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The coring stabilizer Stab(P ) is introduced for any prime ideal P
of a right H-comodule algebra A such that the factor ring A/P
is either right or left Goldie. This notion is used to obtain Hopf
algebraic analogs of two category equivalences associated with
a homogeneous space. The category of linearized quasicoherent
sheaves on a noncommutative homogeneous space is interpreted
as a suitable quotient category of the category of Hopf modules.
Birational invariance of such quotient categories is proved. It is
shown that for a birational H-coequivariant extension B of A
properly defined subsets of prime ideals of A and B correspond
to each other bijectively.
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Introduction

Let H be a Hopf algebra and A a right H-comodule algebra. Suppose that P is a prime ideal of A
such that the factor ring A/P is either right or left Goldie, so that A/P has a simple artinian classical
right or left quotient ring Q P . We will introduce two Q P -corings Stab(P ) and Inert(P ) called the
stabilizer and the inertializer of P . The latter is a factor coring of the former. When A is commutative
and H is the function algebra on a finite group, these corings are described explicitly in terms of the
set-theoretic stabilizer and the inertia group of P with respect to the group action corresponding to
the coaction of H on A. When A is commutative and H is an arbitrary commutative Hopf algebra,
Inert(P ) coincides with the Hopf algebra over the field Q P representing the scheme-theoretic stabi-
lizer (inertia group) of P in the group scheme represented by H . It seems that in the noncommutative
case too much of information about the original coaction of H may get lost in Inert(P ), and we will
not use the inertializers in any way.
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Our interest in stabilizers stems from the desire to generalize basic facts about homogeneous
spaces. Consider a right action X × G → G of a group scheme G of finite type over a field k on a
k-scheme X . If x ∈ X is a rational point such that the corresponding orbit morphism G → X is sur-
jective and flat, then X is isomorphic with the quotient Gx\G where Gx stands for the stabilizer of x
in G . In this case the category of G-linearized quasicoherent sheaves on X is equivalent to the cat-
egory of Gx-modules [7]. However, if x is a point with residue field strictly larger than k, then the
former category cannot be recovered from the latter alone since a kind of descent datum is addition-
ally needed.

The coring stabilizers Stab(P ) remedy this defect of the inertializers. One could anticipate the
appearance of corings in this question, knowing a description of descent data for a ring extension in
terms of comodule structures over the Sweedler coring (see [3, 25.4] or [4]). Theorems 3.1 and 4.4
establish, under suitable hypotheses, two category equivalences

M H
A /T H

A ≈ MStab(P ), A M/A T ≈ Stab(P )
H M.

In general we denote by M R and R M the categories of right and left modules over a ring R , by MC

and C M the categories of right and left comodules over a coring C , by M H
A and C

H M the categories of
Hopf modules. The localizing subcategories T H

A and A T are defined by the filters of H-costable right
and left ideals of A containing a regular element. From the viewpoint of noncommutative geometry
the quotient categories M H

A /T H
A and A M/A T represent quasicoherent sheaves on a “noncommu-

tative scheme”. The assumption that P contains no nonzero H-costable ideals of A means that this
scheme is sufficiently close to a homogeneous space.

If P is a maximal ideal of codimension 1 in A, then the aforementioned results reduce to the
ungraded versions of Theorems 0.1, 0.4 in [23] since in this case A is isomorphic to a right coideal
subalgebra of H . Certainly, the previous condition on P imposes serious limitations, especially for
noncommutative algebras. Unlike [23] we do not consider the graded versions of results in this paper.

The proof of the second equivalence is based on the first equivalence in one crucial argument
concerning the flatness of a certain ring extension of A. There are also several other interesting con-
sequences of the first equivalence. It is proved in Section 3 that TorA

i (M, Q P ) and Exti
A(M, Q P ) vanish

for all M ∈ M H
A and i > 0. If P ′ is a second prime ideal of A satisfying the same hypotheses as P in

Theorem 3.1, then Stab(P ) and Stab(P ′) are Morita–Takeuchi equivalent.
In Section 5 we look at birational H-coequivariant extensions by which we mean embeddings of

right H-comodule algebras A ↪→ B with the same classical quotient ring Q (A) ∼= Q (B). We are inter-
ested to find objects associated with H-comodule algebras which are preserved in such extensions. So
it is shown in Proposition 5.4 that the quotient categories M H

A /T H
A and M A/T A are birational invari-

ants of A. Still deeper is the correspondence between the prime ideals in a birational extension which
makes the content of Theorem 5.6. There is a subset Spec′ A of the prime spectrum Spec A which ex-
hibits desired behaviour. These results support the intuitive idea that comodule algebras are relevant
only up to birational equivalence when we view them as models of noncommutative homogeneous
spaces.

The notion of relative Hopf modules has proved to be of fundamental importance since the work
of Takeuchi [26] and Doi [10]. A special attention was given to the categories of Hopf modules in the
case of Hopf Galois extensions and their generalizations [1,5,12,19,20]. If the H-comodule algebra A
is an H-Galois extension, then Stab(P ) is generated as a Q P -bimodule by its distinguished grouplike
element, i.e. Stab(P ) is a homomorphic image of the Q P -coring Q P ⊗ Q P . For general comodule
algebras the stabilizers may be quite complicated.

The main results of Sections 3 and 4 assume the base ring k to be a field. In all other results k is
an arbitrary commutative ring. The tensor product ⊗k is abbreviated to ⊗.

1. Localizing filters and classical quotient rings

We recall some terminology which will be used in this paper. Let R be a ring. A nonempty set I
of right ideals of R is a localizing filter (also called an idempotent topologizing filter or a Gabriel topology)
if the following four conditions are satisfied:
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(T1) if J ∈ I then I contains each right ideal I with J ⊂ I ,
(T2) if I, J ∈ I then I ∩ J ∈ I ,
(T3) if I ∈ I then for each a ∈ R there exists Ia ∈ I such that aIa ⊂ I ,
(T4) if J ∈ I and I is a right ideal such that for each a ∈ J there exists Ia ∈ I satisfying aIa ⊂ I , then I ∈ I .

In any right R-module V the subset τI (V ) consisting of those elements v ∈ V whose annihilator
in R belongs to I is a submodule called the I -torsion submodule. The R-module V is said to be I -
torsion when τI (V ) = V , and V is I -torsion-free when τI (V ) = 0. Axiom (T4) ensures that the class
of I -torsion modules is closed under extensions. When a set of right ideals satisfies (T1)–(T3), but
not necessarily (T4), it is called a topologizing filter.

A full subcategory of a Grothendieck category is localizing if and only if it is closed under subob-
jects, factor objects, extensions and small direct limits [13, Ch. III, Prop. 8]. A full subcategory of M R

is localizing precisely when it consists of the torsion modules for some localizing filter of right ideals
of R [13, Ch. V, p. 412].

Denote by Σ(R) the set of regular elements, i.e. nonzero-divisors, of R . If Σ(R) satisfies the right
Ore condition, then the set G(R) of those right ideals of R which intersect Σ(R) is a localizing filter.
The ring of fractions Q (R) = RΣ(R)−1 is called the classical right quotient ring of R (occasionally
Q (R) will stand for the classical left quotient ring of R). More generally, any overring of R isomor-
phic to Q (R) is a classical right quotient ring of R . If Σ(R) satisfies both the right and the left Ore
conditions, then Q (R) is the classical two-sided quotient ring.

Let H be a k-flat Hopf algebra with a bijective antipode S : H → H over the base ring k, and let
A be a right H-comodule algebra. The comodule structure map ρ : A → A ⊗ H is a homomorphism
of algebras. All algebras are assumed to be associative and unital. Denote by G H (A) the set of right
ideals of A characterized by the property that a right ideal I belongs to G H (A) if and only if there
exists an H-costable right ideal I ′ ∈ G(A) such that I ′ ⊂ I . Since the largest H-subcomodule I H of A
contained in I is a right ideal, we have I ∈ G H (A) if and only if I H ∈ G(A), which can also be rewritten
as I H ∩ Σ(A) 
= ∅. Note that

I H = ρ−1(I ⊗ H).

By definition G H (A) ⊂ G(A) and an H-costable right ideal of A belongs to G H (A) if and only if it
belongs to G(A).

Assuming that Σ(A) satisfies the right Ore condition, we denote by T A the class of G H (A)-torsion
right A-modules (thus T A actually depends on H). Let T H

A be the class of right (H, A)-Hopf modules
which are G H (A)-torsion in M A .

Lemma 1.1. If Σ(A) is right Ore, then G H (A) is a localizing filter. In this case T A and T H
A are localizing

subcategories, respectively, of M A and of M H
A .

Proof. We know that G(A) is a localizing filter. Properties (T1), (T2) of G H (A) are immediate from
the respective properties of G(A) since the set of H-subcomodules of A is closed under finite inter-
sections. For each right ideal I of A and an element a ∈ A put Ia = {x ∈ A | ax ∈ I}, and let λa : A → A
denote the left multiplication by a. Then Ia is the unique right ideal of A such that λa induces an
injective map A/Ia → A/I . Since λa ⊗ H coincides with the left multiplication by a ⊗ 1 in the algebra
A ⊗ H and induces an injective map A/Ia ⊗ H → A/I ⊗ H , we get

Ia ⊗ H = {
y ∈ A ⊗ H

∣∣ (a ⊗ 1)y ∈ I ⊗ H
}
.

Suppose that I ∈ G(A) is an H-costable right ideal. Given a ∈ A, we can find a finitely generated k-
submodule U ⊂ A such that ρ(a) ∈ U ⊗ H . Put IU = ⋂

u∈U Iu , so that U IU ⊂ I . If u1, . . . , un generate U ,
then IU = Iu1 ∩· · ·∩ Iun . Since G(A) satisfies (T3), we have Iu ∈ G(A) for all u ∈ A. Therefore IU ∈ G(A)

by (T2). An easy calculation in the algebra A ⊗ H shows that
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(a ⊗ 1) · ρ(x) =
∑(

a(0) ⊗ S−1(a(2))a(1)

) · ρ(x)

=
∑(

1 ⊗ S−1a(1)

) · ρ(a(0)x) ∈ (1 ⊗ H) · ρ(U IU ) ⊂ I ⊗ H

for all x ∈ IU . Hence ρ(IU ) ⊂ Ia ⊗ H , and therefore IU ⊂ (Ia)H . The last inclusion entails (Ia)H ∈ G(A),
whence Ia ∈ G H (A). This proves (T3).

Now let J ∈ G H (A), and let I be any right ideal of A such that Ia ∈ G H (A) for each a ∈ J . Pick
any element s in the nonempty set J H ∩ Σ(A). Since ρ(s) ∈ J ⊗ H , we can find a finitely generated
k-submodule U ⊂ J such that ρ(s) ∈ U ⊗ H . Note that s ∈ U ′ ⊂ U where U ′ = ρ−1(U ⊗ H) is an
H-subcomodule of A. The right ideal IU = ⋂

u∈U Iu belongs to G H (A) by (T2) and satisfies U IU ⊂ I .
Hence there exists an H-costable K ∈ G(A) such that U ′K ⊂ U K ⊂ I . Since the multiplicatively closed
set Σ(A) intersects both U ′ and K , we get U ′K ∩ Σ(A) 
= ∅. But U ′K is an H-costable right ideal
of A, so that I ∈ G H (A). Thus (T4) also holds. �
Lemma 1.2. We have T H

A = {M ∈ M H
A | M ⊗A Q (A) = 0}.

Proof. A right A-module V satisfies V ⊗A Q (A) = 0 if and only if each element of V is annihilated
by an element of Σ(A). In particular, V ⊗A Q (A) = 0 whenever V ∈ T A . Conversely, suppose that
M ⊗A Q (A) = 0 where M ∈ M H

A , and denote by I the annihilator in A of some element v ∈ M . Let
U ⊂ M be any finitely generated k-submodule such that δ(v) ∈ U ⊗ H where δ : M → M ⊗ H denotes
the comodule structure map. There exists J ∈ G(A) such that U J = 0. We may regard M ⊗ H as an
(H, A ⊗ H)-bimodule. Since δ(ma) = δ(m)ρ(a) for all m ∈ M and a ∈ A, we get

(v ⊗ 1) · ρ(x) =
∑(

v(0) ⊗ S−1(v(2))v(1)

) · ρ(x) =
∑

S−1(v(1)) · δ(v(0)x) = 0

for all x ∈ J . By the k-flatness of H the annihilator in A ⊗ H of v ⊗ 1 ∈ M ⊗ H coincides with I ⊗ H .
Hence ρ( J ) ⊂ I ⊗ H , i.e. J ⊂ I H . It follows that I H ∈ G(A), and therefore I ∈ G H (A). Thus M ∈ T H

A . �
When Σ(A) satisfies the left Ore condition, there is a localizing filter Gl

H (A) of left ideals of A
defined similarly to G H (A). In this case the class A T of Gl

H (A)-torsion left A-modules is a localizing
subcategory of A M.

Included below are two subsidiary results on the existence of classical quotient rings. Propo-
sition 1.4 will be used in the proof of Theorem 5.6. A special case of this result was given in
[24, Prop. 7.1]. Proposition 1.5 will allow us to shorten slightly the hypotheses in the results of Sec-
tions 3 and 4. We will denote by rannQ S and lannQ S , respectively, the right and left annihilators of
a subset S in a ring Q .

Lemma 1.3. Suppose that R is a subring of a right artinian ring Q . Then every right ideal I of R contains an
element x such that Q = xQ ⊕ rannQ x and the right ideal rannI x = I ∩ rannQ x of R is nilpotent. If Q is a
classical right quotient ring of R and I ∈ G(R) then x ∈ Σ(R) for any such x.

Proof. Put X = {x ∈ Q | rannQ x = rannQ x2}. Each u ∈ Q satisfies un ∈ X for sufficiently large n > 0
since in Q the ascending chain of right ideals rannQ ui with i = 1,2, . . . has to stabilize. The condition
on x in the definition of X means precisely that xQ ∩ rannQ x = 0. Since xQ ∼= Q / rannQ x in M Q ,
we have the equality between the composition series lengths

length xQ + length rannQ x = length Q .

It follows that

X = {x ∈ Q | Q = xQ ⊕ rannQ x}.
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Now pick x ∈ I ∩ X for which the right ideal rannQ x of Q is minimal possible. Let u ∈ rannI x.
There is an integer n > 0 such that v = un lies in X . Since xv = 0, we have xQ ∩ v Q = 0. Then
y = x + v also lies in X (an easy check is given in the proof of [24, Lemma 7.5]), actually y ∈ I ∩ X ,
with

rannQ y = rannQ x ∩ rannQ v.

In particular, rannQ y ⊂ rannQ x. If v 
= 0 then the previous inclusion is proper since yv = v2 
= 0. But
this is impossible by the choice of x. Thus un = 0. We conclude that rannI x is nil. By [15] every nil
multiplicatively closed subset of a right artinian ring is nilpotent. In particular, this applies to rannI x.

Suppose that Q is a classical right quotient ring of R and I ∈ G(R). The first of these two assump-
tions implies that the nil radical N of R is contained in the Jacobson radical J of Q . Since all elements
of Σ(R) are invertible in Q , the second assumption entails I Q = Q . Given any q ∈ Q , it is possible
to find s ∈ Σ(R) such that qs ∈ I . If q ∈ rannQ x, then qs ∈ rannI x. Hence rannQ x = (rannI x)Q . Since
rannI x is a nil right ideal of R , we have rannI x ⊂ N ⊂ J . Then rannQ x ⊂ J as well. Since J is
nilpotent, so too is rannQ x. On the other hand, rannQ x = e Q for a suitable idempotent e ∈ Q since
rannQ x is an M Q -direct summand of Q . It follows that e = 0, i.e. rannQ x = 0. Thus x is right regular
in Q . By [17, Prop. 3.1.1] right regular elements of a right artinian ring are invertible. So x is invertible
in Q , and therefore x ∈ Σ(R). �
Proposition 1.4. Let B be a ring with a quasi-Frobenius classical right quotient ring Q . Suppose that R is a
subring of B and I is a topologizing filter of right ideals of R with the following properties:

(a) each I ∈ I has zero left and right annihilators in Q ,
(b) for each b ∈ B there exists I ∈ I such that bI ⊂ R.

Then I ∩ Σ(R) 
= ∅ for all I ∈ I and Q is a classical right quotient ring of R.

Proof. Since Q is quasi-Frobenius, each left (right) ideal of Q is the left (right) annihilator of a
uniquely determined right (left) ideal. Denote by N the nil radical of R . It is a nilpotent two-sided
ideal of R containing every nil right ideal of R (such an ideal exists because R is a subring of an
artinian ring). There are several intermediate steps in the proof:

Step 1. Q I = I Q = Q for all I ∈ I .

Step 2. If I ∈ I and J is any right ideal of Q then J = ( J ∩ I) · Q .

Step 3. Q T = T Q for any two-sided ideal T of R .

Step 4. rannQ N = lannQ N .

By (a) rannQ Q I = 0 and lannQ I Q = 0 for I ∈ I . Therefore Step 1 is immediate from the bijective
correspondence between the left and the right ideals of Q .

In Step 2 let q ∈ J . Since Q ∼= BΣ(B)−1, there exists s ∈ Σ(B) for which qs ∈ B . According to (b)
we can find I ′ ∈ I with the property qsI ′ ⊂ R . Since s is invertible in Q , we have sI ′ Q = sQ = Q by
Step 1, whence q ∈ qsI ′ Q ⊂ ( J ∩ R)Q . Hence J = ( J ∩ R)Q . Furthermore, if q ∈ J ∩ R , then (T3) allows
us to find I ′′ ∈ I such that qI ′′ ⊂ J ∩ I . In this case q ∈ qI ′′ Q ⊂ ( J ∩ I)Q since 1 ∈ I ′′ Q by Step 1. So
J ∩ R ⊂ ( J ∩ I)Q , and the desired conclusion follows.

Step 3 generalizes [24, Lemma 7.3]. First we note that the inclusion BT ⊂ T Q implies that
Q T ⊂ T Q , in which case T Q is a two-sided ideal of Q . Assuming that BT ⊂ T Q , we have sT Q ⊂ T Q
for any s ∈ Σ(B). If sT Q were properly contained in T Q , then we would get an infinite strictly de-
scending chain of right ideals si T Q of Q with i = 0,1, . . . , but this is impossible since Q is artinian.
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Hence sT Q = T Q , and therefore s−1T ⊂ T Q . Then qT ⊂ T Q for any q ∈ Q since q can be written as
bs−1 for some b ∈ B and s ∈ Σ(B).

Suppose now that there exist two-sided ideals T of R such that Q T 
⊂ T Q . Let us choose such a T
with the additional property that the right ideal T Q of Q is minimal possible. If we had I T Q = T Q
for all I ∈ I then, taking Ib ∈ I such that bIb ⊂ R , we would get bT Q = bIb T Q ⊂ RT Q = T Q for
each b ∈ B , but this yields the inclusion BT ⊂ T Q contradicting our previous observation. Hence
there exists I ∈ I for which I T Q 
= T Q . We pick such an I with the additional property that the
right ideal I T Q of Q is minimal possible.

If J ∈ I is arbitrary then (I ∩ J )T Q = I T Q by the minimality assumption since I ∩ J ∈ I by
(T2). It follows that I T Q ⊂ J T Q . Given any a ∈ R , we can use (T3) to find J ∈ I such that a J ⊂ I
and get aI T Q ⊂ a J T Q ⊂ I T Q . Thus R I T Q = I T Q . So the two-sided ideal V = R I T of R satisfies
V Q = I T Q 
= T Q . On the other hand, V Q ⊂ T Q because V ⊂ T . The choice of T ensures that V Q
has to be a two-sided ideal of Q . Since Q I = Q by Step 1, we get Q T = Q I T ⊂ Q V ⊂ V Q ⊂ T Q ,
a contradiction.

We conclude that Q T ⊂ T Q for any two-sided ideal T of R . Now Q T = lannQ K where we put
K = rannQ Q T . As T R K ⊂ T K = 0, we have R K ⊂ K ; hence K ∩ R is a two-sided ideal of R . By Step 2
K = (K ∩ R)Q . As we have proved already, this implies that K is a two-sided ideal of Q . Then so is
its left annihilator Q T . Hence T Q ⊂ Q T as well.

In Step 4 denote by J the Jacobson radical of Q . Since J ∩ R is a nilpotent two-sided ideal of R ,
we have J ∩ R ⊂ N . Step 2 yields J = ( J ∩ R)Q ⊂ N Q . By Step 3 N Q = Q N . Hence N Q is a nilpotent
ideal of Q , which implies that N Q ⊂ J . Thus J = N Q = Q N . It follows that the right and the left
annihilators of N in Q are equal to the respective annihilators of J . However, lannQ J = rannQ J
since the right and the left socles of a quasi-Frobenius ring coincide.

Now we show that each I ∈ I contains an element invertible in Q , and therefore I ∩Σ(R) 
= ∅. By
Lemma 1.3 there exists x ∈ I such that Q = xQ ⊕ rannQ x and rannI x is nil. In particular, rannI x ⊂ N .
Suppose that the left ideal L = lannQ x of Q is nonzero. Since N is nilpotent, there exists 0 
= t ∈ L
such that Nt = 0. Step 4 allows us to deduce that tN = 0 as well. Then t(rannI x) = 0. By Step 2
we have rannQ x = (rannI x)Q . Hence tq = 0 for all q ∈ rannQ x. Since tx = 0, it follows that 0 =
t(xQ + rannQ x) = t Q . This entails t = 0, a contradiction. Thus L = 0, i.e. x is left regular in Q . But
left regular elements of a left artinian ring are invertible [17, 3.1.1]. Hence x is invertible in Q , as
desired.

To conclude that Q is a classical right quotient ring of R it suffices to check that R is a right order
in Q , i.e. every q ∈ Q can be written as q = au−1 for some a, u ∈ R such that u is invertible in Q
[17, 3.1.4]. We have qs ∈ B for a suitable s ∈ Σ(B). By (b) there exist I ′, I ′′ ∈ I such that sI ′ ⊂ R and
qsI ′′ ⊂ R . By (T2) I ′ ∩ I ′′ ∈ I . Let v ∈ I ′ ∩ I ′′ be any element invertible in Q . Then we may take u = sv
and a = qsv , completing the proof. �
Proposition 1.5. Let A, B be two k-algebras where B is faithfully k-flat. If A ⊗ B has a right artinian classical
right quotient ring then so does A as well. Moreover, the canonical map i : A → A ⊗ B, a 
→ a ⊗ 1, extends to
an injective ring homomorphism Q (A) → Q (A ⊗ B).

Proof. Put Q = Q (A ⊗ B) for short and denote by I the set of those right ideals I of A for which
I ⊗ B ∈ G(A ⊗ B). Then I is a localizing filter. In the subsequent argument we will use only property
(T3) of I which is checked as follows. For each right ideal I of A and an element a ∈ A put Ia = {x ∈
A | ax ∈ I}. As in the proof of Lemma 1.1 we have

Ia ⊗ B = {
y ∈ A ⊗ B

∣∣ (a ⊗ 1)y ∈ I ⊗ B
}
.

If I ∈ I , then property (T3) of G(A ⊗ B) yields Ia ⊗ B ∈ G(A ⊗ B), so that Ia ∈ I .
The canonical ring homomorphism i : A → A ⊗ B is injective. Indeed, it suffices to check that

i ⊗ B : A ⊗ B → A ⊗ B ⊗ B is injective. But the latter map admits a retraction arising from the mul-
tiplication in B . Thus A may be identified with a subring in A ⊗ B and in Q . The left multiplication



S. Skryabin / Journal of Algebra 338 (2011) 71–91 77
λa : A → A by a ∈ A is injective if and only if λa ⊗ B is injective, and a similar observation is valid for
the right multiplications. This shows that

Σ(A) = {
a ∈ A

∣∣ a ⊗ 1 ∈ Σ(A ⊗ B)
}
.

Each I ∈ I intersects Σ(A). To prove this claim we first apply Lemma 1.3 to get an element x ∈ I
such that Q = (x ⊗ 1)Q ⊕ rannQ (x ⊗ 1) and the right ideal rannI x of A is nilpotent. The k-flatness of
B ensures that rannI⊗B(x ⊗ 1) = (rannI x) ⊗ B is a nilpotent right ideal of A ⊗ B . Lemma 1.3 applied
this time to the subring A ⊗ B of Q yields x ⊗ 1 ∈ Σ(A ⊗ B), i.e. x ∈ Σ(A).

If s ∈ Σ(A), then sA ∈ I since s ⊗ 1 ∈ Σ(A ⊗ B). Taking I = sA, we get Ia ∈ I for any a ∈ A.
As we have proved already, this implies that Ia ∩ Σ(A) 
= ∅. In other words, for each pair s,a there
exists t ∈ Σ(A) such that at ∈ sA, i.e. Σ(A) satisfies the right Ore condition. So A has a classical right
quotient ring Q A = Q (A). Since i is injective and takes regular elements to regular ones, Q A embeds
in Q .

Let I be any right ideal of A. The right ideal I Q ∩ A consists of those a ∈ A for which there exists
u ∈ Σ(A ⊗ B) such that (a ⊗ 1)u ∈ I ⊗ B . This condition on a can be rewritten, in the earlier notation,
as (Ia ⊗ B) ∩ Σ(A ⊗ B) 
= ∅, and therefore as Ia ∈ I . As we have seen, the last inclusion implies that
Ia ∩ Σ(A) 
= ∅. Thus for each a ∈ I Q ∩ A there exists s ∈ Σ(A) such that as ∈ I . Since all right ideals
of Q A are extensions of right ideals of A, we get J Q ∩ Q A = J for each right ideal J of Q A . Hence
the assignment J 
→ J Q embeds the lattice of right ideals of Q A into that of Q . Since Q is right
artinian, so too is Q A . �
2. Definition of stabilizers and some special cases

A thorough treatment of corings and comodules is given by Brzeziński and Wisbauer [3]. We refer
to this book for all details. Some aspects of the coring theory are also covered in a book of Caenepeel,
Militaru and Zhu [6].

Let R be a ring. An R-coring is an (R, R)-bimodule C together with two bimodule homomor-
phisms � : C → C ⊗R C and ε : C → R satisfying the coassociativity and the counit conditions. A right
C-comodule is a right R-module V together with a right R-linear map δ : V → V ⊗R C satisfying
the coassociativity and the counit conditions. If C is left R-flat, then the category MC of right
C-comodules is Grothendieck and the forgetful functor MC → M R is exact [3, 18.6]. All corings
considered in this paper will satisfy the flatness condition. For each right R-module X we will view
X ⊗R C as a right C-comodule with respect to the map id ⊗R �.

Given an R-coring C and a ring homomorphism R → R ′ , the (R ′, R ′)-bimodule C ′ = R ′ ⊗R C ⊗R R ′
has a natural R ′-coring structure obtained by extending � and ε to C ′ [3, 17.2]. There is a functor

Φ : MC → MC ′
, Φ = ?⊗R R ′.

If C is left R-flat, then Φ has a right adjoint

Ψ : MC ′ → MC , Ψ = ? �C ′
(

R ′ ⊗R C
)

(see [3, 23.9 and 24.11]). Here �C ′ stands for the cotensor product and R ′ ⊗R C is viewed as a (C ′, C)-
bicomodule.

In the next lemma we encounter the assumption about the flatness of injective modules. Rings
with this property were studied by Colby [8]. The class of such rings contains all von Neumann
regular rings and all quasi-Frobenius rings.

Lemma 2.1. Assume C to be left R-flat and C ′ to be left R ′-flat. Suppose also that all injectives in M R ′ are flat.
Then the counit of adjunction ηE : ΦΨ (E) → E is an isomorphism whenever E is an injective in MC . If Φ is
exact, then Ψ is fully faithful.
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Proof. First of all, Ψ (C ′) ∼= R ′ ⊗R C and Φ(R ′ ⊗R C) ∼= C ′ . The map ηC ′ coincides with the resulting
isomorphism Φ(Ψ (C ′)) ∼= C ′ . If X is any flat right R ′-module, then Ψ (X ⊗R ′ C ′) ∼= X ⊗R ′ Ψ (C ′) by
properties of cotensor products [3, 21.4] and Φ(X ⊗R ′ Ψ (C ′)) ∼= X ⊗R ′ Φ(Ψ (C ′)) by the associativity
of tensor products. Hence ηX⊗R′ C ′ is an isomorphism as well. By [3, 18.10] there are bijections

HomC ′(
V , X ⊗R ′ C ′) ∼= HomR ′(V , X) for V ∈ MC ′

.

Taking X to be an injective hull of V in M R ′ , we get a right C ′-colinear embedding V → X ⊗R ′ C ′ . If
V is injective in MC ′

, then V has to be a direct summand of X ⊗R ′ C ′ , whence ηV is an isomorphism.
In general we can find an exact sequence of right C ′-comodules 0 → V → X ⊗R ′ C ′ → Y ⊗R ′ C ′ for
some injective modules X, Y ∈ M R ′ . By a general property of right adjoint functors Ψ is left exact. If
Φ is exact, then ΦΨ takes the above exact sequence to an exact sequence

0 → ΦΨ (V ) → ΦΨ
(

X ⊗R ′ C ′) → ΦΨ
(
Y ⊗R ′ C ′).

Since ηX⊗R′ C ′ and ηY ⊗R′ C ′ are isomorphisms, so too is ηV : ΦΨ (V ) → V for any V . Thus we have
checked a necessary and sufficient condition for Ψ to be fully faithful [16, p. 88, Th. 1]. �

Let A be a right H-comodule algebra with the comodule structure map ρ . If R is an arbitrary
algebra, then H R = R ⊗ H will be viewed as a right H-comodule algebra with respect to the comodule
structure map id ⊗ �. Each algebra homomorphism α : A → R gives rise to a homomorphism of H-
comodule algebras

ϕα : A
ρ−→ A ⊗ H

α⊗id−→ R ⊗ H .

Denoting by εR the algebra homomorphism id ⊗ ε : R ⊗ H → R where ε : H → k is the counit, we
have α = εR ◦ ϕα . Conversely, any homomorphism of H-comodule algebras A → H R is obtained in
this way. For an arbitrary homomorphism of right H-comodule algebras A → B there is a functor
? ⊗A B : M H

A → M H
B . In particular, this functor is defined for B = H R .

Lemma 2.2. Let ϕ : A → H R be a homomorphism of right H-comodule algebras. Suppose that H is k-flat.
Then for each M ∈ M H

A the map

ξ : M ⊗A H R → (M ⊗A R) ⊗ H, m ⊗ b 
→
∑(

(m(0) ⊗ 1) ⊗ m(1)

) · b,

is an isomorphism in M H
H R

.

Proof. Since k is an Mk-direct summand of H , the flatness of H in Mk implies faithful flatness.
Hence H R is a faithfully flat H-Galois extension of R , and therefore the functor ?⊗R H R gives a cate-
gory equivalence M R → M H

H R
by [11, Th. 9] or [20, Th. I]. Thus each object of M H

H R
can be written

as V ⊗R H R ∼= V ⊗ H for some V ∈ M R . The retraction εR : H R → R of the canonical embedding
R → H R gives rise to a quasi-inverse equivalence ?⊗H R R : M H

H R
→ M R . It is easy to see that ξ is

a morphism in M H
H R

. The final conclusion follows from the fact that ξ ⊗H R R is an isomorphism in
M R . �

By a general construction in [3, 32.6] C(A, H) = A ⊗ H is an A-coring with the bimodule structure

x(a ⊗ h) = xa ⊗ h, (a ⊗ h)x =
∑

ax(0) ⊗ hx(1)
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where a, x ∈ A, h ∈ H , the comultiplication and the counit

�(a ⊗ h) = (a ⊗ h(1)) ⊗A (1 ⊗ h(2)), ε(a ⊗ h) = aε(h).

Note that C(A, H) is left A-flat provided H is k-flat.
Suppose that P is a prime ideal of A such that the factor ring A/P is either right or left Goldie.

So A/P has a simple artinian classical right or left quotient ring Q P = Q (A/P ). We define Stab(P ) as
the Q P -coring obtained from C(A, H) by the base ring extension α : A → A/P → Q P where α is the
composite of two canonical maps. Thus

Stab(P ) = Q P ⊗A C(A, H) ⊗A Q P ∼= (Q P ⊗ H) ⊗A Q P .

In the previous line H P = Q P ⊗ H is viewed as a ring extension of A via the homomorphism of H-
comodule algebras ϕ : A → H P corresponding to α : A → Q P . Note that Stab(P ) has a left H P -module
structure and, in particular, a left H-module structure. If A/P is simple artinian, then Q P ∼= A/P and
Stab(P ) ∼= H P /H P ϕ(P ) with H P ∼= A/P ⊗ H .

The coring Stab(P ) has a distinguished grouplike e, the image of 1 ⊗ 1 ∈ A ⊗ H . Moreover, Stab(P )

is generated by e as an (H P , Q P )-bimodule. The comultiplication in Stab(P ) is expressed as

�(beq) =
∑

b(0)e ⊗ b(1)eq for b ∈ H P , q ∈ Q P .

Also, ε(beq) = εP (b)q where εP : H P → Q P is the map id ⊗ ε.
Next we turn to the inertializer of P . Let us view the algebra H P = Q P ⊗ H itself as a Q P -

coring with respect to the natural Q P -bimodule structure, the counit εP and the comultiplication
� : H P → H P ⊗Q P H P which extends by left and right Q P -linearity the comultiplication of H . The
ring unity e = 1 ⊗ 1 ∈ H P is a distinguished grouplike of H P . We have

�(b) =
∑

b(0) ⊗ b(1)e for b ∈ H P .

Lemma 2.3. The (H P , Q P )-subbimodule I of H P generated by {ϕ(a) − α(a)e | a ∈ A} is a coideal of H P .

Proof. For a ∈ A we have ϕ(a) = ∑
α(a(0)) ⊗ a(1) , whence

εP
(
ϕ(a) − α(a)e

) = α(a) − α(a) = 0.

Since εP is a ring homomorphism, we get εP (I) = 0. Also,

�
(
ϕ(a) − α(a)e

) =
∑

ϕ(a(0)) ⊗ a(1)e − α(a)e ⊗ e

=
∑(

ϕ(a(0)) − α(a(0))e
) ⊗ a(1)e + e ⊗ (

ϕ(a) − α(a)e
)
.

Since � is right Q P -linear and left H P -linear if we let H P operate on H P ⊗Q P H P via the comodule
structure map H P → H P ⊗ H , we deduce that

�(I) ⊂ I ⊗Q P H P + H P ⊗Q P I. �
We define Inert(P ) as the factor coring H P /I of H P where I is given in Lemma 2.3. The coset

e = e + I is taken to be the distinguished grouplike of Inert(P ).
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Lemma 2.4. There is a surjective left H P -linear homomorphism of Q P -corings Stab(P ) → Inert(P ) compati-
ble with the distinguished grouplikes. Its kernel coincides with the left H P -submodule L of Stab(P ) generated
by {eq − qe | q ∈ Q P }.

Proof. Since bϕ(a)eq = beα(a)q for all a ∈ A, b ∈ H P and q ∈ Q P , there is a well-defined left H P -linear
and right Q P -linear map π : Stab(P ) → Inert(P ) which sends e to e. Since π(eq − qe) = eq − qe = 0,
we have L ⊂ Kerπ . On the other hand, Stab(P ) = L + H P e. Furthermore, be ∈ Kerπ for b ∈ H P if and
only if b ∈ I where I is as in Lemma 2.3. It is easy to check that L is a right Q P -submodule of Stab(P ).
Hence I ′ = {b ∈ H P | be ∈ L} is an (H P , Q P )-subbimodule of H P . Since

ϕ(a)e − α(a)e = eα(a) − α(a)e ∈ L

for all a ∈ A, we deduce that I ⊂ I ′ . It follows that Ie ⊂ L, whence Kerπ = L. It is also clear that π is
compatible with the comultiplications and the counits. �

The notions of the stabilizer and the inertializer are explained in several examples below. Proposi-
tions 2.5–2.7 will not be used later in this paper.

Proposition 2.5. Suppose that the base ring k is a field and P is a maximal ideal of codimension 1 in A. Then
Stab(P ) = Inert(P ) and Stab(P ) coincides with the largest left H-module factor coalgebra C of H such that P
is stable under the induced C-comodule structure A → A ⊗ C.

Proof. By the assumptions Q P ∼= A/P ∼= k. In this case α is the algebra homomorphism A → k with
Kerα = P and ϕ is the corresponding homomorphism of right H-comodule algebras A → H . Thus
Stab(P ) = H/Hϕ(P ). The map A → H given by the rule a 
→ ϕ(a) − α(a)1 vanishes on the image of k
in A and coincides with ϕ on P . Hence {ϕ(a) −α(a)1 | a ∈ A} = ϕ(P ), so that Inert(P ) = H/Hϕ(P ) as
well. For a ∈ A we have

ρ(a) =
∑

a(0) ⊗ a(1) ≡
∑

α(a(0))1 ⊗ a(1) ≡ 1 ⊗ ϕ(a) (mod P ⊗ H).

If I is a left ideal and a coideal of H , then P is stable under the induced comodule structure A →
A ⊗ H/I if and only if ϕ(P ) ⊂ I , if and only if Hϕ(P ) ⊂ I . �

Suppose now that Γ is a finite group which acts on an algebra A via automorphisms. The decom-
position group of a prime ideal P of A is the set-theoretic stabilizer D P = {x ∈ Γ | xP = P } = {x ∈
Γ | xP ⊂ P }, while the inertia group T P is its subgroup consisting of those x ∈ D P which induce the
identity transformation of A/P . Although this terminology is ordinarily used only in the commutative
algebra, commutativity of A is not needed in the next result.

We may view A as a right H-comodule algebra where H = k[Γ ] is the function algebra on Γ

consisting of all maps Γ → k. Algebraic operations on H are pointwise, and the comultiplication
in H is dual to the multiplication in the group algebra of Γ . The group D P operates on Q P via
automorphisms, so that Q P may be regarded as a right k[D P ]-comodule algebra. The action of T P

and the corresponding coaction of k[T P ] on Q P are trivial.

Proposition 2.6. Let Γ , D P , T P , H be as above. If A/P is a right Ore domain, then

Stab(P ) ∼= C
(

Q P ,k[D P ]) = Q P ⊗ k[D P ],
Inert(P ) ∼= C

(
Q P ,k[T P ]) = Q P ⊗ k[T P ].
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Proof. The ring H P = Q P ⊗ H may be identified with the ring of functions Γ → Q P , and so H P is
isomorphic to a direct product of finitely many copies of Q P . With this identification ϕ : A → H P

is expressed as ϕ(a)(x) = α(xa) for a ∈ A and x ∈ Γ where α : A → Q P is the canonical map with
kernel P . Since Q P is a skew field, any one-sided ideal I of H P is a two-sided ideal, and moreover

I = {
f ∈ H P

∣∣ f (X) = 0
}

for some subset X ⊂ Γ . The factor ring H P /I may be identified with the ring of functions X → Q P .
In particular, this applies to the left ideal I = H P ϕ(P ). Given x ∈ Γ , we have f (x) = 0 for all f ∈ I
if and only if ϕ(a)(x) = 0 for all a ∈ P , if and only if xP ⊂ P , i.e. x ∈ D P . Thus I corresponds to the
subset X = D P of Γ . If a ∈ A, a /∈ P , then ϕ(a)(x) 
= 0 for all x ∈ D P , whence the coset ϕ(a) + I is an
invertible element of H P /I . It follows that

Stab(P ) ∼= H P ⊗A Q P ∼= H P /I ⊗A/P Q P ∼= H P /I ∼= Q P ⊗ k[D P ].

It is straightforward to check that the corresponding coring structure on Q P ⊗ k[D P ] is the one de-
fined in C(Q P ,k[D P ]).

In the case of Inert(P ) we replace I with the left ideal of H P defined in Lemma 2.3. Then f (x) = 0
for all f ∈ I if and only if (ϕ(a) − α(a)e)(x) = 0 for all a ∈ A. The last equality can be rewritten as
α(xa − a) = 0, which amounts to the condition xa ≡ a (mod P ). Thus I corresponds to the subset
X = T P of Γ , and therefore

Inert(P ) = H P /I ∼= Q P ⊗ k[T P ]. �
Proposition 2.7. Suppose that A and H are commutative. Then Inert(P ) is a factor Hopf algebra of the Hopf
algebra H P = Q P ⊗ H over the field Q P . Let G and G T (P ) denote the group schemes represented by H and
Inert(P ), respectively. Then G T (P ) coincides with the scheme-theoretic stabilizer of P in G.

Proof. We may view the commutative algebra A P = Q P ⊗ A over Q P as a right H P -comodule algebra.
Let αP : A P → Q P be the homomorphism of Q P -algebras extending the canonical map α : A → Q P

and ϕP : A P → H P the homomorphism of H P -comodule algebras such that εP ◦ ϕP = αP . Denote by
J the ideal of A P generated by {1 ⊗ a − α(a) ⊗ 1 | a ∈ A}. Clearly J ⊂ KerαP . Since A P = J + Q P , it
follows that J = kerαP . Since

ϕP
(
1 ⊗ a − α(a) ⊗ 1

) = ϕ(a) − α(a) ⊗ 1,

the ideal I of H P defined in Lemma 2.3 is generated by the image of J in H P . Hence

Inert(P ) = H P /I ∼= H P ⊗A P A P / J ∼= H P ⊗A P Q P

and G T (P ) = Spec Inert(P ) is described as the product Spec H P ×Spec A P Spec Q P which defines the
scheme-theoretic inertia group of P [9, III.2.2.3]. �
3. The first equivalence

Let A be a right H-comodule algebra and P ∈ Spec A. When A/P is right or left Goldie, we put

Q P = Q (A/P ), H P = Q (A/P ) ⊗ H .
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Let ϕ : A → H P be the homomorphism of H-comodule algebras such that εP ◦ ϕ coincides with the
canonical map A → Q P where εP : H P → Q P stands for id ⊗ ε. Since Ker(εP ◦ ϕ) = P , the kernel of
ϕ is an H-costable ideal of A contained in P . Therefore ϕ is injective whenever P H = 0.

Recalling the A-coring C(A, H) = A ⊗ H , we have MC(A,H) ≈ M H
A by [3, 32.6]. Thus a special case

of considerations in Section 2 yields a pair of adjoint functors

Φ : M H
A → MStab(P ), Ψ : MStab(P ) → M H

A .

In particular, Φ(M) = M ⊗A Q P . A Hopf algebra over a field is said to be residually finite dimensional if
its ideals of finite codimension have zero intersection [18].

Theorem 3.1. Let H be a residually finite dimensional Hopf algebra over a field, A a right H-comodule algebra
and P a prime ideal of A with the property P H = 0. If both A and A/P ⊗ H have right artinian classical right
quotient rings, then Φ induces a category equivalence M H

A /T H
A ≈ MStab(P ) .

Proof. We follow the proof of [23, Th. 1.8] very closely. By Proposition 1.5 A/P and H have right
artinian classical right quotient rings. In particular, A/P is right Goldie. The existence of a right ar-
tinian ring Q (H) implies that the antipode of H is bijective [21, Th. A]. By Proposition 1.5 the ring
Q P embeds in the quotient ring Q (A/P ⊗ H). The latter is then also a classical right quotient ring
of H P .

We may view A and H P as left module algebras over the finite dual H◦ of H . Since H is residu-
ally finite dimensional, the H◦-submodules in A and H P are precisely the H-subcomodules. By [24,
Th. 2.2] the action of H◦ extends to Q (A) and Q (H P ). Since P H = 0, products of nonzero H◦-stable
two-sided ideals of A are nonzero, i.e. the H◦-module algebra A is H◦-prime. Then so too is Q (A),
whence Q (A) is H◦-simple by [24, Lemma 4.2].

Since H embeds in H P as a right H-comodule algebra, each H-costable right ideal K of H P may
be regarded as an object of M H

H . By Sweedler’s structure theorem for Hopf modules [25, Th. 4.1.1] we
have K ∼= K0 ⊗ H where

K0 = {
x ∈ K

∣∣ (id ⊗ �)(x) = x ⊗ 1
} ⊂ Q P ⊗ 1 ∼= Q P .

Applying εP , we deduce that K0 = εP (K0 ⊗ H) = εP (K ).
Suppose that K = ϕ(I)H P where I is an H-costable two-sided ideal of A. Then K0 coincides with

the extension I Q P of I . It follows from standard properties of classical quotient rings [17, 2.1.16] that
K0 is a two-sided ideal of Q P . If I 
= 0, then I 
⊂ P since P H = 0. In this case K0 
= 0, and therefore
K0 = Q P since Q P is simple artinian. We conclude that ϕ(I)H P = H P for each nonzero H◦-stable (i.e.
H-costable) ideal I of A. Thus the assumptions of [23, Lemma 1.7] are satisfied. By that lemma ϕ
extends to a homomorphism of H◦-module algebras Q (A) → Q (H P ). This extension is injective since
so is ϕ .

For M ∈ M H
A we have

M ⊗A Q (H P ) ∼= (
M ⊗A Q (A)

) ⊗Q (A) Q (H P ).

Here M ⊗A Q (A) is an H◦-equivariant Q (A)-module. It coincides with the union of H◦-stable
finitely generated Q (A)-submodules V A ⊗A Q (A) where V runs over the finite dimensional H-
subcomodules V ⊂ M . This means that M ⊗A Q (A) is locally Q (A)-finite. By [23, Lemma 1.6] the
functor ? ⊗Q (A) Q (H P ) is faithfully exact on the category of locally Q (A)-finite H◦-equivariant Q (A)-
modules. Since Q (A) is left A-flat, the functor ?⊗A Q (A) is exact on M A . It follows that ? ⊗A Q (H P )

is exact on M H
A . On the other hand,

M ⊗A Q (H P ) ∼= (M ⊗A H P ) ⊗H P Q (H P ) ∼= (M ⊗A Q P ) ⊗Q P Q (H P )

∼= Φ(M) ⊗Q P Q (H P )
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since M ⊗A H P ∼= (M ⊗A Q P ) ⊗Q P H P according to Lemma 2.2 (in the left-hand side H P is viewed
as a ring extension of A via ϕ). As Q P is simple artinian, the functor ? ⊗Q P Q (H P ) is faithfully exact
on M Q P . It follows that Φ has to be exact. Now Lemma 2.1 shows that Ψ is fully faithful. By [13,
Ch. III, Prop. 5] KerΦ is a localizing subcategory of M H

A , and Φ induces an equivalence M H
A /KerΦ ∼=

MStab(P ) . Moreover, Φ(M) = 0 if and only if M ⊗A Q (H P ) = 0, which is equivalent to the equality
M ⊗A Q (A) = 0. Hence KerΦ = T H

A by Lemma 1.2. �
Remarks. (1) If dim A/P = 1, then ϕ is an isomorphism of A onto a right coideal subalgebra of H . In
this case Theorem 3.1 reduces to [23, Th. 1.8].

(2) The right quotient rings in Theorem 3.1 cannot be replaced with the left quotient rings because
it is essential in the proof that Q (A) is left A-flat.

(3) There is a version of Theorem 3.1 for an arbitrary base ring k which reduces, however, to the
case of a field. Denote by p ∈ Spec k the preimage of P ∈ Spec A in k. The assumption P H = 0 forces
pA = 0, so that A is an algebra over the domain k/p. Passing to the field of fractions Q p = Q (k/p),
we may view A′ = Q p ⊗ A as a right comodule algebra over the Hopf algebra H ′ = Q p ⊗ H . There is a
unique prime P ′ ∈ Spec A′ whose preimage in A coincides with P . Since Q p embeds in Q P , we have
Q P ∼= Q P ′ and Stab(P ) ∼= Stab(P ′). There is a functor Q p ⊗ ? : M H

A → M H ′
A′ . Viewing right (H ′, A′)-

Hopf modules as right (H, A)-Hopf modules gives another functor M H ′
A′ → M H

A . It is easy to see that

these two functors induce quasi-inverse equivalences between M H
A /T H

A and M H ′
A′ /T H ′

A′ . Thus we may
replace the pair A, H with A′, H ′ .

For W ∈ A M and U ∈ H M we regard W ⊗ U as a left A-module, letting A operate on W ⊗ U via
ρ : A → A ⊗ H . In a similar way V ⊗ U ′ ∈ M A for V ∈ M A and U ′ ∈ M H . Let U S denote U with the
right H-module structure uh = S(h)u (u ∈ U , h ∈ H) where S is the antipode of H .

Lemma 3.2. There are natural k-linear bijections

(V ⊗ U S) ⊗A W ∼= V ⊗A (W ⊗ U ) for V ∈ M A, W ∈ A M, U ∈ H M.

Assuming S : H → H to be bijective, we have (V ⊗ H) ⊗A W ∼= V ⊗A (W ⊗ H).

Proof. Clearly (V ⊗ U S ) ⊗A W ∼= (V ⊗ U ⊗ W )/K where K is the k-linear span of elements

∑
va(0) ⊗ S(a(1))u ⊗ w − v ⊗ u ⊗ aw

with u ∈ U , v ∈ V , w ∈ W and a ∈ A. Similarly V ⊗A (W ⊗ U ) ∼= (V ⊗ W ⊗ U )/L where L is the
k-linear span of elements

va ⊗ w ⊗ u −
∑

v ⊗ a(0)w ⊗ a(1)u.

If ζ : V ⊗ U ⊗ W ∼= V ⊗ W ⊗ U is the canonical k-linear bijection, then

ζ
(∑

va(0) ⊗ S(a(1))u ⊗ w
)

=
∑

va(0) ⊗ w ⊗ S(a(1))u

≡
∑

v ⊗ a(0)w ⊗ a(1) S(a(2))u

= v ⊗ aw ⊗ u = ζ(v ⊗ u ⊗ aw) (mod L).

Hence ζ(K ) ⊂ L. A similar calculation shows that ζ−1(L) ⊂ K . In other words, ζ(K ) = L. Now take
U = H , U ′ = H with the H-module structures given, respectively, by left and right multiplications.
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The map S : H → H is a homomorphism of right H-modules U ′ → U S . Thus U S ∼= U ′ in M H when S
is bijective. �

For each V ∈ M A we may regard V ⊗ H as an object of M H
A with the action of A obtained via

ρ : A → A ⊗ H and the coaction of H given by the map id ⊗ �.

Lemma 3.3. If S : H → H is bijective then Φ(V ⊗ H) ∼= V ⊗A H P in M Q P .

Proof. The desired isomorphism can be rewritten as

(V ⊗ H) ⊗A Q P ∼= V ⊗A (Q P ⊗ H).

It is obtained by taking W = Q P in Lemma 3.2. By naturality the isomorphisms of Lemma 3.2 are
EndA W -linear. In particular, they are right Q P -linear for W = Q P . �
Proposition 3.4. Under the hypotheses of Theorem 3.1 H P is left A-flat with respect to ϕ and V ⊗A H P = 0 for
V ∈ M A if and only if V ∈ T A . Moreover, we have TorA

i (M, Q P ) = 0 and Exti
A(M, Q P ) = 0 for all M ∈ M H

A
and i > 0.

Proof. The functor Φ(? ⊗H) is exact on M A by Theorem 3.1, whence so is ?⊗A H P in view of
Lemma 3.3. This verifies the flatness of H P . By Lemma 3.3 V ⊗A H P = 0 if and only if Φ(V ⊗ H) = 0,
and Theorem 3.1 allows us to rewrite the last condition as V ⊗ H ∈ T H

A . Note that id ⊗ ε : V ⊗ H → V
is an epimorphism in M A . Therefore V ∈ T A whenever V ⊗ H ∈ T A . Conversely, suppose that V ∈ T A .
Then for each v ∈ V there exists an H-costable right ideal I of A such that I ∈ G(A) and v I = 0. Since
(v ⊗ H) · I = 0, we conclude that V ⊗ H ∈ T A as well.

As mentioned in the proof of Lemma 2.2, each object N ∈ M H
H P

can be written as X ⊗Q P H P for
some right Q P -module X . Since the ring Q P is simple artinian, all Q P -modules are projective. Hence
N is projective in M H P , so that TorH P

i (N,?) = 0 for all i > 0. The ring homomorphism A → Q P

factors through ϕ : A → H P , and ? ⊗A H P is defined as a functor M H
A → M H

H P
. Therefore

TorA
i (M, Q P ) ∼= TorH P

i (M ⊗A H P , Q P ) = 0

by standard homological algebra [27, Prop. 3.2.9]. A similar argument applies to the functors Exti . �
For a finitely generated right A-module M we define the normalized rank at P and another quan-

tity which does not depend on P . The lengths of right Q P -modules are used in the former case and
the lengths of right Q (A)-modules in the latter:

rP (M) = lengthQ P
M ⊗A Q P

length Q P
, r(M) = lengthQ (A) M ⊗A Q (A)

length Q (A)
.

Proposition 3.5. Under the hypotheses of Theorem 3.1 we have rP (M) = r(M) for each A-finite object
M ∈ M H

A .

Proof. As was mentioned in the proof of Theorem 3.1, Q (A) is an H◦-simple right artinian H◦-module
algebra and M ⊗A Q (A) is an H◦-equivariant right module over Q (A). By [22, Th. 7.6] a suitable finite
direct sum of copies of M ⊗A Q (A) is a free module. Thus there exist integers n � 0 and l � 0 such
that

Ml ⊗A Q (A) ∼= Q (A)n
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in M Q (A) . Comparing the lengths of these two modules, we find r(M) = n/l. Now applying the func-
tor ? ⊗Q (A) Q (H P ) and comparing similarly the lengths of the resulting right Q (H P )-modules, we
get

lengthQ (H P ) M ⊗A Q (H P )

length Q (H P )
= n

l
= r(M).

On the other hand, M ⊗A Q (H P ) ∼= (M ⊗A Q P ) ⊗Q P Q (H P ) (see again the proof of Theorem 3.1).
Since the ring Q P is simple artinian, a suitable finite direct sum of copies of M ⊗A Q P is a free Q P -
module. Repeating the previous argument, but now with respect to the ring extension Q P → Q (H P ),
we deduce that

lengthQ (H P ) M ⊗A Q (H P )

length Q (H P )
= rP (M). �

Corollary 3.6. Let P , P ′ be two prime ideals of A, both satisfying the hypotheses of Theorem 3.1. Then
MStab(P ) ≈ MStab(P ′) . If V ∈ MStab(P ) and V ′ ∈ MStab(P ′) correspond to each other under this equivalence,
then

lengthQ P
V

length Q P
= lengthQ P ′ V ′

length Q P ′
.

Proof. By Theorem 3.1 MStab(P ) ≈ M H
A ≈ MStab(P ′) . The second assertion follows from Proposi-

tion 3.5. �
Equivalences of comodule categories over corings are described in [3, 23.3, 23.12].

4. The second equivalence

Let H be a Hopf algebra over the base ring k, and R a k-algebra. A left H-module R-coring is an R-
coring C equipped with a left H-module structure such that the three module structures on C restrict
to the same k-module structure, the action of H on C commutes both with the left and the right
actions of R and

�(hc) = �(h)�(c) =
∑

h(1)c(1) ⊗ h(2)c(2), ε(hc) = ε(h)ε(c)

for all h ∈ H , c ∈ C (the second of the previous two identities is actually a consequence of the first
one).

A left (C, H)-Hopf module M is a left C-comodule and a left H-module such that the two module
structures on M restrict to the same k-module structure, the action of H commutes with the action
of R , and

δ(hm) = �(h)δ(m) =
∑

h(1)m(−1) ⊗ h(2)m(0) for all h ∈ H, m ∈ M,

where δ : M → C ⊗R M is the comodule structure map and C ⊗R M is viewed as an H ⊗ H-module
in a natural way. Denote by C

H M the category of left (C, H)-Hopf modules. We will view C ⊗ H as an
R ⊗ H-coring with the bimodule structure

(a ⊗ g)(c ⊗ h) =
∑

ag(1)c ⊗ g(2)h, (c ⊗ h)(a ⊗ g) = ca ⊗ hg
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where a ∈ R , g,h ∈ H , c ∈ C , the comultiplication and the counit

�(c ⊗ h) =
∑

(c(1) ⊗ 1) ⊗(R⊗H) (c(2) ⊗ h), ε(c ⊗ h) = ε(c) ⊗ h.

When C is considered with a distinguished grouplike e, then e ⊗ 1 is taken to be the distinguished
grouplike of C ⊗ H . For M ∈ C M one defines

Mco C = {
m ∈ M

∣∣ δ(m) = e ⊗ m
}
.

Similarly, Mco C⊗H is defined for each M ∈ C⊗H M. Given a ring homomorphism R → R ′ , the H-
module structure on C passes to C ′ = R ′ ⊗R C ⊗R R ′ . It makes C ′ into a left H-module R ′-coring. The
distinguished grouplike of C ′ is 1 ⊗ e ⊗ 1.

When R = k, a left H-module R-coring is just a left H-module coalgebra, and the next lemma
reduces to a well-known fact [3, 32.6].

Lemma 4.1. Structures of a left (C, H)-Hopf module may be identified with structures of a left comodule over
the R ⊗ H-coring C ⊗ H. Thus C

H M ≈ C⊗H M. Furthermore, Mco C = Mco C⊗H for each M ∈ C
H M.

Proof. A pair of commuting left R-module and H-module structures on M may be interpreted as a
single left R ⊗ H-module structure. Next,

(C ⊗ H) ⊗(R⊗H) M ∼= C ⊗R (R ⊗ H) ⊗(R⊗H) M ∼= C ⊗R M.

This bijection is left R ⊗ H-linear if we let H operate on C ⊗R M via the comultiplication H → H ⊗ H .
Thus the left R-linear maps δ : M → C ⊗R M satisfying the required compatibility condition with the
action of H correspond to the left R ⊗ H-linear maps δ′ : M → (C ⊗ H)⊗(R⊗H) M . It is straightforward
to check that the coassociativity and the counit conditions for δ are equivalent to similar conditions
for δ′ . For m ∈ M one has δ(m) = e ⊗ m if and only if δ′(m) = (e ⊗ 1) ⊗ m. �

Let A be a right H-comodule algebra, and P a prime ideal of A such that A/P is right or left
Goldie. The A-coring A ⊗ H is a left H-module coring in the obvious way. Hence Stab(P ) is a left
H-module coring too. We continue to use the notations Q P , H P , ϕ of Section 3. With ϕ : A → H P

one associates the Sweedler H P -coring H P ⊗A H P whose distinguished grouplike is taken to be 1 ⊗ 1
[3, 25.1]. Taking C to be the Q P -coring Stab(P ) in the previous discussion, we derive an H P -coring
structure on Stab(P ) ⊗ H .

Lemma 4.2. Assume H to be k-flat. Then there is an isomorphism of H P -corings Stab(P ) ⊗ H ∼= H P ⊗A H P

compatible with the distinguished grouplikes.

Proof. Recall that Stab(P ) ∼= H P ⊗A Q P . By Lemma 2.2 there is an isomorphism

H P ⊗A H P ∼= (H P ⊗A Q P ) ⊗ H ∼= Stab(P ) ⊗ H

in M H
H P

. Explicit formula for this isomorphism shows that the action of H P by left multiplications on
the first tensorand of H P ⊗A H P corresponds to the left action of H P on Stab(P ) ⊗ H defined earlier
in this section. Thus b ⊗ b′ ∈ H P ⊗A H P is sent to b(e ⊗ 1)b′ ∈ Stab(P ) ⊗ H where e stands for the
distinguished grouplike of Stab(P ). This map respects the H P -coring structures. �
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By Lemma 4.2 the H P -coring Stab(P ) ⊗ H is a Galois coring, in the terminology of [2]. There are
functors

Φ : A M → Stab(P )
H M and Ψ : Stab(P )

H M → A M

defined as Φ = H P ⊗A ?, Ψ = ?co Stab(P ) .

Lemma 4.3. Assume H to be k-flat. Then Ψ is right adjoint of Φ . If H P is right A-flat, then Φ is exact, while
Ψ is fully faithful.

Proof. By Lemmas 4.1 and 4.2 Stab(P )
H M ≈ H P ⊗A H P M. Under this equivalence Φ and Ψ correspond to

the canonical pair of functors

A M → H P ⊗A H P M and H P ⊗A H P M → A M.

Their adjointness is verified in [6, p. 206, Prop. 107] (compared with [6] we switched the left and
right sides). Exactness of Φ is immediate from the right A-flatness of H P . In this case Ψ is fully
faithful by [6, p. 207, Prop. 108]. �
Theorem 4.4. Let H be a residually finite dimensional Hopf algebra over a field, A a right H-comodule algebra
and P a prime ideal of A with the property P H = 0. If both A and A/P ⊗ H have left artinian classical left
quotient rings, then Φ induces a category equivalence A M/A T ≈ Stab(P )

H M.

Proof. By the assumptions Aop and (A/P )op ⊗ Hop have right artinian classical right quotient rings.
Proposition 1.5 then shows that so does Hop too. This implies, in view of [21, Th. A], that the antipode
of the Hopf algebra Hop,cop is bijective. Then Hop is itself a Hopf algebra. The right Hop-comodule
algebra Aop and its prime ideal P satisfy the hypotheses of Theorem 3.1. Applying Proposition 3.4 to
Aop, we deduce that (H P )op is left Aop-flat with respect to ϕ . Hence H P is right A-flat with respect
to ϕ . This allows us to apply Lemma 4.3 which, in conjunction with [13, Ch. III, Prop. 5], entails a
category equivalence

A M/KerΦ ≈ Stab(P )
H M.

By Proposition 3.4 applied again to Aop we have H P ⊗A V = 0 for V ∈ A M if and only if V ∈ A T .
Thus KerΦ = A T . �

We denote by Stabr(P ) the stabilizer of P considered as a prime ideal of the right Hop-comodule
algebra Aop. Then Stabr(P ) is a left Hop-module Q op

P -coring, hence a right H-module Q op
P -coring.

For example, if P is a maximal ideal of codimension 1 in A and ϕ : A → H is the corresponding
homomorphism of right H-comodule algebras, then Stabr(P ) ∼= H/ϕ(P )H . For each right H-module
coring C the category C M H of left–right Hopf (C, H)-modules can be defined. Replacing A with Aop

in Theorem 4.4, we get an equivalent formulation:

Theorem 4.5. Under the hypotheses of Theorem 3.1 there is a category equivalence M A/T A ≈ Stabr(P )M H .

5. Birational extensions

In this section we assume that H is a k-flat Hopf algebra with a bijective antipode over an arbitrary
commutative ring k. Suppose that ψ : A → B is a homomorphism of right H-comodule algebras which
extends to an isomorphism of classical right quotient rings Q (A) → Q (B) (thus Q (A) and Q (B) exist
but are not necessarily artinian). In this case we say that B is a birational H-coequivariant extension
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of A. Identifying Q (A) with Q (B) and the algebras A, B with their images in the quotient ring, we
may assume that A ⊂ B ⊂ Q (A). Put

Spec′ A = {
P ∈ Spec A

∣∣ the ring A/P is right Goldie and P H ∩ Σ(A) = ∅}
.

The condition P H ∩ Σ(A) = ∅ means precisely that P /∈ G H (A).

Lemma 5.1. The right A-module B/A is G H (A)-torsion.

Proof. By the initial assumptions B ⊗A Q (A) ∼= Q (A), whence B/A ⊗A Q (A) = 0. Since B/A is an
object of M H

A , the conclusion follows from Lemma 1.2. �
Lemma 5.2. Let I and J be right ideals of A and B, respectively. If I ∈ G H (A) then I B ∈ G H (B). If J ∈ G H (B)

then J ∩ A ∈ G H (A).

Proof. We may assume I and J to be H-costable. Then I B and J ∩ A are H-costable right ideals of B
and A, respectively. Since I ∩ Σ(A) 
= ∅ and Σ(A) ⊂ Σ(B), we get I B ∩ Σ(B) 
= ∅, which proves the
first conclusion.

Take any s ∈ J ∩ Σ(B). By the finiteness theorem (see [3, 3.16]) there exists an H-subcomodule
U ⊂ J such that s ∈ U and U is contained in a finitely generated k-submodule of B . In view of
Lemma 5.1 U K ⊂ A for a suitable K ∈ G H (A). We may assume K to be H-costable. Then U K is
an H-costable right ideal of A, and U K ⊂ J ∩ A. Since U ∩ Σ(B) 
= ∅ and K ∩ Σ(B) 
= ∅, we have
U K ∩Σ(B) 
= ∅ as well. But U K ∩Σ(B) ⊂ Σ(A) because U K ⊂ A. It follows that U K ∈ G H (A), whence
the second conclusion. �
Lemma 5.3. A right B-module W is G H (B)-torsion (resp. G H (B)-torsion-free) if and only if W is G H (A)-
torsion (resp. G H (A)-torsion-free).

Proof. Let w ∈ W and denote by I and J the annihilators of w in A and B , respectively. Then I =
J ∩ A and I B ⊂ J . Hence I ∈ G H (A) if and only if J ∈ G H (B) by Lemma 5.2. This shows that the

G H (B)-torsion submodule of W in M B coincides with the G H (A)-torsion submodule in M A . �
The canonical functor M A → M A/T A sends a morphism f in M A to an isomorphism in M A/T A

if and only if the kernel and the cokernel of f are G H (A)-torsion [13, Ch. III, Lemme 4]. Moreover, the
category M A/T A is universal with respect to inverting such morphisms [14, I.2.5.4]. In other words,
for an arbitrary category C a functor F : M A → C factors through M A/T A if and only if F ( f ) is an
isomorphism for each M A -morphism f with Ker f ∈ T A and Coker f ∈ T A . When C is abelian and F
is exact, the previous condition means that F vanishes on T A .

Proposition 5.4. Assuming that B is a birational H-coequivariant extension of A, we have M A/T A ≈ M B/T B

and M H
A /T H

A ≈ M H
B /T H

B .

Proof. Consider the adjoint functors M A → M B and M B → M A given, respectively, by extension
and restriction of scalars. Let

ξV : V → V ⊗A B, v 
→ v ⊗ 1, V ∈ M A,

ηW : W ⊗A B → W , w ⊗ b 
→ wb, W ∈ M B ,

be the unit and the counit of adjunction.
Since tensor products commute with inductive direct limits, we have V ⊗A B ∼= lim−→ V ⊗A F where

F runs over the finitely generated left A-submodules of B , and we may use only those F for which
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A ⊂ F . Since B/A is G H (A)-torsion by Lemma 5.1, for such an F there exists I F ∈ G H (A) with the
property that F I F ⊂ A. Suppose that v ∈ Ker ξV . Then v ⊗ 1 = 0 in V ⊗A F for some F as above. The
right multiplication by an element a ∈ I F gives a left A-linear map μa : F → A. The map id ⊗ μa :
V ⊗A F → V sends v ⊗ 1 to va. Hence v I F = 0. This shows that Ker ξV is G H (A)-torsion. Any element
x ∈ V ⊗A B lies in the image of some V ⊗A F , and then xI F is contained in the image of V ⊗A A ∼= V .
In other words, Coker ξV is also G H (A)-torsion. Thus ξV is an isomorphism in M A/T A .

Since ηW ◦ ξW = id and ξW is an isomorphism in M A/T A , so too is ηW . It follows that KerηW is
G H (A)-torsion, hence G H (B)-torsion by Lemma 5.3. At the same time CokerηW = 0. Therefore ηW is
an isomorphism in M B/T B .

Suppose that f : V → V ′ is a morphism in M A with G H (A)-torsion kernel and cokernel. Since
( f ⊗ id)◦ ξV = ξV ′ ◦ f and f , ξV , ξV ′ are isomorphisms in M A/T A , so is f ⊗ id : V ⊗A B → V ′ ⊗A B . In
other words, Ker( f ⊗ id) and Coker( f ⊗ id) are G H (A)-torsion. Since these two B-modules have to be
G H (B)-torsion by Lemma 5.3, f ⊗ id is an isomorphism also in M B/T B . It follows that ?⊗A B : M A →
M B gives rise to a functor M A/T A → M B/T B . Since all G H (B)-torsion right B-modules are G H (A)-
torsion in M A by Lemma 5.3, the exact functor M B → M A induces a functor M B/T B → M A/T A .
The fact that ξV and ηW are isomorphisms in the quotient categories for all V and W means that
the two induced functors between the quotient categories are quasi-inverse to each other.

For each object M ∈ M H
A the map ξM : M → M ⊗A B is a morphism in M H

A . Since we have proved
already that Ker ξM and Coker ξM are G H (A)-torsion, ξM is an isomorphism in M H

A /T H
A . Similarly,

ηN is an isomorphism in M H
B /T H

B for each object N ∈ M H
B . Then the second category equivalence

also follows. �
Lemma 5.5. Let P ∈ Spec A � G H (A). If A/P is either right or left Goldie, then the quotient ring Q P = Q (A/P )

is G H (A)-torsion-free in M A and I Q P = Q P for each I ∈ G H (A).

Proof. Denote by T the G H (A)-torsion right A-submodule of Q P . Since T is stable under all M A -
endomorphisms of Q P , it is a left ideal of Q P . If s is any regular element of A/P then the left ideal
T s of Q P has the same length as T ; since T s ⊂ T , we deduce that T s = T , and therefore T s−1 = T . It
follows that T is a two-sided ideal of Q P . Since Q P is a simple artinian ring, either T = 0 or T = Q P .
Note that P is the annihilator in A of 1 ∈ Q P . Since P /∈ G H (A), we have 1 /∈ T . Therefore T = 0, i.e.
Q P is G H (A)-torsion-free.

We can conclude that each right Q P -module is G H (A)-torsion-free in M A since it embeds in
a free Q P -module. If I ∈ G H (A), then the G H (A)-torsion submodule of Q P /I Q P contains the coset
1 + I Q P . It follows that 1 ∈ I Q P since Q P /I Q P is G H (A)-torsion-free, but then I Q P = Q P . �
Theorem 5.6. Let B be a birational H-coequivariant extension of A. Suppose that Q (A) is a classical two-sided
quotient ring of A. Then the assignment P 
→ P ∩ A gives a bijection Spec′ B → Spec′ A.

If P ∈ Spec′ A corresponds to P ∈ Spec′ B, then the canonical map A/P → B/P extends to an isomor-
phism of quotient rings Q P → Q P and to coring isomorphisms Stab(P ) → Stab(P), Inert(P ) → Inert(P).

Proof. By the assumptions the opposite ring Q (A)op is a classical right quotient ring of Aop and Bop.
Thus Bop is a birational Hop-coequivariant extension of Aop. This observation allows us to use freely
the left-hand versions of the previous results in this section.

Given some P ∈ Spec′ B , put B = B/P, P = A ∩ P, and A = A/P . We will apply Proposition 1.4
to the chain of rings A ⊂ B ⊂ Q P = Q (B). The ring Q P is simple artinian, hence quasi-Frobenius.
Denote by I the set of right ideals of A consisting of the images of right ideals in G H (A). Conditions
(T1)–(T3) for I are immediate from the respective conditions for G H (A) (condition (T4) also holds,
but we do not need it). Thus I is a topologizing filter.

Applying Lemma 5.5 with B in place of A, we see that Q P is G H (B)-torsion-free in M B . By
Lemma 5.3 Q P is G H (A)-torsion-free in M A . This means that each right ideal I ∈ G H (A) has zero
left annihilator in Q P . By the left-hand version of Lemma 5.5 Q P is Gl

H (B)-torsion-free in B M.
Note that B I H is an H-costable left ideal of B which intersects Σ(B). Since B I H ⊂ B I , we get B I ∈
Gl

H (B). Therefore the right annihilator of I in Q P , equal to the right annihilator of B I , is 0. This
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verifies condition (a) of Proposition 1.4. Condition (b) holds because B/A is G H (A)-torsion in M A by
Lemma 5.1.

Thus Proposition 1.4 shows that Q P is a classical right quotient ring of A. Since Q P is simple
artinian, A is prime right Goldie. In particular, P ∈ Spec A. Since Q P is G H (A)-torsion-free, we get
P /∈ G H (A), i.e. P ∈ Spec′ A. Note that P/P ∈ T A in view of Lemma 5.1 since P/P embeds in B/A.
Since B ⊂ Q P is G H (A)-torsion-free, P/P must coincide with the G H (A)-torsion submodule of B/P
in M A . Thus P is recovered from P in a unique way.

Next we will work out the correspondence between the primes of A and B in the opposite direc-
tion. Starting with an arbitrary P ∈ Spec′ A, we first prove that the map

ξ : Q P → B ⊗A Q P , q 
→ 1 ⊗ q,

is bijective. Given any b ∈ B , Lemma 5.1 shows that bI ⊂ A for some I ∈ G H (A). Then the image of ξ

contains all elements u ⊗ q with u ∈ bI and q ∈ Q P . It follows that b ⊗ Q P ⊂ Im ξ since I Q P = Q P by
Lemma 5.5. Hence ξ is surjective. On the other hand, Ker ξ is Gl

H (A)-torsion by (the left-hand version
of) Proposition 5.4. Since Q P is Gl

H (A)-torsion-free in A M by Lemma 5.5, ξ is injective.
Thus the (B, Q P )-bimodule B ⊗A Q P is freely generated by e = 1 ⊗ 1 as a right Q P -module. Hence

there is a ring homomorphism f : B → Q P defined by the formula be = ef (b) for b ∈ B . The restriction
of f to A coincides with the canonical map A → Q P . Therefore the subring f (B) of Q P contains the
image of A/P . In particular, f (B) is a right order in Q P . Letting P = Ker f , we see that B/P ∼= f (B)

is prime right Goldie with the right quotient ring Q P
∼= Q P . Hence P is a prime ideal of B and

P ∩ A = Ker f |A = P . Since P /∈ G H (A), Lemma 5.2 yields P /∈ G H (B). This shows that P ∈ Spec′ B .
Recall that Stab(P ) ∼= (Q P ⊗ H) ⊗A Q P and Stab(P) ∼= (Q P ⊗ H) ⊗B Q P . The obvious map

Stab(P ) → Stab(P) is a homomorphism of corings, and we need only to check its bijectivity. Since
B ⊗A Q P ∼= Q P and Q P

∼= Q P , we have

Stab(P ) ∼= (Q P ⊗ H) ⊗B (B ⊗A Q P ) ∼= (Q P ⊗ H) ⊗B Q P ∼= Stab(P).

Lemma 2.4 allows us to pass easily to the inertializers. �
It is not clear whether Theorem 5.6 remains true when Q (A) is not a two-sided quotient ring. By

the left–right symmetry of the hypotheses in Theorem 5.6 the conclusion holds also when the right
Goldie condition on the factor rings corresponding to prime ideals in Spec′ A and Spec′ B is replaced
with the left Goldie condition.
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