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Let R be a commutative Noetherian ring, I, J ideals of R
and M a finitely generated R-module. Let F be a covariant 
R-linear functor from the category of finitely generated 
R-modules to itself. We first show that if F is coherent, then 
the sets AssR F (M/InM), AssR F (In−1M/InM) and the 
values depthJ F (M/InM), depthJ F (In−1M/InM) become 
independent of n for large n. Next, we consider several 
examples in which F is a rather familiar functor, but is not 
coherent or not even finitely generated in general. In these 
cases, the sets AssR F (M/InM) still become independent of 
n for large n. We then show one negative result where F is 
not finitely generated. Finally, we give a positive result where 
F belongs to a special class of functors which are not finitely 
generated in general, an example of which is the zeroth local 
cohomology functor.
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1. Introduction

In this paper, we will extend two results on asymptotic stability by M. Brodmann. 
Let us begin by fixing some terminology. A ring will mean a commutative ring with 
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unity, unless specified otherwise. For a ring R, we let Mod(R) denote the category of 
R-modules and mod(R) the category of finitely generated R-modules. A functor will 
mean a covariant functor. For a nonempty set X and a sequence of elements {xn}n�k

of X, we say that asymptotic stability holds for the elements xn, or that the elements 
xn stabilize, if the sequence {xn}n�k is eventually constant.

For the rest of this section, we will let R be a Noetherian ring unless specified other-
wise, L, M, N ∈ mod(R) and I, J be ideals of R. The background of our project can be 
traced back to one of Ratliff’s papers.

Question 1.1. [1, Introduction] Suppose that R is a domain and P is a prime ideal of R. 
If P ∈ AssR(R/Ik) for some k � 1, is P ∈ AssR(R/In) for all large n ?

Brodmann [2, (9)] gave a negative answer to the question, but at the same time, he 
proved a related, by now well-known result. Using the notation established so far, we 
will state his first result that we are interested in.

Theorem 1.2. [2, page 16] The sets AssR(M/InM) and AssR(In−1M/InM) stabilize.

The second result that we are interested in is as follows.

Theorem 1.3. [3, Theorems 2(i) and 12(i)] The values depthJ(M/InM) and
depthJ(In−1M/InM) stabilize.

Most of this paper will be related to Theorem 1.2. There have been numerous gener-
alizations of the theorem over the years. Here are a few of them.2

Theorem 1.4. [5, Theorem 1] The sets AssR TorRi (N, R/In) and AssR TorRi (N, In−1/In)
stabilize for any i � 0.

Theorem 1.5. [4, Proposition 3.4] Let L α−→ M
β−→ N be a complex. Suppose that L′ ⊆ L, 

M ′ ⊆ M and N ′ ⊆ N are submodules such that α(L′) ⊆ M ′ and β(M ′) ⊆ N ′. For 
n � 0, let H(n) denote the homology of the induced complex

L

InL′
αn−−→ M

InM ′
βn−−→ N

InN ′

Then the sets AssR H(n) stabilize.

Corollary 1.6. [4, Corollary 3.5] Let M ′ ⊆ M be a submodule. Then for any i � 0, the 
sets AssR TorRi (N, M/InM ′) and AssR ExtiR(N, M/InM ′) stabilize.

2 Although the theorems quoted here are related, the authors of [4] and [5] did not seem to know about 
the results of each other.
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A rather extensive introduction to results related to Theorems 1.2 and 1.3 can be 
found in [6]. However, we will proceed in a different direction. Our main goal is to relate 
the theorems to the following notions.

Notation 1.7. Let R be a commutative ring and M ∈ Mod(R). Then we let hM denote 
the functor HomR(M, −). We let F denote the category of R-linear covariant functors 
F from mod(R) to itself.

Definition 1.8. [7, page 53] Let R be a Noetherian ring and F ∈ F . We say that:

(1) F is representable if F ∼= hM for some M ∈ mod(R);
(2) F is finitely presented if there exist M, N ∈ mod(R) and an exact sequence hN →

hM → F → 0;
(3) F is finitely generated if there exist M ∈ mod(R) and an exact sequence 

hM → F → 0.

Remark 1.9. By [8, Section 2], finitely presented functors are exactly the coherent objects 
in F . Hence, following [7], we will use the term “coherent functors” instead of “finitely 
presented functors.”

Remark 1.10. Representable ⇒ coherent ⇒ finitely generated ⇒ R-linear

We can now state our main result, which will be proved in several steps in Section 2.

Theorem 1.11. Let R be a Noetherian ring, I, J ideals of R, M ∈ mod(R) and F be a 
coherent functor. Then the sets AssR F (M/InM), AssR F (In−1M/InM) and the values 
depthJ F (M/InM), depthJ F (In−1M/InM) stabilize.

Remark 1.12. Theorem 1.11 gives an extension of Theorem 1.5 in the following sense. 
Using the notation in Theorem 1.5, let L = L′, M = M ′ and N = N ′. Then Theorem 1.5
is an instance of Theorem 1.11 by Lemma 2.3(b) (cf. proof of Theorem 5.6). However, 
by [7, Example 5.5], not all coherent functors are of the form given by Lemma 2.3(b). 
A technical generalization of Theorem 1.5 is given by Corollary 2.2.

A summary of the rest of the paper is as follows. In Section 3, we consider two 
covariant R-linear functors, the zeroth local cohomology functor ΓI where I is an ideal 
of R, and the torsion functor τS where S is a multiplicatively closed subset of R. We show 
that in most cases, the functors id/ΓI and id/τS are finitely generated but not coherent, 
while the functors ΓI and τS are not even finitely generated. However, if F = id/ΓI , 
id/τS , ΓI or τS , then whether or not F is coherent, the sets AssR F (M/InM) and 
AssR F (In−1M/InM) always stabilize. In Section 4, we consider the case where R is 
a Dedekind domain. We show that if F is a finitely generated functor, then the sets 
AssR F (M/InM) stabilize. We give a family of non-finitely generated functors F such 
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that the sets AssR F (M/InM) do not stabilize. In Section 5, we consider a complex 
S : A → B → C of R-modules where B ∈ mod(R) and the functor F (−) = H(S ⊗−), 
an example of which is the zeroth local cohomology functor. We show that if R is a 
one-dimensional Noetherian domain, then the sets AssR F (M/InM) stabilize.

2. Proof of stability results

In this section, we let R be a Noetherian ring. All R-modules will be finitely generated 
unless specified otherwise. We will prove our main result, Theorem 1.11, which will follow 
from Corollaries 2.4, 2.9 and 2.13. First, we need a slightly more general result than 
Theorem 1.5. We recall that the Theorem follows from an even more general result.

Theorem 2.1. [4, Proof of Proposition 3.4] Let I ⊆ R be an ideal, T ∈ mod(R) and 
U, V, W submodules of T such that W ⊆ V . Then the sets AssR((U + InV )/InW ) stabi-
lize.

For the reader’s convenience, we give here an outline of the proof of Theorem 2.1
in [4]. First, it was shown in [9, Lemma 1.2] using an extended Rees ring that 
∪n�0 AssR(T/InW ) is finite. Hence the subset S = ∪n�0 AssR((U + InV )/InW ) is 
also finite. One then uses the Artin–Rees Lemma at most |S| + 2 times to find an m so 
large such that ∪n�m AssR((U + InV )/InW ) ⊆ S is an increasing union (cf. [2, (4) and 
(5)]). Since S is finite, the sets AssR((U + InV )/InW ) stabilize. The reader is invited to 
consult the references for further details.

Corollary 2.2. Consider the situation as in Theorem 1.5. Let c ∈ N and L1, L2 be sub-
modules of L such that IcL′ ⊆ L2. For n � c, let H(n) denote the homology of the 
induced complex

L1 + In−cL2

InL′
αn−−→ M

InM ′
βn−−→ N

InN ′

Then the sets AssR H(n) stabilize.

Proof. We follow [4, Proof of Proposition 3.4]. By the Artin–Rees Lemma, there is d � c

such that for all n � d, β(M) ∩ InN ′ = In−d(β(M) ∩ IdN ′). Then for n � d, we have

H(n) = ker(βn)
im(αn)

= β−1(InN ′)/InM ′

[α(L1 + In−cL2) + InM ′]/InM ′

= ker(β) + In−d(β−1(IdN ′))
α(L1) + In−d(Id−cα(L2) + IdM ′) .
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The result then follows from Theorem 2.1 by letting

T = M

α(L1)
,

V = β−1(IdN ′) + α(L1)
α(L1)

and

U = ker(β)
α(L1)

,

W = Id−cα(L2) + IdM ′ + α(L1)
α(L1)

. �

Next, we recall some results from [7].

Lemma 2.3. [7, Lemma 1.2, Examples 2.1–2.5]

(a) For any M ∈ mod(R) and F ∈ F , there is a natural isomorphism NatF (hM , F ) ∼=
F (M) given by T 
→ TM (idM).

(b) Let P• be a complex of finitely generated R-modules. Then for any i ∈ Z, the functor 
Hi(P• ⊗−) is coherent.

(c) Let M ∈ mod(R). Then for any i � 0, the functors TorRi (M, −) and ExtiR(M, −)
are coherent.

We then obtain the following generalization of the first half of Theorem 1.2. By 
Lemma 2.3(c), Corollary 2.4 may also be viewed as a generalization of Corollary 1.6.

Corollary 2.4. Let F be a coherent functor, M ∈ mod(R), M ′ be a submodule of M and 
I ⊆ R an ideal. Then the sets AssR F (M/InM ′) stabilize.

Proof. Let F be given by hL → hK → F → 0. By Lemma 2.3(a), the map hL → hK

arises from a map f : K → L. Choose free resolutions of K and L and a lift of f such 
that the following diagram commutes.

R⊕k1

β

R⊕�1

γ

R⊕k0
α

R⊕�0

K
f

L

0 0

(1)

Apply HomR(−, M/InM ′) to get the commutative diagram



252 T. Se / Journal of Algebra 484 (2017) 247–264
M⊕�1

In ((M ′)⊕�1)
M⊕k1

In ((M ′)⊕k1)

M⊕�0

In ((M ′)⊕�0)

γ∗
n

α∗
n M⊕k0

In ((M ′)⊕k0)

β∗
n

hL

(
M

InM ′

)
f∗
n

hK

(
M

InM ′

)
F

(
M

InM ′

)
0

0 0

where f∗
n, α

∗
n, β

∗
n, γ

∗
n are induced by f, α, β, γ respectively. Then we have

F

(
M

InM ′

)
∼= kerβ∗

n

α∗
n (ker γ∗

n) .

Similarly, we apply HomR(−, M) to (1) to get maps α∗, β∗, γ∗ induced by α, β, γ respec-
tively. Let A = M⊕�0 , A′ = (M ′)⊕�0 and B′ = (M ′)⊕�1 . As in the proof of Corollary 2.2, 
there is c ∈ N such that γ∗(A) ∩ InB′ = In−c(γ∗(A) ∩ IcB′) for all n � c, and hence

ker(γ∗
n) =

ker(γ∗) + In−c
(
(γ∗)−1 (IcB′)

)
InA′ .

The result then follows by applying Corollary 2.2 to the maps α∗
n|ker(γ∗

n) and β∗
n. �

We next generalize the first half of Theorem 1.3 along similar lines.

Notation 2.5. Let T, U, V, W be as in Theorem 2.1. We let Tn = (T, U, V, W )n = (U +
InV )/InW .

Remark 2.6. Let L be an ideal of R. For a submodule S of T , we let S be the image of 
S under the natural projection T → T/LU . Then we have

Tn

LTn
= U + InV

LU + LInV + InW

= U + InV

LInV + InW

= (T ,U, V , LV + W )n

Theorem 2.7. The values depthJ Tn stabilize.
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Proof. First, suppose that Tn/JTn = ( T , U, V , JV + W )n = 0 for infinitely many n. 
Then by Theorem 2.1, we see that AssR Tn = ∅ for large n. So for all large n, we have 
Tn/JTn = 0 and hence depthJ Tn = ∞. Hence we may assume that Tn 
= JTn for large n.

The rest of the proof is the same as that in [3, Theorem 2(i)]. We let iT =
lim infn→∞ depthJ(Tn), �T = limn→∞ depthJ(Tn) if such exists, and prove by induc-
tion on iT that �T = iT . Suppose that iT = 0. Then J ⊆ {r ∈ P | P ∈ AssR Tn} for 
infinitely many n. By Theorem 2.1, we have J ⊆ {r ∈ P | P ∈ AssR Tn} for all large n, 
so �T = iT = 0.

Now suppose that iT > 0. Then by Theorem 2.1, there is x ∈ J such that x /∈ {r ∈
P | P ∈ AssR Tn} for all large n. Writing Tn/xTn = ( T , U, V , xV + W )n, we have 
depthJ Tn = depthJ Tn − 1 for all large n. Hence iT = iT − 1. By induction, we have 
�T = iT , so �T = �T + 1 = iT . �
Corollary 2.8. Let J ⊆ R be an ideal. Consider the situation as in Corollary 2.2 with the 
complexes

L1 + In−cL2

InL′
αn−−→ M

InM ′
βn−−→ N

InN ′

and H(n) denoting the homology of the complex. Then the values depthJ H(n) stabilize.

Proof. As in the proof of Corollary 2.2, we have H(n) = Tn−d = (T, U, V, W )n−d. The 
result then follows from Theorem 2.7. �
Corollary 2.9. Let F be a coherent functor, M ∈ mod(R), M ′ be a submodule of M and 
I, J be ideals of R. Then the values depthJ F (M/InM ′) stabilize.

Proof. We only need to apply Corollary 2.8 to the maps α∗
n|ker(γ∗

n) and β∗
n in the proof 

of Corollary 2.4. �
In order to generalize the rest of Theorems 1.2 and 1.3, we let S =

⊕
n�0 Sn be a 

Noetherian R-algebra generated in degree 1 with S0 = R. We will use a result from [5].

Theorem 2.10. [5, Lemma 2.1] Let M =
⊕

n∈Z
Mn be a finitely generated graded 

S-module. Then the sets AssR Mn stabilize.

Corollary 2.11. Let L → M → N be a complex of Z-graded S-modules, where the maps 
are homogeneous and M ∈ mod(S). Let H =

⊕
n∈Z

Hn be the homology of the complex. 
Then the sets AssR Hn stabilize.

Corollary 2.12. Let M =
⊕

n∈Z
Mn be a finitely generated graded S-module, for example 

the module H as in Corollary 2.11. Let J be an ideal of R. Then the values depthJ Mn

stabilize.

Proof. The proof of Theorem 2.7 works by applying Theorem 2.10 to the finitely gener-
ated graded S-modules M , M/JM =

⊕
n∈Z

(Mn/JMn) and M/xM . �
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Corollary 2.13. Let F be a coherent functor, M ∈ mod(R), M ′ be a submodule 
of M and I, J be ideals of R. Then the sets AssR F (InM/InM ′) and the values 
depthJ F (InM/InM ′) stabilize.

Proof. As in Corollary 2.4, we apply HomR(−, InM/InM ′) to (1) to get

In
(
M⊕�1

)
In ((M ′)⊕�1)

In
(
M⊕k1

)
In ((M ′)⊕k1)

In
(
M⊕�0

)
In ((M ′)⊕�0)

γ∗
n

α∗
n In

(
M⊕k0

)
In ((M ′)⊕k0)

β∗
n

hL

(
InM

InM ′

)
f∗
n

hK

(
InM

InM ′

)
F

(
InM

InM ′

)
0

0 0

Again we have F
(
InM

InM ′

)
∼= kerβ∗

n

α∗
n (ker γ∗

n) , where α∗
n, β

∗
n, γ

∗
n are the maps induced by 

α, β, γ in (1) respectively, so the result follows by applying Corollaries 2.11 and 2.12 to 
S =

⊕
n�0 I

n and the maps 
⊕

n�0(α∗
n|ker(γ∗

n)) and 
⊕

n�0 β
∗
n. �

A coherent functor F given by hL → hK → F → 0 can be considered as a functor 
Mod(R) → Mod(R) since hL and hK are (cf. [7, Remark 3.3]). So the proof of Corol-
lary 2.13 gives the next result.

Corollary 2.14. Let F be a coherent functor, M ∈ mod(R), M ′ ⊆ M be a submodule, 
I be an ideal of R, S = R(I) =

⊕
n�0 I

n and gr(I) =
⊕

n�0 I
n/In+1. Then:

(a) F
(⊕

n�0 I
nM/InM ′

)
=

⊕
n�0 F (InM/InM ′) is a finitely generated graded 

S-module.
(b) When M ′ = IM , F

(⊕
n�0 I

nM/In+1M
)

=
⊕

n�0 F (InM/In+1M) is a finitely 

generated graded gr(I)-module.
(c) The module structures over S and gr(I) in (a) and (b) respectively correspond to the 

multiplication maps given by applying F to InM/InM ′ x−→ In+mM/In+mM ′, where 
x ∈ Im.

Remark 2.15. Instead of studying asymptotic stability properties of covariant coherent 
functors, one may want to consider contravariant coherent functors as well. Unfortu-
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nately, as stated in [4, Remark 3.6], the sets AssR ExtiR(R/In, R) do not stabilize in 
general, so our main focus will be on covariant functors. See [10, Introduction] and [11, 
Proposition 2.1] for further details.

3. Examples of non-coherent functors with asymptotic stability

In view of the results in Section 2, one may be interested in knowing whether or not an 
R-linear covariant functor is coherent. Some important examples of coherent functors are 
given in Lemma 2.3. In this section, we will study the zeroth local cohomology functor 
ΓI = H0

I where I is an ideal of R, and the torsion functor τS where S is a multiplicatively 
closed subset of R. It turns out that if F = ΓI , τS , id/ΓI or id/τS , then the functor F
is usually not coherent. However, we will see in Corollaries 3.6 and 3.17 that whether or 
not F is coherent, the sets AssR F (M/InM) and AssR F (In−1M/InM) always stabilize.

First, let us consider a Yoneda type result.

Lemma 3.1. Let R be a Noetherian ring and F be a finitely generated functor given by 
hM

T−→ F → 0. Then for any N ∈ mod(R) and x ∈ F (N), there is f ∈ HomR(M, N)
such that x = (F (f) ◦ TM )(idM ). In particular, x ∈ imF (f).

Proof. If x ∈ F (N), then we let f ∈ HomR(M, N) be such that TN (f) = x. The result 
follows from the commutative diagram

HomR(M,M)
TM

hM (f)

F (M)

F (f)

0

HomR(M,N)
TN

F (N) 0 �
Corollary 3.2. Let R be a Noetherian ring and {Fλ}λ∈Λ be a direct system of functors 
in F . Let F = lim−−→λ∈Λ Fλ be given by { Tλ : Fλ → F }λ∈Λ. If F ∈ F and is finitely 
generated, then F = imTλ0 for some λ0 ∈ Λ. In particular, if Tλ is injective for all 
λ ∈ Λ, then F = Fλ for all λ � λ0.

Proof. Let F be given by hM → F → 0. Since F (M) ∈ mod(R), there is λ0 ∈ Λ such 
that F (M) = im(Tλ0)M . Let N ∈ mod(R) and x ∈ F (N). By Lemma 3.1, there is 
f ∈ HomR(M, N) such that x ∈ imF (f) ⊆ im(Tλ0)N .

Fλ0(M)
(Tλ0 )M

Fλ0 (f)

F (M)

F (f)

Fλ0(N)
(Tλ0 )N

F (N)

Therefore F = Tλ0(Fλ0). �
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In the following, we will consider two applications of Corollary 3.2.

Corollary 3.3. Let I be an ideal of a Noetherian ring R. The following are equivalent:

(a) ΓI is representable.
(b) ΓI is finitely generated.
(c) In = In+1 for some n � 0.

Proof. For all M ∈ Mod(R), we have ΓI(M) = lim−−→n
HomR(R/In, M) = lim−−→n

(0 :M In). 
So by Corollary 3.2, ΓI is finitely generated iff there exists n � 0 such that ΓI(M) =
HomR(R/In, M) for all M ∈ mod(R) iff In = In+1 for some n � 0 by considering 
M = R/In+1 for “only if”. �

The relationship between our result and Section 2 is as follows.

Theorem 3.4. [7, Theorem 1.1(a)] Let F, G be coherent functors and T : F → G be a 
natural transformation. Then ker(T ), coker(T ) and im(T ) are also coherent.

Lemma 3.5. Let R be a Noetherian ring, I ⊆ R be an ideal and M ∈ Mod(R). Then 
AssR ΓI(M) = AssR(M) ∩V (I) and AssR(M/ΓI(M)) = AssR(M) \V (I), where V (I) =
{P ∈ Spec(R) | P ⊇ I}.

Corollary 3.6. Let R be a Noetherian ring and {Mn}n�0 be a sequence of modules in 
mod(R) such that the sets AssR(Mn) stabilize. Let I ⊆ R be an ideal. If In 
= In+1 for 
any n, then the functor id/ΓI is finitely generated but not coherent, and ΓI is not finitely 
generated. However, whether or not In = In+1 for any n, the sets AssR(Mn/ΓI(Mn))
and AssR ΓI(Mn) always stabilize.

Now we consider our second example.

Lemma 3.7. Let R be a ring, possibly noncommutative, with 1. Let S ⊆ R and f : S×S →
R be a function. The following are equivalent:

(a) For every r, s ∈ S, left R-module M and m ∈ M , if rm = 0, then f(r, s)m =
f(s, r)m = 0.

(b) For every r, s ∈ S we have f(r, s) ∈ Rr ∩Rs.

Proof. (a) ⇒ (b): Let r, s ∈ S and M = R/Rr. Then r1 = 0. By assumption, we have 
f(r, s)1 = 0, so f(r, s) ∈ Rr. Similarly, with M = R/Rs we have f(r, s) ∈ Rs, so that 
f(r, s) ∈ Rr ∩Rs.

(b) ⇒ (a): Let r, s ∈ S and m ∈ M . By assumption, f(r, s), f(s, r) ∈ Rr. So if rm = 0, 
then f(r, s)m, f(s, r)m ∈ Rrm = 0. �
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Example 3.8. Let R be a UFD, S = R and f : R×R → R. Then f satisfies the conditions 
in Lemma 3.7 iff for all r, s ∈ R we have f(r, s) ∈ (lcm(r, s)).

Definition 3.9. Let R be a commutative ring with 1.

(1) We say that a subset S ⊆ R is common multiplicatively closed if S 
= ∅ and there is 
a function f : S × S → S satisfying any condition in Lemma 3.7, or equivalently, for 
any r, s ∈ S there is f(r, s) ∈ S that satisfies any condition in Lemma 3.7.

(2) We say that a (nonempty) subset S ⊆ R is coprincipal if there is s ∈ S such that 
s ∈

⋂
r∈S Rr. Such an s is called a cogenerator of S.

(3) For any S ⊆ R and M ∈ Mod(R), we let τS(M) = {m ∈ M | rm = 0 for some r ∈
S}. If S is common multiplicatively closed, then τS(M) is a submodule of M .

Example 3.10.

(1) Any singleton subset of R is common multiplicatively closed.
(2) In general, any coprincipal subset S ⊆ R is common multiplicatively closed, since if 

s ∈ S is a cogenerator, then we can let f(r, t) = s for all r, t ∈ S.
(3) Conversely, if S = {s1, . . . , sn} ⊆ R is common multiplicatively closed, then S has a 

cogenerator f(· · · f(f(s1, s2), s3), . . . , sn).
(4) Any multiplicatively closed subset of R is common multiplicatively closed.
(5) If r, s ∈ Z and (0) 
= (s) � (r), then the subset {r, s} of Z is common multiplicatively 

closed and coprincipal but not multiplicatively closed.
(6) Let a ∈ Z such that a 
= 0, ±1. Let S = {a2} ∪{a8+12n | n � 0}. Then S is a common 

multiplicatively closed subset of Z by the function f(s, t) = (st)2, and S is neither 
multiplicatively closed nor coprincipal.

(7) Let a ∈ Z such that a 
= 0, ±1. Then the infinite multiplicatively closed subset S =
{a−n | n � 0} of Za is coprincipal with 1 as a cogenerator; the subset {an | n � 0} of 
Z is not. If i � 0 and i 
= 1, then S\{a−i} ⊆ Za is coprincipal but not multiplicatively 
closed.

(8) Let R1, R2 be rings and u be a unit in R1. Let S ⊆ R1 ×R2 be the subset {(un, r) |
n � 1} ∪ {(1, 1)}. If un 
= 1 for any n � 1, or if R2 is infinite, then S is infinite, 
multiplicatively closed and coprincipal with cogenerator (u, 0).

Remark 3.11. We have now seen that:

• Coprincipal ⇒ common multiplicatively closed
• If S is finite, then S is coprincipal ⇔ S is common multiplicatively closed
• Multiplicatively closed ⇒ common multiplicatively closed
• Coprincipal and multiplicatively closed do not imply or refute each other
• Common multiplicatively closed � coprincipal
• Common multiplicatively closed � multiplicatively closed
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Corollary 3.12. Let R be a Noetherian ring and S be a common multiplicatively closed 
subset of R. The following are equivalent:

(a) τS is representable.
(b) τS is finitely generated.
(c) S is coprincipal.

Proof. First, we note that for all M ∈ Mod(R), τS(M) =
⋃

s∈S(0 :M s) = lim−−→Rs
(0 :M

s) = lim−−→Rs
HomR(R/(s), M), where Rs = (s) � (t) = Rt iff (s) ⊆ (t) for s, t ∈ S. 

So by Corollary 3.2, τS is finitely generated iff there exists s ∈ S such that τS(M) =
HomR(R/(s), M) for all M ∈ mod(R) iff there exists s ∈ S such that (s) ⊆ (r) for all 
r ∈ S by considering M = R/(r) for “only if”. �
Notation 3.13. We let R× denote the set of units of a ring R.

Lemma 3.14. Let R be a ring and S be a subset of R. Consider the following statements.

(a) S is coprincipal.
(b) There are rings R1, R2 such that R = R1 ×R2, S ∩ (R1)× 
= ∅ and for all s ∈ S we 

have s(1, 0) ∈ (R1)×.

Then (b) ⇒ (a). If S is furthermore multiplicatively closed, then (a) ⇒ (b).

Proof. (b) ⇒ (a): Let (u, 0) ∈ S ∩ (R1)× and s ∈ S. Since s(1, 0) ∈ (R1)×, (u, 0) ∈ Rs. 
Therefore (u, 0) is a cogenerator of S.

Now suppose that S is multiplicatively closed and coprincipal with cogenerator e. 
Since S is multiplicatively closed, e2 ∈ S. Since e is a cogenerator of S, e = re2 for 
some r ∈ R. Then (re)2 = r(re2) = re, so re is idempotent. Let R1 = R(re) and 
R2 = R(1 − re), so that R = R1 × R2. Then e(re) = re2 = e, so e ∈ R1, and e(r2e) =
(re)2 = re, so e ∈ S ∩ (R1)×. Finally, let s ∈ S. Then e = r′s for some r′ ∈ R, and 
(r′r2e)(sre) = (re)3 = re, so sre ∈ (R1)×. �
Lemma 3.15. Let R be a ring, S ⊆ R and M ∈ Mod(R). If τS(M) is a submodule 
of M , then AssR(τS(M)) = {P ∈ AssR(M) | P ∩ S 
= ∅}. If R is Noetherian and S is a 
multiplicatively closed subset of R, then AssR(M/τS(M)) = {P ∈ AssR(M) | P ∩S = ∅}.

Remark 3.16. The second half of Lemma 3.15 is false if S is not multiplicatively 
closed. For example, let R = Z, S = {p} where p is prime, and M = Z/(p2). Then 
AssR(M/τS(M)) = {(p)}, but (p) ∩ S 
= ∅.

Corollary 3.17. Let R be a Noetherian ring, S be a multiplicatively closed subset of R
and {Mn}n�0 be a sequence of modules in mod(R) such that the sets AssR(Mn) stabilize. 
If S is not coprincipal, then the functor id/τS is finitely generated but not coherent, 
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and τS is not finitely generated. However, whether or not S is coprincipal, the sets 
AssR(Mn/τS(Mn)) and AssR(τS(Mn)) always stabilize.

4. Covariant functors over a Dedekind domain

In Section 2, we saw that the sets AssR F (M/InM) stabilize whenever F is a coherent 
functor. One may ask whether such asymptotic stability still holds when F is not co-
herent. In this section, we consider the case where R is a Dedekind domain. We will see 
that if F is a finitely generated functor over R, then the sets AssR F (M/InM) stabilize. 
We then construct a family of examples of R-linear covariant functors F such that the 
sets AssR F (R/In) do not stabilize.

Lemma 4.1. Let R be a ring, F be an R-linear functor from Mod(R) to itself and M ∈
Mod(R). Then annR(M) ⊆ annR(F (M)).

Theorem 4.2. Let R be a Dedekind domain, I be an ideal of R, M ∈ mod(R) and F be 
a finitely generated functor. Then the sets AssR F (M/InM) stabilize.

Proof. The proof will proceed in several steps.
Step 1. First, we will make some reductions. Since F is additive, it preserves finite 

direct sums. By the structure theorem for finitely generated modules over a Dedekind 
domain, we may assume that M = J is an ideal of R or M = R/P i for some maximal 
ideal P of R and i � 1. If M = R/P i, then either M/InM = 0 for all n or M/InM = M

for all n � i. If 0 
= M = J ⊆ R and I 
= 0, then M/InM ∼= R/In for all n � 1. 
But R/In is again a direct sum of modules of the form R/Pni. So it suffices to show 
that asymptotic stability holds for AssR F (R/Pn), where P is a maximal ideal of R. 
Furthermore, by Lemma 4.1, AssR F (R/Pn) = {P} or ∅ for all n � 1. So we only need 
to show that F (R/Pn) is either always 0 or always nonzero for all large n.

Step 2. Let F be given by the surjection hL → F , where L ∈ mod(R). First we 
consider the case where L = J is an ideal of R. Suppose that F (R/Pn) = 0 for infinitely 
many n. We will show that in fact F (R/Pn) = 0 for all n, which will conclude this case. 
So fix n � 1. Let N � n be such that F (R/PN ) = 0. Let π : R/PN → R/Pn be the 
natural projection map. Since J is a projective R-module, the map hJ(π) : hJ(R/PN ) →
hJ(R/Pn) is surjective. From the commutative diagram

HomR

(
J, R

PN

)
hJ (π)

F
(

R
PN

)
= 0

F (π)

HomR

(
J, R

Pn

)
F
(

R
Pn

)

we see that F (π) is surjective and therefore F (R/Pn) = 0.
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Step 3. Next, we consider the case where L = R/Qi such that Q is a maximal ideal of 
R and i � 1. We may assume that Q = P . Suppose that F (R/PN ) = 0 for some N � i. 
We will show that in fact F (R/Pn) = 0 for all n � N , concluding this case. We recall 
the following facts. For any n1 � 1, R/Pn1 is a principal ideal ring. Choose an element 
p ∈ P \ P 2. Then Pn2/Pn1 is generated by pn2 for all 0 � n2 � n1. Now fix n � N . 
Let pn−N : R/PN → R/Pn denote multiplication by pn−N . Again from the commutative 
diagram

R
P i

∼=

pN−i

id

PN−i

PN = HomR

(
R
P i ,

R
PN

)

pn−N=hJ

(
pn−N

)
∼=

F
(

R
PN

)
= 0

F
(
pn−N

)

R
P i

∼=

pn−i

Pn−i

Pn = HomR

(
R
P i ,

R
Pn

)
F
(

R
Pn

)

we see that F (pn−N ) is surjective and therefore F (R/Pn) = 0.
Step 4. Finally, we consider the general case where L = J1 ⊕ · · · ⊕ Jk ⊕ R/Qi1

1 ⊕
· · · ⊕ R/Qi�

� such that J1, . . . , Jk ⊆ R are ideals, Q1, . . . , Q� are maximal ideals of R
and i1, . . . , i� � 1. Again we may assume that Q1 = · · · = Q� = P . Suppose that 
F (R/Pn) = 0 for infinitely many n. Fix N � max{1, i1, . . . , i�} such that F (R/PN ) = 0. 
Then repeating Steps 2 and 3, we see that for all n � N , each direct summand of 
hL(R/Pn) = hJ1(R/Pn) ⊕ · · · ⊕ hJk

(R/Pn) ⊕ hR/P i1 (R/Pn) ⊕ · · · ⊕ hR/P i� (R/Pn) is 
mapped to 0 in F (R/Pn). Therefore F (R/Pn) = 0 for all n � N . �
Lemma 4.3. Let R be a Dedekind domain, I be an ideal of R and M ∈ mod(R). Then the 
modules InM/In+1M are all isomorphic for large n. In particular, let F be any functor 
from Mod(R) to itself. Then the sets AssR F (InM/In+1M) stabilize.

Proof. As in Step 1 of Theorem 4.2, we may assume that M = J is an ideal of R or 
M = R/P i for some maximal ideal P of R and i � 1. If M = J 
= 0 and I 
= 0, then 
InM/In+1M ∼= R/I for all n � 0. If M = R/P i, then InM/In+1M = 0 for all n � i. �
Theorem 4.4. Let R be a Dedekind domain and I 
= 0 be an ideal of R. Then there exists 
F ∈ F such that the sets AssR F (R/In) do not stabilize. In fact, we may construct F
such that AssR F (R/In) is given by any sequence of subsets of AssR(R/I) = V (I).

Proof. First, let T ⊆ mod(R) be the full subcategory of finitely generated torsion 
R-modules. Then the torsion functor τ : mod(R) → T is R-linear. Next, we recall from 
category theory that any category is naturally equivalent to any skeleton of itself. In 
particular, given a skeleton T0 of T , there is an R-linear functor π : T → T0. Therefore 
it suffices to construct F : T0 → T0 as in our Theorem.

We will define T0 as follows. Fix a linear ordering � of the nonzero prime ideals R, and 
let the objects of T0 be modules of the form R/P e1

1 ⊕ · · · ⊕R/P
ej
j , where P1 � · · · � Pj
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and ei � ei+1 whenever Pi = Pi+1. For each maximal ideal P we choose a subset SP of 
N>0. Then we define F (R/P e) = R/P if e ∈ SP , and 0 otherwise. We let F (R/P e1

1 ⊕· · ·⊕
R/P

ej
j ) = ⊕{i|ei∈SPi

}R/Pi. Next we define F (f) for f : M → N , where M, N ∈ T0. It 
suffices to consider the case where M, N are both P -torsion for some maximal ideal P of 
R. Fix an element p ∈ P \ P 2. Then HomR(R/Pn1 , R/Pn2) = Pn2−n1/Pn2 is generated 
by pn2−n1 if n2 � n1 � 1, and HomR(R/Pn1 , R/Pn2) = R/Pn2 if n1 � n2 � 1. So 
we can identify f with a square matrix with entries in R (more precisely, in R/P ei for 
suitable ei) viewed as multiplication maps, adding rows or columns of zeroes if necessary. 
If M, N are both direct sums of copies of R/P e1 , . . . , R/P ej with e1 < · · · < ej , then we 
define

F (f) = F

⎛
⎜⎜⎝

A1
A2

∗

p∗
. . .

Aj

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A1
A2

0

0
. . .

Aj

⎞
⎟⎟⎠ ,

where the entries in the lower diagonal of the matrix on the left are multiples of p, and 
A1, A2, . . . , Aj are the square blocks that correspond to R/P e1 , . . . , R/P ej respectively. 
Since F (R/P e) = either R/P or 0, the definition of F (f) does not depend on the choice 
of coset representatives in the entries of f . It is then immediate that F preserves identity 
maps and is R-linear. Finally, if f : M → N and g : N → L where M, N, L are P -torsion, 
then

F (g ◦ f) = F

⎛
⎜⎜⎝
⎛
⎜⎜⎝

B1
B2

∗

p∗
. . .

Bj

⎞
⎟⎟⎠

⎛
⎜⎜⎝

A1
A2

∗

p∗
. . .

Aj

⎞
⎟⎟⎠
⎞
⎟⎟⎠

= F

⎛
⎜⎜⎝

B1A1 + p∗
B2A2 + p∗ ∗

p∗
. . .

BjAj + p∗

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

B1A1 + p∗
B2A2 + p∗ 0

0
. . .

BjAj + p∗

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

B1A1
B2A2

0

0
. . .

BjAj

⎞
⎟⎟⎠ = F (g)F (f)

Therefore F respects composition. �
Corollary 4.5. The functors constructed in Theorem 4.4 are not finitely generated.
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Question 4.6. Is there a finitely generated non-coherent functor F such that the sets 
AssR F (R/In) do not stabilize?

5. Functors arising from middle finite complexes

In this section, we will study a class of R-linear covariant functors F which arise 
naturally and are non-finitely generated in general. An example of such kind of functor 
is the zeroth local cohomology functor. We will obtain results that are related to all the 
previous sections. Our main result is that over a one-dimensional Noetherian domain R, 
the sets AssR F (M/InM) stabilize.

Definition 5.1. Let R be a ring and S : A → B → C be a complex of R-modules.

(1) We say that an R-linear functor F : Mod(R) → Mod(R) arises from S if F (−) =
H(S ⊗−).

(2) We say that S is middle finite if B ∈ mod(R).

Example 5.2. Let R be a ring and I = (x1, . . . , xn) be an ideal of R. Then the functor 
ΓI arises from the middle finite complex

0 → R → Rx1 ⊕ · · · ⊕Rxn

Remark 5.3. Let R be a Noetherian ring. By Corollary 3.3, a functor that arises from a 
middle finite complex of R-modules is not finitely generated in general.

Lemma 5.4. Let R be a Noetherian ring. Let F be a functor that arises from the middle 

finite complex A 
∂A−−→ B

∂B−−→ C. Then F is coherent iff it is finitely generated.

Proof. Suppose that F is finitely generated and is given by the surjection hM → F . 
Let K, I denote the functors given by K(−) = ker(∂B ⊗ −) and I(−) = im(∂A ⊗ −). 
Let N ∈ mod(R) and n ∈ K(N), so that n + I(N) ∈ F (N). By Lemma 3.1, there is 
f ∈ HomR(M, N) such that n + I(N) ∈ imF (f). That is, there are m ∈ K(M) and 
x ∈ A ⊗N such that n = (idB ⊗f)(m) +(∂A⊗idN )(x). Now C⊗M = lim−−→D

(D⊗M), where 
D ranges over all finitely generated submodules of C. Since B ⊗M ∈ mod(R), there is 
a finitely generated submodule C0 of C that contains im ∂B such that ker(B ⊗ M →
C ⊗M) = ker(B ⊗M → C0 ⊗M). From the commutative diagram

A⊗M
∂A⊗idM

idA ⊗f

B ⊗M
∂B⊗idM

idB ⊗f

C0 ⊗M

idC0 ⊗f

A⊗N
∂A⊗idN

B ⊗N
∂B⊗idN

C0 ⊗N
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we see that in fact n ∈ ker(B ⊗ N → C0 ⊗ N). Finally, let A0 be a finitely generated 
submodule of A such that ∂A(A0) = ∂A(A). Then F arises from the complex A0 → B →
C0. Therefore F is coherent by Lemma 2.3. �
Lemma 5.5. Let R be a Noetherian ring, I, J be ideals of R, M ∈ mod(R), M ′ be a sub-
module of M and F be a functor that arises from the middle finite complex A → B → C. 
Then the sets AssR F (InM/InM ′) and the values depthJ F (InM/InM ′) stabilize.

Proof. The module 
⊕

n�0 B ⊗ (InM/InM ′) is finitely generated and graded over S =⊕
n�0 I

n, and the maps in the induced complex

⊕
n�0

A⊗ InM

InM ′ →
⊕
n�0

B ⊗ InM

InM ′ →
⊕
n�0

C ⊗ InM

InM ′

are homogeneous of degree 0. The result then follows from Corollaries 2.11 and 2.12. �
Theorem 5.6. Let R be a one-dimensional Noetherian domain, I be an ideal of R, M ∈
mod(R) and F be a functor that arises from the middle finite complex S : A α−→ B

β−→ C. 
Then the sets AssR F (M/InM) stabilize.

Proof. First, since S ⊗ (M/InM) = (S ⊗M) ⊗ (R/In), it suffices to show that the sets 
AssR F (R/In) stabilize. We have S ⊗ (R/In) : A/InA 

αn−1−−−−→ B/InB
βn−1−−−→ C/InC, so

F (R/In) = kerβn−1

imαn−1
= β−1(InC)

α(A) + InB
= F ′(R/In),

where F ′ arises from the complex 0 → B/α(A) → C. So we may assume that A = 0. 
Furthermore, since localization is flat, we may assume that R is local of dimension one. 
So it remains to show that F (R/In) is either always 0 or always nonzero for all large n.

Now let S =
⊕

n�0 I
n and γ :

⊕
n�0(InB/In+1B) →

⊕
n�0(InC/In+1C) be the map 

induced by β with graded components γn. By Corollary 2.11, there is N so large such that 
the sets AssR(ker γn) are equal for all n > N . Again we have βn : B/In+1B → C/In+1C, 
so that F (R/In) = kerβn−1. Suppose that there is m > N such that kerβm−1 = 0 but 
kerβm 
= 0. Then Im+1B � β−1(Im+1C) ⊆ β−1(ImC) = ImB, so that 0 
= kerβm ⊆
ker γm, and hence ker γn 
= 0 for all n > N . But kerβn ⊇ ker γn always holds. Therefore 
we have kerβn 
= 0 for all n > N . �
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