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1. Introduction

Chevalley’s theorem on the conjugacy of split Cartan subalgebras is one of the cornerstones of the
theory of simple finite dimensional Lie algebras over a field of characteristic 0. Indeed, this theorem
affords the most elegant proof that the root system is an invariant of the Lie algebra.

The analogous result for symmetrizable Kac–Moody Lie algebras is the celebrated theorem of Pe-
terson and Kac [9] (see also [5] and [6] for detailed proofs). Beyond the finite dimensional case, by
far the most important Kac–Moody Lie algebras are the affine ones. These algebras sit at the “border”
of finite dimensional Lie theory and they can in fact be viewed as “finite dimensional” (not over the
base field but over a Laurent polynomial ring) in the sense of [10]. This approach begs the question
as to whether an SGA-inspired proof of conjugacy exists in the affine case. This paper, which builds in
[2] and [3], shows that the answer is yes. More precisely, in [7] (the untwisted case) and [2] (general
case) conjugacy is established for loop algebras by purely Galois cohomological methods. The step that
is missing is extending this result to the “full” Kac–Moody Lie algebra. The central extension presents
of course no difficulties, but the introduction of the derivation does. The present paper addresses this
issue, thus yielding a new cohomological proof of the conjugacy theorem of Peterson and Kac in the
case of affine Kac–Moody Lie algebras.

Even though the conjugacy result is known (due to [9], as mentioned above), it is relevant to point
out that the cohomological methods that we are putting forward do have their advantages. Most
significantly:

(a) The group under which conjugacy is achieved in our work has a very transparent structure (given
in terms of Laurent polynomial points of simply connected group schemes). This is in contrast to
the Kac–Moody groups used in [9] which, in the twisted affine case, are quite difficult to “see”.

(b) The methods used in [9] are not suitable for attacking the problem of conjugacy in “higher nul-
lity”, for example for Extended Affine Lie Algebras (with their centres and derivations). This is
definitely not the case for the ideas we present in this paper. Indeed, we believe that the meth-
ods exhibited herein will eventually lead to a proof of conjugacy for a class of Lie algebras that
includes the Extended Affine Lie Algebras, EALAs for short (the conjugacy “downstairs”, namely
at the level of the centreless core of the EALA, is still given by [2]. The difficulty, just as in the
present paper, lies in how to extend the conjugacy from “downstairs” to “upstairs”. That is, to the
full EALA where the derivations play an essential role).

2. Affine Kac–Moody Lie algebras

Split case. Let g be a split simple finite dimensional Lie algebra over an algebraically closed field k of
characteristic 0 and let Aut(g) be its automorphism group. If x, y ∈ g we denote their product in g
by [x, y]. We also let R = k[t±1] and L(g) = g ⊗k R . We still denote the Lie product in L(g) by [x, y]
where x, y ∈ L(g).

The main object under consideration in this paper is the affine (split or twisted) Kac–Moody Lie
algebra L̂ corresponding to g. Any split affine Kac–Moody Lie algebra is of the form (see [4])

L̂ = g ⊗k R ⊕ kc ⊕ kd.

The element c is central and d is a degree derivation for a natural grading of L(g): if x ∈ g and p ∈ Z

then

[
d, x ⊗ t p]

L̂ = px ⊗ t p .

If l1 = x ⊗ t p , l2 = y ⊗ tq ∈ L(g) are viewed as elements in L̂ their Lie product is given by

[
x ⊗ t p, y ⊗ tq]

L̂ = [x, y] ⊗ t p+q + p〈x, y〉δ0,p+q · c

where 〈x, y〉 is the Killing form on g and δ0,p+q is Kronecker’s delta.
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Twisted case. Let m be a positive integer. Let S = k[t± 1
m ] be the ring of Laurent polynomials in the

variable s = t
1
m with coefficients in k. Let

L(g)S = L(g) ⊗R S

be the Lie algebra obtained from the R-Lie algebra L(g) by the base change R → S . Similarly we
define Lie algebras3

L̃(g)S = L(g)S ⊕ kc and L̂(g)S = L(g)S ⊕ kc ⊕ kd.

Fix a primitive root of unity ζ ∈ k of degree m. The R-automorphism ζ× : S → S given by s 	→ ζ s
generates the Galois group Γ = Gal(S/R) which we may identify with the abstract group Z/mZ by
means of ζ× . Note that Γ acts naturally on Aut(g)(S) = AutS-Lie(L(g)S) and on L(g)S = L(g) ⊗R S
through the second factor.

Next, let σ be an automorphism of g of order m. This gives rise to an S-automorphism of L(g)S

via x ⊗ s 	→ σ(x) ⊗ s for x ∈ g, s ∈ S . It then easily follows that the assignment

1̄ 	→ z1̄ = σ−1 ∈ AutS-Lie
(
L(g)S

)

gives rise to a cocycle z = (zī) ∈ Z 1(Γ,AutS-Lie(L(g)S )). This cocycle, in turn, gives rise to a twisted
action of Γ on L(g)S . Applying Galois descent formalism we then obtain the Γ -invariant subalgebra

L(g,σ ) := (
L(g)S

)Γ = (
L(g) ⊗R S

)Γ
.

This is a “simple Lie algebra over R” in the sense of [10], which is a twisted form of the “split simple”
R-Lie algebra L(g) = g ⊗k R . Indeed, S/R is an étale extension and from properties of Galois descent
we have

L(g,σ ) ⊗R S 
 L(g)S = (g ⊗k R) ⊗R S.

Note that L(g, id) = L(g).
For ī ∈ Z/mZ, consider the eigenspace

gī = {
x ∈ g: σ(x) = ζ i x

}
.

Simple computations show that

L(g,σ ) =
⊕
i∈Z

gī ⊗ k
[
t±1]si .

Let

L̃(g,σ ) := L(g,σ ) ⊕ kc and L̂(g,σ ) := L(g,σ ) ⊕ kc ⊕ kd.

We give L̂(g, σ ) a Lie algebra structure such that c is a central element, d is the degree derivation, i.e.
if x ∈ gī and p ∈ Z then

3 Unlike L(g)S , these object exist over k but not over S .
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[
d, x ⊗ t

p
m
] := px ⊗ t

p
m (2.0.1)

and if y ⊗ t
q
m ∈ L(g, σ ) we get

[
x ⊗ t

p
m , y ⊗ t

q
m
]

L̂(g,σ )
= [x, y] ⊗ t

p+q
m + p〈x, y〉δ0,p+q · c,

where, as before, 〈x, y〉 is the Killing form on g and δ0,p+q is Kronecker’s delta.

2.1. Remark. Note that the Lie algebra structure on L̂(g, σ ) is induced by that of L̂(g)S if we view
L̂(g, σ ) as a subset of L̂(g)S .

2.2. Remark. Let σ̂ be an automorphism of L̂(g)S such that σ̂ |L(g)S = σ , σ̂ (c) = c, σ̂ (d) = d. Then
L̂(g, σ ) = (L̂(g)S )

σ̂ .

Realization Theorem.

(a) The Lie algebra L̂(g, σ ) is an affine Kac–Moody Lie algebra, and every affine Kac–Moody Lie algebra is
isomorphic to some L̂(g, σ ).

(b) L̂(g, σ ) 
 L̂(g, σ ′) where σ ′ is a diagram automorphism with respect to some Cartan subalgebra of g.

Proof. See [4, Theorems 7.4, 8.3 and 8.5]. �
Let φ ∈ Autk-Lie(L̂(g)S). Since L̃(g)S is the derived subalgebra of L̂(g)S the restriction φ|L̃(g)S

induces

a k-Lie automorphism of L̃(g)S . Furthermore, passing to the quotient L̃(g)S/kc 
 L(g)S the automor-
phism φ|L̃(g)S

induces an automorphism of L(g)S . This yields a well-defined morphism

Autk-Lie
(
L̂(g)S

) → Autk-Lie
(
L(g)S

)
.

Similar considerations apply to Autk-Lie(L̂(g, σ )). The aim of the next few sections is to show that
these two morphisms are surjective.

3. S-automorphisms of L(g)S

In this section we construct a “simple” system of generators of the automorphism group

Aut(g)(S) = AutS-Lie
(
L(g)S

)

which can be easily extended to k-automorphisms of L̂(g)S . We produce our list of generators based
on a well-known fact that the group in question is generated by S-points of the corresponding split
simple adjoint algebraic group and automorphisms of the corresponding Dynkin diagram.

More precisely, let G be the split simple simply connected group over k corresponding to g and let
Ḡ be the corresponding adjoint group. Choose a maximal split k-torus T ⊂ G and denote its image in
Ḡ by T̄. The Lie algebra of T is a Cartan subalgebra h ⊂ g. We fix a Borel subgroup T ⊂ B ⊂ G.

Let Σ = Σ(G,T) be the root system of G relative to T. The Borel subgroup B determines an order-
ing of Σ , hence the system of simple roots Π = {α1, . . . ,αn}. Fix a Chevalley basis [12]

{Hα1 , . . . , Hαn , Xα,α ∈ Σ}
of g corresponding to the pair (T,B). This basis is unique up to signs and automorphisms of g which
preserve B and T (see [12, §1, Remark 1]).
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Since S is a Euclidean ring, by Steinberg [11] the group G(S) is generated by the so-called root
subgroups Uα = 〈xα(u) | u ∈ S〉, where α ∈ Σ and

xα(u) = exp(u Xα) =
∞∑

n=0

un Xn
α/n! (3.0.1)

We recall also that by [12, §10, Cor. (b) after Theorem 29], every automorphism σ of the Dynkin
diagram Dyn(G) of G can be extended to an automorphism of G (and hence of Ḡ) and g, still denoted
by σ , which takes

xα(u) −→ xσ (α)(εαu) and Xα −→ εα Xσ (α).

Here εα = ±1 and if α ∈ Π then εα = 1. Thus we have a natural embedding

Aut
(
Dyn(G)

)
↪→ AutS-Lie

(
L(g)S

)
.

The group Ḡ(S) acts by S-automorphisms on L(g)S through the adjoint representations ad : Ḡ →
GL(L(g)S ) and hence we also have a canonical embedding

Ḡ(S) ↪→ AutS-Lie
(
L(g)S

)
.

As we said before, it is well-known (see [8] for example) that

AutS-Lie
(
L(g)S

) = Ḡ(S)� Aut
(
Dyn(G)

)
.

For later use we need one more fact.

3.1. Proposition. Let f : G → Ḡ be the canonical morphism. The group Ḡ(S) is generated by the root subgroups
f (Uα), α ∈ Σ , and T̄(S).

Proof. Let Z ⊂ G be the centre of G. The exact sequence

1 −→ Z −→ G −→ Ḡ −→ 1

gives rise to an exact sequence in Galois cohomology

f
(
G(S)

)
↪→ Ḡ(S) −→ Ker

[
H1(S,Z) → H1(S,G)

] −→ 1.

Since H1(S,Z) → H1(S,G) factors through

H1(S,Z) −→ H1(S,T) −→ H1(S,G)

and since H1(S,T) = 1 (because Pic S = 1) we obtain

f
(
G(S)

)
↪→ Ḡ(S) −→ H1(S,Z) −→ 1. (3.1.1)

Similar considerations applied to

1 −→ Z −→ T −→ T̄ −→ 1
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show that

f
(
T(S)

)
↪→ T̄(S) −→ H1(S,Z) −→ 1. (3.1.2)

The result now follows from (3.1.1) and (3.1.2). �
3.2. Corollary. One has

AutS-Lie
(
L(g)S

) = 〈
Aut

(
Dyn(G)

)
, Uα,α ∈ Σ, T̄(S)

〉
.

4. k-automorphisms of L(g)S

We keep the above notation. Recall that for any algebra A over a field k the centroid of A is

Ctrd(A) = {
χ ∈ Endk(A)

∣∣ χ(a · b) = a · χ(b) = χ(a) · b for all a,b ∈A
}
.

It is easy to check that if χ1,χ2 ∈ Ctrd(A) then both linear operators χ1 ◦ χ2 and χ1 + χ2 are
contained in Ctrd(A) as well. Thus, Ctrd(A) is a unital associative subalgebra of Endk(A). It is also
well-known that the centroid is commutative whenever A is perfect.

Example. Consider the k-Lie algebra A = L(g)S . For any s ∈ S the linear k-operator χs : L(g)S → L(g)S

given by x → xs satisfy

χs
([x, y]) = [

x,χs(y)
] = [

χs(x), y
]
,

hence χs ∈ Ctrd(L(g)S ). Conversely, it is known (see [1, Lemma 4.2]) that every element in Ctrd(L(g)S )

is of the form χs . Thus,

Ctrd
(
L(g)S

) = {χs | s ∈ S} 
 S.

4.1. Proposition. (See [8, Proposition 1].) One has

Autk-Lie
(
L(g)S

) 
 AutS-Lie
(
L(g)S

)
� Autk

(
Ctrd

(
L(g)S

))

 AutS-Lie

(
L(g)S

)
� Autk(S).

4.2. Corollary. One has

Autk-Lie
(
L(g)S

) = 〈
Autk(S),Aut

(
Dyn(G)

)
, Uα,α ∈ Σ, T̄(S)

〉
.

Proof. This follows from Corollary 3.2 and Proposition 4.1. �
5. Automorphisms of L̃(g)S

We remind the reader that the centre of L̃(g)S is the k-span of c and that L̃(g)S = L(g)S ⊕kc. Since
any automorphism φ of L̃(g)S takes the centre into itself we have a natural (projection) mapping

μ : L̃(g)S → L̃(g)S/kc 
 L(g)S

which induces the mapping
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λ : Autk-Lie
(
L̃(g)S

) → Autk-Lie
(
L(g)S

)

given by φ → φ′ where φ′(x) = μ(φ(x)) for all x ∈ L(g)S . In the last formula we view x as an element
of L̃(g)S through the embedding L(g)S ↪→ L̃(g)S .

5.1. Remark. It is straightforward to check that φ′ is indeed an automorphism of L(g)S .

5.2. Proposition. The mapping λ is an isomorphism.

Proof. See [8, Proposition 4]. �
In what follows if φ ∈ Autk-Lie(L(g)S) we denote its (unique) lifting to Autk-Lie(L̃(g)S ) by φ̃.

5.3. Remark. For later use we need an explicit formula for lifts of automorphisms of L(g)S induced by
some “special” points in T̄(S) (those which are not in the image of T(S) → T̄(S)). More precisely, the
fundamental coweights give rise to the decomposition T̄ 
 Gm,S ×· · ·×Gm,S . As usual, we have the de-
composition T̄(S) 
 T̄(k)× Hom(Gm, T̄). The second factor in the last decomposition is the cocharacter
lattice of T̄ and its elements correspond (under the adjoint action) to the subgroup in AutS-Lie(L(g)S)

isomorphic to Hom(Q ,Z) where Q is the corresponding root lattice: if φ ∈ Hom(Q ,Z) it induces an
S-automorphism of L(g)S (still denoted by φ) given by

Xα → Xα ⊗ sφ(α), Hαi → Hαi .

It is straightforward to check the mapping φ̃ : L̃(g)S → L̃(g)S given by

Hα → Hα + φ(α)〈Xα, X−α〉 · c, Hα ⊗ sp → Hα ⊗ sp

if p �= 0 and

Xα ⊗ sp → Xα ⊗ sp+φ(α)

is an automorphism of L̃(g)S , hence it is the (unique) lift of φ.

6. Automorphisms of split affine Kac–Moody Lie algebras

Since L̃(g)S = [L̂(g)S , L̂(g)S ] we have a natural (restriction) mapping

τ : Autk-Lie
(
L̂(g)S

) → Autk-Lie
(
L̃(g)S

)
.

6.1. Proposition. The mapping τ is surjective.

Proof. By Proposition 5.2 and Corollary 4.2 the group Autk-Lie(L̃(g)S ) has the distinguished system of
generators {φ̃} where

φ ∈ Aut
(
Dyn(G)

)
, T̄(S),Autk(S), Uα, α ∈ Σ.

We want to construct a mapping φ̂ : L̂(g)S → L̂(g)S which preserves the identity

[
d, x ⊗ t

p
m
]
ˆ = px ⊗ t

p
m

L
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for all x ∈ g and whose restriction to L̃(g)S coincides with φ̃. These two properties would imply that
φ̂ is an automorphism of L̂(g)S lifting φ̃.

If φ ∈ Uα is unipotent we define φ̂, as usual, through the exponential map. If φ ∈ Aut(Dyn(G)) we
put φ̂(d) = d. If φ is as in Remark 5.3 we extend it by d → d − X where X ∈ h is the unique element
such that [X, Xα] = φ(α)Xα for all roots α ∈ Σ . Note that automorphisms of L(g)S given by points
in T̄(k) are in the image of T(k) → T̄(k) and hence they are generated by unipotent elements. Lastly,
if φ ∈ Autk(S) is of the form s → as−1 where a ∈ k× (resp. s → as) we extend φ̃ by φ̂(d) = −d (resp.
φ̂(d) = d). We leave it to the reader to verify that in all cases φ̂ preserves the above identity and
hence φ̂ is an automorphism of L̂(g)S . �
6.2. Proposition. One has Kerτ 
 V where V = Homk(kd,kc).

Proof. We first embed V ↪→ Autk-Lie(L̂(g)S ). Let v ∈ V . Recall that any element x ∈ L̂(g)S can be
written uniquely in the form x = x′ + ad where x′ ∈ L̃(g)S and a ∈ k. We define v̂ : L̂(g)S → L̂(g)S by
x → x + v(ad). One checks that v̂ is an automorphism of L̂(g)S and thus the required embedding is
given by v → v̂ .

Since v̂(x′) = x′ for all x′ ∈ L̃ we have v̂ ∈ Kerτ . Conversely, let ψ ∈ Kerτ . Then ψ(x) = x for all
x ∈ L̃(g)S . We need to show that ψ(d) = ac +d where a ∈ k. Let ψ(d) = x′ +ac +bd where a,b ∈ k and
x′ ∈ L(g)S . Since [d, Xα]L̂(g)S

= 0 we get

[
ψ(d),ψ(Xα)

]
L̂(g)S

= 0.

Substituting ψ(d) = x′ + ac + bd we obtain

[
x′ + ac + bd, Xα

]
L̂(g)S

= 0

or [x′, Xα]L̃(g)S
= 0. Since this is true for all roots α ∈ Σ , the element x′ commutes with g and this

can happen if and only if x′ = 0.
It remains to show that b = 1. To see this we can argue similarly by considering the equality

[
d, Xα ⊗ t

1
m
]

L̂(g)S
= Xα ⊗ t

1
m

and applying ψ . �
6.3. Corollary. The sequence of groups

1 −→ V −→ Autk-Lie
(
L̂(g)S

) λ◦τ−→ Autk-Lie
(
L(g)S

) −→ 1 (6.3.1)

is exact.

7. Automorphism group of twisted affine Kac–Moody Lie algebras

We keep the notation introduced in Section 2. In particular, we fix an integer m and a primitive
root of unity ζ = ζm ∈ k of degree m. Consider the k-automorphism ζ× : S → S such that s → ζ s
which we view as a k-automorphism of L(g)S through the embedding

Autk(S) ↪→ Autk-Lie
(
L(g)S

) 
 AutS-Lie
(
L(g)S

)
� Autk(S)

(see Proposition 4.1). As it is explained in Section 6 we then get the automorphism ζ̂× (resp. ζ̃×) of
L̂(g)S (resp. L̃(g)S ) given by



V. Chernousov et al. / Journal of Algebra 399 (2014) 55–78 63
x ⊗ si + ac + bd −→ x ⊗ ζ i si + ac + bd

where a,b ∈ k and x ∈ g.
Consider now the abstract group Γ = Z/mZ (which can be identified with Gal(S/R) as already

explained) and define its action on L̂(g)S (resp. L̃(g)S , L(g)S ) with the use of ζ̂× (resp. ζ̃×, ζ×).
More precisely, for every l ∈ L̂(g)S we let ī(l) := (ζ̂×)i(l). Similarly, we define the action of Γ on
Autk-Lie(L̂(g)S) by

ī : Autk-Lie
(
L̂(g)S

) −→ Autk-Lie
(
L̂(g)S

)
, x → (

ζ̂×)i
x
(
ζ̂×)−i

.

Therefore, Autk-Lie(L̂(g)S ) can be viewed as a Γ -set. Along the same lines one defines the action of Γ

on Autk-Lie(L(g)S ) and AutS-Lie(L(g)S) with the use of ζ× . It is easy to see that Γ acts trivially on the
subgroup V ⊂ Autk-Lie(L̂(g)S ) introduced in Proposition 6.2. Thus, (6.3.1) can be viewed as an exact
sequence of Γ -groups.

We next choose an element π ∈ Aut(Dyn(G)) ⊂ Autk(g) of order m (clearly, m can take value 1,2
or 3 only). Like before, we have the corresponding automorphism π̂ of L̂(g)S given by

x ⊗ si + ac + bd −→ π(x) ⊗ si + ac + bd

where a,b ∈ k and x ∈ g.
Note that ζ̂×π̂ = π̂ ζ̂× . It then easily follows that the assignment

1̄ → z1̄ = π̂−1 ∈ Autk-Lie
(
L̂(g)S

)

gives rise to a cocycle z = (zī) ∈ Z 1(Γ,Autk-Lie(L̂(g)S )).
This cocycle, in turn, gives rise to a (new) twisted action of Γ on L̂(g)S and Autk-Lie(L̂(g)S ). Analo-

gous considerations (with the use of π ) are applied to Autk-Lie(L(g)S) and L(g)S . For future reference
note that π̂ commutes with elements in V , hence the twisted action of Γ on V is still trivial. From
now on we view (6.3.1) as an exact sequence of Γ -groups, the action of Γ being the twisted action.

7.1. Remark. As we noticed before, the invariant subalgebra

L = L(g,π) = (
L(g)S

)Γ = (
(g ⊗k R) ⊗R S

)Γ

is a simple Lie algebra over R , a twisted form of a split Lie algebra g ⊗k R . The same cohomological
formalism also yields that

AutR-Lie(L) 
 (
AutS-Lie

(
L(g)S

))Γ
. (7.1.1)

7.2. Remark. It is worth mentioning that the canonical embedding

ι : (Autk-Lie
(
L(g)S

))Γ
↪→ Autk-Lie

((
L(g)S

)Γ ) = Autk-Lie(L)


 AutR-Lie(L)� Autk(R),

where the last isomorphism can be established in the same way as in Proposition 4.1, is not necessar-
ily surjective in general case. Indeed, one checks that if m = 3 then the k-automorphism of R given
by t → t−1 and viewed as an element of Autk-Lie(L) 
 AutR-Lie(L) � Autk(R) is not in Im ι. However,
(7.1.1) implies that the group AutR-Lie(L) is in the image of ι.
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7.3. Remark. The k-Lie algebra L̂= (L̂(g)S )
Γ is a twisted affine Kac–Moody Lie algebra. Conversely, by

the Realization Theorem every twisted affine Kac–Moody Lie algebra can be obtained in such a way.

7.4. Lemma. One has H1(Γ, V ) = 1.

Proof. Since Γ is cyclic of order m acting trivially on V 
 k it follows that

Z 1(Γ, V ) = {x ∈ k | mx = 0} = 0

as required. �
The long exact cohomological sequence associated to (6.3.1) together with Lemma 7.4 imply the

following.

7.5. Theorem. The following sequence

1 −→ V −→ (
Autk-Lie

(
L̂(g)S

))Γ ν−→ (
Autk-Lie

(
L(g)S

))Γ −→ 1

is exact. In particular, the group AutR-Lie(L) is in the image of the canonical mapping

Autk-Lie(L̂) −→ Autk-Lie(L) 
 AutR-Lie(L)� Autk(R).

Proof. The first assertion is clear. As for the second one, note that as in Remark 7.2 we have the
canonical embedding

(
Autk-Lie

(
L̂(g)S

))Γ
↪→ Autk-Lie

((
L̂(g)S

)Γ ) = Autk-Lie(L̂)

and the commutative diagram

(Autk-Lie(L̂(g)S))
Γ ν−−−−→ (Autk-Lie(L(g)S))

Γ

⏐⏐� ⏐⏐�
Autk-Lie(L̂) −−−−→ Autk-Lie(L)

Then surjectivity of ν and Remark 7.2 yield the result. �
8. Some properties of affine Kac–Moody Lie algebras

Henceforth we fix a simple finite dimensional Lie algebra g and a (diagram) automorphism σ of
finite order m. For brevity, we will write L̂ and (L̃,L) for L̂(g, σ ) and (L̃(g, σ ), L(g, σ )) respectively.

For all l1, l2 ∈L one has

[l1, l2] − [l1, l2]L̂ = ac (8.0.1)

for some scalar a ∈ k. Using (2.0.1) it is also easy to see that for all y ∈L one has

[
d, ytn]

L̂ = mnytn + [d, y]L̂tn. (8.0.2)
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8.1. Remark. Recall that L has a natural R-module structure: If y = x ⊗ t
p
m ∈L then

yt := x ⊗ t
p
m +1 = x ⊗ t

p+m
m ∈ L.

Therefore since [d, y]L̂ is contained in L the expression [d, y]L̂tn is meaningful.

Henceforth we will denote by G the simple simply connected group scheme over R corresponding
to L.

The infinite dimensional Lie algebra L̂ admits a unique (up to nonzero scalar) invariant nondegen-
erate bilinear form (·,·). Its restriction to L ⊂ L̂ is nondegenerate (see [4, 7.5.1 and 8.3.8]) and we
have

(c, c) = (d,d) = 0, 0 �= (c,d) = β ∈ k×

and

(c, l) = (d, l) = 0 for all l ∈ L.

8.2. Remark. It is known that a nondegenerate invariant bilinear form on L̂ is unique up to nonzero
scalar. We may view L̂ as a subalgebra in the split Kac–Moody Lie algebra L̂(g)S . The last one also
admits a nondegenerate invariant bilinear form and it is known that its restriction to L̂ is nondegen-
erate. Hence this restriction is proportional to the form (·,·).

Let h0̄ be a Cartan subalgebra of the Lie algebra g0̄ .

8.3. Lemma. The centralizer of h0̄ in g is a Cartan subalgebra h of g.

Proof. See [4, Lemma 8.1]. �
The algebra H = h0̄ ⊕ kc ⊕ kd plays the role of Cartan subalgebra for L̂. With respect to H our al-

gebra L̂ admits a root space decomposition. The roots are of two types: anisotropic (real) or isotropic
(imaginary). This terminology comes from transferring the form to H∗ and computing the “length” of
the roots.

The core L̃ of L̂ is the subalgebra generated by all the anisotropic root spaces. In our case we have
L̃=L⊕ kc. The correct way to recover L inside L̂ is as its core modulo its centre.4

If m ⊂ L̂ is an abelian subalgebra and α ∈ m∗ = Hom(m,k) we denote the corresponding
eigenspace in L̂ (with respect to the adjoint representation of L̂) by L̂α . Thus,

L̂α = {
l ∈ L̂

∣∣ [x, l]L̂ = α(x)l for all x ∈m
}
.

The subalgebra m is called diagonalizable in L̂ if

L̂ =
⊕
α∈m∗

L̂α.

Every diagonalizable subalgebra of m ⊂ L̂ is necessarily abelian. We say that m is a maximal
(abelian) diagonalizable subalgebra (MAD) if it is not properly contained in a larger diagonalizable
subalgebra of L̂.

4 In nullity one the core coincides with the derived algebra, but this is not necessarily true in higher nullities.
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8.4. Remark. Every MAD of L̂ contains the centre kc of L̂.

8.5. Example. The subalgebra H is a MAD in L̂ (see [4, Theorem 8.5]).

Our aim is to show that an arbitrary maximal diagonalizable subalgebra m ⊂ L̂ is conjugate to H
under an element of Autk(L̂). For future reference we record the following facts:

8.6. Theorem.

(a) Every diagonalizable subalgebra in L is contained in a MAD of L and all MADs of L are conjugate. More
precisely, let G be the simple simply connected group scheme over R corresponding to L. Then for any MAD
m of L there exists g ∈ G(R) such that Ad(g)(m) = h0̄ .

(b) There exists a natural bijection between MADs of L̃ and MADs of L. Every diagonalizable subalgebra in L̃
is contained in a MAD of L̃. All MADs of L̃ are conjugate by elements in Ad(G(R)) ⊂ Autk(L) 
 Autk(L̃).

(c) The image of the canonical map Autk(L̂) → Autk(L̃) 
 Autk(L) obtained by restriction to the derived
subalgebra L̃ contains AutR-Lie(L).

Proof. (a) From the explicit realization of L one knows that h0̄ is a MAD of L. Now (a) follows
from [2].

(b) The correspondence follows from the fact that every MAD of L̃ contains kc. A MAD m̃ of L̃ is
necessarily of the form m⊕ kc for some MAD m of L and conversely. The canonical map Autk(L̃) →
Autk(L) is an isomorphism by Proposition 5.2.

(c) This was established in Theorem 7.5. �
8.7. Lemma. If m ⊂ L̂ is a MAD of L̂ then m �⊂ L̃.

Proof. Assume that m ⊂ L̃. By Theorem 8.6(b), there exists a MAD m′ of L̃ containing m. Applying
again Theorem 8.6 we may assume that up to conjugation by an element of Autk(L̂), in fact of Ĝ(R),
we have m ⊂ m′ = h0̄ ⊕ kc. Then m is a proper subalgebra of the MAD H of L̂ and this contradicts
the maximality of m. �

In the next three sections we are going to prove some preliminary results related to a subalgebra
Â of the twisted affine Kac–Moody Lie algebra L̂ which satisfies the following two conditions:

a) Â is of the form Â = A ⊕ kc ⊕ kd, where A is an R-subalgebra of L such that A ⊗R K is a semisimple Lie
algebra over K where K = k(t) is the fraction field of R .

b) The restriction to Â of the nondegenerate invariant bilinear form (−,−) of L̂ is nondegenerate.

In particular, all these results will be valid for Â = L̂.

9. Weights of semisimple operators and their properties

Let x = x′ + d ∈ Â where x′ ∈ A. It induces a k-linear operator

ad(x) : Â → Â, y → ad(x)(y) = [x, y] Â .

We say that x is a k-diagonalizable element of Â if Â has a k-basis consisting of eigenvectors of ad(x).
Throughout we assume that x′ �= 0 and that x is k-diagonalizable.

For any scalar w ∈ k we let

Âw = {
y ∈ Â

∣∣ [x, y] ˆ = wy
}
.
A



V. Chernousov et al. / Journal of Algebra 399 (2014) 55–78 67
We say that w is a weight (= eigenvalue) of ad(x) if Âw �= 0. More generally, if O is a diago-
nalizable linear operator of a vector space V over k (of main interest to us are the vector spaces
Â, Ã = A ⊕ kc, A) and if w is its eigenvalue following standard practice we will denote by V w ⊂ V
the corresponding eigenspace of O .

9.1. Lemma.

(a) If w is a nonzero weight of ad(x) then Âw ⊂ Ã.
(b) Â0 = Ã0 ⊕ 〈x〉.

Proof. Clearly we have [ Â, Â] ⊂ Ã and this implies ad(x)( Ã) ⊂ Ã. It then follows that the linear op-
erator ad(x)| Ã is k-diagonalizable. Let Ã = ⊕

Ãw ′ where the sum is taken over all weights of ad(x)| Ã .

Since x ∈ Â0 and since Â = 〈x〉 ⊕ Ã we conclude that

Â = 〈x, Ã0〉 ⊕
( ⊕

w ′ �=0

Ãw ′
)

,

so that the result follows. �
The operator ad(x)| Ã maps the centre 〈c〉 = kc of Ã into itself, hence it induces a linear operator O x

of A 
 Ã/kc which is also k-diagonalizable. The last isomorphism is induced by a natural (projection)
mapping λ : Ã → A. If w �= 0 the restriction of λ to Ãw is injective (because Ãw does not contain kc).
Since Ã = ⊕

w Ãw it then follows that

λ| Ãw
: Ãw −→ Aw

is an isomorphism for w �= 0. Thus the three linear operators ad(x), ad(x)| Ã and O x have the same
nonzero weights.

9.2. Lemma. Let w �= 0 be a weight of O x and let n ∈ Z. Then w + mn is also a weight of O x and Aw+mn =
tn Aw .

Proof. Assume y ∈ Aw ⊂ A, hence O x(y) = wy. Let us show that ytn ∈ Aw+mn . We have

O x
(

ytn) = λ
(
ad(x)

(
ytn)) = λ

([
x, ytn]

Â

)
. (9.2.1)

Substituting x = x′ + d we get

[
x, ytn]

Â = [
x′, ytn]

Â + [
d, ytn]

Â .

Applying (8.0.1) and (8.0.2) we get that the right hand side is equal to

[
x′, y

]
tn + ac + [d, y] Âtn + mnytn

where a ∈ k is some scalar. Substituting this into (9.2.1) we get

O x
(

ytn) = λ
([

x′, y
]
tn + ac + [d, y] Âtn + mnytn)

= [
x′, y

]
tn + λ

([d, y] ˆ tn) + mnytn.
A
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By (8.0.1) there exists b ∈ k such that

[
x′, y

]
tn = ([

x′, y
]

Â + bc
)
tn.

Here we view [x′, y]tn as an element in Â. Therefore

O x
(

ytn) = mnytn + λ
(([

x′, y
]

Â + bc
)
tn + [d, y] Âtn)

= mnytn + λ
(([x, y] Â + bc

)
tn)

.

We now note that by construction [x, y] Â + bc is contained in A ⊂ Ã. Hence

λ
(([x, y] Â + bc

)
tn) = λ

([x, y] Â + bc
)
tn = λ

([x, y] Â

)
tn.

Since λ([x, y] Â) = O x(y) = wy we finally get

O x
(

ytn) = mnytn + wytn = (w + mn)ytn.

Thus we have showed that Awtn ⊂ Aw+nm . By symmetry Aw+nmt−n ⊂ Aw and we are done. �
We now consider the case w = 0.

9.3. Lemma. Assume that dim Ã0 > 1 and n ∈ Z. Then mn is a weight of ad(x).

Proof. Since dim Ã0 > 1 there exists nonzero y ∈ A such that [x, y] Â = 0. Then the same computa-
tions as above show that [x, ytn] Ã = mnytn . �

Our next aim is to show that if w is a weight of ad(x) so is −w . We remind the reader that Â is
equipped with the nondegenerate invariant bilinear form (−,−). Hence for all y, z ∈ Â one has

([x, y] Â, z
) = −(

y, [x, z] Â

)
. (9.3.1)

9.4. Lemma. If w is a weight of ad(x) then so is −w.

Proof. If w = 0 there is nothing to prove. Assume w �= 0. Consider the root space decomposition

Â =
⊕

w ′
Âw ′ .

It suffices to show that for any two weights w1, w2 of ad(x) such that w1 + w2 �= 0 the subspaces
Âw1 and Âw2 are orthogonal to each other. Indeed, the last implies that if −w were not a weight
then every element in Âw would be orthogonal to all elements in Â, which is impossible.

Let y ∈ Âw1 and z ∈ Âw2 . Applying (9.3.1) we have

w1(y, z) = ([x, y] Â, z
) = −(

y, [x, z] Â

) = −w2(y, z).

Since w1 �= −w2 we conclude (y, z) = 0. �
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Now we switch our interest to the operator O x and its weight subspaces. Since the nonzero
weights of ad(x), ad(x)| Ã and O x are the same we obtain, by Lemmas 9.2 and 9.3, that for every
weight w of O x all elements in the set

{w + mn | n ∈ Z}

are also weights of O x . We call this set of weights by w-series. Recall that by Lemma 9.2 we have

Aw+mn = Awtn.

9.5. Lemma. Let w be a weight of O x and let Aw R be the R-span of Aw in A. Then the natural map
ν : Aw ⊗k R → Aw R given by l ⊗ tn 	→ ltn is an isomorphism of k-vector spaces.

Proof. Clearly, the sum
∑

n Aw+mn of vector subspaces Aw+mn in A is a direct sum. Hence

Aw R =
∑

n

Awtn =
∑

n

Aw+mn =
⊕

n

Aw+mn. (9.5.1)

Fix a k-basis {ei} of Aw . Then {ei ⊗ t j} is a k-basis of Aw ⊗k R . Since

ν
(
ei ⊗ tn) = eit

n ∈ Aw+mn

the injectivity of ν easily follows from (9.5.1). The surjectivity is also obvious. �
Notation. We will denote the R-span Aw R by A{w} .

By our construction A{w} is an R-submodule of A and

A =
⊕

w

A{w} (9.5.2)

where the sum is taken over fixed representatives of weight series.

9.6. Corollary. dimk Aw < ∞.

Proof. Indeed, by the above lemma we have

dimk Aw = rankR(Aw ⊗k R) = rankR Aw R = rankR A{w} � rankR A < ∞,

as required. �
9.7. Corollary. There are finitely many weight series.

Proof. This follows from the fact that A is a free R-module of finite rank. �
9.8. Lemma. Let w1, w2 be weights of O x. Then [Aw1 , Aw2 ] ⊂ Aw1+w2 .

Proof. This is straightforward to check. �
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10. Weight zero subspace

10.1. Theorem. A0 �= 0.

Proof. Assume that A0 = 0. Then, by Lemma 9.2, Amn = 0 for all n ∈ Z. It follows that for any
weight w , any integer n and all y ∈ Aw , z ∈ A−w+mn we have [y, z] = 0. Indeed

[Aw , A−w+mn] ⊂ Aw+(−w)+mn = Amn = 0. (10.1.1)

For y ∈ A the operator ad(y) : A → A may be viewed as a k-operator or as an R-operator. When
we deal with the Killing form 〈−,−〉 on the R-Lie algebra A we will view ad(y) as an R-operator
of A.

10.2. Lemma. Let w1, w2 be weights of ad(x) such that {w1} �= {−w2}. Then for any integer n and all y ∈ Aw1

and z ∈ Aw2+mn we have 〈y, z〉 = 0.

Proof. Let w be a weight of ad(x). By our condition we have {w} �= {w + w1 + w2}. Since
(ad(y) ◦ ad(z))(A{w}) ⊂ A{w+w1+w2} , in any R-basis of A corresponding to the decomposition (9.5.2)
the operator ad(y) ◦ ad(z) has zeroes on the diagonal, hence Tr(ad(y) ◦ ad(z)) = 0. �
10.3. Lemma. Let w be a weight of ad(x), n be an integer and let y ∈ Aw . Assume that ad(y) viewed as an
R-operator of A is nilpotent. Then for every z ∈ A−w+mn we have 〈y, z〉 = 0.

Proof. Indeed, let l be such that (ad(y))l = 0. Since by (10.1.1), ad(y) and ad(z) are commuting oper-
ators we have

(
ad(y) ◦ ad(z)

)l = (
ad(y)

)l ◦ (
ad(z)

)l = 0.

Therefore ad(y) ◦ ad(z) is nilpotent and this implies its trace is zero. �
Since the Killing form is nondegenerate, it follows immediately from the above two lemmas that

for every nonzero element y ∈ Aw the operator ad(y) is not nilpotent. Recall that by Lemma 9.8 we
have ad(y)(Aw ′ ) ⊂ Aw+w ′ . Hence taking into consideration Corollary 9.7 we conclude that there exits
a weight w ′ and a positive integer l such that

ad(y)(A{w ′}) �= 0,
(
ad(y) ◦ ad(y)

)
(A{w ′}) �= 0, . . . ,

(
ad(y)

)l
(A{w ′}) �= 0

and (ad(y))l(A{w ′}) ⊂ A{w ′} . We may assume that l is the smallest positive integer satisfying these
conditions. Then all consecutive scalars

w ′, w ′ + w, w ′ + 2w, . . . , w ′ + lw (10.3.1)

are weights of ad(x), {w ′ + iw} �= {w ′ + (i + 1)w} for i < l and {w ′} = {w ′ + lw}. In particular, we
automatically get that lw is an integer (divisible by m) which in turn implies that w is a rational
number.

Thus, under our assumption A0 = 0 we have proved that all weights of ad(x) are rational numbers.
We now choose (in a unique way) representatives w1, . . . , ws of all weight series such that 0 <

wi < m and up to renumbering we may assume that

0 < w1 < w2 < · · · < ws < m.
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10.4. Remark. Recall that for any weight wi , the scalar −wi is also a weight. Since 0 < −wi + m < m
the representative of the weight series {−wi} is m − wi . Then the inequality m − wi � w1 implies
m − w1 � wi . Hence out of necessity we have ws = m − w1.

We now apply the observation (10.3.1) to the weight w = w1. Let w ′ = wi be as in (10.3.1). Choose
the integer j � 0 such that wi + jw1, wi + ( j + 1)w1 are weights and wi + jw1 < m, but wi + ( j +
1)w1 � m. We note that since m is not a weight of ad(x) we automatically obtain wi + ( j +1)w1 > m.
Furthermore, we have wi + jw1 � ws = m − w1 (because wi + jw1 is a weight of ad(x)). This implies

m < wi + ( j + 1)w1 � ws + w1 = m − w1 + w1 = m

– a contradiction that completes the proof of the theorem. �
11. A lower bound of dimensions of MADs in L̂

11.1. Theorem. Let m ⊂ L̂ be a MAD. Then dimm � 3.

By Lemma 8.7, m contains an element x of the form x = x′ + d where x′ ∈L and it also contains c.
Since x and c generate a subspace of m of dimension 2 the statement of the theorem is equivalent to
〈x, c〉 �= m.

Assume the contrary: 〈x, c〉 = m. Since m is k-diagonalizable we have the weight space decompo-
sition

L̂ =
⊕
α

L̂α

where the sum is taken over linear mappings α ∈ m∗ = Hom(m,k). To find a contradiction we first
make some simple observations about the structure of the corresponding eigenspace L̂0.

If L̂α �= 0, it easily follows that α(c) = 0 (because c is in the centre of L̂). Then α is determined
uniquely by the value w = α(x) and so instead of L̂α we will write L̂w .

Recall that by Theorem 10.1, L0 �= 0. Our aim is first to show that L0 contains a nonzero element y
such that the adjoint operator ad(y) of L is k-diagonalizable. We will next see that y necessarily
commutes with x viewed as an element in L̂ and that it is k-diagonalizable in L̂ as well. It then
follows that the subspace in L̂ spanned by c, x and y is a commutative k-diagonalizable subalgebra
and this contradicts the fact that m is a MAD.

11.2. Lemma. Let y ∈L be nonzero such that O x(y) = 0. Then [x, y]L̂ = 0.

Proof. Assume that [x, y]L̂ = bc �= 0. Then

(
x, [x, y]L̂

) = (x,bc) = (
x′ + d,bc

) = (d,bc) = βb �= 0.

On the other hand, since the form is invariant we get

(
x, [x, y]L̂

) = ([x, x]L̂, y
) = (0, y) = 0

– a contradiction which completes the proof. �
11.3. Lemma. Assume that y ∈ L0 is nonzero and that the adjoint operator ad(y) of L is k-diagonalizable.
Then ad(y) viewed as an operator of L̂ is also k-diagonalizable.
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Proof. Choose a k-basis {ei} of L consisting of eigenvectors of ad(y). Thus we have [y, ei] = uiei
where ui ∈ k and hence

[y, ei]L̂ = uiei + bic

where bi ∈ k.

Case 1: Suppose first that ui �= 0. Let

ẽi = ei + bi

ui
· c ∈ L̃.

Then we have

[y, ẽi]L̂ = [y, ei]L̂ = uiei + bic = uiẽi

and therefore ẽi is an eigenvector of the operator ad(y) : L̂→ L̂.

Case 2: Let now ui = 0. Then [y, ei]L̂ = bic and we claim that bi = 0. Indeed, we have

(
x, [y, ei]L̂

) = ([x, y]L̂, ei
) = (0, ei) = 0

and on the other hand

(
x, [y, ei] Â

) = (x,bic) = (
x′ + d,bic

) = (d,bic) = βbi .

It follows that bi = 0 and thus ẽi = ei is an eigenvector of ad(y).
Summarizing, replacing ei by ẽi we see that the set {ẽi} ∪ {c, x} is a k-basis of L̂ consisting of

eigenvectors of ad(y). �
11.4. Proposition. The subalgebra L0 contains an element y such that the operator ad(y) : L → L is
k-diagonalizable.

Proof. We split the proof in three steps.

Step 1: Assume first that there exists y ∈L0 which as an element in LK =L⊗R K is semisimple. We
claim that our operator ad(y) is k-diagonalizable. Indeed, choose representatives w1 = 0, w2, . . . , wl
of the weight series of ad(x). The sets Lw1 , . . . ,Lwl are vector spaces over k of finite dimension, by
Lemma 9.6, and they are stable with respect to ad(y) (because y ∈ L0). In each k-vector space Lwi

choose a Jordan basis

{eij, j = 1, . . . , li}
of the operator ad(y)|Lwi

. Then the set

{eij, i = 1, . . . , l, j = 1, . . . , li} (11.4.1)

is an R-basis of L, by Lemma 9.5 and the decomposition given in (9.5.2). It follows that the matrix
of the operator ad(y) viewed as a K -operator of L ⊗R K is a block diagonal matrix whose blocks
corresponds to the matrices of ad(y)|Lwi

in the basis {ei j}. Hence (11.4.1) is a Jordan basis for ad(y)

viewed as an operator on L⊗R K . Since y is a semisimple element of L⊗R K all matrices of ad(y)|Lwi

are diagonal and this in turn implies that ad(y) is k-diagonalizable operator of L.
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Step 2: We next consider the case when all elements in L0 viewed as elements of the R-algebra L
are nilpotent. Then L0, being finite dimensional, is a nilpotent Lie algebra over k. In particular its
centre is nontrivial since L0 �= 0. Let c ∈ L0 be a nonzero central element of L0. For any z ∈ L0 the
operators ad(c) and ad(z) of L commute. Then ad(z)◦ad(c) is nilpotent, hence 〈c, z〉 = 0. Furthermore,
by Lemma 10.2 〈c, z〉 = 0 for any z ∈Lwi , wi �= 0. Thus c �= 0 is in the radical of the Killing form of L
– a contradiction.

Step 3: Assume now that L0 contains an element y which as an element of LK has nontrivial
semisimple part ys . Let us first show that ys ∈ L{0} ⊗R K and then that ys ∈ L0. By Step 1, the
last would complete the proof of the proposition.

By decomposition (9.5.2) applied to A =L we may write ys as a sum

ys = y1 + y2 + · · · + yl

where yi ∈L{wi} ⊗R K . In Step 1 we showed that in an appropriate R-basis (11.4.1) of L the matrix of
ad(y) is block diagonal whose blocks correspond to the Jordan matrices of ad(y)|Lwi

: Lwi → Lwi . It
follows that the semisimple part of ad(y) is also a block diagonal matrix whose blocks are semisimple
parts of ad(y)|Awi

.
Since LK is a semisimple Lie algebra over a perfect field we get that ad(ys) = ad(y)s . Hence for all

weights wi we have

[ys,Lwi ] ⊂ Lwi . (11.4.2)

On the other hand, for any u ∈Lwi we have

ad(ys)(u) = [y1, u] + [y2, u] + · · · + [yl, u].

Since [y j, u] ∈L{wi+w j} ⊗R K , it follows that ad(ys)(u) ∈L{wi} if and only if [y2, u] = · · · = [yl, u] = 0.
Since this is true for all i and all u ∈ Lwi and since the kernel of the adjoint representation of LK is
trivial we obtain y2 = · · · = yl = 0. Therefore ys ∈L{0} ⊗R K .

It remains to show that ys ∈L0. We may write ys in the form

ys = 1

g(t)

(
u0 ⊗ 1 + u1 ⊗ t + · · · + um ⊗ tm)

where u0, . . . , ul ∈L0 and g(t) = g0 + g1t +· · ·+ gntn is a polynomial with coefficients g0, . . . , gn in k
with gn �= 0. The above equality can be rewritten in the form

g0 ys + g1 ys ⊗ t + · · · + gn ys ⊗ tn = u0 ⊗ 1 + · · · + um ⊗ tm. (11.4.3)

Consider an arbitrary index i and let u ∈Lwi . Recall that by (11.4.2) we have

ad(ys)(Lwi ) ⊂ Lwi .

Applying both sides of (11.4.3) to u and comparing Lwi+n-components we conclude that [gn ys, u] =
[un, u]. Since this is true for all u and all i and since the adjoint representation of LK has trivial
kernel we obtain gn ys = un . Since gn �= 0 we get ys = un/gn ∈L0. �

Now we can easily finish the proof of Theorem 11.1. Suppose the contrary. Then dim(m) < 3 and
hence by Lemma 8.7 we have m = 〈c, x′ + d〉 with x′ ∈ L. Consider the operator O x on L. By The-
orem 10.1 we have L0 �= 0. By Propositions 11.4 and 11.3 there exists a nonzero k-diagonalizable



74 V. Chernousov et al. / Journal of Algebra 399 (2014) 55–78
element y ∈ L0. Clearly, y is not contained in m. Furthermore, by Lemma 11.2, y viewed as an el-
ement of L̂ commutes with m and by Lemma 11.3 it is k-diagonalizable in L̂. It follows that the
subspace m1 = m⊕ 〈y〉 is an abelian k-diagonalizable subalgebra of L̂. But this contradicts maximal-
ity of m.

12. All MADs are conjugate

12.1. Theorem. Let Ĝ(R) be the preimage of {Ad(g): g ∈ G(R)} under the canonical map Autk(L̂) → Autk(L).
Then all MADs of L̂ are conjugate under Ĝ(R) to the subalgebra H in 8.5.

Proof. Let m be a MAD of L̂. By Lemma 8.7, m �⊂ L̃. Fix a vector x = x′ + d ∈ m where x′ ∈ L and
let m′ = m ∩ L. Thus we have m = 〈x, c,m′〉. Note that m′ �= 0, by Theorem 11.1. Furthermore, since
m′ is k-diagonalizable in L, without loss of generality we may assume that m′ ⊂ h0̄ given that by
Theorem 8.6(b) there exists g ∈ G(R) such that Ad(g)(m′) ⊂ h0̄ and that by Theorem 7.5 g has lifting

to Autk-Lie(L̂).
Consider the weight space decomposition

L =
⊕

i

Lαi (12.1.1)

with respect to the k-diagonalizable subalgebra m′ of L where αi ∈ (m′)∗ and as usual

Lαi = {
z ∈ L

∣∣ [t, z] = αi(t)z for all t ∈m′}.
12.2. Lemma. Lαi is invariant with respect to the operator O x.

Proof. The k-linear operator O x commutes with ad(t) for all t ∈m′ (because x and m′ commute in L̂),
so the result follows. �
12.3. Lemma. We have x′ ∈ L0 .

Proof. By our construction m′ is contained in h0, hence d commutes with the elements of m′ . But x
also commutes with the elements of m′ and so does x′ = x − d. �

L0 = CL(m′), being the Lie algebra of the reductive group scheme CG(m′) (see [2]), is of the form
L0 = z ⊕ A where z and A are the Lie algebras of the central torus of CG(m′) and its semisimple part
respectively. Our next goal is to show that A = 0.

Suppose this is not true. To get a contradiction we will show that the subset Â = A ⊕ kc ⊕ kd ⊂ L̂
is a subalgebra satisfying conditions a) and b) stated at the end of Section 8 and that it is stable
with respect to ad(x). This, in turn, will allow us to construct an element y ∈ A which viewed as an
element of L̂ commutes with x and m′ and is k-diagonalizable. The last, of course, contradicts the
maximality of m.

Let H denote the simple simply connected Chevalley-Demazure algebraic k-group corresponding
to g. Since G is split over S we have

HS = H ×k S 
 GS = G ×R S.

Let Cg(m
′) = t ⊕ r where t is the Lie algebra of the central torus of the reductive k-group CH(m′) and

r is the Lie algebra of its semisimple part. Since centralizers commute with base change, we obtain
that

tS = t ⊗k S = z ⊗R S = zS , rS = r ×k S = A ⊗R S = A S .
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12.4. Lemma. We have ad(d)(A) ⊂ A and in particular Â is a subalgebra of L̂.

Proof. Since r consists of “constant” elements we have [d, r]L̂(g)S
= 0, and this implies that

[d, rS ]L̂(g)S
⊂ rS . Also, viewing L as a subalgebra of L̂(g)S we have [d,L]L̂ ⊂ L. Furthermore, S/R

is faithfully flat, hence A = A S ∩L = rS ∩L. Since both subalgebras rS and L are stable with respect
to ad(d), so is their intersection. �
12.5. Lemma. The restriction of the nondegenerate invariant bilinear form (·,·) on L̂ to L0 is nondegenerate.

Proof. We mentioned before that the restriction of (·,·) to L is nondegenerate. Hence in view of
decomposition (12.1.1) it suffices to show that for all a ∈ L0 and b ∈ Lαi with αi �= 0 we have (a,b) = 0.

Let l ∈ m′ be such that αi(l) �= 0. Using the invariance of (·,·) we get

αi(l)(a,b) = (
a,αi(l)b

) = (
a, [l,b]) = ([a, l],b

) = 0.

Hence (a,b) = 0 as required. �
12.6. Lemma. The restriction of (·,·) to A is nondegenerate.

Proof. By Lemma 12.5 it is enough to show that z and A are orthogonal in L̂. Moreover, viewing
z and A as subalgebras of the split affine Kac–Moody Lie algebra L̂(g)S and using Remark 8.2 we
conclude that it suffices to verify that zS = tS and A S = rS are orthogonal in L̂(g)S .

Let a ∈ t and b ∈ r. We know that

(
at

i
m ,bt

j
m
) = 〈a,b〉δi+ j,0

where 〈·,·〉 is a Killing form of g. Since r is a semisimple algebra we have r = [r, r]. It follows that we
can write b in the form b = ∑[ai,bi] for some ai,bi ∈ r. Using the facts that t and r commute and
that the Killing form is invariant we have

〈a,b〉 =
〈
a,

∑
[ai,bi]

〉
=

∑〈[a,ai],bi
〉 = ∑

〈0,bi〉 = 0.

Thus (at
i

m ,bt
j

m ) = 0. �
12.7. Remark. It follows immediately from Lemma 12.6 that the restriction to Â of the nondegenerate
invariant bilinear form (−,−) is nondegenerate. Indeed, we have Â = A ⊕ 〈c,d〉. We know that the
restriction of our form to 〈c,d〉 is nondegenerate. By the lemma its restriction to A is also nondegen-
erate. Since A and 〈c,d〉 are orthogonal to each other our assertion follows.

12.8. Lemma. The k-subspace A ⊂L is invariant with respect to O x.

Proof. Let a ∈ A. We need to verify that

[x,a]L̂ ∈ A ⊕ kc ⊂ L̂.

But [d, A]L̂ ⊂ A + kc by Lemma 12.4. We also have

[
x′, A

]
ˆ ⊂ A ⊕ kc
L
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(because x′ ∈ L0, by Lemma 12.3, and A viewed as a subalgebra in L0 is an ideal). Since x = x′ + d the
result follows. �

According to Lemma 12.3 we can write x′ = x′
0 + x′

1 where x′
0 ∈ z and x′

1 ∈ A.

12.9. Lemma. We have O x|A = O x′
1+d|A . In particular, the operator O x′

1+d|A of A is k-diagonalizable.

Proof. By Lemma 12.8, we have O x(A) ⊂ A. Since O x is k-diagonalizable (as an operator of L), so is
the operator O x|A of A. Therefore the last assertion of the lemma follows from the first one.

Let now a ∈ A. Using the fact that x′
0 and a commute in L we have

[
x′,a

]
L̂ = [

x′
0,a

]
L̂ + [

x′
1,a

]
L̂ = [

x′
1,a

]
L̂ + bc

for some b ∈ k. Thus O x(a) = O x′
1+d(a). �

12.10. Lemma. The operator ad(x′
1 + d) : Â → Â is k-diagonalizable.

Proof. Since by Lemma 12.9 O x′
1+d|A : A → A is k-diagonalizable we can apply the same arguments

as in Lemma 11.3. �
Now we can produce the required element y. It follows from Lemma 12.6 that the Lie alge-

bra Â satisfies all the conditions stated at the end of Section 8. By Lemma 12.10, ad(x′
1 + d) is

k-diagonalizable operator of Â. Hence arguing as in Theorem 11.1 we see that there exists a nonzero
y ∈ A such that [y, x′

1 + d]L̂ = 0 and ad(y) is a k-diagonalizable operator on Â. Then by Lemma 12.9

we have O x(y) = O x′
1+d(y) = 0 and hence, by Lemma 11.2, x and y commute in L̂.

According to our plan it remains to show that y is k-diagonalizable in L̂. To see this we need

12.11. Lemma. Let z ∈ m′ . Then [z, y]L̂ = 0.

Proof. Since y ∈ A ⊂ CL(m′) we have [z, y]L = 0. Then [z, y]L̂ = bc for some b ∈ k. It follows

0 = (0, y) = ([x, z]L̂, y
) = (

x, [z, y]L̂
) = (

x′ + d,bc
) = (d,bc) = βb.

This yields b = 0 as desired. �
12.12. Proposition. The operator ad(y) : L̂→ L̂ is k-diagonalizable.

Proof. According to Lemma 11.3, it suffices to prove that ad(y) : L → L is k-diagonalizable. Since
y viewed as an element of A is semisimple it is still semisimple viewed as an element of L. In
particular, the R-operator ad(y) :L→L is also semisimple.

Recall that we have the decomposition of L into the direct sum of the weight spaces with respect
to O x:

L =
⊕

w

Lw =
⊕

i

⊕
n

Lwi+mn =
⊕

i

L{wi}.

Since y and x commute in L̂, for all weights w we have ad(y)(Lw) ⊂ Lw . If we choose any k-basis
of Lw it is still an R-basis of L{w} = Lw ⊗k R and in this basis the R-operator ad(y)|L{w} and the
k-operator ad(y)|Lw have the same matrices. Since the R-operator ad(y)|L{w} is semisimple, so is
ad(y)|Lw , i.e. ad(y)|Lw is a k-diagonalizable operator. Thus ad(y) :L→L is k-diagonalizable. �
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Summarizing, assuming A �= 0 we have constructed the k-diagonalizable element

y /∈ m = 〈
m′, x, c

〉

in L̂ which commutes with m′ and x in L̂. Then the subalgebra 〈m, y〉 in L̂ is commutative and
k-diagonalizable which is impossible since m is a MAD. Thus A is necessarily trivial and this implies
CL(m′) is the Lie algebra of the R-torus CG(m′), in particular CL(m′) is abelian.

Note that x′ ∈ CL(m′), by Lemma 12.3, and that h0̄ ⊂ CL(m′) (because m′ ⊂ h0̄ , by construction).
Since CL(m′) is abelian and since x = x′ + d it follows that ad(x)(h0̄) = 0. Hence 〈h0̄, x, c〉 is a com-

mutative k-diagonalizable subalgebra in L̂. But it contains our MAD m. Therefore m = 〈h0̄, x, c〉. To
finish the proof of Theorem 12.1 it now suffices to show that x′ ∈ h0̄ . For that, in turn, we may view
x′ as an element of L(g)S and it suffices to show that x′ ∈ h because h ∩L= h0̄ .

12.13. Lemma. x′ ∈ h.

Proof. Consider the root space decomposition of g with respect to the Cartan subalgebra h:

g = h ⊕
(⊕

α �=0

gα

)
.

Every k-subspace gα has dimension 1. Choose a nonzero elements Xα ∈ gα . It follows from m′ = h0̄
that CL(g)S (m

′) = hS . Thus x′ ∈ hS . Then gα ⊗k S is stable with respect to ad(x′) and clearly it is stable
with respect to ad(d). Hence it is also stable with respect to O x .

Arguing as in Lemma 9.2 one can easily see that the operator O x , viewed as an operator of L(g)S ,
is k-diagonalizable. Since gα ⊗k S is stable with respect to O x , it is the direct sum of its weight
subspaces. Hence

gα ⊗k S =
⊕

w

(
L(g)S

)
{w}

where {w} = {w + j/m | j ∈ Z} is the weight series corresponding to w . But gα ⊗k S has rank 1 as
an S-module. This implies that in the above decomposition we have only one weight series {w} for
some weight w of O x .

We next note that automatically we have dimk(L(g)S )w = 1. Any its nonzero vector which is a

generator of the S-module gα ⊗k S is of the form Xαt
j

m . It follows from Lemma 9.2 that gα = 〈Xα〉 is
also a weight subspace of O x . Thus for every root α we have

[x, Xα]L̂(g)S
= [

x′ + d, Xα

]
L̂(g)S

= [
x′, Xα

] = bα Xα

for some scalar bα ∈ k. Since x′ ∈ hS this can happen if and only if x′ ∈ h. �
By the previous lemma we have x′ ∈ h0̄ , hence

m = 〈h0̄, c,d〉 = H.

The proof of Theorem 12.1 is complete. �
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