curve C must have an F -rational point. �
5. The diagonal case

In this short section we focus on the special case when the binary cubic form f is diagonal; that is,
b = 0 = c. We will present explicit formulas for the group homomorphism Φ : E(F ) → Br(F ) defined
as in the beginning of Section 4.

Throughout this section we also assume that e3 �= 27ad, which is the necessary and sufficient
condition for the form C = z3 − exyz − ax3 − dy3 to be irreducible over F̄ . Assume that F contains ω.
As defined in Section 2, let z = yx − ωxy − ω2ηe/3 and z̄ = yx − ω2xy + ωηe/3. Let ζ = zz̄. We shall
see that ζ plays the same role as δ in the diagonal case. In fact, the following lemma shows that
δ = 2ζ .

Lemma 5.1. We have the following identities:

xz = ωzx, xz̄ = ω2 z̄x,

yz = ω2zy, yz̄ = ωz̄ y,

(xy)(yx) = (yx)(xy).

In particular, z3 , z̄3 and ζ are in the center Z(AC ) of AC , zz̄ = z̄z and

ζ = (xy)2 − y2x2 − exy + e2

3
= (yx)2 − x2 y2 − eyx + e2

3
.

Proof. These are straightforward calculations; the first four identities are immediate from Lemma 2.3
by letting b = 0 = c. �

Recall the isomorphism ϕ : AC → Ã, u �→ ũ, where Ã is defined as in Theorem 2.5. In the diagonal
case, we have the following result.

Proposition 5.2. Let R be a simple homomorphic image of AC , and let u �→ û denote the homomorphism.
Then R is the symbol algebra (ẑ3,a)Z(R) or (a, ˆ̄z3)Z(R) , where Z(R) is the center of R.

Proof. By Lemma 5.1, ẑ3 and ζ̂ are in the center Z(R) of R , and x̂ẑ = ωẑx̂. Suppose ẑ3 �= 0. Note that
ζ̂ = ẑ ˆ̄z = ẑ(ẑ + ηx̂ ŷ − ηe/3). Thus

ŷ = −1

3
ηx̂−1

(
ẑ−1ζ̂ − ẑ + ηe

3

)
.

It follows that R is generated over its center by x̂ and ẑ. Hence R is the symbol algebra (ẑ3,a)Z(R) .

A similar argument shows that if ˆ̄z3 �= 0, R is the symbol algebra (a, ˆ̄z3)Z(R) . Now it suffices to show

that ẑ3 and ˆ̄z3 cannot both be zero.
Notice that when b = 0 = c, the polynomial hT (R) = R3 − (ωe/γ )T R + T 3 + D with D = e3/27a−d.

Since z̃3 = 3ηaT 3, ˜̄z3 = ˜̄ξ3 = −3ηaR3 and ζ̃ = δ̃/2 = 3ωγ 2 RT by Eqs. (2), (3) and (1), respec-
tively, we then have z̃3 − ˜̄z3 = ηeζ̃ − 3ηa(e3/27a − d). Thus via the isomorphism ϕ , z3 − z̄3 =
ηeζ − 3ηa(e3/27a − d), so ẑ3, ˆ̄z3 and ζ̂ satisfy
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ẑ3 − ˆ̄z3 = ηeζ̂ − 3ηa

(
e3

27a
− d

)
.

Assume ẑ3 = 0 = ˆ̄z3. Then ζ̂ 3 = (ẑ ˆ̄z)3 = ẑ3 ˆ̄z3 = 0 and hence ζ̂ = 0, since ζ̂ ∈ Z(R), which is a field. But
then e3 = 27ad, a contradiction. �
Remark 5.3. The previous proposition does not hold in the non-diagonal case, even with ẑ, ˆ̄z replaced

by ξ̂ , ˆ̄ξ , respectively. In the diagonal case, we can use Proposition 5.2 to replace Corollary 2.14 in the
proof of Theorem 2.15.

The elliptic curve E for the center Z(AC ) in the diagonal case is given by the Weierstrass equation

Ea: s2 = r3 − 3

4
e2r2 + e

6

(
e3 − 27ad

)
r − (e3 − 27ad)2

108
.

Let θ = ηe/2 and ε = (3/2)ηa(e3/27a − d). Then we have Ea: s2 = r3 + (θr − ε)2.
We now express the correspondence in Corollary 3.4 explicitly in the diagonal case.

Proposition 5.4. Given the point (r0, s0) on Ea, the corresponding simple homomorphic image is the symbol
algebra (s0 − ε + θr0,a)F (r0,s0) if (r0, s0) �= (0, ε), and (a,2ε)F (r0,s0) if (r0, s0) = (0, ε).

Proof. In the proof of Theorem 3.2, we have taken the relations r = δ/2 and s = ξ̄3 + (ηe/2)(δ/2) −
(3/2)ηaD . When b = 0 = c, δ = 2ζ , ξ̄ = z̄ and z3 − z̄3 = ηeζ − 3ηaD with D = e3/27a − d. Thus the
relations in the diagonal case are as follows:

r = ζ,

s = z3 + ε − θr.

Given the point (r0, s0) on Ea , one can easily check that s0 − ε + θr0 = 0 if and only if r0 = 0 and
s0 = ε. Therefore the result follows from Proposition 5.2. �

As a consequence, we have the following result for the function Φ defined as in the beginning of
Section 4.

Corollary 5.5. The function Φ : E(F ) → Br(F ) in the diagonal case can be expressed explicitly as follows:

(r0, s0) �→
{ [(s0 − ε + θr0,a)F ] if (r0, s0) �= (0, ε),

[(a,2ε)F ] if (r0, s0) = (0, ε),

O �→ 1.

If we take the relations r = ζ and s = z3 + ε, then the corresponding elliptic curve E ′ which
determines the center Z(AC ) is given by E ′

a: s2 − 2θrs = r3 − 2θεr + ε2. It was proved in [12] by
direct computation that the function Ψ : E ′(F ) → Br(F ), given by

(r0, s0) �→
{ [(s0 − ε,a)F ] if (r0, s0) �= (0, ε),

[(a,2ε)F ] if (r0, s0) = (0, ε),

O �→ 1,
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is a group homomorphism. It follows that the function Φ is a group homomorphism, since Φ = Ψ ◦ ι,
where ι : E → E ′ sending [r, s, u] to [r, s + θr, u] is an isogeny; that is, a morphism between two
elliptic curves sending O to O .

To conclude the function Φ is a group homomorphism without the assumption that F contains ω,
the following commutative diagram was considered in [12]:

E(L) Br(L)

E(F ) Br(F )

where L = F [ω]. Since the top map is a homomorphism, and the restriction homomorphism Br(F ) →
Br(L) is injective on the image of E(F ) in Br(F ), for [L : F ] is relatively prime to 3, it then follows that
the bottom map E(F ) → Br(F ) is a homomorphism.
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