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1. Introduction

This paper is concerned with bounding the projective dimension of ideals generated by homo-
geneous quadratic polynomials. Our main motivation arises from the following question posed by
Stillman:

Question 1.1 (Stillman). (See [27, Problem 15.8].) Is there a bound, independent of N, on the projective di-
mension of ideals in R = K[x1, ..., xn] which are generated by n homogeneous polynomials of given degrees
dq,...,dp?
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Recently, there has been a surge of interest in Stillman’s question. We mention here some of the
relevant works in order of their appearance: [13-15,25,4,1]. We also remark that this question has
interesting connections to the study of Castelnuovo-Mumford regularity. As shown by Caviglia [7],
Question 1.1 is equivalent to a similar problem in which projective dimension is replaced by regularity.
For a survey of the developments regarding Stillman’s question up to the moment when this paper
was written see [26].

Although Stillman’s question is open in general, it has been answered in the affirmative by
Ananyan and Hochster [1] in the case of ideals generated by not necessarily homogeneous polynomi-
als of degree at most two. These authors have announced upcoming improvements of their estimates
as well as an extension of their result to ideals generated by cubics in [20]. However, the bounds on
projective dimension produced by the methods in [1] are typically very large. Ananyan and Hochster
find an upper bound with asymptotical order of growth 2n?" for the projective dimension of an ideal
generated by n polynomials of degree at most 2 [1, Section 6]. When the number of minimal genera-
tors for the ideal is small, the bounds obtained by Ananyan and Hochster are still large. For example,
in the case of ideals generated by three polynomials of degree two, the concrete bound obtained by
using the methods in [1] is 296 [26, Proposition 3.15], while the tight upper bound is 4 by a result of
Eisenbud and Huneke (cf. [26, Theorem 3.1]).

Our paper stems from a desire to provide a sharp upper bound for the projective dimension of
ideals generated by homogeneous quadratic polynomials. This is currently out of reach in complete
generality. Our main result gives a complete answer in codimension two:

Theorem. For any ideal I of height two generated by n homogeneous quadratic polynomials in a polynomial
ring R, pd(R/I) < 2n — 2. Moreover, this bound is tight.

Our present work leads to the natural question of whether it is possible to find tight upper bounds
on the projective dimension of ideals generated by quadratic polynomials of a fixed arbitrary height.
In Section 6 we pose a more specific question on whether a bound on the projective dimension of
ideals generated by quadratic polynomials can be given in terms of the minimal number of generators
and the height of the ideal.

This paper is organized as follows: Section 2 covers the background needed for our developments,
in Section 3 we give an outline of the proof of the main result and we prove this result in the
simplest cases, Sections 4 and 5 develop the material needed to fill in the details of the proof of the
main result in the most difficult case and Section 6 presents some open questions which stem from
computations motivated by our work.

2. Background
2.1. Preliminaries

For the rest of this paper, R will denote a standard graded polynomial ring over a field K. We
further let I denote an ideal of R generated by n homogeneous quadratic polynomials. We henceforth
use the terminology quadric for homogeneous quadratic polynomial and ideal of quadrics for an ideal
generated by quadrics.

For a finitely generated graded R-module M, there exists a unique, up to isomorphism, minimal

graded free resolution 0 —> Fpi) e gﬂiﬁo, that is, an exact sequence of finitely generated
graded free R-modules F; with M = Coker(dq). The resolution is called minimal if Im(d;) € mF;_4
for i > 1. Here m denotes the homogeneous maximal ideal of R. The length p of the minimal free
resolution of M is called the projective dimension of M and is denote pd(M) = p.

For the case of cyclic modules, computing pd(R/I) is equivalent to computing pd(I) as the two
are related by pd(R/I) = pd(I) + 1. For uniformity and consistency with [1,4,14,15,25,26] we choose
to bound the projective dimension of R/I throughout the paper. We often make use of the next two
well-known remarks which relate the projective dimension of an ideal to the projective dimension of
its colon ideals and allow for computations of such colon ideals, respectively.
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Remark 2.1. Let [ be an ideal in a polynomial ring R and let £ be any element of R. Then

(1) pd(R/I) < max{pd(R/(I: (£))), pd(R/(I + (O)))},
(2) pd(R/(I: ())) < max{pd(R/I), pd(R/(I + (€))) — 1},
(3) pd(R/(I'+ () < max{pd(R/(I : (£))) + 1, pd(R/D}.

Remark 2.2. Let | be an ideal in a polynomial ring R and let x, f be elements of R. Then

(I+&H): @ =1:x)~+(f).
2.2. 1-generic matrices and heights of ideals of minors

The class of 1-generic matrices was introduced in Eisenbud’s paper [8]. We explain in Section 4
how matrices of linear forms come up naturally when analyzing ideals generated by quadrics that are
contained in a linear prime.

Let M be a matrix of linear forms over a polynomial ring R with coefficient field K. By a generalized
row of M we mean a K-linear combination of the rows of M with not all coefficients 0. Similarly a
generalized column is a non-zero K-linear combination of the columns of M. A generalized entry of M
is simply a linear combination with non-zero coefficients of the entries of some generalized row. In
the following we write I;(M) for the ideal of i x i minors of M.

Definition 2.3. We call M 1-generic if, after arbitrary K-linear row and column operations, M exhibits
no generalized zero entries.

The following result was established by Eisenbud in [9] (see also Theorem 2.1 in [8] for a general-
ization allowing linear sections of small codimension of these determinantal varieties).

Theorem 2.4. (See [9, Theorem 6.4].) If M is a 1-generic matrix of linear forms of size p x q (p < q) with
entries in a polynomial ring R over an algebraically closed field K, then the ideal 1,(M) generated by the
maximal minors of M is prime of codimension q — p + 1. Its free resolution is given by an Eagon-Northcott
complex and R/I,(M) is a Cohen-Macaulay domain.

In addition to using the preceding theorem for 1-generic matrices, we shall also be concerned with
ideals of minors of matrices which are far from being 1-generic; specifically we shall be interested in
determining the height of ideals of minors of matrices whose rank is not maximal. In this situation,
bounds on the height of ideals of minors for (not necessarily linear) matrices have been given by
Eisenbud, Huneke and Ulrich [12] generalizing results of Eagon-Northcott, Bruns and Faltings.

Theorem 2.5. (See [12, Theorem A].) Let R be a regular local ring, and let M be a matrix of size p x q with
entries in R. Set r = rank(M) and consider an integer i such that 1 <i <r and I;(M) # R. Then

htl;(M) < (r —i+ 1)(max{p,q} —i+1) +i— 1.

Remark 2.6. The conclusion of the theorem above holds in the graded case as well. If R is a polyno-
mial ring and M a matrix of size p x q and rank r whose entries are homogeneous forms, then

htI;(M) < (r—i+1)(max{p,q} —i+1)+i—1.

This is easily deduced from Theorem 2.5 by localizing at the homogeneous maximal ideal.
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2.3. Residual intersections

The second result that we use extensively appeared in the context of residual intersections, a no-
tion introduced by Artin and Nagata [3]. An ideal | is called an s-residual intersection of an ideal I
if there exists an s-generated ideal A C I such that ] = A: 1 and ht(J) > s > ht(I). If, in addition,
ht(I + J) > ht(J), then J is said to be an s-geometric residual intersection of I. The notion of residual
intersection generalizes that of liaison, for which s = ht(I).

One of the most common settings in which residual intersections arise naturally is the following:
take A to be an ideal generated by at most s elements, assume A is not unmixed, and let I be
the intersection of its primary components of height at most s (in any of its irredundant primary
decompositions). If I £ A, then | = A : [ is a geometric residual intersection of I, in particular J is
actually the intersection of all the primary components of A of height at least s+1and A=1NJ.

Definition 2.7. Let I be an ideal in a polynomial ring R and fix f = fi,..., fn to be any minimal set
of generators of I. We define I to be strongly Cohen-Macaulay if the homology modules H;(f, R) of
the Koszul complex associated to f are either zero or Cohen-Macaulay modules for all i.

Although this definition seems to depend on the chosen generating set f of I, one can check that
this is actually a property of the ideal I (see for instance [21, Remark 1.2]).

Definition 2.8. (See [3].) We say [ satisfies condition Gs if wu(Ip) < dimRy for every p € Spec(R), with
ICcpand dimRp <s—1.

In the course of our proofs, we shall exploit the following result which is a translation of
[21, Theorem 3.1] into purely algebraic language.

Theorem 2.9. (See [21, Theorem 3.1].) Let R be a Cohen-Macaulay local ring. Let I be an ideal of R such that I
is strongly Cohen-Macaulay and satisfies Gs. Let | = A : I be an s-geometric residual intersection of 1. Then:

1) R/] is Cohen-Macaulay and ht | =,
2) A=INn],

3) I+ ] is strongly Cohen-Macaulay, and
4) depthR/A > dimR —s.

—~ o~ o~ —~

The interested reader may find generalizations of this result by Herzog-Vasconcelos-Villareal and
Huneke-Ulrich in [19] and [23], respectively. However, for the purpose of this paper, we only need the
following special case of Theorem 2.9, where I is taken to be a homogeneous complete intersection
ideal.

Corollary 2.10. Let R be a polynomial ring. Let C be a complete intersection homogeneous ideal in R. Let
A= (ay,...,as) denote an ideal contained in C. Set | = A : C and assume ht ] > sand ht(C + J) > s+ 1.
Then ht(J) = s and pd(R/A) <s.

Proof. The problem can be reduced to the local case by localizing with respect to the homogeneous
maximal ideal m of R. Clearly C,, is strongly Cohen-Macaulay and Gs, hence we can apply Theo-
rem 2.9 to obtain ht J,,, =s and depth R, /A > dim Ry, —s. This latter inequality combined with the
Auslander-Buchsbaum formula implies pd(Rym/Am) < s. The conclusion now follows from the equali-
ties ht(J) = ht(Jm) and pdg(R/A) = pdg  (Rm/Am). O

2.4. Hilbert-Samuel multiplicity

In our quest to analyze the projective dimension of ideals generated by quadrics, we shall resort to
a case analysis based on the minimal primes associated to our ideals. To facilitate the understanding of
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what minimal primes may occur, we use the notion of Hilbert-Samuel multiplicity and a result known
as the associativity formula. In the following, we denote by e(M) the Hilbert-Samuel multiplicity of a
module M and by A(M) the length of an Artinian module M.

Theorem 2.11 (Associativity Formula). (See [24, Theorem 14.7].) Let I be an ideal of R. Then

e(R/)= Y e(R/MARy/Jp).

peSpec(R)
ht(p)=ht(I)

Let I'" denote the unmixed part of I, defined as the intersection of the primary components of I
with height equal to ht(I). It is easy to see from the formula above that e(R/I) =e(R/I'").

We recall a classical lower bound for the multiplicity of non-degenerate prime ideals. A homoge-
neous ideal is called degenerate if it has a linear form as a minimal generator.

Proposition 2.12. (See [10, Proposition 0], [11, Corollary 18.12].) Let p be a homogeneous prime ideal in a
polynomial ring defined over an algebraically closed field. If p is non-degenerate, then e(R/p) > ht(p) + 1.

In view of this bound, an ideal p is said to have minimal multiplicity if e(R/p) = ht(p) + 1. A variety
defined by a prime ideal of minimal multiplicity is called a variety of minimal multiplicity. These
varieties are well known and have been classified. Proofs of this classification in characteristic zero
can be found in [5,17,29] and a characteristic-independent proof can be found in [10]. The case of
interest to us, that of varieties of codimension 2 and minimal multiplicity, has been first considered
in [2,28].

Theorem 2.13 (Del Pezzo-Bertini). (See [10, Theorem 1].) A non-degenerate irreducible variety of codimension
at least two and minimal multiplicity defined over an algebraically closed field is of one of the following types
(1) a rational normal scroll, (2) the second Veronese embedding of P2 in P> or (3) a cone over one of the
previous two varieties.

3. Main results
3.1. The method of proof

The main result of this paper provides a tight upper bound on the projective dimension of ideals I
of height two generated by quadrics. The first step in our proof is to classify the minimal primes of
such ideals. In order to accomplish this task, we bound the multiplicity of height two ideals generated
by quadrics then we use the associativity formula to find the possible multiplicities of the individual
minimal primes. As a consequence of this analysis, we conclude that a height two ideal of quadrics
I is contained in at least one prime p of one of the following types: (1) a prime of multiplicity one
and height two, i.e. p = (x, y), with x, y independent linear forms, (2) a prime of multiplicity two
and height two, i.e. p = (x,q), with x a linear form and q an irreducible quadric or (3) a prime of
multiplicity three and height two, i.e. the defining ideal of one of the varieties of minimal multiplicity
classified in Theorem 2.13 (we shall also see that degenerate ideals of multiplicity three and height
two cannot occur).

We prove bounds on the projective dimension of ideals of quadrics contained in primes of each of
the types described above separately. The first case is the most intricate and is dealt with in Section 5,
while the other two cases are covered in this section. We combine these bounds in Theorem 3.5,
which conveys the overall estimate.

3.2. Minimal associated primes and consequences on projective dimension

We begin by characterizing the minimal primes associated to height two ideals of quadrics and
classifying them, over an algebraically closed field, according to their multiplicity.



C. Huneke et al. / Journal of Algebra 393 (2013) 170-186 175
Lemma 3.1. Let [ be an ideal of R minimally generated by n > 3 quadrics and with ht(I) = 2, thene(R/I) < 3.

Proof. Let f, g be a regular sequence of quadratic forms contained in I, thus e(R/(f, g)) = 4. Pass-
ing to the artinian reduction of R/I by going modulo a sequence of linear forms ¢, yields e(R/I) <
AR/, D) < MR/, f,8) =e(R/(f,g) =4. We have the series of containments (f,g) c I cC I'".
Note that (f, g) and ['" are unmixed ideals of height two. If e(R/I) =e(R/I"™) =e(R/(f,g)) =4,
then (f, g) =I"" by [14, Lemma 8]. But this would force (f, g) = I, contradicting that I has at least
three minimal generators. Thus we must have e(R/I) <3. O

Combining this lemma with the associativity formula one obtains:

Corollary 3.2. Let I be an ideal of R minimally generated by n > 3 quadrics and with ht(I) = 2. Let p be a
minimal prime of I with htp = 2. Then e(R/p) < 3.

To make use of this result, one needs to understand prime ideals of height two and multiplicity
1, 2 and 3. According to Theorem 2.13, any prime of height two and multiplicity 1 or 2 is degenerate
(contains a linear form). Going modulo this linear form, the image is a principal ideal. In particu-
lar, a prime of height two and multiplicity one is minimally generated by two independent linear
forms, and a prime of height two and multiplicity two is minimally generated by a linear form and a
quadric. This gives the first two types of primes mentioned in the paragraph at the beginning of this
section. Similarly, it is easy to see that the degenerate primes of height two and multiplicity three
are minimally generated by a linear form and a cubic, while the non-degenerate ones are listed in
Theorem 2.13.

We begin our case analysis by considering ideals generated by quadrics contained in a prime ideal
of multiplicity three and height two.

Proposition 3.3. Let R be a polynomial ring over an algebraically closed field. Any height two ideal I generated
by quadrics contained in a prime ideal p with ht(p) = 2 and e(R/p) = 3 has pd(R/I) = 2. In particular, for
any such ideal I, R/I is Cohen-Macaulay.

Proof. We start by considering the degenerate case p = (x, ¢), with x a linear form, ¢ an irreducible
cubic polynomial and ht(x, c) = 2. Since I C p is generated by quadrics, all minimal generators of I
must be multiples of x. However, in that case the height of I is one, a contradiction.

Next assume p is the non-degenerate defining ideal of one of the varieties listed in Theorem 2.13.
The ideal of the second Veronese of P? has height three and must be excluded. Note that each of
the defining ideals of rational normal scrolls of height two is minimally generated by 3 quadrics.
Since the minimal generators of I are linear combinations of these quadrics, we obtain, depending
on the number of minimal generators of I, that either I is a complete intersection or I = p. In the
first case pd(R/I) =2 and in the second case pd(R/I) =2 as well, as R/p is Cohen-Macaulay by the
Hilbert-Burch theorem applied to each of the primes defining rational normal scrolls. O

We continue with the case of ideals generated by quadrics contained in a prime ideal of multiplic-
ity two and height two.

Proposition 3.4. Let | be an ideal generated by n quadrics which is contained in a prime ideal of height two
and multiplicity two. Then pd(R/I) < n.

Proof. Let p be the minimal prime mentioned in the hypothesis. It is necessarily of the form p =
(x, q), with x a linear form and q a quadric. We may assume that:

I=(q+x01,x0,...,x00)



176 C. Huneke et al. / Journal of Algebra 393 (2013) 170-186

where ¢; are linear forms such that {{;,...,¢,} form a linearly independent set. By first using Re-
mark 2.2 and subsequently using that x is regular on R/(q) and hence also on R/(q + x£1), we
compute

I:X)=(q+xb1): X))+ U,....¢n)=(q+xL1)+ (L2, ..., ).

If q+xl1 € (la,...,4y), then I: (x) = (€2,...,£,) and pd(R/I : (x)) =n — 1. Otherwise, q + x¢1 is
a regular element on R/({3,...,£¢,) and thus pd(R/(q + x¢1, ¢2,...,¥€y)) =n. Hence in any case we
obtain pd(R/(I : (x))) < n. Now since I + (x) = (q, x), we obtain pd(R/(I + (x))) =2 and Remark 2.1
yields pd(R/I) <n. O

The last and most involved case is that of ideals generated by quadrics contained in a prime ideal
of multiplicity one. We defer the detailed analysis of this case to Section 5.

3.3. Proof of the main theorem

The following theorem, which is our main result, combines the bounds obtained throughout this
paper.

Theorem 3.5. For any ideal I of height two generated by n quadrics in a polynomial ring R, one has pd(R/I) <
2n—2.

Proof. For the purpose of computing projective dimension we may assume the ground field is alge-
braically closed by tensoring R with an appropriate extension of the original field. The case when
n =2 yields R/I is a complete intersection, thus in this case pd(R/I) =2 agrees with the conclusion
of the theorem. Henceforth we assume n > 3.

By Corollary 3.2, any ideal of height two generated by quadrics falls under the hypotheses of
at least one of Theorem 5.7, Proposition 3.4 or Proposition 3.3. These three results insure that
pd(R/I) <2n — 2, pd(R/I) <n or pd(R/I) = 2 respectively. Taking the maximum of these bounds
yields pd(R/I) <2n —2 overall. O

We complement the statement of our principal result by the important observation that the bound
in Theorem 3.5 is tight as we demonstrate in Example 3.6. The example below is a particular case of
the main result in [25], specifically the ideal discussed below appears under the name I ;2 in [25].
Note that the multiplicity of the family of examples given below is one as soon as the minimal
number of generators is at least four and it is two for the example minimally generated by three
quadrics.

Example 3.6. Let n > 2 and R = K[x, y,a1,1,...,02,,—2]. Consider the n-generated ideal of quadrics
I=(x%y% a1.1x+0az1y,...,a1.n_2X +0azn_2y). Then pd(R/I) =2n — 2.

Proof. By the graded Auslander-Buchsbaum formula, showing that pd(R/I) =2n — 2 is equivalent to
showing depth R/I = 0 or, equivalently, that the maximal ideal of R is associated to R/I. It is not hard
to see that xy is a non-zero socle element in R/I, which finishes the proof. O

3.4. A more detailed analysis

Even though our bound is tight, it turns out that it can be refined in an important number of
cases. The purpose of the additional analysis we perform in the rest of this section is to point out
in which contexts such refinements are possible. Following Engheta [13], we introduce the following
notation to keep track of the possibilities for the associated primes of minimal height of an ideal J.
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Table 1
Refining the bound on projective dimension according to multiplicity.
(e; A) Bound on pd(R/I) Reference
(1;1) 2n—2 contained in a linear prime (see Theorem 5.7)
(2;1) n contained in a multiplicity two prime (see Proposition 3.4)
(1;2) n+2 multiple structure on a linear prime (see Proposition 5.8)
(1,1;1,1) n+1 contained in 2 linear primes (see Proposition 5.9)
(3; 1) 2 prime of minimal multiplicity (see Proposition 3.3)
(1; 3) n+2 multiple structure on a linear prime (see Proposition 5.8)
(1,2;1,1) n contained in a multiplicity two prime (see Proposition 3.4)
(1,1;1,2) n+1 contained in 2 linear primes (see Proposition 5.9)
(1,1,1;1,1,1) n+1 contained in 2 linear primes (see Proposition 5.9)
Definition 3.7. We say I is of type (e =eq,e2,...,em; A =A1,A2,...,Am) if I has m associated primes

P1, ..., pm of minimal height with e(R/p;) =e; and with A(Ry,/I,,) =4;, fori=1,...,m.
Remark 3.8. If I is of type (e =eq,€2,...,em; A =A1,A2,...,Am), then e(R/]) = Z;":] eiki.
We classify the possible types of height two ideals generated by quadrics as follows:

Proposition 3.9. Let I be an ideal of R minimally generated by n > 3 quadrics and with ht(I) = 2, then
the minimal associated primes of I fall into one of the following categories (1) (1; 1), (2) (2; 1), (3) (1;2),
(4)(1,1;1,1),(5) (3;1),(6) (15 3), (7) (1,2; 1, 1), (8) (1,1; 1, 2),(9) (1, 1,1; 1,1, 1).

Proof. The result of combining Theorem 2.13 and the associativity formula of Theorem 2.11 is the
inequality

e(R/D= Y e(R/PA(Ry/Ip) <3.

peSpec(R)
ht(p)=2

The possible types listed above are all the possibilities of partitioning the integers 1, 2 and 3 according
to the associativity formula. O

A finer case analysis than the one performed in the proof of Theorem 3.5 is undertaken in Table 1,
which summarizes the bounds we are able to obtain on the projective dimension of ideals of quadrics
of each of the types described above. We base our refined analysis on the observation that better
bounds can be established for ideals contained in multiple structures with linear support (Proposi-
tion 5.8) or in at least two distinct linear primes (Proposition 5.9). For each bound, we reference the
relevant results in the paper for the reader’s convenience. Note that by taking the maximum among
the bounds listed in Table 1, we recover our general result, Theorem 3.5.

The case breakdown in Table 1 identifies that, for ideals of height two minimally generated by
at least four quadrics, there is only one type that can achieve the maximum projective dimension,
namely ideals of multiplicity one. For ideals minimally generated by three quadrics, the situation is
quite different: the sharp bound of 4 is never attained by an ideal of multiplicity one (see [22] for a
proof). The bound of n + 2 on the projective dimension of ideals of height two generated by quadrics
and having multiplicity strictly larger than one may be of separate interest.

4. Matrices of linear forms and ideals of quadrics contained in linear primes
It is easy to see [18, Exercise 7.6] that any prime ideal of multiplicity one of a polynomial ring over

an algebraically closed field is generated by linear forms. We shall call such a prime ideal generated
by linear forms a linear prime.
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We give a matrix-theoretic approach to ideals generated by quadrics contained in a linear prime
by viewing them as subideals of the determinantal ideal associated to certain matrices of linear forms.
While our ideals are not the full determinantal ideal, we often use residual intersection techniques to
recover determinantal ideals as residuals of our ideals or of subideals thereof (see Proposition 5.1 for
a typical example). However, this technique requires 1-genericity assumptions on the matrix of linear
forms, therefore we begin by studying linear algebraic properties of matrices associated to ideals of
quadrics.

For the rest of the section, we consider the case of an ideal I generated by n quadrics and such
that I C (x, y), where x and y are linearly independent linear forms.

A= ayr ... Qin '
a1 ... Q2p
Let I be an ideal generated by the n quadrics which are entries of the 1 x n matrix (—y x)A, where
x, y are linear forms. In this context we say that I is represented by coefficients by the matrix A.

Definition 4.1. Let

Definition 4.2. Let

M= X a1 ... Q1n
y axx ... an
be the matrix obtained by prepending the column vector (x y)T to the matrix A described in Def-

inition 4.1. Let I be the ideal generated by the subset of the 2 by 2 minors of this matrix which
involve the first column of M. In this context we say that I is represented by minors by the matrix M.

Remark 4.3. The same ideal [ is obtained from the two matrix representations described in Defini-
tions 4.1 and 4.2 respectively.

The example below shows that the same ideal I can be represented by several distinct matrices
both by coefficients and also by minors.

Example 4.4. Both matrices A and A’ displayed below represent by coefficients the ideal

I= (xz,xy,ax—i-by, cx+dy) C K[x,y,a,b,c,d].

Furthermore, both matrices M and M’ represent the same ideal I by minors:
A=<o 0 -b —d)7 A/=<o -x —b —d>7
X y a c x 0 a c
M:(X 0 0 —b —d>’ M,:<X 0 —x —b —d>.
y x 'y a c y x 0 a c

Note that M’ in the example above is obtained from M by subtracting the first column from
the third column. We use elementary operations of this type frequently in this section. We define a
sequence of invertible elementary operations applied to a matrix to mean multiplication on either side by
invertible matrices with scalar entries. Note that this is closely related to the notions of generalized
rows and columns defined in the introduction. We say that two matrices are equivalent if one is
obtained from the other by performing a sequence of invertible elementary operations.
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Remark 4.5. The ideals of quadrics represented by coefficients by a pair of equivalent matrices are
equal. To have that two ideals of quadrics represented by minors by a pair of equivalent matrices are
equal, we must further require that any elementary column operations involved preserves the first
column. We refer to matrix operations with this property by the name of ideal-preserving operations.

A fundamental idea of our analysis is to systematically exploit the pattern of generalized zero
entries of the matrix representing an ideal of quadrics by minors. We now explain a procedure to
reduce matrices of linear forms using ideal-preserving operations to a short list of canonical forms,
which shall be analyzed in detail in Section 5.

Lemma4.6. Let M be a 2 x (n+ 1) matrix of linear forms representing a height two ideal by minors and having
at least one generalized zero. Then there is a sequence of ideal-preserving operations producing an equivalent

matrix M’ of the form
M = X 0 app ... an
y’ L ay ... dyp ’
where all the entries of M’ are either linear forms or zero and ht(x', y’) = 2.

Proof. Recall that a generalized zero of M is a linear combination of the entries of a generalized
column of M. Since M represents a height two ideal, the entries of the first column of M are linearly
independent, thus this generalized column cannot be equal to the first column of M. Therefore at least
one of the last n columns of M is involved in the linear combination giving the previously mentioned
generalized column. The matrix operation replacing this column of M by the generalized column is
an ideal-preserving invertible column operation. Next an appropriate row operation (which is in turn
ideal-preserving) can be performed to yield a zero entry in the upper entry of this column, followed
by a permutation of the columns which places the zero entry in the position indicated in M’. O

Proposition 4.7. Let M be a 2 x (n + 1) matrix of linear forms with n > 2 representing a height two ideal
of quadrics by minors. Then M is equivalent via a sequence of ideal-preserving elementary operations to a
matrix M’ of one of the following types, where the entries of all matrices below are either zero or linear forms
and ht(x, y) = 2:

1
2

(1)
(2)
3)
(4)
(5)

M’ is 1-generic;
(X 0 a1z ...am; (X2 @ny Lo .
- (y a1 22 ... Gzn )' where D = (y a ... a2n) is 1-generic;
!’

0 0 a .. . . -
X 913 ") ‘with no additional restrictions;
Y az1 G2 a3 ... dp

M

W=
4H M= 0 612013 .. "), where D = (7 a1 9y s 1-generic;
W=

5

yaz 0 ax3..dxy Yy azs .. ax
x 0 a2 @13 a14 ... Aip
yax 0 Xaizay ... ax

), where X is a scalar and there are no additional restrictions.
Proof. We argue based on the number of generalized zeros of M. If M has no generalized zeros, then
we set M' = M which is a matrix of the first type listed. If M has at least one generalized zero,

/

. . . . 0

then we use Lemma 4.6 to produce by ideal-preserving operations a matrix M’ = (;, a Z” Zl" ) We
21 422 ... U2n

set D= (;/, Z;z Z;”) and analyze the pattern of generalized zeros of the submatrix D. If D has no
o
generalized zeros then M’ is of the second type listed in the statement. Next we consider the case
when D has at least one generalized zero. Using Lemma 4.6, D is equivalent to a matrix of the type
, X' 0 djy..dy, . . . . .
D' = (y// . ) via ideal-preserving elementary row operations. Applying the same operations
22 723 " "2n
to the matrix M’ yields a result of the form

/! / /
M — (x aay 0 aj; ... aln>
4 / / / :
y' o Baxn a,, a, ... da)
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Now either o = 0, which gives a matrix of the third type on our list, or @ # 0 and then subtracting
a multiple of the first row from the second yields an equivalent matrix

M — ( X' aay 0 dj5 ... a, >
- " / " " .
y 0 a), ay ... a
. . . X' diy ... d . . .
At this stage, either the submatrix (~, »* ™ I") has no generalized zeros, which gives the fourth form
g V' a a g g
23 " "2n

in the statement of this proposition, or we may use Lemma 4.6 to find ideal-preserving operations
which replace a), by zero. Acting by these matrix operations on M” yields

/1 / ’ " "
M”’=<X a'ayr y'azz 0 dfy ... a]n)

" " "
y" Blan bap df df, ... aj,

If o’ is zero, then the matrix is of the third type on our list up to a permutation of columns. Oth-
erwise, by subtracting a 8’/«’ multiple of the first row from the last and permuting the third and
fourth columns, we obtain a matrix of the last type on our list. O

Finally, we give a result concerning colon ideals. We strengthen the containments presented below
to equalities in the case when A is a 1-generic matrix in Proposition 5.1.

Lemma 4.8. Let I be an ideal of quadrics I contained in a height two linear prime (x, y) and let A and M be
matrices representing I by coefficients and minors respectively. Then

(1) LAY CSIT:(xy),
(2) M) S1:(x,y).

Proof. This first assertion is a generalization of the familiar Cramer’s rule. The second assertion
puts together the first containment and the trivial containment I C I : (x, y), using that I,(M) =
LA)Y+I1. O

5. Bounding the projective dimension of ideals of quadrics contained in a linear prime of height
two

We henceforth start an analysis of ideals I generated by n > 2 quadrics which are contained in a
linear prime ideal of height two by considering ideals represented by each of the matrices M listed in
Proposition 4.7. Recall that we work with ideals of quadrics in a polynomial ring R over a field K. For
the rest of this section we assume that K is algebraically closed so that we can apply Theorem 2.4 on
1-generic matrices. This assumption is easily met by tensoring with an extension of the original field
without changing the projective dimension of I. Moreover, we always assume that the polynomial
ring R is generated by a basis of the span of the entries of M. Since any polynomial ring containing
I is free over this R, the projective dimension of I is unaffected by this choice of ambient ring. It
is easy to see that the dimension of R is bounded above by the number of entries of M, namely
2n + 2, thus pd(R/I) < 2n + 2 follows immediately by Hilbert’s Syzygy Theorem. In this section we
work towards lowering this upper bound to a sharp estimate given by pd(R/I) < 2n — 2, which we
prove in Theorem 5.7.

We begin with the case when the ideal is represented by a 1-generic matrix (equivalently a matrix
with no generalized zeros).

Proposition 5.1. Let I be an ideal minimally generated by n quadrics such that I is contained in a prime ideal
(x, y) with x, y independent linear forms. Let M be any matrix representing I by minors and assume that M is
1-generic. Then
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(1) pd(R/I) <nand
2) LM =1:xy)=1:x)=1:(y).

Proof. As shown in Lemma 4.8, one has the containment I,(M) C I : (x, y). To prove that the other
containment holds, we consider the possibilities for ht(I : (x, y)). First note that by Theorem 2.4,
ht(I2(M)) =n and since I>(M) C I: (x, y), the inequality ht(I : (x, y)) > n follows. Our first aim is to
prove that in fact ht(I : (x, y)) =n. We assume by way of contradiction that ht(I : (x, y)) > n+1. Then,
trivially, ht((I : (x, y)) + (x, y)) > n+ 1 and the hypotheses of Corollary 2.10 are verified for A =1 and
C = (x, y). This yields ht(I : (x, y)) =n, a contradiction.

We may now conclude that ht(I : (x, y)) =n and we turn to computing I : (x, y). Since I(M) is
by Theorem 2.4 a prime ideal minimally generated by quadrics, neither of the linear forms x and y
is contained in I>(M). Thus ht(I2(M) + (%, y)) > ht(I2(M)), or equivalently ht(I;(M) + (x, y)) >n+ 1.
Now the hypotheses of Corollary 2.10 are verified for A=1 and C = (x, y) and an application of this
corollary yields the inequality pd(R/I) < n, completing the proof of part (1) of our proposition.

To prove the formula for the colon ideals in part (2), note that the ideals on both sides of the con-
tainment I,(M) C I: (x, y) have the same height n and the ideal on the left is prime. This yields that
in fact equality I(M) =1: (x, y) must hold. A similar argument applies to show that the equalities
I:(x)=1:(y)=1(M) hold. O

We continue our analysis of ideals I generated by quadrics which are contained in a linear prime

ideal of height two by considering ideals represented by matrices of the second type listed in Propo-
sition 4.7.

Proposition 5.2. Assume that I is an ideal minimally generated by n quadrics which is represented via minors

by a matrix of the form M = (; agl Z; Z;; Z;” ), where D = (; Z; Z;:) is 1-generic. Then pd(R/I) < n.

Proof. Note that we have I = (az1x) +I’, where D represents I’ by minors. Furthermore, the following
holds by an application of Proposition 5.1:

I:(x) = (a21)+1I": (x) = (a21) + [(D).
By Theorem 2.4, I;(D) is a prime ideal such that R/I;(D) is Cohen-Macaulay of codimension
n — 1. Since the linear form ay; is not an element of the prime ideal I»(D), it is regular on the
module R/I>(D). Together with pd(R/I>(D)) =n — 1, this implies that pd(R/(I2(D) + (az1))) =n.
Since I 4+ (x) = (y)(ay2,a13, ..., 0a1n) + (X), it is easy to see that pd(R/(I + (x))) < n. Since pd(R/(I :
(x))) =pd(R/(I2(D) + (az1))) =n and pd(R/(I + (x))) <n, we may now conclude by Remark 2.1 that
pd(R/h<n. O
Next we analyze the third situation from Proposition 4.7.

Proposition 5.3. Assume that I is an ideal generated by n > 3 quadrics represented by minors by a matrix M
which has at least two generalized zeros in the same row, i.e. is of the form

M= x 0 0 a3 ... amn
y axn axp a3 ... dx)’
where the a;; are either zero or linear forms. Then pd(R/I) < 2n — 2.

Proof. We denote by D the matrix

X a ..o a
D= 13 1n )
y a3 ... Qyn
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It is easy to see that I = (xay1, xazz)+1’, where D represents I’ by minors. We conclude by Remark 2.2
and Proposition 5.1 that

I': (x) = (az1,a22) + I2(D).

We now set R = R/(ay1, az2) and we let D denote the 2 x (n—1) matrix with entries in R obtained
by reducing the entries of D modulo the linear forms a; and ap;. If dimR < 2n — 4, we must have
dimR < 2n — 2 and the desired bound pd(R/I) < 2n — 2 follows by the Hilbert Syzygy Theorem.

We henceforth assume dimR > 2n — 3 (i.e. either dimR =2n — 3 or dimR = 2n — 2). If D is
1-generic, then pdg(R/I2(D)) =n—2 by Theorem 2.4. Otherwise, D has at least one generalized zero,
thus, after a linear change of coordinates in R, it is equivalent to a matrix D’ with 2n — 3 generic
entries (each is a distinct variable) and one zero. By a result of Boocher [6, Theorem 4.1], the minimal
free resolution of R/I>(D’) _is obtained by appropriately pruning the Eagon-Northcott complex, hence
pdz(R/12(D)) = pdg(R/12(D")) <n—2.

To conclude, note that since I(D) and (a1, azy) use disjoint sets of variables, we have

pd(R/(I: (x))) = pdg(R/((a21.a22) 4 12(D))) = pdg(R/I2(D)) +2 < n.

It is easily seen that pd(R/(I+ (x))) = pd(R/(y(az3, ..., azn)+ (x))) <n—1 and Remark 2.1 now yields
pd(R/D)<n. O

Before we can analyze the next case described by Proposition 4.7, an additional lemma is needed.

Lemma 5.4. Let | be an ideal generated by quadratic polynomials, contained in a linear prime ideal (x, y) and
represented by minors by a 1-generic matrix D. Let a be a linear form that is not in the linear span of the entries
of D. Then

@ay)+1= () +1)N (@ + (D).

Proof. The containment (ay)+1 C ((y)+1)N((a)+12(D)) is obvious. As for the opposite containment,
let fe(y+1)N((a)+I(D)). Since f e ((y)+1), we have f =yh+ g, with ge I and h € R. As
gelc(a)+ I,(D), the assertion f € (a) + I,(D) is equivalent to yh € (a) + Io(D).

By Theorem 2.4, I>(D) is a prime ideal. Since a is a linear form which is not in the span of the
entries of D, the ideal (a) + I;(D) is in turn prime. Now yh € (a) + I>(D) implies y € (a) + I2(D) or
h € (a) + I2(D). Since the only linear forms in (a) + I(D) are scalar multiples of a, which is not a
multiple of y by hypothesis, the first alternative is impossible. It remains that h € (a) + I>(D), thus
finishing the proof. O

We continue our analysis with the fourth among the cases listed in Proposition 4.7.

Proposition 5.5. Let I be an ideal generated by n > 3 quadrics and represented by minors by a matrix M of
the form

M= X 0 a2 a1z ... Qain
y axn 0 az3 ... dop ’

X a13 ... A1n

where the submatrix D = ( Vs O

) is 1-generic. Then pd(R/I) < 2n — 2.

Proof. Clearly the ideal I has the form I = (aj2y,az1x) + I’, where I’ is the ideal represented by
minors by the 1-generic matrix D. Should both ay; and aj; be in the span of the entries of D,
then the conclusion would easily follow from Hilbert's Syzygy Theorem. Therefore, without loss of
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generality, we may assume that a;, is not in the span of the entries of D. Furthermore, if a7 is in
the span of {y, azs, ..., az,}, then the second column of M can be replaced by ideal-preserving matrix
operations by a column having a zero entry in the bottom, and then the ideal I can be represented
by minors by a matrix that has already been analyzed in Proposition 5.3. Henceforth, we assume that
ay1 is not in the span of {y,axs, ..., axn}.

It is easy to see that pd(R/(I + (x))) = pd(R/(x, yai2, yai3, ..., yain)) < n. We now proceed to
compute [ : (x) using Remark 2.2 and Lemma 5.4:

I (%) = (az1) + (a12y +I') : %) = (@21) + [() + ') N ((@12) + 12(D)) ] : (%)
= (a21) + [, azx, ..., ax) : 0] N [((@12) + 12(D)) : (%]
= (a21) + (¥. 023, ..., a20) N ((a12) + 12(D)).

The last equality follows because the ideal (aq2) + I2(D) is a prime ideal not containing any linear
form in the span of x. We now estimate the projective dimension of each term appearing above. First,
by Theorem 2.4 we have pd(R/I>(D)) =n — 2 and since aqy is a regular form on I»(D), we obtain
that pd(R/((ai2) + I2(D))) =n — 1. Furthermore, we have that pd(R/(y,azs,...,a2)) =n—1 and

pd(R/((y. a2, ....a20) + ((@12) + I2(D)))) = pd(R/(y. a23. ..., G2n, a12)) < 1.

Using a standard short exact sequence and the three previous inequalities we deduce:

pd(R/((y,az3, ..., a20) N ((a12) + I2(D)))) <n—1.

Since (y,a»s,...,az) N ((a12) + I2(D)) is the intersection of two prime ideals and since a; ¢
(y,a23,...,0azy), it is easily seen that ap; is a non-zero divisor on R/((y,azs,...,az) N ((a12) +
I2(D))), if and only if a1 is not in the span of ajy. Thus, if ay; is not in the span of aiy, then
we deduce from the previous inequality that

pd(R/((a21) + (¥, @23, ..., az) N ((@12) + 12(D)))) <n.

Since pd(R/(I + (x))) = pd(R/(x, yaiz2, yais, ..., ¥ain)) <n, it follows that pd(R/I) <n.

The remaining case is when ajy is a scalar multiple of ay1. Recall that aj; is not in the span of
the entries of D, which allows us to compute [ : (a12) = (x, ¥)+1":(a12) = (%, ¥)+1I'=(x,y) and I +
(a12) = I’ + (aq2). By Proposition 5.1, we have that pd(R/I’) <n+1, since D is 1-generic. Since ajy is
a non-zero divisor on R/I', it follows that pd(R/(a2 + I')) <n + 2; therefore pd(R/I) <n+1 in this
case. O

Finally, we consider the last case described in Proposition 4.7. To handle this case, we need to
assume an inductive bound on the projective dimension of ideals of quadrics with fewer generators.
We shall use Proposition 5.6 below in an inductive argument to compute the overall bound given in
Theorem 5.7.

Proposition 5.6. Let I be an ideal generated by n > 3 quadrics and represented by minors by a matrix M of
the form

M= x 0 app a3 aig ... Qi
y a1 0 Aa;z a4 ... ax)’

where the a;; are either zero or linear forms. Assume additionally that any ideal ] of height two generated by
n — 1 quadrics in a polynomial ring S is known to have pd(S/J) < 2n — 4. Then pd(R/I) < 2n — 2.
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Proof. Note that, if the non-zero entries of M form a linearly dependent set, then the conclusion
follows immediately by the Hilbert Syzygy Theorem. We henceforth assume that the 2n — 1 non-zero
entries of M form a linearly independent set. It can be read off M that the ideal I has the form

I=(a2y. aix,a13(x —y)) + I',

where I’ is an ideal generated by quadrics represented by minors by the matrix given by the first
column and last n — 2 columns of M. Next we compute

I:(a12) = (¥) + ((a21x, a130:x — y)) + 1) : (a12) = (¥) + (@21, ai3(Ax — y)) + I,

where the first equality follows from Remark 2.2 and the second from knowing that the ideal
(az1x,a13(Ax — y)) + I’ is written in terms of a set of variables disjoint from ai,. Since the previous
computation gives I : (a12) = (¥) + (az1, a13, a4, . . ., G2p)X, we may conclude that pd(R/(I : ajz)) =n.

Next we compute I + (aj2). Since ajp only appears in one minimal generator of I, one has I +
(a12) = J 4+ (aq2), where J in the ideal minimally generated by the n — 1 quadratic generators of I not
involving ai,. Consider the polynomial ring S = K[x, y, az1,a13, a;] (for 1<i <2 and 4 < j<n) and
view | as an ideal of S. The hypothesis on ideals generated by n — 1 quadrics yields pd(S/J) < 2n—4.
Since a3 is a variable not appearing in S, we have pdg (R/((a12)+ J)) = pdg(S/J)+1 < 2n—3. Finally,
we use Remark 2.1 to estimate pd(R/I) < max{n,2n—3}<2n—2foralln>3. O

To complete the analysis, we combine Propositions 5.1, 5.2, 5.3 and 5.5 to obtain:

Theorem 5.7. Assume that I is a height two ideal minimally generated by n quadrics which has a linear
minimal associated prime. Then pd(R/I) < 2n — 2.

Proof. We proceed by induction on n, noting that the assumption on the height of I forces n > 2. The
base case, n =2 is easily seen to be a complete intersection thus having projective dimension two.

Let n > 3. Using the inductive hypothesis, we may assume that any ideal ] generated by n — 1
quadrics, which has a minimal associated prime ideal generated by two linear forms has pd(S/]J) <
2n — 4, where S is an ambient polynomial ring for J. Now we consider an ideal I generated by n
quadrics having a linear minimal prime ideal of height two.

We finish the proof by analyzing the various possibilities for matrices representing I by minors
listed in Proposition 4.7:

(1) if M has no generalized zeros, we apply Propositions 5.1 to obtain pd(R/I) <n+1;

(2) if M is of one of the types stated in Propositions 5.2, 5.3 or 5.5, then we obtain pd(R/I) < 2n—2;

(3) if M is of the type stated in Proposition 5.6 we rely on the inductive hypothesis to obtain again
pd(R/)<2n—2. O

5.1. Better bounds

In Theorem 5.7 we have successfully bounded the projective dimension of ideals generated by
n > 2 quadrics under the assumption that the ideal is contained in a linear prime ideal of height two.
We now improve on this bound under the additional condition that the multiplicity of the ideal at
this linear prime is at least two. We recall that, by Lemma 3.1, the local multiplicity of an ideal of
height two generated by quadrics at such a prime is at most three.

Proposition 5.8. Let R be a polynomial ring; let I be an ideal generated by n > 2 quadrics, contained in a
height two linear prime ideal (x, y) and assume e(Rx,y)/I(x,y)) = 2. Then pd(R/I) <n + 2.
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Proof. Let M be any matrix representing I by minors and let A be the submatrix representing I by
coefficients. Since e(R,y)/Ix,y)) = 2, we must have that Io(M)R,y) # R(,y); otherwise, the con-
tainment (x, y)R(x,y) € IR(x,y) would hold by Lemma 4.8, leading to e(R,y)/Ixy)) = 1. The fact
that Ip(M)Rx,y) # Rx,y) is equivalent to I;(M) € (x, y), which in particular implies that the con-
tainment I(A) C (x, y) holds. Now consider the matrix A obtained by taking the image of A under
the canonical projection to the polynomial factor ring R = R/(x, y). Since I>(A) C (x, y), it follows
that I>(A) = (0) in R. An application of Theorem 2.5 for A, with r =1 and i = 1, shows that the en-
tries of A can be written in terms of at most n independent linear forms. The entries of the matrix A
and hence also the ideal I can then be written in terms of at most n + 2 independent linear forms.
An application of the Hilbert Syzygy Theorem finishes the proof. O

Proposition 3.4 on ideals contained in a prime of multiplicity two can be imitated in the context
of bounding the projective dimension of ideals contained in linear primes as well, with the additional
hypothesis that there be at least two distinct such linear minimal primes.

Proposition 5.9. Let I be an ideal generated by n quadratic polynomials which is contained in two distinct
linear prime ideals of height 2. Then pd(R/I) <n.

Proof. Let the two linear primes be (x,y) and (z, w). If ht(x, y, z, w) = 4, then the intersection of
these two ideals is generated by quadrics and since the minimal generators of I must be linear com-
binations of these quadrics, the variables x, y, z, w are the only ones required to express I, hence
pd(R/I) < 4. Otherwise if ht(x, y,z, w) < 4, we may assume without loss of generality that x = w.
Now I C (x, y) N (x,z) = (x, yz). Setting q = yz, one may apply the technique in the proof of Proposi-
tion 3.4 to see that pd(R/I) <n. O

6. Final questions

Throughout this paper two key invariants were used to obtain our upper bound on pd(R/I): the
number of minimal generators of I and the additional assumption that htI = 2. In this section, we
formulate two questions aimed towards establishing whether these invariants suffice in general for
bounding the projective dimension of ideals generated by quadrics. Note that the main result of [1]
shows the number of minimal generators alone suffices to give a bound on the projective dimension
of ideals of quadrics, if one does not insist on an optimal bound. The main result of this paper answers
both question below in the affirmative for the case h = 2. Together with a result of Eisenbud and
Huneke (cf. [26, Theorem 3.1]) for the case n =3 and easy arguments in the remaining cases, this
verifies that the two questions have an affirmative answer whenever n <3 or h < 2.

Question 6.1. Let R be a polynomial ring and let I be an ideal of R generated by n quadrics and having ht I = h.
Is there a sharp upper bound for pd(R/I) expressed only in terms of n and h?

Based on computational evidence and on the bound given by our main result in the case of height
two ideals of quadrics, we refine the previous question by suggesting a specific candidate for an upper
bound on the projective dimension of ideals of quadrics.

Question 6.2. Let R be a polynomial ring and let I be an ideal of R generated by n quadrics and having ht I = h.
Is it true that pd(R/I) <h(n—h+1)?

We note the existence of a family of ideals of quadrics which achieves the equality in the bound
proposed in Question 6.2, namely the ideals I, 52 described in [25]. These ideals have m+n quadratic
generators, ht(Im n,2) =m and pd(Ij,n,2) = m(n + 1). Therefore, if the answer to Question 6.1 is affir-
mative, any such bound must be at least as large as the bound we suggest in Question 6.2. However,
as soon as the generators are allowed to have arbitrary degrees, one cannot expect any upper bound
on the projective dimension to have asymptotic growth bounded by the expression in Question 6.2
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or even by the product of height and minimal number of generators. To see this, consider again, this
time for d > 3, the family of ideals Iy 54 described in [25]. These ideals have htly 4 =m and are
minimally generated by m+n homogeneous polynomials of degree d, while their projective dimension

is given by pd(R/Im.na) =m + n%.
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