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Let R = S/I be a quotient of a standard graded polynomial 
ring S by an ideal I generated by quadrics. If R is Koszul, 
a question of Avramov, Conca, and Iyengar asks whether 
the Betti numbers of R over S can be bounded above by 
binomial coefficients on the minimal number of generators 
of I. Motivated by previous results for Koszul algebras defined 
by three quadrics, we give a complete classification of the 
structure of Koszul almost complete intersections and, in the 
process, give an affirmative answer to the above question for 
all such rings.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let k be a field, S be a standard graded polynomial ring over k, I ⊆ S be a graded 
ideal, and R = S/I. We say that R is a Koszul algebra if k ∼= R/R+ has a linear free 
resolution over R. Many rings arising from algebraic geometry are Koszul, including the 
coordinate rings of Grassmannians [22], sets of r ≤ 2n points in general position in Pn

[23], and canonical embeddings of smooth curves under mild restrictions [25], as well 
as all suitably high Veronese subrings of any standard graded algebra [5]. However, the 
simplest examples of Koszul algebras, due to Fröberg [19], are quotients by quadratic 
monomial ideals, and a guiding heuristic in the study of Koszul algebras has been that 
any reasonable property of algebras defined by quadratic monomial ideals should also 
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hold for Koszul algebras; for example, see [3], [15], [4]. Among such properties, considering 
the Taylor resolution for an algebra defined by a quadratic monomial ideal leads to the 
following question about the Betti numbers of a Koszul algebra.

Question 1.1 ([3, 6.5]). If R is Koszul and I is minimally generated by g elements, does 
the following inequality hold for all i?

βS
i (R) ≤

(
g

i

)

In particular, is pdS R ≤ g?

The above questions are known to have affirmative answers when R is LG-quadratic 
(see next section) and for arbitrary Koszul algebras when g ≤ 3 by [7, 4.5]. Recall that 
R or I is called an almost complete intersection if I is minimally generated by ht I + 1
elements. The motivation for studying Koszul almost complete intersections comes from 
the fact that the above question is easily seen to have an affirmative answer when I is a 
complete intersection or has height one so that the interesting case for Koszul algebras 
defined by three quadrics is precisely when I is an almost complete intersection. Our main 
results (Theorem 3.1, Theorem 3.3, Corollary 3.4, Theorem 4.3) show that Question 1.1
has an affirmative answer for Koszul almost complete intersections generated by any 
number of quadrics; they are summarized in the theorem below.

Main Theorem. Let R = S/I be a Koszul almost complete intersection with I minimally 
generated by g + 1 quadrics for some g ≥ 1. Then βS

2,3(R) ≤ 2, and:

(a) If βS
2,3(R) = 1, there are linear forms x, z, and w such that I = (xz, zw, q3, . . . , qg+1)

for some regular sequence of quadrics q3, . . . , qg+1 on S/(xz, zw).
(b) If βS

2,3(R) = 2, there is a 3 × 2 matrix of linear forms M with ht I2(M) = 2 such 
that I = I2(M) + (q4, . . . , qg+1) for some regular sequence of quadrics q4, . . . , qg+1
on S/I2(M).

Furthermore, R is LG-quadratic and, therefore, satisfies βS
i (R) ≤

(
g+1
i

)
for all i.

The division of the rest of the paper is as follows. We recount various properties and 
examples of Koszul algebras and their Betti tables in §2 which will be important in the 
sequel. In §3, we determine the structure of Koszul almost complete intersections with 
either one or two linear second syzygies. We then complete the classification of Koszul 
almost complete intersections in §4 by showing that every quadratic almost complete 
intersection has at most two linear second syzygies.

Notation. Throughout the remainder of the paper, the following notation will be in 
force unless specifically stated otherwise. Let k be a fixed ground field of arbitrary 



M. Mastroeni / Journal of Algebra 501 (2018) 285–302 287
characteristic, S be a standard graded polynomial ring over k, I ⊆ S be a proper graded 
ideal, and R = S/I. Recall that the ideal I is called nondegenerate if it does not contain 
any linear forms. We can always reduce to a presentation for R with I nondegenerate 
by killing a basis for the linear forms contained in I, and we will assume that this is the 
case throughout. We denote the irrelevant ideal of R by R+ =

⊕
n≥1 Rn.

2. Koszul algebras and their Betti tables

If R is a Koszul algebra, it is well-known that its defining ideal I must be generated 
by quadrics, but not every ideal generated by quadrics defines a Koszul algebra. We 
have already noted in the introduction that every quadratic monomial ideal defines a 
Koszul algebra. More generally, we say that R or I is G-quadratic if, after a suitable 
linear change of coordinates ϕ : S → S, the ideal ϕ(I) has a Gröbner basis consisting 
of quadrics. We also say that R or I is LG-quadratic if R is a quotient of a G-quadratic 
algebra A by an A-sequence of linear forms. Every G-quadratic algebra is Koszul by upper 
semicontinuity of the Betti numbers; see [9, 3.13]. It then follows from Proposition 2.4
below that every LG-quadratic algebra is also Koszul. In particular, every complete 
intersection generated by quadrics is LG-quadratic by an argument due to Caviglia. 
Indeed, if R = S/(q1, . . . , qg) where q1, . . . , qg is a regular sequence of quadrics, we can 
take A = S[y1, . . . , yg]/(y2

1 + q1, . . . , y2
g + qg) so that A/(y1, . . . , yg) ∼= R. By choosing a 

monomial order in which the yi are greater than every monomial in the variables of S, 
it follows from [18, 15.15] that A is G-quadratic and that the y2

i + qi form a regular 
sequence so that htA(y1, . . . , yg) = dimA − dimR = dimS − dimR = g and y1, . . . , yg
is an A-sequence. In summary, we have the following implications.

G-quadratic LG-quadratic Koszul

Quadratic CI’s

Each of the above implications is strict. Clearly, any quadratic monomial ideal which 
is not a complete intersection, such as (xy, xz, xw) ⊆ k[x, y, z, w], is LG-quadratic. In
[15, 1.14], it is observed that (x2 + yz, y2 + xz, z2 + xy) ⊆ Q[x, y, z] is an Artinian 
quadratic complete intersection which cannot be G-quadratic since it does not contain 
the square of a linear form. We will see an example of a Koszul algebra which is not 
LG-quadratic below.

Remark 2.1. If R = S/I is G-quadratic and J is a quadratic initial ideal of I, then 
βS

1 (R) = βS
1 (S/J) since I is generated by quadrics and R and S/J have the same 

Hilbert function. Consequently, βi(R) ≤ βi(S/J) ≤
(
g
i

)
for all i by upper semicontinuity 

of the Betti numbers and the Taylor resolution for S/J . Since killing a regular sequence 
of linear forms does not affect the Betti numbers of R, it follows that Question 1.1 has 
an affirmative answer for every LG-quadratic algebra.
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We will be specifically interested in the graded Betti numbers of a Koszul algebra R, 
which are defined by βS

i,j(R) = dimk TorSi (k, R)j and related to the usual Betti numbers 
by βS

i (R) =
∑

j β
S
i,j(R). This information is usually organized into a table, called the 

Betti table of R; see below for an example. As we have already pointed out in the
introduction, quadratic monomial ideals serve as a useful benchmark in the study of 
Koszul algebras. In particular, we note that the square-free quadratic monomial ideals 
are precisely edge ideals. Recall that, if G is a graph with vertex set [n] = {1, . . . , n}, 
the edge ideal of G is the ideal of the polynomial ring S = k[x1, . . . , xn] defined by 
IG = (xixj | ij ∈ E(G)). We note that every quadratic monomial ideal can be obtained 
as the image of an edge ideal modulo a regular sequence of linear forms via polarization 
[10, 4.2.16], and hence, studying the Betti tables of all quadratic monomial ideals with 
g generators is equivalent to studying the Betti tables of edge ideals of graphs with g
edges, which are reasonably simple to enumerate in practice for small values of g.

In fact, a byproduct of the proof in [7] that every Koszul algebra defined by g ≤ 3
quadrics satisfies Question 1.1 is that every such algebra has the Betti table of some 
edge ideal. This suggests taking the Betti tables of edge ideals as our guide for exploring 
possible patterns in Betti tables of Koszul algebras with more generators. One can then 
easily compute that, for various values of g, there are only two possible Betti tables 
for almost complete intersection edge ideals with g generators, one with a single linear 
syzygy and another with two. The purpose of this paper is to show that this pattern 
holds more generally for all Koszul almost complete intersections. However, the following 
example shows that the mantra that Koszul algebras are similar to quotients by quadratic 
monomial ideals must be taken with a grain of salt.

Example 2.2 ([15, 3.8]). The ring R = k[x, y, z, w]/(xy, xw, (x −y)z, z2, x2+zw) is Koszul 
by a filtration argument. The minimal free resolution of R over S = k[x, y, z, w] can be 
computed via iterated mapping cones using the fact that ((xy, xw, z2) : (x − y)z) =
(xy, xw, z) and ((xy, xw, z2, (x − y)z) : x2 + zw) = (xw, y, z). This yields the following 
Betti table for R, where the entry in column i and row j is βS

i,i+j(R) and zero entries 
are represented by “−” for readability.

0 1 2 3 4
0 1 – – – –
1 – 5 4 – –
2 – – 4 6 2

From the above Betti table, we see that the Hilbert series of R is

HR(t) = 1 + 2t− 2t2 − 2t3 + 2t4

(1 − t)2 .

If R were LG-quadratic, then the numerator of the Hilbert series must be the 
h-polynomial of a 5-generated edge ideal, since killing a regular sequence of linear forms 
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and passing to a quadratic initial ideal do not change either the h-polynomial or the min-
imal number of generators of the defining ideal. As noted above, we can easily compute 
that the h-polynomial of R does not belong to any 5-generated edge ideal. Hence, R is 
not LG-quadratic, and in particular, the Betti table of R is not the Betti table of any 
edge ideal. This points to unexpected complications in trying to answer Question 1.1 for 
Koszul algebras defined by g ≥ 5 quadrics.

Remark 2.3. We can compute the Betti tables of 5-generated edge ideals in the above 
example over a field of any characteristic by a result of Katzman, [21, 4.1]. However, 
Katzman also shows that the Betti tables of edge ideals do depend on the characteristic 
of the ground field in general.

In the remainder of this section, we collect a few results about Koszul algebras that 
will be useful in the sequel. The first of these results states how the Koszul property can 
be passed to and from quotient rings.

Proposition 2.4 ([16, §3.1, 2]). Let S be a standard graded k-algebra and R be a quotient 
ring of S.

(a) If S is Koszul and regS(R) ≤ 1, then R is Koszul.
(b) If R is Koszul and regS(R) is finite, then S is Koszul.

Compared with general quadratic algebras, the Betti tables of Koszul algebras are 
much more restricted. The following result, discovered in [6] and [22, 4], says that the 
Betti tables of Koszul algebras have nonzero entries only on or above the diagonal; see 
[15, 2.10] for an easier argument using regularity.

Lemma 2.5. If R = S/I is a Koszul algebra, then βS
i,j(R) = 0 for all i and j > 2i.

In addition, the extremal portions of the Betti table of a Koszul algebra R, namely the 
diagonal entries and the linear strand of I, satisfy bounds similar to those in Question 1.1.

Proposition 2.6 ([7, 3.4, 4.2]). Suppose that R = S/I is Koszul and that I is minimally 
generated by g elements. Then:

(a) βS
i,i+1(R) ≤

(
g
i

)
for 2 ≤ i ≤ g, and if equality holds for i = 2, then I has height one 

and a linear resolution of length g.
(b) βS

i,2i(R) ≤
(
g
i

)
for 2 ≤ i ≤ g, and if equality holds for some i, then I is a complete 

intersection.

Corollary 2.7. If R = S/I is a Koszul algebra which is not a complete intersection, then 
I has a linear syzygy.
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Proof. Suppose that I is minimally generated by q1, . . . , qg. If the Koszul syzygies on the 
qi are all minimal generators of SyzS1 (I), then βS

2,4(R) ≥
(
g
2
)

contradicting the preceding 
proposition. Hence, some k-linear combination of the Koszul syzygies is not minimal, 
and therefore, it is an S-linear combination of linear syzygies. �

Lastly, we will need a fact about the syzygies of a Koszul algebra which will be clear 
to experts, but for completeness, we give a quick proof. The proof relies on the product 
structure on TorS∗ (R, k). We briefly recall how this product is defined and refer the reader 
to [2] for further details. To simplify notation, all tensor products below are over S.

If F• denotes the minimal free resolution of R over S, we have the Künneth map

TorSi (R, k) ⊗ TorSj (R, k) = Hi(F• ⊗ k) ⊗Hj(F• ⊗ k) κ−→ Hi+j((F• ⊗ k) ⊗ (F• ⊗ k))

sending cls(v) ⊗ cls(w) 	→ cls(v ⊗ w). Denoting by μk : k ⊗ k → k and μR : R ⊗ R → R

the respective product maps, we have a chain map μF : F• ⊗ F• → F• lifting μR. The 
product structure on TorS∗ (R, k) is the composition of the Künneth map with the map 
induced on homology by the chain map

F• ⊗ k ⊗ F• ⊗ k ∼= F• ⊗ F• ⊗ k ⊗ k
μF⊗μk

−→ F• ⊗ k .

Proposition 2.8. If R = S/I is a Koszul algebra, then SyzS1 (I) is minimally generated by 
linear syzygies and Koszul syzygies.

Proof. By Lemma 2.5, we know that SyzS1 (I) is minimally generated by linear and 
quadratic syzygies. We may assume that βS

2,4(R) 
= 0 or else the conclusion holds trivially. 
In that case, it follows from [3, 3.1] that TorS2 (R, k)4 = (TorS1 (R, k)2)2, so it suffices to 
note that the products of the generators of TorS1 (R, k)2 correspond to the Koszul syzygies 
on a minimal set of generators q1, . . . , qg for I. If e1, . . . , eg denotes the standard basis 
of S(−2)g = F1 such that ∂(ei) = qi for each i, we can choose μF so that μF (ei ⊗ 1) =
μF (1 ⊗ei) = ei for all i. Since the ei⊗1 span TorS1 (R, k)2, it follows that the μF (ei⊗ej) ⊗1
span TorS2 (R, k)4. As μF is a chain map, we see that

∂(μF (ei ⊗ ej)) = μF (∂(ei ⊗ ej)) = μF (qi ⊗ ej − ei ⊗ qj) = qiej − qjei

so that μF (ei ⊗ ej) corresponds to a Koszul syzygy in SyzS1 (I) as wanted. Hence, the 
Koszul syzygies together with multiples of the linear syzygies must span SyzS1 (I)4, and 
the proposition easily follows. �
3. Koszul almost complete intersections

Recall that a standard graded k-algebra R = S/I with ht I = g is called an almost 
complete intersection (or ACI for short) if I is minimally generated by g + 1 elements.
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Theorem 3.1. Let R = S/I be a Koszul algebra with βS
2,3(R) = 1. Then there are inde-

pendent linear forms x and w and a linear form z such that I = (xz, zw, q3, . . . , qg+1) for 
some regular sequence of quadrics q3, . . . , qg+1 on S/(xz, zw), and conversely, every ideal 
of this form defines a Koszul algebra with βS

2,3(R) = 1. Hence, R is an almost complete 
intersection with e(R) = 2g−1 and Betti table

0 1 2 3 · · · g − 1 g g + 1
0 1 – – – – – –
1 – g + 1 1 – – – –
2 – – g+2

2
(
g−1
1
) (

g−1
1
)

– – –
...

. . . . . .
g − 1 – – – 2g−1

g−1
(
g−1
g−2

) (
g−1
g−2

)
–

g – – – – 2 1

Specifically, we have βS
i,2i(R) = g+i

i

(
g−1
i−1

)
and βS

i,2i−1(R) =
(
g−1
i−2

)
for i ≥ 2 so that 

βS
i (R) =

(
g+1
i

)
for all i.

Proof. Since I has a linear syzygy, it is not a complete intersection. In particular, we 
can write I = (q1, . . . , qg+1) for some linear independent quadrics qi with g ≥ 1. Let U =
SyzS1 (I), W ⊆ U4 denote the k-span of the Koszul syzygies on the qi, and � ∈ U denote the 
unique linear syzygy up to scalar multiple. If W ∩S+U = 0, then βS

2,4(R) ≥
(
g+1
2
)

so that 
Proposition 2.6 implies I is a complete intersection, which is a contradiction. Hence, there 
is a linear form z such that z� ∈ W is nonzero. Write z� =

∑
1≤i<j≤g+1 ai,j(qjei−qiej) for 

some ai,j ∈ k, where e1, . . . , eg+1 denotes the standard basis of S(−2)g+1. After suitably 
relabeling the qi and rescaling the equality, we may assume that a1,2 = 1. Reading off 
the first two coordinates of the preceding equality then gives z�1 = q2 +

∑g+1
j=3 a1,jqj and 

z�2 = −q1 +
∑g+1

j=3 a2,jqj . Using these equalities, we can replace q1 and q2 with z�2 and 
z�1 as generators of I and assume that q1 = xz and q2 = zw for some linear forms x, z, 
and w. Note that x and w must be independent since the qi are.

After making this change, we have � = (w, −x, 0, . . . , 0) is the unique linear syzygy 
on the qi, and (q2, −q1, 0, . . . , 0) = z�. Let W ′ ⊆ U4 denote the k-span of the Koszul 
syzygies other than (q2, −q1, 0, . . . , 0). If W ′ ∩ S+U 
= 0, then there is a linear form v
such that v� ∈ W ′ is nonzero. Write

v� =
∑

1≤i<j≤g+1
j≥3

bi,j(qjei − qiej)

for some bi,j ∈ k. Since bi,j 
= 0 for some j ≥ 3, reading off the j-th coordi-
nate of the above equality yields a linear dependence relation on the qi, which is a 
contradiction. Hence, we must have W ′ ∩ S+U = 0 so that all of the Koszul syzy-
gies except (q2, −q1, 0, . . . , 0) are part of a minimal set of generators for U . Because 
βS

2,4(R) ≤
(
g+1)−1 and βR

2,j(S) = 0 for j > 4 by Lemma 2.5, it follows that U = SyzS1 (I)
2
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is minimally generated by all the Koszul syzygies on the qi, except (q2, −q1, 0, . . . , 0), to-
gether with the linear syzygy �.

If fg+1 ∈ ((xz, zw, q3, . . . , qg) : qg+1), then we can write fg+1qg+1 = − 
∑g

i=1 fiqi
for some fi ∈ S so that (f1, . . . , fg+1) ∈ U . It follows from the preceding paragraph 
that fg+1 ∈ (xz, zw, q3, . . . , qg) so that qg+1 is regular on R′ = S/(xz, zw, q3, . . . , qg). As 
regR′ R = 1, it follows from Corollary 2.4 that R′ is also Koszul. Moreover, because we can 
obtain the resolution of R over S by taking the mapping cone of multiplication by qg+1
on the resolution of R′ over S, it follows that βS

2,3(R′) = 1 and that (w, −x, 0, . . . , 0) is the 
unique linear syzygy on xz, zw, q3, . . . , qg. Hence, induction on g implies that q3, . . . , qg+1
is a regular sequence on S/(xz, zw). Conversely, if I = (xz, zw, q3, . . . , qg+1) for some 
regular sequence of quadrics q3, . . . , qg+1 on S/(xz, zw), it also follows from Corollary 2.4
that R = S/I is Koszul since S/(xz, zw) is Koszul.

From the preceding paragraph, we see that ht I = ht(xz, zw) + g − 1 = g so that I is 
an almost complete intersection. If F• denotes the minimal free resolution of S/(xz, zw)
over S, we obtain the minimal resolution of R by repeatedly taking the mapping cone 
of multiplication by qi+1 on the resolution of S/(xz, zw, q3, . . . , qi). Since taking the 
mapping cone of multiplication by qi+1 is the same as tensoring with the Koszul complex 
on qi+1, we see that F• ⊗S K•(q3, . . . , qg+1) is the minimal free resolution of R over S, 
from which the Betti table is easily deduced. In particular, we have

βS
i (R) = g + i

i

(
g − 1
i− 1

)
+
(
g − 1
i− 2

)
=

(
g

i

)
+
(

g

i− 1

)
=

(
g + 1
i

)
.

Similarly, we note that the multiplicity of S/(xz, zw, q3, . . . , qi+1) is twice the multiplicity 
of S/(xz, zw, q3, . . . , qi), and so, since e(S/(xz, zw)) = 1, we see that e(R) = 2g−1. �
Remark 3.2. In the statement of the above theorem, we can choose x and w so that 
zw, q3, . . . , qg+1 is a maximal S-regular sequence contained in I. Indeed, since q3, . . . , qg+1
is a regular sequence on S/(xz, zw), we know that q3, . . . , qg+1 is a regular sequence on 
S by Auslander’s Zerodivisor Theorem, which is a consequence of the Peskine–Szpiro 
Intersection Theorem for arbitrary Noetherian local rings and follows from results of 
Serre in the regular case; see [24, II.0]. Each associated prime of (q3, . . . , qg+1) cannot 
contain both xz and zw, otherwise we would have ht I ≤ g − 1 since the former ideal is 
unmixed. If either of xz or zw is not contained in every associated prime of (q3, . . . , qg+1), 
we are done after possibly switching the roles of x and w. Otherwise, if xz and zw are 
both contained in different associated primes of (q3, . . . , qg+1), then we can replace w
with w + x.

Theorem 3.3. Let R = S/I be a Koszul almost complete intersection with βS
2,3(R) = 2. 

Then there is a 3 × 2 matrix of linear forms M with ht I2(M) = 2 such that I =
I2(M) + (q4, . . . , qg+1) for some regular sequence of quadrics q4, . . . , qg+1 on S/I2(M), 
and conversely, every ideal of this form defines a Koszul almost complete intersection 
with βS

2,3(R) = 2. Hence, R has multiplicity e(R) = 3 · 2g−2 and Betti table
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0 1 2 3 · · · g − 2 g − 1 g

0 1 – – – – – –
1 – g + 1 2 – – – –
2 – – 3

(
g−2
1
)

+
(
g−2
2
)

2
(
g−2
1
)

– – –
...

. . . . . .
g − 2 – – – 3

(
g−2
g−3

)
+ 1 2

(
g−2
g−3

)
–

g − 1 – – – – 3 2

Specifically, we have βS
i,2i(R) = 3

(
g−2
i−1

)
+
(
g−2
i

)
and βS

i,2i−1(R) = 2
(
g−2
i−2

)
for i ≥ 2 so that 

βS
i (R) ≤

(
g+1
i

)
for all i.

Proof. Since I has a linear syzygy, it is not a complete intersection. In particular, we 
can write I = (q1, . . . , qg+1) for some linear independent quadrics qi with g ≥ 1. In fact, 
we must have g ≥ 2 since it is easily seen that a 2-generated graded ideal cannot have 
two independent linear syzygies. Let U = SyzS1 (I), W ⊆ U4 denote the k-span of the 
Koszul syzygies on the qi, and �, h ∈ U denote independent linear syzygies. Arguing as 
in the proof of the previous theorem, we see there are linear forms z and v such that 
z� + vh ∈ W is nonzero. Write z� + vh =

∑
1≤i<j≤g+1 ai,j(qjei − qiej) for some ai,j ∈ k, 

where e1, . . . , eg+1 denotes the standard basis of S(−2)g+1. After suitably relabeling the 
qi and rescaling the equality, we may assume that a1,2 = 1. Reading off the coordinates 
of the preceding equality then gives

q̃2 = z�1 + vh1 = q2 +
g+1∑
j=3

a1,jqj

−q̃1 = z�2 + vh2 = −q1 +
g+1∑
j=3

a2,jqj

z�p + vhp = −
∑
i<p

ai,pqi +
∑
i>p

ap,iqi (p ≥ 3) .

Using the above equalities, we can replace q1 and q2 with q̃1 and q̃2 as generators for I. As 
a result, we must also replace � with �̃ = (�1, �2, �3 −a1,3�2 +a2,3�1, . . . , �g+1 −a1,g+1�2 +
a2,g+1�1) since

0 =
g+1∑
j=1

�jqj = �1q̃1 + �2q̃2 +
g+1∑
j=3

(�j − a1,j�2 + a2,j�1)qj .

Similarly, h must be replaced with the linear syzygy h̃ defined as above. It is easily 
seen that �̃ and h̃ must also be independent linear syzygies. Finally, setting bi,j = ai,j +
a1,ja2,i − a1,ia2,j for 3 ≤ i < j ≤ g + 1, we claim that

z�̃ + vh̃ = (q̃2,−q̃1, 0, . . . , 0) +
∑

bi,j(qjei − qiej) .

3≤i<j≤g+1
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By definition of q̃1 and q̃2, it suffices to check equality in the p-th coordinate for p ≥ 3. 
Using the above equalities, we see that

z�̃p + vh̃p = z�p + vhp + a1,pq̃1 + a2,pq̃2

= −
∑

3≤i<p

ai,pqi +
∑
i>p

ap,iqi −
g+1∑
i=3

a1,pa2,iqi +
g+1∑
i=3

a2,pa1,iqi

= −
∑

3≤i<p

(ai,p + a1,pa2,i − a2,pa1,i)qi +
∑
i>p

(ap,i − a1,pa2,i + a2,pa1,i)qi

= −
∑

3≤i<p

bi,pqi +
∑
i>p

bp,iqi

as required. Hence, after replacing q1 and q2 as above, we may assume that q1 = −(z�2 +
vh2), q2 = z�1 + vh1, and a1,j = a2,j = 0 for all j ≥ 3.

If ai,j 
= 0 for some 3 ≤ i < j ≤ g + 1, then after relabeling the qi we may assume 
that a3,4 
= 0. Since a1,j = a2,j = 0 for all j ≥ 3, arguing as in the preceding paragraph 
shows that we can replace q3 and q4 with −(z�4 +vh4) and z�3 +vh3 respectively so that 
I ⊆ (z, v, q5, . . . , qg+1) has height at most g−1 by Krull’s Height Theorem, contradicting 
that I is an almost complete intersection. Therefore, ai,j = 0 for 3 ≤ i < j ≤ g + 1, and 
we see that (q2, −q1, 0, . . . , 0) = z� + vh for some linear forms z and v.

Suppose first that z and v are independent linear forms. Then z�i + vhi = 0 for i > 2
implies that (�i, hi) = ai(v, −z) for some ai ∈ k so that � = (�1, �2, a3v, . . . , ag+1v) and 
h = (h1, h2, −a3z, . . . , −ag+1z). If ai = 0 for all i, then we would have two independent 
linear syzygies on q1 and q2, which we have already noted is impossible above. Hence, 
after relabeling, we may assume that a3 
= 0. Replacing q3 with a3q3 + · · ·+ag+1qg+1, we 
may assume that � = (�1, �2, v, 0, . . . , 0) and h = (h1, h2, −z, 0, . . . , 0). Therefore, we have 
q1 = −(z�2+vh2) and q2 = z�1+vh1, and furthermore, zq3 = h1q1+h2q2 = z(�1h2−�2h1)
implies q3 = �1h2 − �2h1 so that I = I2(M) + (q4, . . . , qg+1) where M is the matrix

M =
(
�1 h1
�2 h2
v −z

)
. (3.1)

Suppose now that v = cz for some c ∈ k. Then after replacing � with � + ch, we may 
assume that (q2, −q1, 0, . . . , 0) = z� so that q1 = −z�2, q2 = z�1, and � = (�1, �2, 0, . . . , 0). 
Note that �1 and �2 must be independent linear forms or else q1 and q2 would not be 
independent. On the other hand, we know that 

∑g+1
i=1 hiqi = 0 so that (�1h2 − �2h1)z ∈

(q3, . . . , qg+1). We claim that z is a nonzerodivisor modulo (q3, . . . , qg+1) so that �1h2 −
�2h1 ∈ (q3, . . . , qg+1).

To see that the claim holds, we first note that ht(q3, . . . , qg+1) = g − 1 so that 
(q3, . . . , qg+1) is a complete intersection. Indeed, if this is not the case, then since 
I ⊆ (z, q3, . . . , qg+1) we would have ht I ≤ ht(q3, . . . , qg+1) + 1 ≤ g − 1 by Krull’s 
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Height Theorem and [26, III, Prop. 17], contradicting that I is an almost complete inter-
section. If z were a zerodivisor modulo (q3, . . . , qg+1), then there would be an associated 
prime P of (q3, . . . , qg+1) such that I ⊆ (z, q3, . . . , qg+1) ⊆ P so that ht I ≤ g − 1 as 
(q3, . . . , qg+1) is unmixed, again contradicting that I is an almost complete intersection. 
And so, we see that z must be a nonzerodivisor modulo (q3, . . . , qg+1) as claimed. Write 
�1h2−�2h1 = a3q3+· · ·+ag+1qg+1 for some ai ∈ k. If ai = 0 for all i, then �1h2−�2h1 = 0
so that (h2, −h1) = b(�2, −�1) for some b ∈ k as �1 and �2 are independent linear forms. 
In that case, we can replace h with h − b� and assume that h = (0, 0, h3, . . . , hg+1) so 
that q3 is a zerodivisor modulo (q4, . . . , qg+1). However, we claim that this is impossible. 
Indeed, by arguing as above, we see that ht(q4, . . . , qg+1) = g − 2 so that (q4, . . . , qg+1)
is a complete intersection, and so, if q3 were a zerodivisor modulo (q4, . . . , qg+1), 
there would be an associated prime P of (q4, . . . , qg+1) such that (q3, . . . , qg+1) ⊆ P

so that ht(q3, . . . , qg+1) ≤ g − 2 as (q4, . . . , qg+1) is unmixed, contradicting our ear-
lier observation. Hence, after relabeling, we may assume that a3 
= 0. Replacing q3
with a3q3 + · · · + ag+1qg+1 = �1h2 − �2h1, we see that h = (h1, h2, −z, 0, . . . , 0) and 
I = I2(M) + (q4, . . . , qg+1) where M is the matrix of linear forms in (3.1) with v = 0.

In both of the above cases, it is easily checked that the Koszul syzygies involving any 
two of q1, q2, q3 are non-minimal. Let W ′ ⊆ U4 denote the k-span of the other Koszul 
syzygies. If W ′ ∩ S+U 
= 0, then there are linear forms u and w such that u� +wh ∈ W ′

is nonzero. Write

u� + wh =
g+1∑
j=4

[b1,j(qje1 − q1ej) + b2,j(qje2 − q2ej)] +
∑

3≤i<j≤g+1
bi,j(qjei − qiej)

for some bi,j ∈ k. Since bi,j 
= 0 for some j ≥ 4, reading off the j-th coordinate of the 
above equality yields a linear dependence relation on the qi, which is a contradiction. 
Hence, we must have W ′ ∩ S+U = 0 so that all of the Koszul syzygies involving at least 
one of q4, . . . , qg+1 are part of a minimal set of generators for U . By Proposition 2.8
and Lemma 2.5, it follows that U = SyzS1 (I) is minimally generated by all the Koszul 
syzygies involving at least one of q4, . . . , qg+1 together with the linear syzygies � and h.

If fg+1 ∈ ((q1, . . . , qg) : qg+1), then we can write fg+1qg+1 = − 
∑g

i=1 fiqi for some 
fi ∈ S so that (f1, . . . , fg+1) ∈ SyzS1 (I). It follows from the preceding paragraph that 
fg+1 ∈ (q1, . . . , qg) so that qg+1 is regular on R′ = S/(q1, . . . , qg). As regR′ R = 1, it 
follows from Corollary 2.4 that R′ is also Koszul. Moreover, because we can obtain the 
resolution of R over S by taking the mapping cone of multiplication by qg+1 on the 
resolution of R′ over S, it follows that βS

2,3(R′) = 2 and that (�1, �2, v, 0, . . . , 0) and 
(h1, h2, −z, 0, . . . , 0) are the independent linear syzygies on q1, . . . , qg. Hence, induction 
on g implies that q4, . . . , qg+1 is a regular sequence on S/I2(M). In particular, we see that 
g = ht I = ht I2(M) +g−2 so that ht I2(M) = 2. Conversely, if I = I2(M) +(q4, . . . , qg+1)
for some 3 × 2 matrix of linear forms M with ht I2(M) = 2 and some regular sequence 
of quadrics q4, . . . , qg+1 on S/I2(M), then S/I2(M) has a Hilbert–Burch resolution by 
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[10, 1.4.17] so that regS(S/I2(M)) = 1, and it follows from Corollary 2.4 that S/I2(M), 
and hence also R = S/I, is Koszul.

If F• denotes the minimal free resolution of S/I2(M) over S, we obtain the minimal 
resolution of R by repeatedly taking the mapping cone of multiplication by qi+1 on the 
resolution of S/(q1, . . . , qi). Since taking the mapping cone of multiplication by qi+1 is the 
same as tensoring with the Koszul complex on qi+1, we see that F• ⊗S K•(q4, . . . , qg+1)
is the minimal free resolution of R over S, from which the Betti table is easily deduced. 
In particular, we have

βS
i (R) = 2

(
g − 1
i− 1

)
+

(
g − 1
i

)
=

(
g

i

)
+

(
g − 1
i− 1

)
≤

(
g

i

)
+
(

g

i− 1

)
=

(
g + 1
i

)
.

Similarly, the multiplicity of S/(q1, . . . , qi+1) is twice the multiplicity of S/(q1, . . . , qi)
for i ≥ 3, and so, since e(S/I2(M)) = 3, we see that e(R) = 3 · 2g−2. �

In the next section, we will show that every Koszul almost complete intersection has at 
most two linear syzygies so that the above results give a complete classification of Koszul 
almost complete intersections, and therefore, Question 1.1 has an affirmative answer for 
Koszul almost complete intersections with any number of generators. Assuming this 
result for the time being, we have the following corollary.

Corollary 3.4. Koszul almost complete intersections are LG-quadratic.

Proof. Let R = S/I be a Koszul almost complete intersection, and assume first that 
βS

2,3(R) = 2 so that I = I2(M) + (q4, . . . , qg+1) for some 3 × 2 matrix M = (mij)
of linear forms and q4, . . . , qg+1 a regular sequence of quadrics on S/I2(M). Set S̃ =
S[X][y4, . . . , yg+1] where X = (xij) is a 3 × 2 generic matrix, Ĩ = I2(X) + (y2

4 +
q4, . . . , y2

g+1 + qg+1), and A = S̃/Ĩ. If we choose a lexicographic order on S̃ with 
x1,2 > x1,1 > x2,2 > x2,1 > x3,2 > x3,1 and yi greater than the variables in S for all i, it 
follows from [18, 15.15] that in>(Ĩ) = in>(I2(X)) + (y2

4 , . . . , y
2
g+1) so that the 2-minors 

of X together with the y2
i +qi are a Gröbner basis for Ĩ by [27]. Hence, A is G-quadratic. 

Moreover, we also know that the y2
i +qi form a regular sequence on S̃/I2(X), and since the 

latter ring is Cohen–Macaulay, we see that A is Cohen–Macaulay. If J denotes the ideal of 
A generated by the linear forms xij−mij and ys for i = 1, 2, 3, j = 1, 2, and 4 ≤ s ≤ g+1, 
then A/J ∼= R so that R will be LG-quadratic if the linear forms generating J are a reg-
ular sequence. Since A is Cohen–Macaulay and Ĩ is also an almost complete intersection 
of height g, this follows from the fact that htJ = dimA −dimR = dim S̃−dimS = g+4
is the number of generators of J .

Assume now that βS
2,3(R) = 1 so that I = (xz, zw, q3, . . . , qg+1) for some linear forms 

x, z, and w and q3, . . . , qg+1 a regular sequence of quadrics on S/(xz, zw). In this case, 
we define Si = S[yi+1, . . . , yg+1] and Ai = Si/Ii for 0 ≤ i ≤ g + 1, where

I0 = (y1z, y2z, y
2
3 + q3, . . . , y

2
g+1 + qg+1)
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I1 = (xz, y2z, y
2
3 + q3, . . . , y

2
g+1 + qg+1)

Ii = (xz, zw, q3, . . . , qi, y2
i+1 + qi+1, . . . , y

2
g+1 + qg+1) (i ≥ 2) .

As above, we see that in>(I0) = (in>(z)y1, in>(z)y2, y2
3 , . . . , y

2
g+1) for any monomial 

order on S0 in which the yi are greater than every monomial in S so that the generators 
of I0 are a Gröbner basis and A0 is G-quadratic. In addition, we have Ag+1 = R and 
Ai/(yi+1) ∼= Ai+1 for all i < g + 1. An initial ideal argument as above shows that 
y2
i+1 + qi+1, . . . , y2

g+1 + qg+1 is a regular sequence on Si/(xz, zw, q3, . . . , qi) for i ≥ 2, 
and similarly, the y2

j + qj are a regular sequence on S0/(y1z, y2z) and S1/(xz, y1z). 
Consequently, Ai is a Koszul almost complete intersection with βSi

2,3(Ai) = 1 and ht Ii = g

for all i. It then follows from Theorem 3.1 that the Ai have the same Betti table, hence 
the same h-polynomial h(t), over their respective polynomial rings Si. Hence, the Hilbert 
series of Ai is HAi

(t) = h(t)/(1 − t)dim Ai . We then compute that dimAi = dimSi − g =
dimSi+1 − g + 1 = dimAi+1 + 1 so that (1 − t)HAi

(t) = HAi+1(t) for all i < g + 1. 
This implies that the natural sequence 0 → Ai(−1) yi+1→ Ai → Ai+1 → 0 is exact so 
that yi+1 is Ai-regular. Therefore, we see that y1, . . . , yg+1 is an A0-sequence, and R is 
LG-quadratic. �
4. Linear syzygies of quadratic ACI’s

The following proposition is similar in spirit to Theorem 3.3. However, there are two 
important distinctions: We do not assume that R is Koszul, so we lose some information 
about the syzygies of the defining ideal I, and to make up for this loss of information, 
we must assume that the ground field is infinite. But first, we make a simple observation 
which will be useful in the proof.

Remark 4.1. If f1, . . . , fn ∈ S is a regular sequence of homogeneous forms of the same 
degree and f = a1f1 + · · · + anfn for some ai ∈ k with a1 
= 0, then ((f2, . . . , fn) : f) =
((f2, . . . , fn) : f1) so that f, f2, . . . , fn is also a regular sequence.

Proposition 4.2. Suppose that k is an infinite field and that R = S/I is an almost 
complete intersection defined by quadrics with βS

2,3(R) ≥ 2. Then there are quadrics 
q1, . . . , qg+1 and a 3 × 2 matrix of linear forms M such that I = (q1, . . . , qg+1), 
q2, . . . , qg+1 is a regular sequence, and I2(M) = (q1, q2, q3).

Proof. Set g = ht I. We note that g ≥ 2, since otherwise we would have I = (xz, yz) for 
some linear forms x, y, z so that βS

2,3(R) = 1. First, we can find quadrics q1, . . . , qg+1 such 
that I = (q1, . . . , qg+1) and q2, . . . , qg+1 is a regular sequence. Indeed, we can take qg+1 to 
be any quadric in I. Having found quadrics qi, . . . , qg+1 ∈ I with i > 2 forming a regular 
sequence, we know that I is not contained in any associated prime of (qi, . . . , qg+1) since 
the latter ideal is unmixed of height g− i + 2 < g. Because I is generated in degree two, 
this implies I2 � P for each associated prime P of (qi, . . . , qg+1). Since k is infinite, I2
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is not a union of the proper subspaces (I ∩P )2 for P ∈ Ass(S/(qi, . . . , qg+1)). Hence, we 
can find a quadric qi−1 ∈ I so that qi−1, . . . , qg+1 is a regular sequence. So by induction 
we have a regular sequence of quadrics q2, . . . , qg+1 in I, and we can take q1 to be any 
other quadric independent from q2, . . . , qg+1 since I is minimally generated by g + 1
quadrics.

Let � and h be two independent linear syzygies on the qi. Then h1� − �1h is 
a syzygy on q2, . . . , qg+1 and, therefore, a linear combination of Koszul syzygies. 
Write

h1�− �1h =
∑

2≤i<j≤g+1
ai,j(qjei − qiej)

for some ai,j ∈ k, where e1, . . . , eg+1 denotes the standard basis of S(−2)g+1. Note 
that �1 and h1 must be independent linear forms, otherwise we could find a non-
trivial linear syzygy on q2, . . . , qg+1 since � and h are independent, but that con-
tradicts that q2, . . . , qg+1 is a regular sequence. If h1� − �1h = 0, then (−hi, �i) =
bi(h1, −�1) for some bi ∈ k for all i ≥ 2 so that h = h1(1, −b2, . . . , −bg+1). But then 
(1, −b2, . . . , −bg+1) must be a syzygy on the qi, contradicting that they are independent 
quadrics. Hence, we see that h1� − �1h 
= 0 so that ai,j 
= 0 for some i, j. Relabel-
ing q2, . . . , qg+1 if necessary, we may assume that a2,3 
= 0. Then by Remark 4.1, we 
can replace q3 with q = h1�2 − �1h2 = a2,3q3 + · · · + a2,g+1qg+1. In exchanging q3
for q, we must replace � with �̃ = (�1, �2, a−1

2,3�3, �4 − a−1
2,3a2,4�3, . . . , �g+1 − a−1

2,3a2,g+1�3)
as

0 =
g+1∑
i=1

�iqi = a−1
2,3�3q + �1q1 + �2q2 +

g+1∑
i=4

(�i − a−1
2,3a2,i�3)qi

and we also replace h with the syzygy h̃ defined as above. However, �̃ and h̃ are still 
independent linear syzygies since their first coordinates are independent linear forms. 
After making the above changes, we have a2,3 = 1 and a2,i = 0 for all i > 3. Then 
h1�3 − �1h3 = −q2 + a3,4q4 + · · · + a3,g+1qg+1, and we can we replace q2 with −(h1�3 −
�1h3) as above. In that case, we have q2 = −(h1�3 − �1h3) and q3 = h1�2 − �1h2 so 
that

0 =
g+1∑
i=1

�iqi = �1(q1 + �2h3 − �3h2) +
4∑

i=1
�iqi

implies that q1 + �2h3 − �3h2 ∈ ((q4, . . . , qg+1) : �1).
We claim that �1 is a nonzerodivisor modulo (q4, . . . , qg+1). If not, then �1 is con-

tained in an associated prime of (q4, . . . , qg+1) so that ht(�1, q4, . . . , qg+1) = g − 2. But 
then ht(�1, h1, q4, . . . , qg+1) ≤ ht(�1, q4, . . . , qg+1) + 1 = g − 1, and since (q2, . . . , qg+1) ⊆
(�1, h1, q4, . . . , qg+1), this contradicts ht(q2, . . . , qg+1) = g. Therefore, �1 is a nonzerodi-
visor modulo (q4, . . . , qg+1) as claimed so that q1 + �2h3 − �3h2 ∈ (q4, . . . , qg+1). We can 
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then write �2h3 − �3h2 = −q1 + c4q4 + · · ·+ cg+1qg+1 for some ci ∈ k. Replacing q1 with 
�2h3 − �3h2 and setting

M =
(
�1 h1
�2 h2
�3 h3

)
(4.1)

yields I2(M) = (q1, q2, q3) as wanted. �
Theorem 4.3. If R = S/I is a quadratic almost complete intersection, then βS

2,3(R) ≤ 2.

Proof. Suppose that βS
2,3(R) ≥ 3. Let K be an infinite extension field of k, and for 

each k-algebra A, set AK = A ⊗k K. Then βSK
2,3 (RK) = βS

2,3(R), dimRK = dimR, and 
ISK/I(SK)+ ∼= I/IS+⊗SSK

∼= I/IS+⊗kK by faithfully flat base change so that ISK is 
still a quadratic almost complete intersection, and replacing R with RK , we may assume 
that the ground field k is infinite.

By the preceding proposition, there are quadrics q1, . . . , qg+1 for g = ht I ≥ 2 and 
a 3 × 2 matrix of linear forms M as in (4.1) such that I = (q1, . . . , qg+1), q2, . . . , qg+1
is a regular sequence, and I2(M) = (q1, q2, q3). We may assume that q1, q2, q3 are the 
minors of M as in the proof of the proposition. In that case, � = (�1, �2, �3, 0, . . . , 0) and 
h = (h1, h2, h3, 0, . . . , 0) are two independent linear syzygies on the qi. Let u be a linear 
syzygy independent from � and h. By arguing as in the proof of the preceding proposition, 
we see that u1, �1, and h1 are independent linear forms and that u1� − �1u 
= 0.

We claim that u1� − �1u is linear independent from h1� − �1h. If not, then u1� − �1u =
c(h1� − �1h) for some nonzero c ∈ k. Setting ũ = u − ch and rearranging the preceding 
equality, we have that ũ is a linear syzygy independent from � and h with ũ1� − �1ũ = 0, 
which is impossible as already noted in the previous paragraph. Hence, u1� − �1u is 
independent from h1� − �1h as claimed. In particular, we note that g ≥ 3 since there 
cannot be two independent quadric syzygies on the regular sequence q2, q3. Write

u1�− �1u =
∑

2≤i<j≤g+1
bi,j(qjei − qiej)

for some bi,j ∈ k. Since h1� − �1h = (0, q3, −q2, 0, . . . , 0) by assumption, we must have 
bi,j 
= 0 for some (i, j) 
= (2, 3), otherwise we would have a contradiction to the claim. In 
fact, by replacing u with u − b2,3h, we may assume that b2,3 = 0.

Next, we claim that there is a j ≥ 4 such that b2,j 
= 0 or b3,j 
= 0. If not, the first three 
coordinates of u1� − �1u must be zero so that u1� − �1u = (0, 0, 0, −�1u4, . . . , −�1ug+1). 
But this implies that (u4, . . . , ug+1) is a linear syzygy on q4, . . . , qg+1, which is impossible 
since q4, . . . , qg+1 is a regular sequence. Hence, relabeling if necessary, we may assume 
that b2,4 
= 0 so that we can replace q4 with u1�2 − �1u2 = b2,4q4 + · · · + b2,g+1qg+1.

Finally, we claim that there is a j ≥ 5 such that b3,j 
= 0. If not, then u1�3 − �1u3 =
b3,4q4 = b3,4(u1�2 − �1u2) as b2,3 = 0. But this implies that (b3,4u2 − u3, �3 −
b3,4�2) = r(u1, −�1) for some r ∈ k as �1 and u1 are independent linear forms. 
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In particular, we see that �3 ∈ Span{�1, �2} so that I ⊆ (�1, �2, q5, . . . , qg+1). How-
ever, ht(�1, �2, q5, . . . , qg+1) ≤ g − 1, which contradicts ht I = g. Hence, we must 
have g ≥ 4, and after relabeling, we may assume that b3,5 
= 0 and replace q5 with 
u1�3 − �1u3 = b3,4q4 + b3,5q5 + · · ·+ b3,g+1qg+1. But then I ⊆ (�1, �2, �3, q6, . . . , qg+1) and 
ht(�1, �2, �3, q6, . . . , qg+1) ≤ g − 1, contradicting that ht I = g. Therefore, we must have 
βS

2,3(R) ≤ 2. �
5. Future directions

Using our main result, we have reason to believe that Question 1.1 can be answered 
affirmatively for Koszul algebras defined by g = 4 quadrics. However, Example 2.2 points 
to unexpected difficulties when g = 5.

Our work also has unintended connections to various other conjectures of interest. 
For example, the Buchsbaum–Eisenbud–Horrocks Conjecture asks whether βS

i (R) ≥(
c
i

)
for all i if c = ht I. This conjecture is already known to hold for quotients by 

monomial ideals. An even larger lower bound βS
i (R) ≥

(
c
i

)
+
(
c−1
i−1

)
was given for monomial 

ideals I of finite colength that are not complete intersections by Charalambous and 
Evans in [12][13] and for almost complete intersections directly linked to a complete 
intersection by Dugger in [17, 2.3]. Among Koszul almost complete intersections R =
S/I, those with one linear syzygy cannot be directly linked to a complete intersection 
since they are not Cohen–Macaulay. Nonetheless, they still satisfy this larger bound. 
For Koszul ACI’s with two linear syzygies, at least when the ground field is infinite, the 
results of the previous section show that I is directly linked to the complete intersection 
(�1, h1, q4, . . . , qg+1), and Theorem 3.3 yields that Dugger’s result is sharp. A total rank 
version of the Charalambous–Evans bound 

∑
i βi(R) ≥ 2c + 2c−1 has been studied in 

[14], and Boocher and Seiner have recently established this bound for all monomial ideals 
which are not complete intersections. Our work affirmatively answers a couple questions 
they pose [8, 1.2, 1.3] in the Koszul ACI case.

Another consequence of our structure theorem is that the EGH Conjecture holds for 
Koszul almost complete intersections in a strong form similar to [11, 2.1]. This conjecture 
asks whether, given a graded ideal I ⊆ S = k[x1, . . . , xn] containing a homogeneous 
regular sequence f1, . . . , fr of degrees 2 ≤ d1 ≤ · · · ≤ dr, there is a monomial ideal J
containing xd1

1 , . . . , xdr
r and having the same Hilbert function as I. The EGH Conjecture 

is known to hold when I is a quadratic monomial ideal by the preceding paper, when I is a 
complete intersection of quadrics, or when I is generated by products of linear forms [1], 
which covers quadratic ideals of height one. To this list, we add that, if I defines a 
Koszul almost complete intersection, we can simply take J = (x2

1, . . . , x
2
g, xgxg+1) or J =

(x2
1, . . . , x

2
g, xg−1xg) according to whether I has one or two linear syzygies respectively. 

Note for the former case that g + 1 = pdS R ≤ n by Hilbert’s Syzygy Theorem.
Given the previous and new evidence for the above conjectures in the Koszul case, it 

is natural to ask whether they hold at the very least for Koszul algebras in general.
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