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1. Introduction

The construction of Okounkov bodies associated with linear series on a projective 
variety, which was introduced by Okounkov and was given a theoretical framework in the 

* Corresponding author.
E-mail addresses: paczik@gmail.com (P. Łuszcz-Świdecka), schmitzd@mathematik.uni-marburg.de

(D. Schmitz).
1 Supported by DFG grant BA 1559/6-1.
http://dx.doi.org/10.1016/j.jalgebra.2014.05.024
0021-8693/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jalgebra.2014.05.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:paczik@gmail.com
mailto:schmitzd@mathematik.uni-marburg.de
http://dx.doi.org/10.1016/j.jalgebra.2014.05.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jalgebra.2014.05.024&domain=pdf


160 P. Łuszcz-Świdecka, D. Schmitz / Journal of Algebra 414 (2014) 159–174
seminal papers [7] and [9], recently attracted attention as it encodes plenty of information 
on geometric properties of line bundles. For example, the volume of a big linear series 
essentially agrees with the Euclidean volume of its associated Okounkov body.

Okounkov’s idea is to assign to a big divisor D on a smooth projective n-dimensional 
variety X a convex body Δ(D) in n-dimensional Euclidean space Rn. The construction, 
which we sketch in Section 2, depends on the choice of a flag of subvarieties Y• : X =
Y0 ⊇ Y1 ⊇ . . . ⊇ Yn of codimensions i such that Yn is a non-singular point on each of 
the Yi.

In [9, Theorem B], Lazarsfeld and Mustaţǎ prove the existence of a global Okounkov 
body: for a smooth projective variety there is a closed convex cone Δ(X) ⊆ Rn×N1(X)R
such that the fiber over any big rational class ξ ∈ N1(X)R of the map ϕ induced by the 
second projection is equal to Δ(ξ). Additionally, in order to establish the log-concavity 
relation

volX(D1 + D2)1/n � volX(D1)1/n + volX(D2)1/n

for any two big R-divisors, they deduce from the convexity of the global Okounkov body 
the inclusion

Δ(D1) + Δ(D2) ⊆ Δ(D1 + D2).

Here the left hand side denotes the Minkowski sum of Δ(D1) and Δ(D2), i.e., the set 
obtained by pointwise addition, see [9, Corollary 4.12].

In general the above inclusion turns out to be strict (see Example 4.2). However, 
it would be desirable to know conditions for equality; in particular one would hope to 
be able to decompose the Okounkov body of any big divisor as the Minkowski sum of 
“simple” bodies. Specifically, the following questions arise: is there a set Ω of big divisors 
such that the Okounkov body of any big divisor D with respect to an admissible flag Y•
decomposes as Minkowski sum of the bodies associated with divisors in Ω? If so, can Ω
be chosen to be finite?

An affirmative answer to these questions was given in [10] in the case of the del Pezzo 
surface X3, the blow-up of the projective plane in three non-collinear points, equipped 
with a certain natural flag. We prove in this paper that the answers to both questions 
are “yes” for a general admissible flag (see Proposition 2.1) on any smooth projective 
surface whose pseudo-effective cone is rational polyhedral. For example, this is the case 
for all del Pezzo surfaces and, more generally, for surfaces with big anticanonical class 
(see [5, Lemma 3.4]). We will see in the following section that considering nef divisors is 
sufficient since the Okounkov body of any big divisor is a translate of the body associated 
with the positive part of its Zariski decomposition.

Theorem. Let X be a smooth projective surface such that Eff(X) is rational polyhedral, 
and let X = Y0 ⊇ Y1 ⊇ Y2 = {pt} be a general flag. Then there exists a finite set Ω of nef 
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Q-divisors such that for any nef Q-divisor D there exist non-negative rational numbers 
αP (D) such that

D =
∑
P∈Ω

αP (D)P and ΔY•(D) =
∑
P∈Ω

αP (D)ΔY•(P ). (1.0.1)

Definition. A presentation D =
∑

αiDi as in (1.0.1) is called a Minkowski decomposition
of D with respect to the Minkowski basis Ω.

The proof, which we present in Section 3, includes the construction of the Minkowski 
basis Ω as well as an effective method to determine a Minkowski decomposition of any 
given nef Q-divisor. It depends on two features distinctive for surfaces, firstly a charac-
terization of Okounkov bodies in terms of intersections with the positive and negative 
part in the Zariski decomposition due to Lazarsfeld and Mustaţǎ, and secondly on the 
Zariski chamber decomposition of the big cone introduced in [4]. We sketch these results 
in Section 2.

Throughout this paper we work over the complex numbers.

2. Okounkov bodies on surfaces

In this section we first give a quick review of Okounkov’s construction in arbitrary 
dimension (we refer to [9] for details), and then turn to additional features known in the 
case of surfaces.

As mentioned in the introduction, one assigns to a big divisor D on a smooth projective 
n-dimensional variety X a convex body Δ(D) in Rn. The construction depends on the 
choice of a flag on X, i.e., a sequence Y• : X = Y0 ⊇ Y1 ⊇ . . . ⊇ Yn of subvarieties Yi of 
codimension i. A flag is admissible if Yn is a non-singular point on each of the Yi. To an 
admissible flag, one assigns a function

νY• : H0(X,OX(D)
)
→ Zn,

by mapping a section s ∈ H0(X, OX(D)) to the tuple (ν1(s), . . . , νn(s)) where 
ν1(s) := ordY1(s), ν2(s) is given by the order of vanishing along Y2 of the section 
s1 ∈ H0(Y1, OY1(D−ν1(s)Y1)) determined by s, and so forth up to νn(s). Repeating this 
construction for integral multiples of D, we define the Okounkov body Δ(D) = ΔY•(D)
to be the closed convex hull of the set

S(D) :=
⋃
k�0

{
1
k
νY•(s)

∣∣∣ s ∈ H0(X,OX(kD)
)}

.

Note that although the number of image vectors (ν1, . . . , νn) is equal to the dimen-
sion of H0(X, OX(kD)) for each k, the convex body Δ(D) need not be polyhedral (see 
[9, Section 6.3]). By [9, Proposition 4.1], numerically equivalent divisors have identical 
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Okounkov bodies and for any positive integer p we have the scaling Δ(pD) = 1
pΔ(D), so 

we can assign an Okounkov body to big rational classes in the Néron–Severi vector space 
N1(X)R. For non-rational classes this is not so straightforward. Instead, it follows from 
the existence of global Okounkov bodies [9, Theorem B]: There is a closed convex cone 
Δ(X) ⊆ Rn ×N1(X)R such that the fiber over any big rational class ξ ∈ N1(X)R of the 
map ϕ induced by the second projection is equal to Δ(ξ). Consequently, the Okounkov 
body of a big real class is defined as its fiber under ϕ. Additionally, since the image of 
Δ(X) under ϕ is the pseudo-effective cone Eff(X), the construction can be extended to 
pseudo-effective real classes.

From the existence of the global Okounkov body on X many interesting properties 
of the volume function volX : Big(X) → R can quite easily be proved. For example, the 
log-concavity relation

volX(D1 + D2)1/n � volX(D1)1/n + volX(D2)1/n

for any two big R-divisors is a consequence of the Brunn–Minkowski theorem: from the 
convexity of the global Okounkov body we obtain the inclusion

Δ(D1) + Δ(D2) ⊆ Δ(D1 + D2)

with the Minkowski sum on the left hand side (see [9, Corollary 4.12]).
For the remainder of this section, let X be a smooth projective surface with an ad-

missible flag

X ⊇ C ⊇ {p}

on it. Any pseudo-effective (rational) divisor D on X has a Zariski decomposition

D = PD + ND,

where PD is nef, and ND is effective, orthogonal to PD, and if it is not the zero-divisor, 
it has negative definite intersection matrix. Define

μC(D) := sup{t | D − tC effective}

and consider the functions

α, β :
[
0, μC(D)

]
→ R,

with

α(x) = ordp(ND−xC), and

β(x) = ordp(ND−xC) +
(
C · (PD−xC)

)
.
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Then by [9, Theorem 6.4], α and β are the upper and lower boundary functions for 
Δ(D), respectively. Concretely,

Δ(D) =
{
(x, y) ∈ R2 ∣∣ 0 � x � μC(D), α(x) � y � β(x)

}
.

This characterization of the Okounkov body on surfaces has many pleasant consequences. 
For example in [1, Proposition 2.2] it is used to prove that for any big and nef divisor 
on a surface there exists a flag such that the corresponding Okounkov body is rational 
polyhedral. The following proposition shows that in the situation of the theorem, in order 
to determine the Okounkov body of a big divisor D it is sufficient to know the positive 
part of the divisors D − tC for 0 � t � μC(D).

Proposition 2.1. If the pseudo-effective cone Eff(X) is rational polyhedral and X ⊇ C ⊇ p

is a general admissible flag, then C is big and nef as a divisor, and

α(x) = 0, β(x) = C · PD−xC

for all 0 � x � μC(D).

Proof. If Eff(X) on X is rational polyhedral, then in particular there are only finitely 
many irreducible curves E on X with self-intersection E2 � 0. Therefore, in a general 
flag X ⊇ C ⊇ p the irreducible curve C has positive self-intersection, so it is big and nef 
as a divisor. Furthermore, p is a non-singular point on C, which does not lie on any curve 
with negative self-intersection. Now by definition, the negative part ND−xC in the Zariski 
decomposition of D − xC either is the zero-divisor, or has negative definite intersection 
matrix. In the latter case, its support consists of curves with negative self-intersection, 
so in either case we have ordp(ND−xC) = 0 for all x. �
Example 2.2. For any 0 � t � 1 the class C − tC is nef and effective, hence PC−tC =
C − tC. So by the proposition, Δ(C) is the simplex of height C2 and length 1.

Remark. By [10, Corollary 2.2] the Okounkov body of a big divisor D with respect to 
a flag X ⊇ C ⊇ p such that C is not a component of ND is a translate by the vector 
(0, ordp(ND)). In particular, by the above proof, for a general flag on a surface with 
rational polyhedral pseudo-effective cone, the Okounkov bodies of any big divisor and of 
its positive part coincide.

Recall that by the main result of [4] on a smooth projective surface there exists a 
locally finite decomposition of Big(X) into locally polyhedral subcones, the so-called
Zariski chambers, such that

• the support of negative parts of divisors is constant on each chamber,
• the volume function volX(·) varies polynomially on the chambers, and
• on the interior of each chamber the augmented base loci B+ are constant.
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The basic idea of [4] is to consider for a big and nef divisor P the set

ΣP :=
{
D ∈ Big(X)

∣∣ Neg(D) = Null(P )
}
,

where Neg(D) denotes the support of ND and Null(P ) is the set of irreducible curves 
orthogonal to P with respect to the intersection product. These sets give a decomposition 
of Big(X) obviously satisfying the first property in the above list, while proving the 
remaining properties as well as local finiteness still requires quite an effort. For an explicit 
description of chambers, passing to closures in [4, Proposition 1.10] we obtain the identity

ΣP = convex hull
(
Nef(X) ∩ Null(P )⊥,Null(P )

)
, (2.2.1)

from which we deduce the following useful statement about positive parts.

Proposition 2.3. Let P be a big and nef divisor on X with corresponding Zariski cham-
ber Σp. Then for all D1, D2 ∈ ΣP we have

PD1+D2 = PD1 + PD2 ,

i.e., the positive parts of the Zariski decompositions vary linearly on the closure of each 
Zariski chamber.

Proof. Let D1 = P1 +
∑s

i=1 αiNi and D2 = P2 +
∑s

i=1 βiNi be representations corre-
sponding to (2.2.1) with αi, βi � 0, Ni ∈ Null(P ), and P1, P2 nef. Clearly, P1 +P2 is nef 
and has intersection product zero with the Ni. Furthermore, the divisor 

∑s
i=1(αi+βi)Ni

is effective and has negative definite intersection matrix. Thus

D1 + D2 = (P1 + P2) +
s∑

i=1
(αi + βi)Ni

is the Zariski decomposition. �
3. Minkowski decomposition

In this section we prove the main theorem. Fix throughout a general admissible flag 
Y• : X ⊇ C ⊇ p on a smooth projective surface X.

As stated in the introduction, the starting point for this investigation was the obser-
vation from [9] that for any two pseudo-effective divisors D1, D2 we have the inclusion

Δ(D1) + Δ(D2) ⊆ Δ(D1 + D2).

This inclusion turns out to be strict in general. We refer to [10] for examples.
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Fig. 1. The Okounkov body Δ(D).

Fig. 2. The Okounkov body Δ(D′).

On the other hand, one observes that the Okounkov body of a pseudo-effective divisor 
D with respect to Y• can always be decomposed as the Minkowski sum of finitely many 
simplices and line segments. (Δ(D) is the area of the upper right quadrant bounded 
by the piecewise linear, concave function β.) The question then is: do these elementary 
“building blocks” come up as Okounkov bodies themselves? As the theorem shows, the 
answer is “yes”.

Before we prove the theorem, let us consider candidates for a Minkowski basis, i.e., 
nef divisors whose Okounkov bodies are of one of the elementary types mentioned 
above.

• For a nef divisor D with D2 = 0, for positive t none of the divisors D− tC is effective 
since C by Proposition 2.1 is big and nef being the curve in a general admissible flag. 
Therefore, μC(D) = 0, and Δ(D) is the vertical line segment of length C · D (see 
Fig. 1).

• If for a big and nef divisor D′ all the classes D′ − tC for 0 < t < μC(D′) lie in the 
same Zariski chamber then by Proposition 2.3 the positive parts PD′−tC vary linearly 
with t. Consequently, Δ(D′) is the simplex of height C ·D′ and length μC(D′) (see 
Fig. 2).
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We now turn to the proof of the theorem. It consists of two parts: we first construct 
the set Ω and then show how to find the presentation of any big and nef divisor D in 
terms of elements of Ω which yields the Minkowski decomposition of D.

Remark. Effective representations of a nef divisor in terms of the Minkowski basis are 
not unique. It is possible that such a representation is not a Minkowski decomposition 
(see Example 4.2). This is why the second part of the proof is important as it shows how 
to pick the right decomposition.

3.1. Construction of a Minkowski basis

In the Zariski chamber decomposition of the big cone Big(X) we assign to each cham-
ber an element of Ω as follows. Writing {N1, . . . , Ns} for the set of curves in the support 
of negative parts of divisors in a chamber Σ, we define the “corresponding Minkowski 
basis element” M as follows: Consider the linear subspace of N1(X)R spanned by C to-
gether with the classes of the curves Ni. Its intersection with the subspace N⊥

1 ∩· · ·∩N⊥
s

is a rational line, spanned by some integral divisor M = dC +
∑

αiNi. We will argue 
that d and the αi all have the same signs, and we conclude that either M or −M is nef.

The intersection matrix S of the divisor 
∑

Ni is negative definite with non-
negative entries outside the diagonal. By the auxiliary result [4, Lemma 4.1] (see also 
[2, Lemma A.1]), the inverse matrix S−1 has only negative entries. Therefore, and since 
CNi � 0, the solution to the system of the equations

S · (α1, . . . , αs)t = −d(CN1, . . . , CNs)t (3.0.1)

for fixed d is a vector (α1, . . . , αs) whose entries have the same sign as d. Fix a positive 
integral solution and set M = dC +

∑
αiNi. Note that since M lies in N⊥

1 ∩ · · · ∩N⊥
s

it is nef by the positivity of its coefficients and the nefness of C. Furthermore, it lies in 
the closure of Σ, or more concretely in the closure of the face Σ ∩ Nef(X).

Remark. Note that in the above construction different chambers can have the same 
corresponding Minkowski basis element. For example, on the del Pezzo surface X2 with 
standard basis H, E1, E2 and with a flag such that C has class H = π∗(OP2(1)) the 
chambers ΣH , Σ2H−E1 , and Σ2H−E2 have M = H.

Note also that the corresponding basis element to the nef cone is always C.

We can now describe the Minkowski basis Ω: it consists of the divisors MΣ constructed 
above together with one integral representative for each ray of the nef cone not contained 
in Big(X).

Note that since Eff(X) is rational polyhedral the set Ω is finite. Note furthermore 
that the divisors in Ω have Okounkov bodies which cannot be decomposed as Minkowski 
sums, i.e., in a sense the set Ω is minimal: By construction, for all 0 < t < μC(M) = d
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the class MΣ−tC lies in the cone spanned by Nef(X) ∩N⊥
1 ∩· · ·∩N⊥

s and the N1, . . . , Ns, 
i.e., in the closure of the Zariski chamber Σ. Therefore, the positive part of MΣ − tC

varies linearly, so Δ(MΣ) is the simplex of height C ·M and length d, whereas the other 
basis elements Di lie in the boundary of Eff(X), so μC(Di) = 0 which means that the 
corresponding Okounkov body is the vertical line segment of length C ·Di.

3.2. Algorithmic construction of Minkowski decompositions

To complete the proof we now describe how to find the Minkowski decomposition of 
a given nef divisor D.

If D is not big, then D2 = 0 and Ω contains some positive multiple D′ = βD. Thus

Δ(D) = 1
β

Δ
(
D′),

and we are done.
Otherwise, consider the Zariski chamber Σ corresponding to the big and nef divisor D. 

Let M be the corresponding Minkowski basis element and set

τ := sup{t | D − tM nef}.

Since nefness is defined by finitely many linear conditions, τ is rational. The nef Q-divisor 
D′ := D − τM lies on the boundary of the face Nef(X) ∩ Null(D). If D′ = 0, we are 
done.

Otherwise, we claim that

Δ(D) = τΔ(M) + Δ
(
D′), (3.0.2)

so Δ(D) decomposes into the elementary part τΔ(M) and the Okounkov body of the 
divisor D′.

For the proof we first note that by construction of the Minkowski basis, M lies, 
like D′, on the boundary of the Zariski chamber Σ. Furthermore, as we have seen above, 
the divisors M − tC lie in the closure of the chamber Σ for 0 < t < μC(M). Thus by 
Proposition 2.3 we have

PD−xC = PD′ + PτM−xC = D′ + PτM−xC

for 0 � x � μC(τM).
For the remaining μC(τM) � x � μC(D) let M̃ denote the divisor τM − μC(τM)C

(which is just τ(
∑

αiNi) in the above notation). We claim that for any t > 0 we have 
the inclusions

supp(M̃) ⊆ Null(D) ⊆ Null
(
D′) = B+

(
D′) ⊆ B+

(
D′ − tC

)
= Null(PD′−tC).
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The two equalities are given by [6, Examples 1.10 and 1.11] respectively. The first inclu-
sion is clear since the Ni are contained in Null(D). The second one follows from the fact 
that D′ is contained in the boundary of the face of the nef cone containing D, while the 
last inclusion is a direct consequence of the fact that subtracting a nef divisor can only 
augment the base locus.

Note that in general for a big divisor E with Zariski decomposition E = PE + NE

and an effective divisor F with support contained in Null(PE) the decomposition

E + F = PE + (NE + F )

is the Zariski decomposition: PE is nef, has trivial intersection with all components 
of (NE + F ), and the latter divisor has negative definite intersection matrix. In other 
words, adding an effective divisor F with support contained in Null(PD) does not alter 
the positive part.

Taking in the above consideration E and F to be D − xC and M̃ respectively, we 
obtain the identity

PD−xC = PD′−(x−μC(τM))C

for μC(τM) � x � μC(D). Putting the two decompositions of positive parts together, 
we get

βD(x) =
{
βτM (x) + C ·D′, 0 � x � μC(τM),
βD′(x− μC(τM)), μC(τM) � x � μC(D),

which amounts to the claimed identity (3.0.2).
Repeat the above procedure with the divisor D′. This is possible because if D′ is big 

and nef, it defines a Zariski chamber Σ with MΣ �= M , which can be seen as follows: 
if it were not the case, we would have Null(D′) ⊆ Null(M), but then it follows from 
D = M + D′ that Null(D′) ⊆ Null(D), which is impossible. The algorithm terminates 
after at most ρ steps, since in every step the dimension of the face of the nef cone in 
which D lies decreases. Eventually, we end up with either 0 or a divisor spanning an 
extremal ray of the nef cone. Such a divisor has a multiple in Ω, and we are done.

Note that in order to determine the Minkowski decomposition of a given divisor D
it is not necessary to know the whole Minkowski basis of X. Instead in every step the 
necessary basis element can be found based on knowledge of the intersection matrix of 
Null(D) alone. In fact, the algorithm can be implemented for automated computation, 
provided the intersection matrix of C together with the negative curves on X is known.

4. Del Pezzo surfaces

On a del Pezzo surface X the pseudo-effective cone is rational polyhedral by the cone 
theorem. Concretely, it is spanned by rational curves of self-intersection −1. The surface 
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X is either P2, its blow-up Xr in up to 8 general points, or P1 × P1. A complete list of 
the (−1)-curves on the Xr is well known [11, 8 Chapt. IV] (cf. [3, Theorem 3.1] for an 
elementary proof): they are the exceptional curves E1, . . . , Er together with the strict 
transforms of

• lines through two of the pi,
• irreducible conics through five of the pi, if r � 5,
• irreducible cubics through six of the pi with a double point in one of them, if r � 7,
• irreducible quartics through the eight points pi with a double point in three of them, 

if r � 8,
• irreducible quintics through the eight points pi with a double point in six of them, 

if r � 8,
• irreducible sextics through the eight points pi with a double point in seven of them, 

and a triple point in one of them, if r � 8.

A general flag on Xr consists of an irreducible curve C with a general point p on it where 
C is the strict transform of an irreducible member of the class OP2(k) for some k > 0. 
We consider the case k = 1 (the others work analogously) and write as usual H for the 
class of C. Let us construct a Minkowski basis for Xr. Starting with any chamber Σ, 
we consider Neg(Σ) = {N1, . . . , Ns}, the support of negative parts of the divisors in Σ. 
Its intersection matrix, being negative definite with diagonal entries −1, can have only 
zero entries outside the diagonal. In particular, we can immediately read off the basis 
element M(Σ) from the system of Eqs. (3.0.1): Setting d = 1, we obtain αi = Ni ·H for 
all i, hence we have

M(Σ) = H +
s∑

i=1
(Ni ·H)Ni.

Let us determine the Okounkov bodies of this Minkowski basis element. It is clear that 
μH(M(Σ)) = 1, since 

∑s
i=1(Ni ·H)Ni lies on the boundary of Eff(Xr). On the other 

hand, setting

λ := H ·
(
H +

s∑
i=1

(Ni ·H)Ni

)
,

by the argumentation in the proof of the theorem, Δ(M(Σ)) is the simplex of height λ
and length 1, which we denote by Δ(λ, 1). The remaining elements of Ω are curves E
with self-intersection E2 = 0. As we have seen above, their Okounkov body is the vertical 
line segment of length H ·E. The following statement thus is a direct consequence of the 
theorem.
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Table 1
Zariski chambers and corresponding Minkowski basis elements on X6.

Neg(Σ) M(Σ)
E1, . . . , Es H
L1,2, . . . , L1,1+s, Es+1, . . . , Es+t (s + 1)H − sE1 − E2 − · · · − Es

L1,2, L1,3, L2,3, E4, . . . , E4+t 4H − 2E1 − 2E2 − 2E3
C1, L2,3, . . . , L2,2+s, (E1) (5 + s)H − (2 + s)E2 − 3E3 −· · ·− 3Es+2 − 2Es+3 −· · ·− 2E6
C1, L2,3, L2,4, L3,4, (E1) 8H − 4E2 − 4E3 − 4E4 − 2E5 − · · · − 2E6
C1, C2, L3,4, . . . , L3,3+s (9 + s)H − 2E1 − 2E2 − (s + 4)E3 − 5E4 − · · · − 5E3+s −

4E4+s − . . . − 4Er

C1, C2, L3,4, L3,5, L4,5 12H − 2E1 − 2E2 − 6E3 − 6E4 − 6E5 − 4E6

Proposition 4.1. On a del Pezzo surface Xr, for any big divisor D ⊆ Xr the function 
β(x) bounding the Okounkov body is piecewise linear with integer slope on each linear 
piece.

For a concrete calculation, consider the del Pezzo surface X6. Up to permutation of 
the Ei, we have the possible supports for Zariski chambers with corresponding basis 
elements displayed in Table 1 in the standard basis H, E1, . . . , Er, with Li,j , C1, C2
denoting the (−1)-curves coming from lines and conics, respectively.

The additional Minkowski basis elements (corresponding to non-big nef classes) are 
the strict transforms of

• lines through one of the pi,
• irreducible conics through four of the pi.

We thus get the following elementary bodies as building blocks for the Okounkov body 
of any big divisor on X6:

Δ(1, 1), . . . , Δ(12, 1), Δ(1, 0), Δ(2, 0).

Example 4.2. Consider the divisor D = 7H − 2E1 − E2 − 3E3 − 2E4 − 2E5 on X6.

• For D1 = D = 7H − 2E1 − E2 − 3E3 − 2E4 − 2E5, we find Null(D) = {E6}, so 
M(D) = H. With τ = 2 we get D2 = 5H − 2E1 − E2 − 3E3 − 2E4 − 2E5.

• Now, Null(D2) = {C6, L1,3, L3,4, L3,5, E6}, so M(D) = 8H − 3E1 − 2E2 − 5E3 −
3E4 − 3E5. With τ = 1

2 we get D3 = H − 1
2E1 − 1

2E3 − 1
2E4 − 1

2E5.
• Then D2

3 = 0, so we are done.

Consequently, the Okounkov body of D is given as the Minkowski sum

Δ(D) = Δ(2, 2) + 1
2Δ(8, 1) + Δ(1, 0)

depicted in Fig. 3.
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Fig. 3. The Okounkov body Δ(D) as a Minkowski sum.

Fig. 4. Δ(3H − 2E1 − E2 − E3).

Note on the other hand that we have the identity

D = (3H − 2E1 − E2 −E3) + (4H − 2E3 − 2E4 − 2E5)

and both summands are Minkowski basis elements. Clearly, this representation cannot 
be a Minkowski decomposition (see Figs. 4 and 5).
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Fig. 5. Δ(4H − 2E3 − 2E4 − 2E5).

5. Non-del-Pezzo examples

1. For a simple non-del-Pezzo example, let π : X → P2 be the blow-up of 3 points 
on a line with exceptional divisors E1, E2, E3. Choose C general in the class H :=
π∗(OP2(1)) and p ∈ C a general point. This gives a flag as above. The pseudo-effective 
cone is spanned by the exceptional divisors together with the class D := H−E1−E2−
E3 of the strict transform of the line joining the blown up points. We have 12 Zariski 
chambers: the nef chamber, the 7 chambers belonging to principal submatrices of the 
intersection matrix of E1 +E2 +E3, the one corresponding to D, and three chambers 
with support D together with one of the exceptional divisors. The corresponding 
Minkowski basis element is H for the first 8 chambers, 3H − E1 − E2 − E3 for the 
9th, and 2H − Ei − Ej for last three. The remaining elements of Ω are H − E1, 
H −E2, H −E3. Let’s calculate the decomposition for the arbitrarily chosen divisor 
P = 15H − 3E1 − 3E2 −E3.
• The divisor P is ample, so M = H; with τ = 8 we get P1 = 7H−3E1−3E2−E3.
• Now, Null(P1) = D, so MΣ = 3H − E1 − E2 − E3; with τ = 1 we get P2 =

4H − 2E1 − 2E2.
• In the next step, Null(P2) = {D, E3}, so MΣ = 2H − E1 − E2; with τ = 2, we 

get P3 = 0, and we are done.
Thus we get the decomposition

P = 8 ·H + (3H − E1 −E2 −E3) + 2 · (2H − E1 − E2)

with corresponding Minkowski decomposition of the Okounkov body

Δ(P ) = 8Δ(H) + Δ(3H −E1 − E2 − E3) + 2Δ(2H − E1 − E2)

= Δ(8, 8) + Δ(3, 1) + Δ(4, 2).
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2. (K3-surface)
For an example of a surface which is not a blow-up of P2 let us consider a K3-surface. 
As Kovács proves in [8], for any 1 � ρ � 19 there exists a K3-surface X with Picard 
number ρ whose pseudo-effective cone is rational polyhedral, spanned by the classes 
of finitely many rational (−2)-curves. We consider a certain K3-surface of this type: 
It was proved in [2, Proposition 3.3] that there exists a K3-surface X with Picard 
number 3 such that the pseudo-effective cone is spanned by three (−2)-curves L1, 
L2, D forming a hyperplane section L1+L2 +D such that L1 and L2 are lines and D
is an irreducible conic. The hyperplane section L1 + L2 +D has intersection matrix⎛⎝−2 1 2

1 −2 2
2 2 −2

⎞⎠ .

Therefore, the Zariski chamber decomposition consists of five chambers, namely the 
nef chamber, one chamber corresponding to each of the (−2)-curves D, L1, L2, and 
one chamber with support L1 + L2. Pick C to be an irreducible curve with class 
L1 + L2 +D, i.e., a general hyperplane section, and p to be a point in C not on L1, 
L2, and D. Then the Minkowski basis elements corresponding to the above list of 
chambers are C, 3L1 +2L2 +2D, 2L1 +3L2 +2D, L1 +L2 +2D, and 2L1 +2L2 +D. 
In addition, the Minkowski basis Ω contains the curves L1 + D and L2 + D of 
self-intersection zero. Thus, by the theorem, the building blocks of Okounkov bodies 
of nef divisors on X are

Δ(4, 1),Δ(9, 2),Δ(6, 1),Δ(3, 0).

In particular, in contrast to the del Pezzo case, the slope of a linear piece of the 
bounding function β need not be integral for K3-surfaces.
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