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1. Introduction

The classification of rational vertex operator algebras with central charge ¢ = 1 has
advanced a lot during the last few years. Let V' = €p,,~, V» be a rational vertex operator
algebra with ¢ = 1 and dim Vy = 1. If V4 #£ 0 then V is a lattice vertex operator algebra
[22]. If V; = 0 and dim Vy > 3, V is isomorphic to VL+ where L is a rank one positive
definite even lattice [37,9-11]. The remaining problem in the classification of rational
vertex operator algebras with central charge ¢ = 1 is the characterization of VLG2 , where
Ly = Za with (o, ) = 2, G is a subgroup of SO(3) isomorphic to Ay, Sy, As. The vertex
operator algebra VLG2 has not been fully understood. In the case G = Ay, the rationality,
Cs-cofiniteness and classification of irreducible modules of VZ‘?; have been established in
[12]. In this paper, we determine the fusion rules for VLA;. A characterization of VLA; has
been recently given in [13].

One important tool in the determination of fusion rules is the quantum dimension of a
module over a vertex operator algebra which has been studied systematically in [15]. For a
rational, Cs-cofinite, self-dual vertex operator algebra of CFT type, quantum dimensions
of its irreducible modules have nice properties. In particular, the product of quantum
dimensions of two modules is equal to the quantum dimension of the fusion product of
the modules. It turns out that this is very helpful in determining fusion rules. It has
been proved in [12] that the vertex operator algebra is rational, Ca-cofinite, self-dual
vertex operator algebra of CFT type. So we can apply the results in [15] on quantum
dimensions to the vertex operator algebra VLA; *. The fusion rules for the most cases can be
determined by using the quantum dimensions. For some fusion rules involving irreducible
VL‘tf‘—moduleS occurring in some twisted sectors, we need to find out the corresponding
S-matrix and use Verlinde formula to determine the remaining fusion rules.

The paper is organized as follows: In Section 2, we give some basic definitions. In
Section 3, we recall the vertex operator algebra VLA24 and give the realization of all
irreducible modules of VLA2 *. We compute the quantum dimensions of the irreducible
VLé ‘-modules in Section 4. The fusion rules for irreducible VLA2 *-modules are obtained in
Section 5. The portion of S-matrix that we need is listed in Appendix A.

2. Basics

Let (V,Y,1,w) be a vertex operator algebra (see [28]) and g an automorphism of V'
of finite order T'. Denote the decomposition of V into eigenspaces of g as:

v= @ Vv

reZ/TZ

where V7 = {v € V | gv = e*™"/Ty}. Now we recall notions of twisted modules for vertex
operator algebras. Let W{z} denote the space of W-valued formal series in arbitrary
complex powers of z for a vector space W.
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Definition 2.1. A weak g-twisted V-module M is a vector space with a linear map

Yy 1V — (End M){z}

v Yy(v, z) = Z v,z "t (v, € End M)
neQ

which satisfies the following: forall 0 <r <T -1, ue V", veV, we M,
Y (u,z) = Z Upz™ "
ne g +7
ww =0 forl>0,
YM(]_,Z) = Id]\/[7

_ z1— 2 _ 29— 2
10 22 st Vi (0 20) = 50 (2 ) Var(on )V 2)
=20\ T (2 — 2
z;l <H> 6( ! 0>YM(Y(u,zo)v,22),
29 22

where §(2) =3 ., 2"

Definition 2.2. A g-twisted V-module is a weak g-twisted V-module M which carries a
C-grading induced by the spectrum of L(0) where L(0) is one of the coefficient operators
of Y(w,2) =3 ,,cz L(n)z7"2. That is, we have M = @, . M, where My = {w € M |
L(0)w = Aw}. Moreover we require that dim M) is finite and for fixed A, M» . = 0 for
all small enough integers n.

Definition 2.3. An admissible g-twisted V-module M = @ne%h M(n) is a 7Z-graded
weak g-twisted module such that w,,M(n) C M(wtu —m — 1 + n) for homogeneous
uweVand m,n € %Z.

If g = Idy we have the notions of weak, ordinary and admissible V-modules [18].

Definition 2.4. A vertex operator algebra V' is called g-rational if the admissible g-twisted
module category is semisimple. V' is called rational if V is 1-rational.

The following lemma about g-rational vertex operator algebras is well known [18].

Lemma 2.5. If V is g-rational and M is an irreducible admissible g-twisted V -module,
then

(1) M is a g-twisted V-module and there exists a number A € C such that M =
@ne%@ My, where My # 0. The number X is called the conformal weight of M ;

(2) There are only finitely many irreducible admissible g-twisted V-modules up to iso-
morphism.
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Definition 2.6. We say that a vertex operator algebra V' is Cs-cofinite if V/Cy (V) is finite
dimensional, where C3(V) = (v_ou | v,u € V).

Remark 2.7. If V' is a vertex operator algebra satisfying Cs-cofinite property, V has only
finitely many irreducible admissible modules up to isomorphism [18,31].

Definition 2.8. Let M = @ne%h M (n) be an admissible g-twisted V-module, the con-
tragredient module M’ is defined as follows:

M= @ Mn),
HE%Z+

where M (n)* = Homc¢ (M (n), C). The vertex operator Y (v, z) is defined for v € V' via

Yar (v, 2) f,u) = (f, Yar (52D (=272 L(O)v,z_l uy,
(Yar (v,2)f,u) = (
where (f,w) = f(w) is the natural paring M’ x M — C.

Remark 2.9. 1. (M’,Y)) is an admissible g~ !-twisted V-module [27].

2. We can also define the contragredient module M’ for a g-twisted V-module M. In
this case, M’ is a g~ '-twisted V-module. Moreover, M is irreducible if and only if M’ is
irreducible.

Now we review the notions of intertwining operators and fusion rules from [27].

Definition 2.10. Let (V,Y) be a vertex operator algebra and let (W' Y1), (W2 Y?) and

(W3,Y3) be V-modules. An intertwining operator of type ( is a linear map

WB
wt w?
I(,z) : W' = Hom(W?* W?){z}

u— I(u,z) = Z Upz "t
neQ

satisfying:

(1) for any u € W' and v € W2, u,v = 0 for n sufficiently large;
(2) I(L(-1)v,2) = (d%)l(v,z);
(3) (Jacobi identity) for any u € V, v € W!

20 20

=251 <M>I(Y2(u, 20)v, 22).

Z2

2015<M>Y1(u, z1)1(v, z9) — 2015(_22—M>I(v, 2)Y3(u, 21)



480 C. Dong et al. / Journal of Algebra 423 (2015) 476-505

The space of all intertwining operators of type (WYV;W) is denoted by

W3
Iy Wl owe |

Let NVV[‘,/f we = dim Iy ( WW;/z)- These integers NI‘,’VVf we are usually called the fusion
rules.

Definition 2.11. Let V be a vertex operator algebra, and W', W2 be two V-modules.

A module (W, I), where I € Iy ( W1WW2 ), is called a tensor product (or fusion product) of
W1 and W? if for any V-module M and Y € Iy ( WlMWQ ), there is a unique V-module

homomorphism f : W — M, such that Y = f o I. As usual, we denote (W,I) by
WKy, W2,

The basic result is that the fusion product exists if V' is rational. It is well known that
if V is rational, for any two irreducible V-modules W, W2,

W Ry W2 =3 Ny W
w

where W runs over the set of equivalence classes of irreducible V-modules.
It is well known that fusion rules have the following symmetric property [27].

Proposition 2.12. Let W' (i = 1,2,3) be V-modules. Then

w3 w3 w3 (WY
NW1,W2 — NW2,W1’ NW1,W2 - NW1,(W3)"

Now we recall some notions about quantum dimensions.

Definition 2.13. Let M =
of M is defined as

ne Lz, My, be a g-twisted V-module, the formal character

chy M = trpy qH 072 = A=¢/24 N (dim My y)q",

HE%Z+

where c is the central charge of the vertex operator algebra V and A is the conformal
weight of M.

It is proved [36,19] that chy M converges to a holomorphic function in the domain
lg| < 1. We denote the holomorphic function chy M by Zy(7). Here and below, 7 is in
the upper half plane H and g = ™",

Let M°, ..., M? be the inequivalent irreducible V-modules with corresponding con-

formal weights \; and M = V. Define
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ZZ'(U, v, 7_) = try 271'1(11(0))-&-(1} w)/2 L(O)+u(0) (u,u)/2—c/24

for u,v € V; such that u(0) and v(0) act semisimply on M?®. Notice that if u,v = 0,
Zi(u,v,7) = Z;(7). Then we have the following theorem [32,36,16,19]:

Theorem 2.14. Let V' be a rational, Cy-cofinite vertexr operator algebra of CFT type.
Assume u,v € V1 such that u, v span an abelian Lie subalgebra of Vi and u(0) and v(0)
act semisimply on M*, 0 < i < d. Let v = (‘Z Z) € SL(2,Z). Then Z;(u,v,T) converges
to a holomorphic function in the upper half plane and

(w0, y7) Z’y” (au + bu, cu + dv, 1),

at+b
ct+d

where YT = and v; ; € C are given in [36] and independent of vectors u, v.

Remark 2.15. If V7 =0, then uw = v = 0. So

d
)= i Z(7)
§=0

Definition 2.16. In the case v = (1 _01) in Theorem 2.14, we have

d
1
Zi yUy—— ) = S’L 'Z'fa ) .
<uv T> ]EZO i Zi(—v,u,T)

The matrix S = (Si,j)g,jzo is called an S-matriz. As we mentioned in Theorem 2.14 the
S-matrix is uniquely determined by the irreducible V-modules M°, ... M¢9,

The following theorem will play an important role in the last section [34,29].

Theorem 2.17. Let V' be a rational and Cs-cofinite simple vertex operator algebra of CFT
type and assume V = V', Let S = (S’i’j)f’jzo be the S-matriz as defined above. Then

(1) (Sil)i,j = Si)j/ = Silyj, and Si/J‘/ = SZ}J';
(2) S is symmetric and S* = (8; ;:);

d 81,555,574
(3) N{fj=Zs 0 sz)s £

We need the concept of quantum dimensions from [15].

Definition 2.18. Let V be a vertex operator algebra and M a g-twisted V-module such
that Zy (1) and Zp(7) exist. The quantum dimension of M over V is defined as
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. . Zu(iy)
d M=1
ot M = iy 7 i

where y is real and positive.

Remark 2.19. Assume V is a simple, rational and Csy-cofinite vertex operator algebra of

CFT type with V & V', Let M* be as before where M" = V. Also assume \g = 0 and

. . S,
Ai >0, Vi # 0. Then qdim, M* = So:(rJ) [15].

From now on, we assume V is a rational, Cy-cofinite vertex operator algebra of
CFT type with V = V', Let M° = V,M',..., M? denote all inequivalent irreducible
V-modules. Moreover, we assume the conformal weights \; of M® are positive for all
1> 0. It is proved in [12] that VLA24 satisfies all the assumptions.

Recall that simple module M* is called a simple current if M* X M7 is simple for all
j=0,---,d. Here are some results on quantum dimensions [15].

Proposition 2.20. Let V' be a vertex operator algebra as before. Then

(1) qdim, M*>1,Vi=0,---,d.
(2) Foranyi,j=0,---,d,

qdimy, (M' ® M7) = qdim, M" - qdim,, M’.
(3) A V-module M is a simple current if and only if qdimy, M = 1.

Theorem 2.21. Let V' be a rational and Cy-cofinite simple vertex operator algebra, G a
finite subgroup of Aut(V'). Also assume that V is g-rational and the conformal weight
of any irreducible g-twisted V-module is positive except for V itself for all g € G. Then
qdimyc V exists and equals to |G|.

3. The vertex operator algebra Vfi .

Now we first briefly review the construction of rank one lattice vertex operator algebra
from [28]. Then we recall some related results about V;" and VLA; from [1-4,23-25,14,
28,12]. In the last part of this section, we also give the realization of all irreducible
VLA2 “-modules.

3.1. Construction of the vertex operator algebra VL‘:‘*
Let L = Z«a be a positive definite even lattice of rank one, i.e., (a,a) = 2k for some

positive integer k. Set h = L ®7 C and extend (-,-) to a C-bilinear form on §. Let C[b]
be the group algebra of h with a basis {e* | A € b}.
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The dual lattice L° of L is

L°={/\eb\(a,/\)eZ}:iL.

Then L° = UfszH(L + ;) is the coset decomposition with A\; = ﬁa. Set Vi4a, =
M(1) ® C[L + X\;]. Then Vi4y, for i = —k+1, - -+, k are all the inequivalent irreducible
modules for V7, [5,28,6].

Let 6 =CJ[t,t7'] ® h @ CK be the corresponding Heisenberg algebra such that

[a(m), a(n)] = 2kmbyin oK and [K,bh] =0

for any m,n € Z, where a(m) = o ® t™. Then 620 = C[t] ® h ® CK is a subalgebra of h
and the group algebra C[h] becomes a Gzo—module by the action a(m)-e* = (A, a)dm 0
and K -e* = e for any A € h and m > 0. We denote by

M(1,2) = U(h) @y, ) Ce*

the h-module induced from h>g-module Ce*. Set M (1) = M(1,0). Then there exists
a linear map Y : M (1) — EndM (1)[[z,27"]] such that (M(1),Y,1,w) carries a simple
vertex operator algebra structure and M (1, \) becomes an irreducible M (1)-module for
A € b [28]. Let C[L] be the group algebra of L with a basis e® for a € L. The lattice
vertex operator algebra associated to L is given by

Vi=M(1)® (C[L]
Let 6 be a linear isomorphism of Vj defined by
O(a(—ny) - a(—ny) ® e’\) = (=D*a(—n1)---a(—np) @ e,

for n € Z4 and A € h. Then 0 induces automorphisms of Vz, and M (1). For a §-invariant
subspace W of Vi = M(1) ® C[h], we denote the +1-eigenspaces of W for § by W=.
Then (V;1,Y,1,w) and (M(1)*,Y,1,w) are vertex operator algebras.

Now we recall the construction of f-twisted Vz-modules [28,7]. Let h[—1] = h ®
t1/2C[t,t~'] @ CK be a Lie algebra with the commutation relation

[a®t", a@t"] =mbminole,a)K  and [K,ﬁ[—lﬂ =0

for m,n € 1/2+7Z. Then there is a one-dimensional module for h[—1], = hot'/2C[t]aCK,
which could be identified with C, by the action

(a®@t™)-1=0 and K-1=1 formel/2+N.
Set M (1)(6) the induced h[—1]-module:

M(1)(0) = U(H)[=1] ®y (-1, C:
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Let x5 be a character of L/2L such that x(a) = (—=1)® for s = 0,1 and T), = C the
irreducible L/2L-module with character x,. Then V;'* = M(1)() ® T}, is an irreducible
f-twisted Vz-module. We denote the +1-eigenspaces of V;* under 6 by (V;*)*. Then
we have the following result:

Theorem 3.1. Any irreducible V;" -module is isomorphic to one of the following modules:
Vi Vigan, (1<i<k-1), Vi (VLT)ﬂE

Let Ly = Za be the rank one positive-definite even lattice such that (o, ) = 2 and
V5, the associated simple rational vertex operator algebra. Then (Vy,); = sl2(C) and
(VL)1 has an orthonormal basis:

o L04(71)1, o L(e“ +€7a), ? = 7(6(1 - eia)-

V2 V2

For = € (V1,)1 we also use z(n) for x,, for n € Z. Let o,7; € Aut(Vy,), i = 1,2,3 be
such that

8

0o 1 O
o(xl,xz,xg) = (xl,xQ,xS) 0o 0 -11,
_—1 0 O |
L -
Tl(x,x,x)f(ac,:c,x?’) —1 ,
L _1_
L -
Tg(xl,x2,x3) = (xl,xQ,x?’) 1 ,
L _1_
L -
T3($1,$271'3) = (gc 71}2,1}3) -1
1

Then o and 7;, i = 1,2, 3, generate a finite subgroup of Aut(Vy,) isomorphic to the
alternating group A4. We simply denote this group by Ay. It is easy to check that the
subgroup K generated by 7;, i = 1,2,3, is a normal subgroup of A4 of order 4. Let
B = 2a. The following result can be found in [8].

Lemma 3.2. We have V[ = VZB and VLA24 = (VZE,)“”.
By [21], there is a decomposition

Vi = (VZJ%)O @ (VZJEJ)l ® (VZJE;)Q (3.1)
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where (VZE,)O = (VZ%)@’> is a simple vertex operator algebra and (VZJ%)i is an irreducible
(VZE)O—module, 1 =1,2. Similarly, as a (VZJ%)V’)—module, we have

0 1 2

VZ""%B:VZ-'FiﬁEBVZJriB@VZ-F%ﬂ (32)

such that V£+%ﬁ is irreducible (VZJFB)<U)_module, i =0,1,2 [26]. The details of the real-
ization of V! will be provided in the next subsection.

Z+58
Let Wi 1, Wi 5 be the two irreducible o'-twisted modules of VZE, i =1,2[12]. Then
each W, ; is a direct sum of irreducible (VZE)<">—subm0dules W(’f j for k = 0,1,2. There

are exactly 21 irreducible modules of (VZE)<”> which is listed as following [12]:
+\m — k n _ O
{(Vz5) Vas Vasrip Vass s Woi 5 Vagiag | m,n,k=0,1,2; 4,5 =1,2}. (3.3)
Here (VZJ%)"’ is the eigenspace of ¢ with eigenvalue 5™
3.2. Realizations of the irreducible VL";“ -modules

Let o, 7; and 2%, i = 1,2, 3 be as before. Set

1 1 2 3
=—(x +2"—2"),
Wg( )
1 —14+/3i 1+ /3i
1_ (.1 2 3
e o L)
1 —1—+/3i 1—+/3i
2+ (.1 2 3
Y- = \/§<x + 5 r° + 5 T >
Then
1
L(n)h = d,0h, h(n)hzﬁ(sn,ll, n ez,
1 1
h(0)y' = §y17 h(0)y* = —§y27 y' (0)y* = 6h

(see [12]). It follows that h(0) acts semisimply on V7, with rational eigenvalues. So

e?m(0) is an automorphism of Vz, of finite order [8,31]. Since

2mihO)p — e2mih(0) 1 -1 -;\/giyl’ (2min(0) 2 _ -1 —2\/32 2

it is easy to see that

2mih0) — 4. (3.4)
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The action of the group generated by o, 7, ¢ = 1,2,3 on Vi, is isomorphic to al-
ternating group A4. Actually, o = e2™(0) and Tj = e™®i(0) (j = 1,2,3) also act on
Vit = M(1) ® C[4Za], where the action of the group (o,7; | i = 1,2,3) on Vzia is
isomorphic to SL(2, 3), the special linear group of degree 2 over a field of three elements.
Thus by the quantum Galois theory [21],

Ve = PV, @ Wy (3.5)

X

where x runs over all irreducible characters of SL(2,3). The irreducible representations
of the group SL(2,3) are well known: three 1-dimensional, one 3-dimensional and three
2-dimensional irreducible representations. We denote them by UF, Uz and U§, k =0, 1,2
respectively, where the subindex i is the dimension of the module and the upper indices
distinguish the irreducible modules of the same dimension. The irreducible modules
with the same dimension can be distinguished by the eigenvalues of the action of o:

2mik . 2mi | 2mik _ 2mi | 2mik .
O—|U{c =e 3 , 0 has eigenvalues e -3 and e” 6 t°3 on US and the eigenvalues of

o on Us are the three cube roots of unity.

The set of scalar matrices of SL(2, 3) is a normal subgroup isomorphic to Zy and A4 =
SL(2,3)/Zs. The group A4 has three 1-dimensional and one 3-dimensional irreducible
modules. Thus Vp, and Vi, 1o Can be decomposed as VLA;_modules [26]:

Vi, = (Vi) @U@ (Vih) o Ut @ (Vi) @ U2 @ Vg, @ Us,

_ 170 0 1 1 2 2
VLQ‘F%O&_VZﬂ—&-%ﬂ@Uz @VZB‘FiB@UZ @Vzﬁ+iﬁ®U2

Some of those VLA2 *-modules listed in (3.3) can be realized differently by considering the

orbifold vertex operator algebra VL<Z>.

Proposition 3.3. Let g be an automorphism of Vi, of order T # 1. Then there exists

some vector u € (Vi,)1, such that g = e>™%(0),

Proof. The vertex operator algebra Vi, is isomorphic to the affine vertex operator al-
gebra associated to the simple Lie algebra sla(C) of level 1. We know that Aut(Vy,) =
Aut(sl2(C)). The restriction of g on (Vz,); is also an isomorphism of order T', which has
an eigenspaces decomposition.

Claim: There exists a unique (up to a scalar) nonzero vector a € (Vi,)1 such that
ga = a.

Note that (a,b) = —a(1)b defines a nondegenerate symmetric invariant bilinear form
on (Vg,)1, since (V)1 is isomorphic to sla(C) which has a unique nondegenerate sym-
metric invariant bilinear form up to a constant. This implies that (ga, gb) = (a,b) for
all a,b € (Vg,)1 and (Vz,)? and (Vz,)? have the same dimensions where (V)% is the
eigenspace of g on (Vr,,)1 with eigenvalue p which is a root of unity.
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First, g|(v,,), 1s not a constant. Since (Vr, )1 is a simple Lie algebra we see that (V)1
is spanned by a(0)b for a,b € (Vi,):. If g acts on (V1,)1 as a constant p. Then g also
acts as p2. This forces p = 1, a contradiction.

If there are exactly two eigenvalues p1,pa of g on (Vg,)1, we deduce that p; = +1,
p2 = F1. Otherwise p; = p3 # £1 and (V,); has even dimension, a contradiction.
Without loss of generality, assume p; = 1, po = —1. If the eigenspace of g with eigenvalue
1 is two dimensional, then the eigenspace of g on [(Vz,)1, (Vi,)1] = (Vi,)1 with eigenvalue
1 is one dimensional, a contradiction.

The only case left is that p1, p2, ps are three distinct eigenvalues of g on (V,);.
Assume that p; = pz. Using the fact that [(Vi,)1, (Vi,)1] = (Vi,)1 we see that p3 =1
and each eigenspace is one dimensional. The claim is proved.

Let a € (V,)1 be an eigenvector of g with eigenvalue 1. Consider the Jordan decom-
position of a = as + a,, where as and a,, are the semisimple part and nilpotent part
of a. It is easy to see that a is not nilpotent due to the eigenspace decomposition, and
as is also a fixed point of g since a is a fixed point of g. Since the fixed point space is
1 dimensional, a = as, which acts semisimply on (Vr,);. The structure of sl2(C) tells
us that there exists ~va, for some v € C*, such that (va,va) = 2, [ya,e?®] = 2¢7%,
[ya,e™7] = —2e77%, g(e¥*) = ¥ Te’® and g(e™7?) = e 2"iTe . It is clear that

g=emT790) je y= spYa. O

Remark 3.4. The group SO(3) is the connected compact subgroup of Aut(Vr,), whose
discrete subgroup are the cyclic group Z,, the dihedral group D,,, A4, Sy and As. The
above proposition indicates that the orbifold vertex operator algebra VLZ2 " 2 Ve One
could also get VL[; = Vme.
Remark 3.5. It is worthy to point out that for any g € Aut(Vy,) of finite order T, the
g-twisted module category is equivalent to the category of ordinary modules. Thus Vr,
is g-rational for any such g. Following from Theorem 2.21, qdimVLA;4 Vi, = o(Ag) = 12.

In our case, we have VL<Z> = Viy = Viza, (7,77) = 18, ie. v = 18h. One immediately
gets that Vi, = V7, ® VZ,H_%7 D VZ,HF%AY and VL2+%Q s VZ'H-%’Y & VZAH_%,Y &) VZv—é'y due
to the eigenvalues of the ¢ action on V, o The eigenvalues of o on Vi, and Vi, +1la (see
Eq. (3.5)) give us the following proposition.

Proposition 3.6. As VL";“ -modules, we have the following identifications:
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V2

1
Viyriy =V, Z8+15"

zp+ip T+
Var-t7 = Vasras + Visi s

Now we briefly review the irreducible VL“; ‘-modules which are constructed from the
o'-twisted Vi,-modules. Let W! =V, W2 Viptia- Set

(B-DO+D) 5 o L m
+ 5 e 2, w_\/ﬁ[(\/é 1e (1+1i)e ]

wlze

[N

For any u € (Vz,); such that g = €20 is an automorphism of V, of finite order,

define

Au, z) = 2O exp(Z—k) — )

It is proved in [30] that (W™, Y, (-,2)) = (W', Y (A(u, 2)-, 2)) are irreducible g-twisted
modules of Vz,, i = 1,2. The o'-twisted Vz,-modules were constructed in [12] following
this idea, where the twisted vertex operator was also determined.

For the o-twisted Vr,-modules,

A(h,2)L(=2)1 = L(=2)1 4 2z 'h(~1)1 + %z 1,
1 —1
Yo (h,z) = <h+ 8% ,z),
Yo (y',2) = 23Y (4, 2),
YU(yQ,z) = z_%Y(yZ,z).

For the o2-twisted V,-modules,

A(=h,2)L(~2)1 = L(—-2)1 — 2~ h(—1)1 + 3—16,2 21,

1
Y2 (h, z) :Y< h+1—82 1,z>,

Yoe(yl 2) = 273Y (41, 2),
Y, 2 (y2,z) = Z%Y(yQ,z).

The irreducible VLA2 *-modules W(ff ; are realized in the o'-twisted V,-module [12].

The following table gives the conformal weight of each Wf,] [12]:
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0 1 2 0 1 2
W, W4 W5y Wsa W o Wsa

0-7

1 25 49 1 4 16
L(0) 36 36 36 9 5 o
Lowest weight vector 1 y? y! w? w! v (—2)w?

0 1 2 0 1 2
Woa Woa Wy Wae o Wia o Wy

1 25 49 1 4 16
L(0) 56 56 36 5 5 9
Lowest weight vector 1 yt y? w! w? yH(—=2)w!

Proposition 3.7. As VLA; -modules, we have the following identification:

VZ’y-‘r%'y = Wg,lv VZ«/—%W = W;,lv VZ’y+1—78’y = WUQ,lv
VZA/—%'y = WUO,27 VZ'H—%W = Wal,Qv VZ*y—%fy = W3,27
VZ,Y,%S,Y = Wg?,lv VZ’er%’y = W012,17 VZ'yf%'y = Wg?,l?
VZ’H—%’Y §W£272, VZ’Y—%'V gW0.1272, VZﬂH_%V %'Wgz,g.

Proof. We only prove the first isomorphism. We know that the Vl‘g“—module in Vi,
generated by y' is isomorphic to (V;5)! C Vz, +1- Since the conformal weight of W,
is 5=, W, = Vo iy o8 Vg, 1. The twisted vertex operator Yy, (y!, z) would help us
to determine which is the right isomorphism. We have

Yg(yl,z)l = z%Y(yl,z)l CWUQ)l,

where the conformal weight of W2, = é—g. On the other hand, the fusion rules among

irreducible Vz,-modules are as following:

Virr 3y BV 1y = Vo 2y, Vi iy B Va1 = Va5

W62 already mentioned that y' € (VZJ%)1 C V(;Zv Hlq Comparing the conformal weights of
Wi, VZWJF%7 and VZV+%7 tells us that W, = VZWJrﬁA/.
Other isomorphisms could be proved using a similar argument. O

4. Quantum dimensions of irreducible Vli‘l-modules

In this section, we determine the quantum dimensions of all irreducible VL’Z‘*—modules.
We first investigate properties of quantum dimensions of irreducible twisted VLA;—modules.
Let V be a vertex operator algebra and let g = €270 be an automorphism of V of
finite order where h € V; such that h(0) acts on V' semisimply. Let M be an irreducible
V-module. By [17,30] we see that (M9,Y,(-,2)) = (M,Ym(A(h, 2)-, 2)) is a g-twisted

V-module, where A(h, z) = 2" exp(> 77, %’Z)(_Z)—k)
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Proposition 4.1. Let V' be a rational, Ca-cofinite vertex operator algebra with central
charge ¢ and MO, --- M? all of the inequivalent irreducible V-modules with M° = V
and the corresponding conformal weights A; > 0 for 0 < i < d. Let g be as defined. Then
qdim M* = qdim(M*%)9, 0 <i < d.
Proof. The g-character of (M7)9 are given by

chy (M7)? = trpyy X OFHOFR/2=e/20 — 7, (h,0,7T).

Thus the quantum dimension of (M7)9 can be computed:

e Zi(R0,iy)
N9 _ J )y
qdlm(M ) = ;11)1(1) 7Zv(iy)

— lim Zk Sj’ka(O, h, T)
T—+100 Zk SO’ka(O, h, 7')

= lim Zk Sj,k tr sk e27rih(0)qL(o)_c/24
a=0 3, So  tTpx €270 (0) gL(0)—c/24

= Sj.0/50,0

where the last equation follows from the conformal weight A; > 0 for 0 < i < d. Re-
mark 2.19 asserts that

qdim(Mi)g = qdim M°. O

Let M be an irreducible (VZE)“)—module. For simplicity, from now on we denote the
quantum dimension of M over (VZ‘%)W) by qdim M instead of qdim(vzt3 Yoy M.

Theorem 4.2. The quantum dimensions for all irreducible (VZE)<U>—modules are given by
the following tables:

(VZJEZ)O (VZE)l (VZ+[3)2 Vi Vzprip Vigi3p
w 1 %6 %
qdim 1 1 1 3 6 6
Wy, W, Wz, wy 0.2 w2,
" 1 25 19 1 4 16
36 36 36 9 9 9
qdim 4 4 4 4 4 4
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0 1 2 0 1 2
W02,1 W02,1 W02,1 W02,2 W02,2 W02,2
w 1 25 49 1 4 16
36 36 36 9 9 9
qdim 4 4 4 4 4 4
0 1
Vzﬁﬁﬁ Vzﬁﬁﬁ VZﬁ+ 18
1 9 9
w 1 1 1
qdim 2 2 2

Proof. 1) We know from Remark 3.5 that

qdim VL2 = |A4| =12.

It is also obvious that

— v+t — + -
Vi, =V ® Vg @ Vyh 0 ® Vo,

where as VLAz‘*—modules VZE, = (VZ‘E)O @ (VZ":B)1 @ (VZE)2 and V,, & VZ;+§ = VZTB+§'

Since V75, VZ‘;+ 25 Vz_ﬁ+ 2 are all simple currents of VZ"/;, one gets

qdim Viﬂ = qdim VZE =3.
From (3.1), we have the decomposition as irreducible (VZE)<">—modules:
Vi = (V) @ (Vi)' @ (V)
zp — \Vzp zp B

where (VZE)O = (VZ+5)<‘7> with qdim(VZE)@’> = 1. Since (VZ+5)1 and (VZJZ,)2 are irreducible
(VZE)W)-modules, by Proposition 2.20(1), we get

adim (V)" = adim(V;)” = 1.

2) By [20], every irreducible V-module is a simple current. Thus from Proposition 2.20
we get

qdimVZB VZﬁJ’_%B =1 and qdlmvzz VZﬁ"r%B =2.
Hence

3) Recall that VL<Z> = V24, where (v,7) = 18. We get qdim V7, = 4, since qdim V,, =
12 and o(o) = 3. Notice that by Proposition 3.6,
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—_ 10 1
Vay+iy = Vapris * Vapiip

—_ ! 2
Vin+ir = Vapeip T Vapeip
_ 10 2
Vay-tv = Vapiis + Viprip
where qdim V7,4, = 4, for any p = :I:%’y, %’y. It is easy to determine
. 0 _ . 1 _ : 2 —
qdlmVZ,@+iﬁ = qdlmVZB—&-%B = qdlmVZﬁJr%ﬂ =2.
4) We have qdim V;, = qdim Vi,+¢ = 12. By Proposition 2.20, we have
qdimy W, ; =12, 4,5 =1,2.

Consider the action of (VZJE_,)’“ on Wk

ot
in 3), we can prove qdim sz ; are the same for all i,5 = 1,2; £ = 0,1, 2. Therefore we
get qdimWfi ;= 4fori,j=1,2,k=0,1,2. O

1,7 =1,2; k =0,1,2. Use the similar argument

Remark 4.3. Let V be a vertex operator algebra with only finitely many irreducible mod-
ules, the global dimension is defined as glob(V) = >~ /¢ (v qdim(M)? [15]. Assume G
is a finite subgroup of Aut(G), it is conjectured that |G|? glob(V') = glob V&, which was
derived in the frame work of conformal nets [35]. The vertex operator algebra version is
still open. However, the quantum dimensions above verify this conjecture, which gives
us more evidence to believe the conjecture is true.

5. Fusion rules

In this section, we find fusion rules for irreducible VLA2 ‘-modules. Quantum dimensions
play an important role in determining fusions. We also need the Verlinde formula to deal
with these fusion rules that involve with twisted modules. We first list all fusion products
results, then we give the proof.

Let W', W2, W3 be irreducible VL‘L‘Q‘*—modules. For simplicity, in the following, the

space of all intertwining operators of type ( ) is denoted by I ( w? ), instead

W3
wt w2

wt w?
of I, 4, (WYV;VQ ) The fusion product of W' and W? is denoted by W' K W2, instead
L2
of W1 X a4 w2,
Lz

To determine fusion products of Wéml X Wim’k, i, k,m=1,2, ,1 =0,1,2, we first
need to find out certain entries of the S-matrix.

Lemma 5.1. The entries of the S-matrix that involve with irreducible twisted modules of
Vf“ are given as the table in Appendiz A.

2

Proof. For convenience, we denote the irreducible VL‘L‘;—modules by M%, i=0,1,---,20
as following:
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(VZJ%)O (VZJ%)l (VZJ%)Q VZ_,B VZB+§B VZﬁ+%B
MO M? M? M3 M* M5
Wour Wy W2, Wo, Wi, Wi,
MG M7 M8 M9 MlO Mll
Was Wa2 W2 Was o W s W2 o
M12 M13 M14 M15 M16 M17
0 1 2
VZ/?%B VZB%B VZ/ﬁﬁﬁ
M18 M19 M20

First we consider the vertex operator algebra V7, where (v,v) = 18. Its irreducible
modules are V7,4, , where A\, = 1—1“87 and k=0,---,17. By page 106 [33], we see that

17
ZVZ7+)\1. (_;> = ;} \/—1786 (i, J)ZVZ,H_/\], (T)

Thus the entries of S-matrix (S, ,»,) for Vz, is given by

1 _
Sxen = _\/1_867%1()\&,)\;), k,l=0,1,---,17.

Denote the S-matrix for the vertex operator algebra VLA24 by (S;,;)- By the identifica-
tions given Proposition 3.7 and the S-matrix of Vz,, it is easy to see that S; 9 = \/%,

1 =206,---,17. By Remark 2.19 and quantum dimensions listed in Theorem 4.2, we have
.S .
qdimMi =222 =4 §=6,7,---,17,
50,0
which implies S = ﬁ. Hence we have S; o = qii%i for i = 0,1,---,20. Applying

the quantum dimensions as listed in Theorem 4.2, we get the first column of the table.
Now let M7 = Vaygn, - If M’ is not a submodule of Vzy4a, for all A, then S; ; = 0.
Otherwise, M* is a submodule of Viy+ ., for some ki, -+, k. and M is not a submodule
of Vzyqa, for all Ay # Ag,, Vs = 1,---, 7. In this case, Sij = 3.7 _; Sx, A, -
In this way, we can get the entries of the S-matrix as listed in the table in Ap-
pendix A. O

Theorem 5.2. The fusion rules for all irreducible VL‘424 -modules are given as following
(here @i is remainder when dividing n by 3 for n € Z):

(Vih) B (Vh) = (vih) ™, ij=o0.12, (5.1)
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(VZJ%)i & VngJrg = Vzlﬁg, i,j=0,1,2, (5.2)
(Vi) BV, = Vg, i=0,1,2, (5.3)
(Vo) " RWl, =WiE i=1,2 k1=0,1,2

(Vi) RWh, = WEL | i=1,2 k1=0,12, (5.4)
(Vih) ®Vigisy=Vigrap i=0,1,2 j=1,3, (5.5)
VZZ'B+§ RV, = VZ(JM% ® VZB+§ i V;m%, i=0,1,2, (5.6)
Vzi5+§ & sz5+§ = Vi ©® (VZJ%)H?, 1,7 =0,1,2, (5.7)

Vs BWhy = W2F@W2TFT i= 1,2 ki1=0,1,2,
Vi BW = WEL o WETL =12 k1=0,1,2, (5.8)
Vi o ®Vigy1=Vagi1s®Vigiap k=012 1=13, (5.9)
Vi W Vg = (VZJ%)O ® (VZJ%)l ® (VZJ%)Q ® 2V, (5.10)

Vi RWE  =W2  eWk  eW? i,j=1,2 k=0,1,2, (5.11)

otjo

Ves B Vapiip = Vapr1p©2Vapi2p,
Ves M Vapiap =2Vap 115 ® Vagiip, (5-12)

0 1 2
Vagr5s 8 Vaprn = Voo g ®Vip g ® Vg0

(V) @ (V) e (Vi)

EBVZTBEB2VZ,3+§ EB2VZ,3+%’ 7’:1,3, (513)
— 0 1 2
VZB+§B > VZB+%B - VZB-‘,—% ® VZ/3+§ @ VZﬁ+§
@QVZ_ﬂ @2VZ,6’+§ @2VZB+%’ (5.14)
WE L RWL = Woho o Who o Wi o WD, (5.15)
WE L RW, =W o Wh oy @ W2, @ WiEEH, (5.16)
2 -
Wh L BWL, =@ Wk e WATE), (5.17)

k=0
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W:IJ ‘Z VZﬁ*‘r%B - W0i71 EB Wo.li71 @ ng,l @ ng72 @ Wal.i,Q @ W02.i727

o

i,j=12 k=0,1,2 s=13. (5.18)

For k,1=0,1,2, r,i =1,2,

r(l—k) —
W, BW,. = (V) O Vi © Vapr1s© Vapizp, (5.19)

Wy BWa = (VZﬁJriﬁ)r(_k_l) ® (VZﬁJri/a)r(_k_lH)
© Vg1 ® Vagisg (5.20)

Proof. (5.1), (5.2), (5.4) and (5.8) are obvious by Proposition 3.6 and fusion rules for
irreducible VZj;g—modules and Vz,-modules.

Proof of (5.3): By Proposition 2.20, each irreducible module with quantum dimen-
sion 1 is a simple current. Thus the right hand side should be one irreducible module
with quantum dimension 3 while V5 is the only irreducible module with such quantum
dimension.

Vigsi
Proof of (5.5): By fusion rules for irreducible VZb—modules, IV+< +ZB+8B ) £ 0.
26 \ Vs Vagiip

Since (VZE)i C VZE is a simple current of (VZE)O, we get the desired fusion rule.
Proof of (5.6): First by fusion rules for VZJ%-modules, we have

Vig Byt Vaprs = Vagys

B

1%
Let Y(-, z) be the intertwining operator of type ( o ) For a fixed v € Viﬂ

Vs Vigi s Zp+4’
consider Y(u, z)v, u € V5. Then (uv | u € Vys,i € Z) = VZ'Z+/3. Thus we get fusion
1
product for irreducible VLA;—modules as follows:
- i _ 1,0 1 2 o
VZB&VZ,B—‘,-%_VZ,B—i—%EBVZ,B-‘,-g@VZB—&-%’ 2—071,2.

viog
Proof of (5.7): From (5.6), we see that I(Vi ZHZV_) £+ 0, 4,j = 0,1,2. Since
zp+ 5 728

(Vzl,e+§) = VZQB+%, (Vzs) = Vs and (VZOB+§) = VZ()B+§. We obtain

VZi .o
I( 7 Bv] > #Oa [2W) :Oa172'

z8+5  Tz8+%

(Vi)™
By Proposition 2.12, I(Vi m Vi ) # 0. By counting quantum dimensions, we get
zp+5 Tzp48
(5.7).
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Proof of (5.9): Since V!, , C VZIB+5 and VZBJFB is an irreducible VZE—module By

Z,3+

Viptzs

fusion rules of irreducible VZB modules, we get I(Vz 5 Vogon B) # 0, for r =1,3. By
ZB+ g +s

counting quantum dimensions of both sides, we get the des1red fusion product
( +

Proof of (5.10): First by (5.3) and Proposition 2.12, we get I(VV v ) # 0, for
78 V78

VT
i = 0,1,2. By fusion rules for irreducible V;"-modules [2], we get IV+ (v Zf; ? ) #0.
zp+18

Using the identifications

Vg = Vzﬁ+ 15 = Vagiip

give I( Ve ) # 0. So it suffices to prove that I( Ve ) = 2. Let Y1(+, 2), Ya(+, 2) be

Vs V7/3 Z[—I 8

V-
the standard intertwining operators of types (V V+ ) and <V773 557 ) respectively

z6+4 z6+5
c — — 8 + _B8 _
(see [20,2]). Note that e —e™ € Vig €2 +e” 2 e VZBJrB and e —e~ 5 € VZB+§' Then
we have

We also have

Wi(e? —e P 2)(e? +e7)
=Y (% 2) (% +e %)~ Y (e 2)(eF + e F)
= B (=B, 2)E* (=B, 2)e" 2" (e +e75)
—E (B, 2)ET(8,2)e P2 (ef 475
B(=8,2)(e ¥ +274%) = B7(5,2) (=77 % + 2t

- P (Z #zn> (e + 27%e?)

n<0
el s
n<0

= ﬁ(—l)(eg + e_§)2_4 + higher power terms of z,
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_ B _8
yg(e'g—e ﬂ72)(€2—6 2)

= Y(eﬁ,z) (eg —e_g) —Y(e_B,z) (eg — e_g)

= E~(=B,2)ET(=8,2)e’2? (e

v

— E~(B,2)ET (B, 2)6_62_5 (e/_

wlw
|
9]
|
wof
~—

4 38

E_(—ﬂ,z)(z er = 2_46§) - E_(57Z)(Z_4e_g — 246_%)

=2€Xp(§£331§§@12n><z4e%3..2—465)

n<0
Bn) ., —4 -8 4 38
ex — 2
p( X M) (ot - st ¥)
n<0
= 75(71)(65 - efg)z*4 + higher power terms of z.
From the above computations we see immediately that Y (-, z) and Va(+, z) are linearly
V-
independent. Thus we obtain N_** _ > 2. By counting quantum dimensions as listed in

zB V128

v
Theorem 4.2, we get N_*° _
Vs Vigs

Proof of (5.11): This is clear by fusion rules for irreducible Vz,-modules and the

= 2 and hence we proved (5.10).

identification in Propositions 3.6 and 3.7.
Proof of (5.12): Since

~ /T2, 4+ ~ v/ T1,+ ~ 1vT2,— ~ 1/T1,— -~ - ~ 1/t
VZﬁ+§ = Vi = Vi Vzm% =Vig = Vg Vag =V, I Vzg+

vl

as irreducible VL’L; ‘-modules [12], it follows from the fusion rules of irreducible VZ'%—mod—

Viptis
ules [2] that I(V, v o ) # 0, 4,5 = 1,3, i # j. It suffices to prove that
B Tzp+ds
Visrin Visr s
I(V, v ) = 2 for i,j = 1,3, i # j. First we prove I(V,L;S ) = 2. Let
2B Tzp+iB ZB Z[H—%[ﬁ
V.38 V5.4 38
ZB+ =2 ZB+ =& B B
V(-2 €I+< + ° ),y2 “Z €I+( - ° ).Notethatef—l—e_fe
o) e b (v ) 269 € h (o
+ 8 _8 - 5 _18 S 8 _8 8
VZB+§’ ez —e 2 € VZ[H?, es,e” 8 € VZBJF% Considering Yi(ez + e 2,2)es,
g s 8 8, s _18 | _18 S
Wo(ez—e 2, 2)es, Vi(ez+e 2,2)e” 3, Ya(ez —e 2, z)e s and applying similar argu-
. - VZB+%B _ o VZB+§B _
ment as in the proof of (5.10), we can prove N__ = 2. Similarly, N_" =2
VisViptte VisViptge

Proof of (5.13): Case 1: r = 1. From (5.5), (5.9) and Proposition 2.12, we get

Vigi Vi)
I( ZB+4h );Ao, I( (Vzs) );Ao, i,7=0,1,2.

Vagris Vzprip Vep+is Vis+is
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V5.3
. z8+3p
v . =2and N,

z8+%8 zB+%8

s . VZEJr%B
So it is sufficient to prove Vy,

= 2 using the quant
ZB+%B V. u mg quantuimn

28+%8
dimensions.

Note from [12] that there are isomorphisms of irreducible VLA2 *-modules:

~ Ty ,+ ~ T+ -~ - ~ +
Vases SVEST VY, VpEVo L 2VE L

[SlieY

By fusion rules of irreducible VZJE,—modules [2], we get

7 Vagtip 0. 1 Vig+2p 20
Vagris Vas+is Vasiis Vasris

Let T = T' @ T? be the direct sum of irreducible C[Zf]-modules 7! and T2, and define
a linear isomorphism ¢ € End T by 1 (t1) = ta, ¥(t2) = t1, where t; is a basis of T for
1 =1,2. For A € (ZB)°, we write A =r8/8 + mf for —3 <r <4 and m € Z, and define
Yy € EndT by ¥y = epnat”. By fusion rules for irreducible Vz'z—modules [1], we have

VTt v Tt
I ( o ) i =12 Let V(- I ( o .).Nt that th
VZJ;f Vm+§5 V;/;],Jr 7é 0, 1, 5 & yz]( ,z) c szs VZ6+§B VZT@_L+ ote a e

intertwining operator is given by
V(u,2) =Y (u,2) @ 1py  for A € (ZB)° and u € M(1,))

where Y%(ex,2) = 27N 25 exp(X,,e1 pany 255" exp(— e o 20Le").
For 1®eg 15 € Vyp1p= MQ1)®C[Z5 + %ﬂ], t; € T1 and ty € Ty, we have
Vor(1®egpig, 2)t = ygl(e%/g, 2)Pa gt
= ygl(egﬁvz)eﬁw%ﬁtl
= Vi1 (egg, 2)ept
—yg1(eg,evz)t2

—2_%2_%exp<— Z Mz")tg, (5.21)
n

n€l/2+N
Vi2(1® €95 z)ty = yf?(egﬁa Z)lbégﬂh

= Via(egg, 2)epibts

= y192(e§572)€ﬁt1

= ny(egﬁa Z)tl

e exp(— Z ’\(”)z“)tl. (5.22)
n

n€l/2+N
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We also have

Vor1(1®eig, 2)ts = y201(e§37 2)Y1pta

= Vai(ers 2)¢t

— 9 5, T6 eXp(— Z %n)z")tg, (5.23)

n€l/2+N
Viz(1®erg, 2)ta = yf2(e§67 2)i1pta
= yf2(€§,3,2)¢t2

= ny(eéﬁvZ)tl

_1 _ 1 A(n)
=278z 16 exp| — ")ty .24
o(- X A (5.24)
nel/2+N

So Via(+,2), Yo1(+,2) € I( Veoro ) are linearly independent and NVZBJr%B

R ’ Visris Vastis Vis+1sVasris =
Vigis

2. By a similar argument, we can prove that szﬂsﬁv > 2. Counting quantum

Z+58 " 1B+%8
dimensions of modules in the fusion product then asserts

Vygon v
I 20455 =2 and I 20435 =2
Vipris Vaseis Vepris Vaseis

Case 2: r = 3. The proof is similar to that of case 1. This finishes the proof of (5.13).
Proof of (5.14): By (5.9), (5.12) and Proposition 2.12, we have

Vi Vo
I ZB+3P A0, i=012% I{, Z@ £0.
Vst Vaprg zp+g LB+

Note that we have the following isomorphism of irreducible VZ‘?;—modules [12]:
~ T ’+ ~Y T 7+ ~Y T TN T
Va =V Vaprsg = Vag' = Vg -

B+g = V1B

Eq. (5.13) indicates that

I VZﬂJr%ﬁ _ 2’ I VZB+%B -9
Varis Vapris Vasris Vapris
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Proof of (5.15), (5.16) and (5.17): We can prove these fusion products by applying
Proposition 2.17 and Lemma 5.1.
Proof of (5.18): We only give a proof of
Wy, K Vzprip = Wo i @We 1 @WZ W, @ Woo @ W2,

[eg

here and proofs for the other cases are similar.
w
First we prove that I (ng VZ[3+1[-1) = 0 for any irreducible VLA;—module W
’ 8
appearing in the untwisted VZE—modules. Otherwise, there is some W such that
w
I<W’g'1 Vs o Vs is

products Vg +1p X W' for all such W have been known already. It is easy to see that

Wg? 1 .
’ /) # 0. The fusion

) # 0. By Proposition 2.12, we obtain I( W

WO
I %1 ) =0 for all such W, which is a contradiction.
VZBJr%B w
wi,
Now we show that I( 0o " ) =0, foralli=1,2, j =0,1,2. Otherwise, if there
Won Vz;s+§;a

. . , wig ) ,
exists some ig € {1,2}, jo € {0,1,2} such that I(WO VZ’BZLB) # 0. Since (Vzg415) =

8

) # 0 by Proposition 2.12, which

o,1
Vis+is
WL W

a,ig

VZB“I’%,B and (ng,io)/ = WJO

o,i0?

we see that I (

contradicts with (5.15) or (5.16).

Thus we have W2, K Vapyis = @b, ,mpWd, where m; , are integers. Assume
that my, # 0 for some p € {1,2}, ¢ € {0,1,2}, then by (5.4) and (5.5) we have
Mpo = Mp1 = Mpz 7# 0. Assume that msz_, , = 0 for all kK = 0,1,2. Then by quantum
dimensions of each module, we get

W0 R Vg1 =2W0 , @2W,  ®2W7 . (5.25)
By (5.25) and (5.8) we obtain
(Vzp1p) " B (W31 R Vg 1g) = AW0, @AW, @ AW ,. (5.26)
But by associativity of fusion product and (5.9) we have

0 0 0 0
VZﬁ—‘r% |X| (VZB_‘_%L.; @ Wo‘,l) == (VZﬁ-Fg |X| VZ,B-F%E) IZ' Wg,l
= (Vipy1p ® Vapyas) KWy,

=W, 0 2W, @ 2W & Vs, 55 RWY,,
a contradiction with (5.26). Hence there exists some [ = 0, 1, 2 such that ms_p; # 0, then

we also have ms_p 0 = ms_p1 = ms_p2 # 0 by applying (5.4). By counting quantum
dimensions of both sides, we see that

WO.OJ IZ VZB""%B == WO)]_ @ Wo.l’l EB WO.Q’]_ @ W00.,2 @ W01.’2 @ W02,2'

g
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Proof of (5.19): Since (ng)/ = WY, |, by Proposition 2.12, we get

o

(Vzp)°
I A £ 0.
(W(?J Wg?,l

By (5.11), (5.18) and Proposition 2.12, we obtain

V., Vzg+z
I Z 0 I 8 0 =1,3.
(Wg’z’l W£,1> 7é ) (Wg,l W0271 7é 5 T P

o

Thus
0 —
Wo 1 BW2a = (Vah) @ Vi ® Vagy15® Vipisg (5.27)

by counting the quantum dimensions.
From (5.4), for k,1 =0, 1,2, we have

Why = (Vi) "RWY,, Wh, = (Vi) BWS,.

g

So
WE RWE = (V) "R (V) 8 (W0, B WS )

= (VZ-E)

= (VZ-E)

Similarly we can prove that

I~k _
R ((Vih)" @ Vip + Vagrs + Vanrin)

-k —
D Vzs ® Vapiis ® Vagsgp: (5.28)

I~k -
Wea®Waay = (Vi) " @ Vig ® Vigyap® Vigy s
This finishes the proof of (5.19).

Proof of (5.20): From (5.8), we have

I Woa £0 I Wos £0
0 0 ) 0 2 .
Wo,l VZﬁJr% W0.71 VZB+§

’ /

Since (W7,)" = W0272, (VO ,) = Z()ﬁ+§ and (VZQﬁ+§) = Vzlﬁ+%, by Proposition 2.12

o zp+4
we obtain

V0 V)
P T IRV (R O (N O )
WO’,l Wg'2,2 WO’,l Wg'2,2



502 C. Dong et al. / Journal of Algebra 423 (2015) 476-505

By (5.18), for r=1,2, k=0,1,2, s = 1,3,

Wk
I o £0.
( Wor Vasigs >

. ) . Vept s .
Since (Vzp+55) = Vzpysp, We obtain I(Wg1 V;:Z,r) # 0. In particular,

Vagtgp
I : 0, s=1,3.
<W(9,1 we, )7

By counting quantum dimensions, we obtain

0 0 0 1
Woi BWo2 2 =Vig8 ®Vig, 0 ®Vigi s ©Vagrzp.

From (5.4) we have
—k -1
WE = (V) "TRWD,,  Who=(Veh) BW2,.
Thus

—k—1

Wf@ X Wé2,2 = (VZE) X (Wg,l X Wgz,z)

iy oy oy
= Vosre © (Vapes) ™ T @ Vi s ©Vapige
Similarly, we can show

k l k+1 k+i+1
WJ,2IXW0'2,1 :VZB-F% EB(VZﬁ@%) i EBVZﬁ+§ GBVZ,B-&-%B'

Thus (5.20) holds. O
Appendix A

The following is the part of the S-matrix for irreducible VL‘L‘;—modules that we need

(see Lemma 5.1 and its proof):
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V1885 ; 0 6 7 8 9 10 11
1
0 1 1 1 1 1 1 1
1 _2mi _ 2mi _2mi _2mi _ 27 _2mi
1 1 e 3 e "3 e "3 e 75 e~ 3 e~ 5
1 2mi 2mi 2mi 2mi 2 2mi
2 1 e’s e’s e’s e’s es es
3
3 1 0 0 0 0 0 0
3
4 3 0 0 0 0 0 0
3
5 3 0 0 0 0 0 0
_mi 5mi _ 7mi 27 _ 4mi 8mi
6 1 e 9 e e o e e o e 9
5mi _ 7mi _mi 87i 2mi _ 4mi
7 1 e 9 e 9 e 9 e e e 9
_ Tmi _mi 5mi _ami 8mi 2mi
8 1 e o ) e 9 e 9 e o e
2mi 8mi _4mi _ami 8mi 2mi
9 1 e e 9 e o e 9 e 9 e
4 27 871 8mi 2mi 47
10 1 e~ 5 es es e~ 5 es e~ %
8mi 47 27 2 4ma 8
11 1 es e~ 5 es es e~ 5 es
L 5mi Tmi 27 4 8mi
12 1 e e~ 5 es e~ es e 5
57i 7 i 8mi 27i 4
13 1 e~ 5 es es e 5 e~ 5 e
T 5mi 47i 8mi 27
14 1 s e’s e 5 s e~ s e~ 5
27i 8mi 4mi 4mi 8mi 27
15 1 ef% e~ 5 e 5 e%l e~ 5 ef%l
4mi 2mi 8mi 8mi 27i 4
16 1 e% e 5" e~ 5 67% e 5 e%
8mi 47 27 27 4 8mi
17 1 e_% e% e~ 5 e_% e 5 e_%
1 _2mi _ 2mi _ 27 i i i
18 3 e 3 e 3 e 3 e’s e’s e’s
1
19 3 1 1 1 -1 -1 -1
]. 27i 2mi 27i _ i _Ti _ i
20 5 es e’ s es [ e s e 3
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VI8S, 12 13 14 15 16 17
0 1 1 1 1 1 1
27 27 27 27 27 27
1
e 3 e 3 e s e 3 e 3 e 3
_2mi _2mi _2mi _2mi _2mi _2mi
2 e 73 e 3 e 3 e 73 e "3 e~ 3
3 0 0 0 0 0 0
0 0 0 0 0 0
S 0 0 0 0 0 0
i _ bmi Tmi _2mi dmi _ 8mi
6 e e” o e e o e e o
__bmi T fis __ 8mi _ 27 4
7 e 9 e 9 e 9 e 9 e 9 e 9
8 Tmi i _ Bmi 4mi _ 8mi _2mi
e 9 €9 e 9 € 9 e 9 e 9
_ 27 _ 8mi 47i 47i _ 87i _ 27
9
e 9 e 9 e 9 e 9 e 9 e 9
10 ami _2mi _ 8mi _ 8mi _ 2w Ami
€ 9 e 9 e 9 e 9 e 9 € 9
_ 8mi 4mi _ 27 _ 27 4mi _ 8w
11 e o e e 9 e o e e o
12 _mi 5mi _ 7w 2mi _ 4w 8mi
e 9 e 9 e 9 € 9 e 9 € 9
5mi _Tmi _ mi 8mi 27 _ Awi
13 e e o e e e e o
14 _ Tmi _mi 5mi _ 4w 8mi 2mi
e 9 e 9 e 9 e 9 € 9 € 9
27 8mi _4mi _4xmi 8mi 27
15
e 9 e 9 e 9 e 9 e 9 e 9
16 _ ami 2mi 8mi _ 8mi 2mi _ 4w
e 9 e 9 e 9 e 9 € 9 e 9
8mi _4mi 27i 27 _Axmi 8mi
17
e 9 e 9 e 9 € 9 e 9 € 9
27i 2mi 2mi _ =i _ =i _mi
18 es es es e 3 e 3 e 3
19 1 1 1 -1 -1 -1
27 27 27 T T T
20 e 3 e s e 3 es es es
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