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1. Introduction

An idempotent in an algebraic structure with a product is an element x satisfying
x = 2. Idempotents have long played an important role in semigroup theory and other
branches of mathematics, and there exist many interesting results. For example, Erdos
showed in 1967 that any singular square matrix over a field is a product of idempo-
tent matrices [20]; this followed in the footsteps of an earlier result of Howie [32], which
showed that any non-bijective mapping of a finite set to itself is a product of idempotent
mappings. In the same paper, Howie also characterised the products of idempotent map-
pings on an infinite set; a crucial role was played by certain parameters that quantify
how far a mapping is from being injective or surjective.

The above-mentioned papers have generated a substantial literature that is still grow-
ing today, with many subsequent studies uncovering intriguing connections to finite
combinatorics or infinite cardinal arithmetic. To list a select few examples: Fountain and
Lewin simultaneously extended the Erdos and Howie results above to endomorphism
monoids of independence algebras [23,24]; Gray showed (among many other things) that
every singular n X n matrix of rank at most r over a field is a product of idempotent
matrices of rank r, and calculated the minimal number of (idempotent) matrices re-
quired to generate all such matrices [27]; Howie and his collaborators conducted further
studies on mappings of finite sets [26,33,35,36]; more recently, others have considered
idempotent-generation in finite and infinite diagram monoids [9,12,14-16,44]. For more
background on the role of idempotents in semigroup theory, including applications to
many branches of mathematics not mentioned here, we refer to the introductions of [7,
10,16] for thorough discussions.

The above-mentioned article of Fountain and Lewin [24] also considered products of
idempotents and units (a unit of a monoid is an element x with a two-sided inverse:
ax = za = 1 for some a). In fact, in order to describe the submonoid of the endomor-
phism monoid of an infinite dimensional independence algebra, the submonoid generated
by idempotents and units was first described. Monoids generated by idempotents and
units have also been studied in many other contexts; see for example [5,13-15,22,31].
Of particular immediate relevance is the article of Higgins, Howie and Ruskuc [31], in
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which one-sided units in the monoid P of all partial mappings of an infinite set to itself
were also considered (a one-sided unit of a monoid is an element x with a one-sided
inverse: ax = 1 for some a, or b = 1 for some b, or possibly both). Denoting by S,
I, G and FE the sets of all surjective, injective, bijective and idempotent mappings, re-
spectively, they considered all products of these sets: for example, it was shown that the
set IS ={fg: fel, ge S} isequal to all of P. All other products of two or more of
these sets were calculated, and the semigroup M = (S, I, G, E) generated by all four sets
was described. It is important to note here that M is not a subsemigroup of P itself,
but rather of the power semigroup of P; the latter consists of all subsets of P, with the
semigroup operation being set product. Subsemigroups of P generated by unions of the
above sets were not explicitly considered in [31], but descriptions of them may be de-
duced from results therein: for example, (SUI) = P and (EUG) = EG = GE consists of
all so-called semi-balanced mappings. It was also shown that two (but no fewer) elements
of P may be added to £ UG in order to obtain a generating set for P. This last result
can be stated in terms of relative ranks: the relative rank [37] of a semigroup 7" modulo
a subset A C T, denoted rank(7': A), is the minimum size of a subset U C T such that
T = (AU U); thus, the aforementioned result from [31] states that rank(P: EUG) = 2.
This extends other results of the same authors [37], which calculate relative ranks in
monoids of (full) mappings modulo the sets of idempotents or units. It follows from the
proof of [31, Lemma 4.2] that the sets I and S are precisely the right and left units of P,
respectively. A few results from [31] concerning P were established by proving general
results about arbitrary monoids; several others may also be deduced from further general
results we prove in Section 2 below. We also note that Mitchell and Péresse [49] have
(among other things) calculated the relative ranks of the monoids of all (full) injective
or surjective mappings on an infinite set modulo the bijective mappings; thus, this is an
instance of calculating relative ranks of the left (or right) units of a monoid (the monoid
of all mappings in this case) modulo the two-sided units.

In [15], the idempotent-generated submonoid of an infinite partition monoid was de-
scribed, as well as the submonoid generated by the idempotents and units (see [12]
for the finite case). Partition monoids, and other diagram monoids such as Brauer and
Temperley-Lieb monoids, arise in many branches of mathematics, including knot theory,
theoretical physics and representation theory [3,28,40-42,46,53]; see also the introduc-
tions of [8,16] for a discussion of the fruitful relationship between diagram monoids and
semigroup theory. One-sided units did not feature in [15], but they were used implicitly
in [14], where it was shown that every element of an infinite partition monoid is a prod-
uct of a right unit by a left unit (in that order, but not the other). Other results of [14]
included the calculation of the relative ranks of an infinite partition monoid modulo its
(two-sided) units and/or idempotents. Applications of these results included proofs that
infinite partition monoids have the (semigroup) Bergman property, and also finite Sier-
piniski rank. A semigroup S has the Bergman property [2,45] if every generating set for S
has a bounded length function, while S has finite Sierpinski index [1,50,52] if there exists
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Table 1
Summary and location of the main results. Any result concerning Q)L( or ]:)I; leads to dual results concerning
G& or FE. Here, X is an infinite set, and p denotes the number of infinite cardinals not exceeding | X|.

Lemma 4.1 Description of Q)L( and Gx Theorem 7.6 rank(]—")L( Fx)=1+p
Theorem 5.8 | Description of £x Theorem 7.7 rank(]—'}{; Ex) = 211

- L .aL
Theorem 6.1 | Description of Fx Theorem 7.14 | rank(Fy : Gx) = 2+ 2p

- L. _
Theorem 6.6 | Description of F% Theorem 7.17 | rank(Fx : Gx) = 3 + 3p

Theorem 6.5 |rank(Fx:Ex) = 21 X1

Th 4.7 k(PBx : =2
eorem rank(PBx : Gx) Theorem 6.16 | rank(Fx : Gx) = 2 + 2p

Theorem 4.9 |rank(PBx:G%) =1

Theorem 5.12 | rank(PBx : Ex) = 2 Theorem 4.12 | rank(G% : Gx) = 2+ 2p
Theorem 6.3 | rank(PBx : Fx) =2 Theorem 8.3 | Bergman/Sierpinski in PBx
Theorem 7.1 |rank(PBx:Fx) =1 Theorem 8.8 | Bergman/Sierpifiski in all other monoids

a natural number n such that every countable subset of S is contained in a subsemigroup
generated by n elements, in which case the least such n is the Sierpinski index.

The current article furthers the above body of work in several directions. Our main
motivating examples are the infinite partial Brauer monoids PBx; these will be defined
in Section 3, where we also explain why there are no infinite full Brauer monoids. As
well as extending the results of [14,15] to PBx, we introduce new techniques for work-
ing with submonoids generated not just by idempotents and two-sided units, but also
by idempotents and one-sided units; the latter tend to have much more complicated
structures (for one thing, they are not regular if there are one-sided units that are not
two-sided; see Remark 2.10 below). We also develop a general theory of idempotents and
one-sided units in arbitrary monoids; we hope this will be useful in subsequent studies.
This general theory is expounded in Section 2, which also gives definitions and back-
ground on semigroups and monoids in general. The partial Brauer monoids PBx are
introduced in Section 3, as well as a number of parameters (sets and cardinals) associ-
ated to the elements of PBx, and we prove a number of inequalities related to these.
Sections 4-7 study the submonoids of PBx generated by all combinations of one- or
two-sided units and/or idempotents; in these sections, we characterise the elements of
each monoid, calculate the relative ranks of each one modulo any other such monoid it
may contain, and classify the minimal-size generating sets modulo any such submonoid.
Section 8 calculates the Sierpiniski rank of each monoid, and determines which of them
have the semigroup Bergman property; a centrepiece of this section is a proof (modelled
on an ingenious argument of Hyde and Péresse [38]) that the Sierpinski rank of PBx
is equal to 2. The main results, and their locations, are summarised in Table 1, which
uses the shorthand notation for the various submonoids of PBx we consider: £x denotes
the idempotent-generated submonoid; Gx is the group of units; G& (respectively, G)
is the monoid of all left (respectively, right) units; Fx is the monoid generated by all
idempotents and two-sided units; and F )L( (respectively, F )}?) is the monoid generated by
all idempotents and left (respectively, right) units.

Throughout, we denote the set of natural numbers by N = {0,1,2,...}. We use the
LI symbol to denote disjoint union. When we list the elements of a set as {z1,z2,...}



J. East / Journal of Algebra 534 (2019) 427-482 431

or {y; : i € I}, etc., we always assume that different subscripts give rise to different
elements of the set. Functions are generally written to the right of their arguments, and
are composed from left to right. If a;---a denotes a product of elements from some
monoid, then this represents the identity element if £ = 0; similar conventions hold for
empty sums and lists. We assume basic results concerning infinite cardinals, such as may
be found in [39, Chapter 5], for example.

2. Monoids

In this section, we provide some background on semigroups and monoids, and prove a
number of results concerning idempotents and units in arbitrary monoids. Some of these
results are structural (Lemmas 2.1-2.8), while some give information concerning relative
ranks of various submonoids inside others (Lemmas 2.11 and 2.14).

A semigroup is a set S with an associative binary operation. If U is a subset of S, we
write (U) for the subsemigroup of S generated by U; so (U) is the smallest subsemigroup
of S containing U, and consists of all products u; - - - ug, where k > 1 and uy,...,ux € U.
Following [36], the rank of S is defined by

rank(S) =min {|U|: U C S, S = (U)}.

The semigroups we are primarily interested in are all uncountable; for any such semi-
group, it is easy to see that rank(S) = |S|. Thus, a more useful concept for uncountable
semigroups is that of relative rank. Following [37], if A C S, the relative rank of S
modulo A is defined by

rank(S: A) =min {|U|: U C S, S =(AUU)}.

It is possible for S\ A to be uncountable, yet for rank(S: A) to be finite; indeed, we
provide several examples in the current paper, and many more exist in the literature;
see for example [13,14,30,31,37,38,49].

A monoid is a semigroup M with an identity element 1. A submonoid of M is a
subsemigroup of M that contains 1. Following [6, Section 1.7], an element z of M is a
left unit if ax = 1 for some a € M, in which case we say that a is a left inverse of x. Right
units and right inverses are defined analogously. A (two-sided) unit of M is an element
that is both a left and right unit. It is a routine exercise to show that a unit « has a
unique left inverse and a unique right inverse, and that these are equal, in which case we
write 271 for the unique two-sided inverse of z. We denote by G (M) and Gr(M) the
sets of all left and right units of M, respectively, and by G(M) = G (M) NGr(M) the
set of all units. Green’s relations (see [34, Chapter 2]) will not play an explicit role in
this paper, but we note that Gr(M), Gr(M) and G(M) are the .£-, Z- and #-classes
of 1 in M, respectively.

If U is a subset of a semigroup S, we write E(U) = {u € U : u = u?} for the set of all
idempotents of U. We write
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for the subsemigroup of S generated by all of its idempotents. A left ideal of a semi-
group S is a subset I of S such that sz € I for all z € I and s € S. Right ideals are
defined analogously. An ideal is a non-empty subset that is both a left and right ideal.
The proof of the next result is routine, and is omitted; for part (i), see [6, Theorem 1.10].

Lemma 2.1. Let M be a monoid, and write G, = G, (M), Gr = Gr(M) and G = G(M).
Then

(i) G, Gg and G are all submonoids of M, with G a group,
(ii) M\ Gy, is a left ideal of M, and M \ Gg is a right ideal,
(i) B(GL) = E(Gr) = E(G) = {1},

(iv) GLNEM)=GrNEWM)=GnNEM)={1}. O

Remark 2.2. It follows from Lemma 2.1(ii) that (M \Gr)N (M \ Gr) = M\ (GL UGR)
is a subsemigroup of M, though it need not be an ideal.

Recall that a monoid M is bicyclic if it is generated by two elements a, b satisfying
ab = 1 # ba. All bicyclic monoids are isomorphic to each other, and can be defined by
the presentation (a,b: ab = 1). See [34, pp. 31-32] for more details. Again, the proof of
the next result is routine, and is omitted; see Exercise 1(a) of [6, Section 1.7] and also
[6, Theorem 2.54].

Lemma 2.3. Let M be a monoid, and write G, = G(M), Gr = Gr(M) and G = G(M).
Then the following are equivalent:

(i)

GrL (iii) M \ G is an ideal of M,
(i) Gr

G
=G, (iv) M has no bicyclic submonoid. O

Remark 2.4. Since bicyclic monoids are infinite, the previous result implies that
Gr(M)=Ggr(M)=G(M) if M is finite.

We have so far considered submonoids consisting of one- and/or two-sided units only.
We now include idempotents. If M is a monoid, we define

F(M) = (E(M)UG(M)), Fr(M)= (E(M)UGL(M)), Fr(M)= (EM)UGr(M))

for the submonoids of M generated by all idempotents and two-sided units, or all idem-
potents and left units, or all idempotents and right units, respectively.
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Lemma 2.5. If M is a monoid, then

() Fo (M) = EQOM)GL(M), (i) F(M) = E(M)G(M) = G(M)E(M).
(ii) Fr(M) = Gr(M)E(M),

Proof. Part (iii) is [15, Lemma 32]. By duality, it remains to prove (i). During the
proof, we use the abbreviations E = E(M), G = G(M) and F, = Fr(M). Clearly
EG; C{(EUGL) = Fr. We can prove the reverse containment by showing that EGy, is
a subsemigroup of M containing F U G, since Fy, is the smallest such subsemigroup.
As F UG C EGY is clear, suppose x,y € EGp, so that x = eg and y = fh for some
e,f € Eand g,h € G. Then 1 = ag for some a € M, and f = f1fs--- fi for some
fi, foyo s fr € E(M) Then

ry = egfife - fxh = egfi(ag) f2(ag) - - - fr(ag)h = e(gfra)(gf2a) - - - (g9 fra)gh.

Since gh € G by Lemma 2.1(i), and since gf;a € E(M) for each i, it follows that
zy € EGy. O

Remark 2.6. The factorisations in Lemma 2.5 are the reason for the use of the F
symbol. If E(M) is a submonoid of M (if M is inverse, for example), or even if
E(M)? C E(M)G(M), then F(M) = E(M)G(M), F,(M) = E(M)Gr(M), and so
on; although these simplified factorisations do not hold for arbitrary monoids, we will
see in Theorems 6.1 and 6.6 that they do hold when M is a partial Brauer monoid PBx
(defined in Section 3), even though E(PBx) is not a submonoid.

Remark 2.7. Note that we also have Fr (M) = E(M)Gr(M) = E(M)[G(M)GL(M)] =
F(M)GL(M), and similarly Fr(M) = Gr(M)F (M).

The next two lemmas give some information on what happens when we iterate the
above constructions, and consider submonoids of M such as G (Fr(M)). These will be
important when we study G (M), F (M), etc., as monoids in their own right.

Lemma 2.8. If M is a monoid, and if Q is any of Fr,(M), Fr(M) or F (M), then

E@Q) =E(M), GL(Q)=Gr(Q)=G(Q)=G(M),
FL(Q) = Fr(Q) =F(Q) = F(M).

Proof. We just prove the statements for Q) = F, (M), as the others are similar. During the
proof, we also write E = E(M), G, =Gr(M),Gr =Gr(M),G =G(M), F, =Fr(M),
FR :]FR(M) and F = F(M)

First, Fr, C M gives E(Fy) C E(M) and G(FL) C G(M) = G. The reverse contain-
ments hold because E(M)UG C(E(M)UG) C(E(M)UGL) = Fr.
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Next, suppose € G (FL). Then 1 = ax for some a € Fp; note that a € Gg. By
Lemma 2.5(i), F;, = EGp, so we may write a = e;---exg, where g € G, k > 0 and
€e1,...,er € E(M); we assume that k is minimal among all such expressions. If £ > 1,
then a = eja, and so 1 = ax = ejax = e1, which gives a = es - - - e; g, contradicting the
minimality of k. It follows that £ =0, and so a = g € G. But then « € Gy N Gr = G,
and so 1 = ax gives x = a~! € G. This shows that G.(F.) € G = G(FL). The
reverse containment is obvious, and so G (Fr) = G. By Lemma 2.3, it also follows that
Gr(Fr) =G.

The other statements follow quickly: for example, Fr(Q) = (E(Q) U Gr(Q)) =
(E(MYUG)=F. O

The proof of the next result is similar; see also Exercise 1(c) of [6, Section 1.7].

Lemma 2.9. If M is a monoid, and if Q is any of G(M), Gr(M) or G(M), then

GL(Q) = Gr(Q) = G(Q) =FL(Q) = Fr(Q) = F(Q) = G(M). O

Remark 2.10. Recall that a semigroup S is (von Neumann) regular if, for each z € S,
there exists u € S such that z = xuz. It follows from Lemmas 2.8 and 2.9 that (using
the usual abbreviations) if G, # G, then G, and FJ, are not regular, even if M is itself
regular. Indeed, suppose x € GG, is such that z is regular in F7,. Then there exist a € M
and u € Fp such that 1 = ax and x = xux. But then 1 = axr = axuxr = ux, so that
x € GL(FL) = G. This shows that no element of G, \ G is regular in F, (even though all
elements of G, are regular in M). By contrast, if M is regular, then F' must be regular;
this follows quickly from a famous result of FitzGerald [21], which says that if M is
regular, then so too is E(M).

The next two lemmas give some information on relative ranks for certain pairs of
(sub)monoids considered so far. Clearly rank(S: A) = rank(S: (A)) for any subset A of
a semigroup S. Thus, for example, rank(S: E(S)) = rank(S:E(S)) for any semigroup S,
and rank(M : E(M)UG(M)) = rank(M :F(M)) for any monoid M.

Lemma 2.11. Let M be a monoid, and write G, = G (M), Gr = Ggr(M), G = G(M),
E=E(M) and F =F(M). Suppose also that G, # G (or, equivalently by Lemma 2.3,
that Ggr # G). Then

(i) if M = (U), then U\ F contains at least one element from G \ G, and at least
one from Ggr\ G,

(ii) rank(M :G) > 2, (iii) rank(M :E) > 2, (iv) rank(M: F) > 2.



J. East / Journal of Algebra 534 (2019) 427-482 435

Proof. (i). Suppose M = (U). By duality, it suffices to show that U \ F' contains an
element of G, \ G. Since F C M = (U), certainly

M= (U\F)UF)=(U\F)U(EUG)) = ((U\ F)UEUG).

Now let a € G \ G be arbitrary, and consider an expression a = wg - - - uy, where all
of the factors belong to (U \ F) U E UG. Since a ¢ G, the u; cannot all belong to
G. Let j = max{i : u; ¢ G}, and put b = uj41---u, € G. Then ab~! = Up - Uy
By Lemma 2.1(i), ab™! € Gr. By Lemma 2.1(ii), u; € G (or otherwise ab™! =
(u1---uj—_1)u; € M\ G, a contradiction). Since u; ¢ G, it follows that u; € G \ G.
By Lemma 2.1(iv), (Gr \ G) N E = @, so it follows that u; € U \ F.

(iv). Suppose M = (F U V), where |V| = rank(M : F). By part (i), there exist x,y € V
such that x € G, \ G and y € Gr \ G. Since (G, \ G) N (Gr \ G) = @, it follows that
x # vy, and so rank(M : F) = |V| > 2.

(ii) and (iii). These follow immediately from (iv), and the fact that rank(S:A) >
rank(S: B) for any semigroup S with nested subsets AC BC S. O

Remark 2.12. Lemma 2.11 applies to several well-studied monoids, including infinite
full and partial transformation monoids, monoids of binary relations on an infinite set,
infinite symmetric and dual symmetric inverse monoids, and infinite partition monoids;
see for example [14,30,31,37,38]. While the lower bounds given in items (ii)—(iv) may
seem crude, they are actually exact values in many of the examples just mentioned; this
is also the case when M is an infinite partial Brauer monoid (see Theorems 4.7, 5.12
and 6.3).

Remark 2.13. If a monoid M satisfies G, (M) # G (M) (or equivalently Gr(M) # G(M),
by Lemma 2.3), then clearly G (M) # M and Gr(M) # M, and so trivially

rank(Gp(M):G(M)), rank(Ggr(M):G(M)), rank(M:Gr(M)),
rank(M : Ggr(M))

are all non-zero. We will see in Theorems 4.9 and 4.12 that when M is an infinite partial
Brauer monoid, rank(M : G (M)) takes on its minimum possible value of 1, whereas
rank(Gp (M) :G(M)) depends on the value of |X]|.

Lemma 2.11 concerned monoids with one-sided units that are not two-sided. The
next result gives some information about relative ranks in monoids where all one-sided
units are two-sided units. For such a monoid M, we may give a fairly specific formula
concerning rank(M : E(M)) = rank(M : E(M)). The key property used in the proof is
that M \ G(M) is an ideal (cf. Lemma 2.3).
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Lemma 2.14. Let M be a monoid, and write G = G(M), E = E(M) and F = F(M).
Suppose also that G (M) = G (or, equivalently by Lemma 2.3, that Gr(M) = G).

(i) If M =(U), then G =(GNU).
(ii) If G # {1}, then M = (EUU) if and only if the sets Uy = GNU and Uy = U\ G
satisfy G = (Uy) and M = (F U Usy).
(iii) If G # {1}, then rank(M : E) = rank(G) + rank(M : F).

Proof. (i). Suppose M = (U). Let g € G be arbitrary, and consider an expression
g =uj---up, where uy,...,u € U. By Lemma 2.3, M \ G is an ideal of M, so it follows
that all of the u; belong to G, and so to GNU: i.e.,, g € (GNU). This shows that
G C (GNU); the reverse containment is clear.

(ii). Suppose G # {1}. If G = (Uy) and M = (F U Us), then
M = (FUUy) = ((EUGYUUs) = (EUGUU,) = (EU(U;)UU,) = (EUUUU,) = (EUU).

Conversely, suppose M = (E U U). By part (i), G is generated by GN (FEUU) =
(GNE)U(GNU) = {1} UUy; the assumption that G # {1} gives G = (Uy). Then also

M=(EUU,UU:) = (EU(U)UU:) = (EUGUUs) = ((EUG)UUs) = (FUUs).

(iif). Suppose G # {1}. If M = (E U U) with |U| = rank(M : E), then with U; and Us
as in part (ii),

rank(M : E) = |U| = |Uy| + |Uz| > rank(G) + rank(M : F).

Conversely, if V1 C G and Vo C F satisfy G = (V1), M = (F' U V,), |V4] = rank(G)
and |Va| = rank(M : F'), then part (ii) gives M = (E U V; U V3), and so rank(M : E) <
[Vi| + |V2| = rank(G) 4+ rank(M : F). O

Remark 2.15. Suppose the monoid M satisfies G, (M) = G (equivalently, Gr(M) = G),
using the abbreviations of Lemma 2.14.

(i) If G = {1}, then F = E, and the conclusion of Lemma 2.14(iii) says rank(M : E) =
1 4 rank(M : E), which can only be true if rank(M : E) is infinite. We could get
around this by replacing rank(G) with the smallest size of a monoid generating set
for G (which coincides with rank(G) if G # {1}).

(if) If M = G # {1}, then E = {1} and F = M, so Lemma 2.14(iii) reduces to
rank(M) = rank(G).

(iii) If G # {1}, and if U C M with |U| = rank(M : E) < Ry, then M = (EUU) if and
only if the sets U; and Us from Lemma 2.14(ii) additionally satisfy |U;| = rank(G)
and |Usz| = rank(M : F).
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Remark 2.16. For any monoid M, Lemma 2.8 shows that Lemma 2.14 applies to F =
Fr(M), Fr =Fgr(M) and F = F(M). Thus, if G = G(M) # {1}, then

rank(Fr, : E) = rank(G) + rank(F : F'), rank(Fg:E) = rank(G) + rank(Fg: F'),
rank(F': E) = rank(G),

where we have used rank(F:F) = 0 in the last of these. Moreover, it quickly follows
from Lemma 2.14(iii) that F = (EUU) if and only if G = (GNU).

Remark 2.17. It is possible to develop the ideas in [13] in order to obtain formulae for
rank(IF (M) : G(M)), for an arbitrary monoid M, in terms of the minimal size of a subset
U C E(M) for which E(M)\ {1} is contained in the subsemigroup of M generated by
the set {g~teg:e € U, g € G(M)}. However, we will not pursue this idea here.

In this section, we have considered submonoids of a monoid M generated by various
combinations of E(M), G(M), G (M) and Gr(M). The only such submonoids not
considered so far are those generated by all one-sided units, or by all idempotents and
all one-sided units. Accordingly, we may define

GLr(M) = (GL(M)UGR(M)) and  Fpp(M) = (E(M)UGL(M)UGg(M)).

There does not appear to be a factorisation result akin to Lemma 2.5 for either of
these monoids. We also cannot establish any positive lower bound on the values of
rank(M :Gpr(M)) or rank(M :Frr(M)) in general; for example, Corollary 4.4 below
shows that when M is an infinite partial Brauer monoid (as defined in Section 3),
Grr(M) = Frr(M) = M. This latter property does not hold in general, however;
for example, if M is any non-trivial additive monoid of non-negative real numbers, then
Grr(M) =Frr(M) = {0} # M.

The submonoids of M considered in this section, as well as the inclusion relations
satisfied between them, are shown in Fig. 1.

3. Partial Brauer monoids

We now introduce the main objects of our study: the partial Brauer monoids PByx.
Here we describe the elements and product of PBx, introduce a number of important
parameters, and prove several inequalities that will be used frequently in the remainder
of the article.

Let X be an arbitrary set, and let X' = {2’ : z € X} be a disjoint copy
of X. A Brauer graph is a graph with vertex set X U X’ in which every ver-
tex has degree at most 1; a Brauer graph is full if every vertex has degree equal
to 1. We write PBx for the set of all Brauer graphs, and Bx for the set of all
full Brauer graphs, on vertex set X U X’. When drawing Brauer graphs, we draw
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Fig. 1. The part of the submonoid lattice of M containing the submonoids considered in Section 2.

the vertices from X on an upper row, with those from X’ on a lower row di-
rectly below. As an example with X = {1,...,12}, the Brauer graph with edge set
{{2,2'}, {12,11'}, {1, 3}, {5, 9}, {6, 8}, {10, 11}, {3/, 6'}, {4/, 5'}, {7, 10'}, {8/, 9'}} is de-
picted in Fig. 2.

The set PBx forms a monoid, called the partial Brauer monoid, under a product
defined as follows. Let «, 8 € PBx. First, let X” = {2 : x € X} be a second disjoint
copy of X. Let a¥ be the graph obtained by changing each lower vertex z’ from « to z”';
similarly, let 3" be the graph obtained by changing each upper vertex x from 8 to z”.
Now let II(a, 8) be the graph on vertex set X U X’ U X" with all the edges from both o
and B". We call Il(a, 8) the product graph associated to a, 8, and we note that II(«, 3)
might contain pairs of parallel edges (one coming from « and one from ). Finally, a3
is the graph with vertex set X U X', and an edge {z,y} whenever z,y € X U X’ are
distinct and belong to the same connected component of II(«, 8). Figs. 3 and 4 give two
example calculations, for finite and (countably) infinite X, respectively.

The above product is associative, so PBy is a semigroup. Denote by 1 the (full) Brauer
graph with edge set {{z,2'} : # € X}. It is easy to see that 1 is an identity element, so
PBx is indeed a monoid. If X is finite, then the set Bx of all full Brauer graphs is a
submonoid of PBx, known as the Brauer monoid. If X is infinite, then Bx is not closed
under the product. Fig. 4 exemplifies this last assertion; there, a and S are full, but af
is not. In fact, we will see in Corollary 4.4 below that every element of infinite PBx is
the product of two elements from Bx.
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Fig. 2. An element of PBx, where X = {1,...,12}.
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Fig. 3. Two Brauer graphs «,8 € PBx with |X| = 12 (left), their product a8 € PBx (right), and the
product graph II(«, 8) (centre).
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Fig. 4. Two Brauer graphs «, 8 € PBy (left), their product a8 € PBy (right), and the product graph
II(e, B) (centre).

A number of parameters associated to Brauer graphs will play a crucial role in all
that follows. First, we note that the connected components of a Brauer graph oo € PBx
all have one of the following forms:

{z,y'} for distinct z,y € X — a transversal of a,
{z,y} for distinct z,y € X — an upper hook of «,
o {a/,y'} for distinct 2,y € X — a lower hook of «,
o {z} for some x € X — an upper singleton of a,

o {2’} for some x € X — a lower singleton of a.

We write t(a), h(a), h*(a), s(a) and s*(«) for the number of transversals, upper
hooks, lower hooks, upper singletons and lower singletons of «, respectively. Note that
0 < t(a),s(a),s*(a) < |X| and that 0 < h(a), h* () < $|X|, with the “3” being unnec-
essary if X is infinite.

We define the domain and codomain of o to be the sets

Dom(«) = {z € X : x belongs to a transversal of a},
Codom(a) = {z € X : 2’ belongs to a transversal of a},
respectively, noting that [Dom(«)| = |Codom(a)| = t(«); elsewhere in the literature,

the cardinal ¢(«) is sometimes called the rank or propagating number of a and denoted
rank(a) or pn(a); see for example [9,28]. It is easy to see that
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Dom(af) C Dom(«) and Codom(af) C Codom(f) for any o, 8 € PBx.

If z € Dom(«), we write x«a for the unique element of Codom(«) for which {z, (za)'} is a
transversal of a. If z € Codom(a), we write za~! for the unique element of Dom(«) for
which {za 1,2’} is a transversal of a.. Note that if o, B € PBx, and if * € Dom(«) is such
that za € Dom(3), then x € Dom(af) and z(af) = (za)B; a dual statement holds for
codomains and preimages. Note, however, that it is not necessary to have za € Dom(53)
in order for 2 € Dom(af) to hold; indeed, a transversal of a3 could arise from a path
of length greater than 2 in the product graph II(«, 5); see Fig. 3, for example, where
2a. ¢ Dom(f), even though 2 € Dom(af). If Y C Dom(a) and Z C Codom(w), we will
write Ya = {ya:y € Y} and Za™! = {za™!: 2z € Z}.
We also define the defect and codefect sets and cardinals of a by

Def(a) = X \ Dom(a), def () = |Def ()|,
Codef(a) = X \ Codom(«), codef(a) = |Codef ().

Note that def(a) = 2h(«) + s(«) is the number of points from X that do not belong to a
transversal of o, while codef(«) = 2h*(a) + s*() is the number of points from X’ that
do not belong to a transversal. Since X = Dom(«)UDef(a) = Codom (o) U Codef(ar), we
have t(a) + def(a) = t(a) + codef () = | X|. Thus, we immediately deduce the following
(which does not hold for infinite X).

Lemma 3.1. If X is a finite set, then def(a) = codef(a) for all « € PBx. O
We now describe a convenient tableau-style notation for the elements of PBx. For

A C X, we write A’ = {a’ : a € A}. Let o € PBx, and suppose the transversals, upper
hooks and lower hooks of a are {{a;,b;} :i €I}, {C;:j€ J} and {D} : ke K}. We

then write
o= (ai Cj
bi Dk}z‘el, JEJ, keK’
Sometimes we abbreviate this to a = (Z DIL , with the indexing sets I, J, K being

implied rather than explicitly stated. Note that with this notation, we have

t(a) = |1, h(a) = |J], Dom(a) = {a; :i € I},
h* (o) = |K]|, Codom(a) = {b; : i € I}.

Note also that the singletons of « are not listed explicitly in the above notation, although
they are implied by it. We will sometimes use abbreviations of the above notation: we
may write o = (Z’}% or a = (Z‘}ﬁ if h*(a) = 0 or h(a) = 0, respectively. If

Qa;

h(a) = h*(a) = 0, then we may write o = (bj).
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On a small number of occasions, we will wish to use similar notation, but list all of
the non-transversals instead of only the hooks. To do so, if « € PBx, we will write

a; Cj
= s D )
il ¥kliel, jed, keK

or just [2%7 which indicates that {C; : j € J} and {Dj, : k € K} are the entire sets
of upper and lower non-transversals, respectively, including hooks and singletons.
There is also an important anti-involution * : PBx — PBx : a — a. With a =

. C « b, | D .
(Z }ﬁ as above, we define o* = ( ®3. It is easy to check that
i | Dk ai| C;

(@) =a, a=ad*a, (af)* =" for all a, B € PBx, (3.2)

so that PBx is a regular x-semigroup in the sense of Nordahl and Scheiblich [51]. We
also have several obvious identities such as

Dom(a*) = Codom(a*), t(a*)=t(a), h(a®)=hr"(a), s(a*)=s"(a),

and so on.

In the remainder of this section, we establish a number of inequalities involving the
above parameters. In order to prove them, and for later usage, it will be convenient to
list the kinds of connected components that can arise in a product graph II(«, 3), where
a, B € PBx. Suppose % is such a component. We call € trivial if it is contained in either
X or X' or X".

e If € C X, then it is an upper non-transversal of «;, and remains in the product af.

o If ¥ C X', then it is a lower non-transversal of 5, and remains in the product a/3.

o If ¥ C X", then it is either a loop or a path. Of course loops involve only finitely
many vertices, but paths could be finite or infinite; the latter can extend infinitely in
one or two directions. Such components are essentially “forgotten” when we form the
product af. (These play an important role, however, in the partial Brauer algebras;
see for example [47].)

We call € non-trivial if it involves at least one vertex from X’ and at least one from
X U X', A non-trivial component might involve several (even infinitely many) vertices
from X" but involves at most two vertices from XUX'. There are five types of non-trivial
components.

o If ¢ is non-trivial and involves one vertex from X and one from X', then it has the

form



442 J. East / Journal of Algebra 534 (2019) 427482

B
p s Ly oy Dy

for some k > 0 and some z1,..., 29511 € X. (3.3)

In this case, € gives rise to the transversal {z,y'} in the product ag.
o If % is non-trivial and involves two vertices from X, then it has the form
et n B n o« B no_«
T — 2 —— 2 —— =2y

for some k > 1 and some z1,..., 29, € X. (3.4)

In this case, € gives rise to the upper hook {z,y} in the product of.
e If ¥ is non-trivial and involves one vertex from X and none from X', then it has the
form

z#zi’i%z’z/# for some 21, 22,... € X. (3.5)

In this case, ¥ might be infinite in length, or may terminate at a point corresponding
to a lower singleton of « or an upper singleton of 3, but it always gives rise to the
upper singleton {z} in the product «f.

o If ¢ is non-trivial and involves two vertices from X', then it has the form

« a
2 B Zil Zg B . Zé/k B y/

for some k > 1 and some zq, ..., 29, € X. (3.6)
In this case, € gives rise to the lower hook {z’,3'} in the product of.

o If ¢ is non-trivial and involves one vertex from X’ and none from X, then it has the
form

x’Lz’l’L)zé’Lu- for some 21, 22,... € X. (3.7)

Again, € might be finite or infinite in this case, but it always gives rise to the lower
singleton {2’} in the product af.

Lemma 3.8. Let X be an arbitrary set, and let o, 8 € PBx. Then

Va)

) s(a) < s(af) and s*(B) < s*(ap),
) h(@) < h(ap) < h(a) + h(B),

) h*(B) < h*(aB) < h*(a) + h*(B),
(iv) def(a) ef(af) < def(a) + def(8),
)

)

>

<h
<

d
codef (3) < codef(af) < codef(a) + codef(3),
HaB) < ta) and H(af) < H(5).
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Proof. (i). Every upper singleton {x} of af is either an upper singleton of «, or else
arises from some non-trivial component in the product graph I(a, 8) of the form (3.5).
Thus, if there are p of the latter kind of component, then s(a3) = s(a) + p > s(«). The
statement concerning s* is dual.

(ii). Similarly, every upper hook {z,y} of af is either an upper hook of « or else arises
from a non-trivial component in II(«, 8) of the form (3.4). Thus, if there are v of the latter
kind of component, then h(af) = h(a)+v > h(a). Since any component of the form (3.4)
involves at least one upper hook of 3, and since each upper hook of 3 is involved in at
most one such component, we obtain v < h(8). Thus, h(af) = h(a) +v < h(a) + h(B).

(iv). With g and v as above, def(af) = s(af) + 2h(af) = s(a) + p+2(h(a) +v) =
def(a)) + p + 2v > def(a). It remains to show that p + 2v < def(f). Since
|Def(af) \ Def(a)] = p + 2v, we may prove the latter by constructing an injective
map ¢ : Def(af5) \ Def(a) — Def(8). With this in mind, let © € Def(af) \ Def(a). If
{z} is a singleton of a3, then there is a component in I(a, 8) of the form (3.5), and we
define z¢ = z;. If x belongs to a hook {x,y} of a3, then also y € Def(ag) \ Def(«), and
there is a component in II(«, 8) of the form (3.4); we then define ¢ = 21 and y¢ = 2o

(iii) and (v). These are dual to (ii) and (iv), respectively.

(vi). Any transversal {x,y'} of a3 arises from a non-trivial component in I(c, §) of the
form (3.3). Such a component involves the transversals {z, 2]} from « and {z2r11,9'}
from f. The result follows immediately. O

Remark 3.9. Lemma 3.8 has no statement of the form s(af) < s(a) + s(8) or
s*(af) < s*(a) + s*(B), because these need not hold. It is easy to construct examples
where s(af) > s(a) + s(8), even with | X| = 2.

The next simple corollary of Lemma 3.8 will be used frequently. This result, and many
more to come, involve cardinals g such that u = 1 or p > Ng. The crucial property of
such cardinals is that they cannot be written as a finite sum of smaller cardinals.

Corollary 3.10. Suppose X is an arbitrary set, let aq,...,ar € PBx, let ¢ denote any of
h, h*, def or codef, and suppose p is an arbitrary cardinal. Then

(i) ton--ay) > p = tlaq) > pu for alli,
(ii) if p=1 or > Ro, then qlay---ax) > p = qlay) > p for some i.

Proof. (i). For any 4, the two assertions of Lemma 3.8(vi) give
p<tlar im0 og) <o aimiag) < tag).

(ii). If g(a;) < p for all 4, then, by the relevant part of Lemma 3.8, g(ay - --ay)
g(ar) + -+ q(ag) < p, contradicting g(ay +--ag) > p. O

IA
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There are dual versions of the next three lemmas, but we will not explicitly state
these. The next result shows how Lemma 3.8 simplifies in the case that codef(a) = 0,
which, as we will see in Lemma 4.1(ii), is precisely the condition for a to be a left unit
of PBx.

Lemma 3.11. Let X be an arbitrary set, and let o, B € PBx. If codef(a) = 0, then

(i) s(aB) = s(a) +s(8), (v) def(ap) = def(a) + def(B),
(i) s*(aB) = s*(B), (vi) codef(afB) = codef(B),
(iti) h(ap) = h(a) + h(B), (vii) t(aB) = t(B).
(iv) h*(aB) =h*(B),

Proof. (i). As in the proof of Lemma 3.8, we have s(af8) = s(a) + u, where u denotes
the number of non-trivial components of the product graph II(a, 8) of the form (3.5).
Such a path component either:

(a) is infinite, or
(b) terminates at ngﬂ for some k > 0, where 29511 is an upper singleton of 3, or
(c) terminates at z3, for some k > 1, where 2}, is a lower singleton of a.

Since codef(a) = 0, there are no components of type (a) or (c), and any component of
type (b) must have k = 0. Together with the fact that Codom(«a) = X, it follows that
the path components of the form (3.5) are in one-one correspondence with the upper
singletons of 8. Thus, u = s(f).

(ii). Since Codom(«) = X, we have a*a = 1. Lemma 3.8(i) then gives s*(5) < s*(aff) <
s*(a*af) = s7(B).

(iii), (iv) and (vii). These are proved in similar fashion to (i) and (ii).

(v) and (vi). These follow from (i)—(iv), together with def(y) = s(y) + 2h(y) and
codef(y) = s*(y) + 2h*(y). O

Lemma 3.8(iv) says that def(a) < def(af) for any «,8 € PBx. The next result
gives a variation on this in the case that codef(a) < def(a), which, as we will see in
Theorem 6.6(i), is precisely the condition for « to be a product of idempotents and left

units.

Lemma 3.12. Let X be an arbitrary set, and let o, B € PBx. If codef(a) < def(«), then
def(B) < def(af).

Proof. Suppose codef(a)) < def(a). It suffices to demonstrate the existence of an injective
map

¢ : Def(B8) — Def(ap).
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By assumption, we may fix an injective map 1 : Codef(«) — Def(«). Let {%; : i € I} be
the set of all connected components in the product graph IT(«, 8) that contain a point 2",
where z € Def(3). We define ¢ by specifying its action on the sets {z € Def(8) : 2" € %},
for each i € I.

o If % is a trivial component (i.e., if it is contained wholly in X”'), then all of its
vertices z” are such that z belongs to both Def(8) and Codef(«). We then define
z¢ = zv for all such vertices.

o If %, has the form (3.3), then we must have k > 1 (since %; involves at least one point
z" with z € Def(f)). In this case, we have z1,..., 20, € Def(5), 22x+1 € Dom(f),

z1 € Codom(ar) and zs, ..., zop41 € Codef(cr). We then define z;¢ = zj,11) for each
1< j <2k

o If €; has the form (3.4), then z1,...,20r € Def(8), z1,22r € Codom(c) and
Z2,... 2011 € Codef(a). We then define z1¢ = zja™ !, zop¢p = 2opa~ ! and

zj¢ = zj9 for each 2 < j <2k — 1.

o If % has the form (3.5), then (whether this component is finite or infinite)
21,29,... € Def(8), 21 € Codom() and z29,23,... € Codef(a). We then define
z1¢ = z1a7 ! and z;¢ = z;9 for each j > 2.

o If & has the form (3.6), then 29,...,20p,_1 € Def(8), 21,20 € Dom(8) and
21, ..., %5 € Codef(a). We then define z;¢ = z;4¢ for each 2 < j <2k — 1.

o Finally, if %; has the form (3.7), then z9,z23,... € Def(58), 21 € Dom(f) and
21,22, ... € Codef(a). We then define z;¢ = z;¢ for each j > 2.

We have defined z¢ for each point z € Def(8), and in each case, one may check that
2¢ € Def(af). The injectivity of 9, and also of a~! : Codom(a) — Dom(c), ensures
that ¢ is injective. O

Note that if ;4 and v are cardinals with v < u, then the difference p— v is well defined;
if p is infinite (or if v = 0), then p — v = p.

Lemma 3.13. Let X be an arbitrary set, and let o, 8 € PBx. Then

(i) s(B) > codef(a) = s(af) > s(a) + s(B) — codef(a),
(ii) h(B) > codef(a) = h(af) > h(a) + h(B) — codef(a),
(iii) if def(B) =1 or def(B) > N, then def(8) > codef(a) = def(af) > def(3).

Proof. (ii). Let v be as in the proof of Lemma 3.8(ii). Also write x = codef(«), and
suppose h(f) > k. Since h(af) = h(a) 4+ v, we just need to show that v > h(8) — k.
Now, at most x of the upper hooks of /3 involve one or more points from Codef(«), so at
least h(f) — k upper hooks of 8 are contained in Codom(«). Any such upper hook of S
is involved in a component of type (3.4) in the product graph II(«, 8) with & = 1, and so
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uniquely determines an upper hook of af that is not a hook of «. Thus, h(8) — & < v,
as required.

(i). This is almost identical to (ii), but slightly simpler, so we omit the details.

(iii). Suppose def(8) > codef (). If def(8) = 1, then codef(a)) = 0, and so Lemma 3.11(v)
gives def(af) = def(a) + def(8) > def(5), completing the proof in this case.

For the remainder of the proof, we will assume that def(5) > Rg. From s(5)+2h(8) =
def(B) > Ny, it follows that def(f) = max{s(8), h(B)}. We assume def(f) = s(f); the
def(8) = h(B) case is almost identical. Now, s(f8) = def(f8) > codef(a), so part (i),
above, gives s(af) > s(a) + s(B8) — codef(a). Since s(8) > codef(«) and s(8) > Rg, we
have s(3) — codef(a) = s(8). But then def(af) > s(af) > s(a) + s(B) — codef(a) =
s(a) +s(B) > s(B) =def(B3). O

4. Units

In this section, we study the one- and two-sided units of PBx. For simplicity, we will
use the abbreviations

G% =GL(PBx), G¥=Gr(PBx), Gx=G(PBx)=gxngy,

for the monoids of all left units, all right units, or all (two-sided) units of PBx, respec-
tively. After characterising the elements of G%, G& and Gy in Lemma 4.1, we calculate
the relative ranks

rank(PBx :Gx), rank(PBx:G%), rank(PBx:G¥), rank(G%:Gx), rank(G¥:Gx),

in Theorems 4.7, 4.9 and 4.12; these theorems also classify the minimal-size generating
sets modulo the stated submonoids.

We begin with a description of the units. In what follows, the next result will often
be used without explicit reference.

Lemma 4.1. If X is an arbitrary set, then

G& = {a € PBx : Dom(a) = X} = {a € PBx : def(a) = 0},

(ii) 6% = {a € PBx : Codom(a) = X} = {a € PBy : codef(a) = 0},
Gx = {a € PBx : Dom(a) = Codom(a) = X}

= {a € PBx : def(a) = codef(a) = 0},

(iv) G¥ =Gx & GE=Gx & X is finite.

Proof. We just prove (i) and (iv), as (ii) is dual to (i), and (iii) follows from (i) and (ii).

(i). Let o € G, so that 1 = a3 for some 3 € PBx. Then X = Dom(af3) C Dom(a) C X,
so that Dom(a) = X. Conversely, if Dom(a) = X, then 1 = aa*, so that o € G&.
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(iv). By Lemma 2.3, it suffices to show that PBx contains a bicyclic submonoid if
and only if X is infinite. If X is infinite, then we take any a € PBx with Dom(a) =
X # Codom(a), and note that aa® = 1 # a*a, so that {a,a*} generates a bicyclic
submonoid. If X is finite, then PBx cannot contain a bicyclic monoid, since bicyclic
monoids are infinite. O

From Lemma 4.1(iii) we recover the well-known fact that the group of units
Gx = G(PBx) is isomorphic to the symmetric group on X; cf. [14, Section 2],
[15, Section 2] and [18, Lemma 2.3]. Note also that (Gk)* = {a* : a € G} = G&,
and similarly (GE)* = G%. In fact, if M is any monoid with an anti-involution
M — M : z — z* (meaning that (z*)* = z and (ay)* = y*a* for all z,y € M),
then GL(M)* = Gr(M) and Gr(M)* = GL(M). This means that any statement con-
cerning G% has a natural dual statement for G&, and the latter can be easily deduced
from the former. Thus, we will often only formulate results for one or the other of G%
or gﬁ.

The next simple lemma will be used often.

Lemma 4.2. Let X be an arbitrary set, and let o, € PBx. Then € GxaGx if and
only if all of the following hold:

t(a) = t(5)7 h(a) = h(5)7 h*(a) = h*(ﬁ)v S(a) = S(ﬁ), S*(a) = S*(B)

Proof. Write oo = (Z

}%, and let P and @’ be the sets of upper and lower singletons
of a, respectively.

vt eyt
(=). If 8 = yad where ,0 € Gx, then 8 = (ab’zé DZ(S

singleton sets of 3 are Py~1 and (QJ)’, respectively. Equality of the parameters is im-

, and the upper and lower

mediate.

(«<). Assuming equality of the parameters, we may write 8 = (; }%, using the same
indexing sets as for a. We also write R and S’ for the sets of upper and lower singletons
of B, respectively; by assumption, |P| = |R| and |Q| = |S|. We then define ,d € Gx so

that
€;Y = A4, bzézfz, Gj")/:Cj, Dk5:Hk fOI‘&HiEI,jEJ,kGK.

Then v must also map R bijectively onto P, and § must map @ bijectively onto S, and
we have f =~vad. O

The next result is key in what follows; it shows that infinite PBx may be generated
by Gx along with two other Brauer graphs of a certain form.

Lemma 4.3. Let X be an infinite set, and let o € G and 8 € G& with h*(a) = h(B) = | X|.
Then PBx = aGxp.
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Proof. Since Dom(a) = Codom(8) = X, and since h*(a) = h(8) = |X|, we may write
a = (;’ }ﬂ and f = (C;HDw . For each x € X, write B, = {by1,bs2} and D, =
{ds1,dz2}. Fix subsets Y, Z C X such that X =Y U Z and | X| = |Y|=|Z|.

Let v € PBx. We must show that v = adf for some § € Gx. We give the definition
€4 Gj
fi|Hk
indexing sets I, J and K are disjoint (but noting that any or all of them might be

empty). For each j € J and k € K, write G; = {g;1,9;j2} and Hy = {hg1, hia}.

of ¢ in several stages; see steps (i)—(vi) below. Write v = ( , assuming that the

(i) For every ¢ € I, we define a.,d = cy,.

Let Y and Y be subsets of Y such that |Y;| = |J|, |[Yk| = |K|and |[Y\Y,| = |V \Yk| =
| X|. Write Y; = {y; : j € J} and Y = {y : k € K}. (We do not require that Y; and
Yk be disjoint.)

(ii) For each j € J, we define ay;,0 = dy;1 and ay,,6 = dy;o.
(iii) For each k € K, we define by, 10 = cp,, and by, 20 = cp,,.

Next, let V' be the set of all upper singletons of v, and W’ the set of all lower single-

tons of v, where W C X. Let Zy and Zy be subsets of Z such that Zyy N Zy = 9,

and |Zy| = |VIRg and |Zw| = |W|Rg. Write Zy = {zyn, : v€V, n € N} and

Zw =A{zyn 1w €W, n €N}

(iv) For each v € V, we define a,6 = d,, .1, b5, 10 = d 20 =d
each n € N.

(v) For each w € W, we define b, , 10 = ¢y, bs,, 20 = d

bzp,10 =d., 2 for each n € N\ {0}.

5 and b 1 for

Zoun, Zoun, Zoun, Zu,n+1;

zun,1 for each n € N, and

Zwn s

So far, § is defined to be a bijection from

Codom(a) U U B, to Dom(53) U U D,.

z€YRUZyUZw €Y ;UZyUZw

We denote these sets by X7 and X, respectively. Examining steps (i)—(v), note that if
the definition of § is completed arbitrarily (by specifying the edges between the vertices
X1 U X)), then each connected component of v is a connected component of adf, so
that v = ad. Here we wish to show that the definition of § may be completed in such
a way that € Gx. Now, the complements X \ X; and X \ X> contain UxeY\YK B, and
Uzey\y, Da, respectively, and so [X \ Xi| = |X \ Xp| = |X[. Thus, there is a bijection
e: X\ X = X\ X

(vi) We complete the definition of § by defining 26 = z¢ for all x € X \ X;.
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(6L(PBx)]  (F(PBx)]  (Ga(PBx)]

(6(PBx)]  (E(PBx))

{1}

Fig. 5. The part of the submonoid lattice of PBx containing the submonoids studied in this article; the
diagram on the right displays the shorthand notation we use for the submonoids.

Then ¢ is indeed an element of Gx, and we noted above that v = adf. This completes
the proof. O

Lemma 4.3 makes no assumption about singletons of «, 8; in particular, it could be
the case that «, 8 have no singletons at all: i.e., that o, € Bx. Among other things,
the next result uses this observation to show that any Brauer graph on an infinite vertex
set is a product of two full Brauer graphs.

Corollary 4.4. If X is an infinite set, then

(i) PBx is generated by its left units and right units; in fact, PBx = GEGL,
(ii) PBx is generated by Bx; in fact, PBx = B% = (Bx NG¥)(Bx NGL).

Proof. Clearly it suffices to show that PBx C (Bx NG¥)(Bx NG%). Let o, 8 € Bx be
such that Dom(«) = Codom(f) = X and h*(«) = h(8) = |X|. Then for any v € PBx,
Lemma 4.3 gives v = adf for some § € Gx. The proof concludes with the observation
that ad € meg§ and 3 EBXOQ)L(. O

Remark 4.5. It follows from Corollary 4.4(i) that infinite PByx is equal to Gpr(PBx),
in the notation of Section 2. Since also GLr(M) C Frr(M) C M for any monoid M, it
follows that PBx = Frr(PBx) as well. Thus, the lattice of submonoids given in Fig. 1
simplifies a little in the case of infinite PBx. Fig. 5 pictures this simplified lattice. All of
the submonoids pictured in Fig. 5 are distinct, as may be deduced from the descriptions
of these in Lemma 4.1 and Theorems 5.8, 6.1 and 6.6.

Remark 4.6. Although Corollary 4.4(i) gives PBx = GEGL | it is not the case that
PBx = GLGE. Rather, we have GLGE = {a € PBx : t(a) = | X|}. Indeed, if a € PBx
[ 2% Cj

b, (D) and it is then easy to see that

satisfies t(a) = | X|, then we may write o =
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o = (v, where 8 = (a;}% c g)L( and v = (;}ﬁ S QQ. Conversely, if § € Q)L(
and ¢ € G¥, then from Codom(§) = X = Dom(e), we obtain Dom () = Dom(4),
and so t(de) = |X|. (As noted in the proof of [31, Lemma 4.2], this also follows from
considerations of Green’s relations.)

We are now ready to prove the first main result of this section.
Theorem 4.7. Let X be an infinite set.

(i) We have rank(PBx :Gx) = 2.
(ii) If a, B € PBx, then PBx = (Gx U{«,B}) if and only if (renaming if necessary)
a€GE, §egk andh*(a) = h(B) = X|.

Proof. If o € G& and 3 € G& are such that h*(a) = h(B) = | X/, then Lemma 4.3 gives
PBx = (Gx U{a, 5}). This gives the backwards implication in (ii), and also shows that
rank(PBx : Gx) < 2; the reverse inequality follows from Lemma 2.11(ii).

It remains to show the forwards implication in (ii). With this in mind, suppose
a, B € PBx are such that PBx = (Gx U{«, 8}). Renaming if necessary, Lemma 2.11(i)
gives @ € GE\ Gx and B € GL \ Gx. Let v € PBx be such that h*(y) = |X|, and
consider an expression 7 = §y - - - 8, where d1,...,0r € Gx U {a, 8}. Corollary 3.10(ii)
gives h*(d;) = | X| for some i. Since h*(8) = 0 (as 8 € G%) and h*(¢) = 0 for all € € Gy,
it follows that d; = a, and so h*(«) = | X|. A similar argument gives h(f8) = |X|. O

Remark 4.8. Note that Theorem 4.7(i) is true for 2 < | X| < Ry as well. However, if X is
finite, then PBx = (Gx U {a, 8}) if and only if (renaming if necessary) h(a) = h*(a) =
s(B) = s*(f) =1 and s(a) = s*(a) = h(B) = h*(B) = 0. This all follows from the proof
of [9, Proposition 3.16].

Now that we have calculated rank(PBx :Gx), it is easy to deduce the values of
rank(PBx : GL) and rank(PBx : G&). The next result only gives the statement for G%;
the corresponding result for G¥ is dual.

Theorem 4.9. Let X be an infinite set.

(i) We have rank(PBx :G%) = 1.
(ii) If « € PBx, then PBx = (G% U {a}) if and only if « € GE and h*(a) = | X]|.

Proof. If a € GE is such that h*(a) = |X]|, then for any 8 € Gk with h(8) = |X],
Lemma 4.3 gives PBx = (Gx U {a, 8}) C (G4 U {a}). This gives the backwards implica-
tion in (ii), and rank(PBx : G&) < 1; the reverse inequality is obvious, since PBx # G%.

For the forwards implication in (ii), suppose a@ € PByx is such that PBx =
(G% U {a}). By Lemma 2.11(i), G% U {a} contains at least one element of G¥ \ Gx;
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since (g}? \Gx)N g)L( = @, it follows that this element must be «, and so a € g;?. The
proof of Theorem 4.7(ii) works virtually unmodified to show that h*(a) = | X|, noting
that h*(e) =0 for alle € G%. O

Next, we wish to calculate the relative ranks of Q)L( and Q§ modulo Gx. In contrast
to the previous situations (Theorems 4.7 and 4.9), we will see that rank(G% :Gyx) and
rank(G% : Gx) depend on the value of | X|: more specifically, they depend on the number
of infinite cardinals not exceeding | X|. Again, we just treat the G% case.

Lemma 4.10. Let X be an infinite set, and let Q@ = {a,, B, :p=1 or Rg < p < |X|} C
g%, where

h(o) = s(Bu) = p and (o) = h(Bu) = 0.
Then Gk = (Gx UQ).

Proof. For n € N\ {0}, define o, = of and 5, = 7. Then Lemma 3.11(i) and (iii)
gives

han) = s(Brn) =n and s(an) = h(B,) =0.

We also let ag, By be arbitrary elements of Gx. Now let v € GX be arbitrary, and write
i = h(y) and v = s(v). Then, again by Lemma 3.11(i) and (iii), o, 5, € (Gx USY) satisfies

hauBy) =h(op) +h(By) =pn+0=p and similarly s(auBy) = .

Since also Codom(w,3,) = X, as a,8, € G&%, Lemma 4.2 gives v € Gxa,B,Gx C
<gX U Q> O

Lemma 4.11. Let X be an infinite set, and suppose Q C G% is such that Gk = (Gx UQ).
Then Q contains a subset of the form described in Lemma 4.10.

Proof. Let p be any cardinal such that either p = 1 or Xy < p < |X|. We must show
that there exist elements «, 8 € ) such that

h(a)=s(8)=pn  and  s(a)=h(B)=0.

We just prove the existence of a, as the argument for 3 is almost identical. Let o € G%
be such that h(c) = p and s(o) = 0, and consider an expression o = «; - - - o, where
ag,...,ap € Q. Then Lemma 3.11(i) gives

b= h(o) = hlon - ax) = hlaa) + -+ h{a)
and similarly 0=s(a1)+ -+ s(ag).
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The latter gives s(a;) = 0 for all 4, and the former gives h(a;) = p for some i; we take
oa=cq;. 0O

Here is the final main result of this section; it follows quickly from Lemmas 4.10
and 4.11, after checking that the set € from Lemma 4.10 has the appropriate size.

Theorem 4.12. Let X be an infinite set, and let p be the number of cardinals p satisfying
No < p < [X].

(i) We have rank(GL : Gx) =2+ 2p.
(ii) If p < N, and if Q C GL with |Q = 2+ 2p, then Gk = (Gx UQ) if and only if Q
has the form described in Lemma 4.10. 0O

Remark 4.13. The assumption p < ¥y is essential in Theorem 4.12(ii); indeed, if p > R,
then Q C GL could contain a proper subset of the form described in Lemma 4.10, yet
still have |Q| = 2 + 2p.

Remark 4.14. If we write | X| = X,, where « is an ordinal, then p = 1 + |a|. Thus,
rank(g)L( :Gx) <Ny & p< ¥y & |X| =Y, for some n € N.

If p > Ng, then rank(g)L( :Gx) = p. Thus, writing w and w; for the first countable and
uncountable ordinals, respectively,

rank(G%:Gx) =Ry & p=Ry & R, <|X[<R,,.

In particular, rank(G% : Gx) is countable for uncountably many values of |X|. Similar
comments may be made for other relative ranks whose values involve the parameter p;
see Theorems 6.16, 7.6, 7.14 and 7.17.

5. Idempotents

All other submonoids of PBx we consider will include the set E(PBx) of all idempo-
tents among their generators. Accordingly, in this section, we investigate the submonoid
E(PBx) = (E(PBx)) generated by all such idempotents. For simplicity, we will write
Ex for E(PBx) from this point on. The main results of this section include a charac-
terisation of the elements of £x in Theorem 5.8, and the calculation of the relative rank
of PBx modulo £x (equivalently, modulo E(PBx)) in Theorem 5.12, where we also
classify the minimal generating sets modulo Ex.

The idempotents of PBx were described (and enumerated) in [8]; however, we do not
need the full classification here. Rather, we just need to know that certain simple Brauer
graphs are idempotents. The next result follows from [8, Theorem 5], but we include a
simple proof for convenience; we will often use this result without explicit reference.
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Lemma 5.1. If X is an arbitrary set, and if « € PBx is such that xa = x for all
x € Dom(«), then a is an idempotent.

Proof. For any o € PByx, all of the non-transversals of o remain in the product a?. The
stated assumption ensures that this is the case for the transversals of o as well. O

To describe £x, we must first define some more parameters associated to Brauer
graphs. We define the fiz, support and shift sets and cardinals of a € PBx to be

Fix(a) = {z € Dom(a) : za = z}, fix(a) = |Fix(«)|,
Supp(a) = X \ Fix(a), supp(«) = |Supp(a)|,
Sh(a) = Dom(a) \ Fix(a), sh(a) = |Sh(a)].

Note that the condition “xa = x for all x € Dom(«)” in Lemma 5.1 could be restated
as “Fix(«a) = Dom(«)” or, equivalently, “sh(a) = 0”. It is easy to construct idempotents
of PBx where these conditions do not hold. Note also that Supp(«) = Def(a) U Sh().

Two important steps in the proof of Theorem 5.8 (which describes the elements of
infinite £x) have been completed elsewhere in the literature. Namely, the monoid £x
was described in the case of finite X in [9], and the idempotent-generated subsemigroup
of the larger partition monoid Px was described in [15]. We will postpone a discussion
of the latter (see Lemma 5.7 and the preceding paragraphs). The next result is part of
[9, Theorem 3.18].

Theorem 5.2. If X is a finite set, then
Ex ={a € PBx : def(a) <1 and sh(a) =0} U{a € PBx : def(a) > 2}. O

A key role in the proof of Theorem 5.8 is played by another important submonoid,
which has been useful in a number of other contexts [11,12,15,17]. By parts (ii) and (iii)
of Lemma 3.8, the set

Ix ={a € PBx :h(a) =h*(a) =0}

is a submonoid of PBx. It was noted in [15, Section 2] that Zx is isomorphic to the
symmetric inverse monoid on the set X: i.e., the set of all injective partial transformations
of X under the operation of relational composition. Note that Zx is closed under the
a + o map discussed in Section 3. Indeed, if a € Ty, then a* = a~! is the inverse
mapping of . The main remaining step in establishing Theorem 5.8 is to describe the
elements of Zx that are products of idempotents from PBx; this is accomplished in
Lemma 5.6, the proof of which requires the next three preliminary lemmas.
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[NS - A )
F1e7 OV

Fig. 6. Verification of the equation o = B¢ from the proof of Lemma 5.3; see the text for more details.

Lemma 5.3. Let W be a finite set of size 3m, where m > 2, let x1,...,x, be dis-
tinct elements of W, and let o = 2 o x;:l fgf) € Tw. Then « = B~§ for some

Proof. In Fig. 6, we define the idempotents 3,v,0 € E(PBy ) and show that a = 8vd.
In the figure, the 2m elements of W \ {z1,...,z,,} are shaded grey. O

Lemma 5.4. Let W be a finite set of size 3m — 2, where m > 2, let x1,...,x, be
distinct elements of W, and let o = 2 o x;"gl) € Iw. Then a = B~ for some

B,7,0 € E(PBw).

Proof. The proof is almost identical to that of Lemma 5.3. In fact, Fig. 6 may easily be
modified to work here as well. We simply remove the last two grey vertices from each
row as well as any blocks from (3, v and § that involve any of these vertices, and also the
transversals {z,, 21}, {zm,z,,} and {z1, 2]} from «, 8 and 0, respectively. O

The proof of Lemma 5.3 may also be easily modified to prove the following.
Lemma 5.5. Let W be a countably infinite set, let {...,x1,29,23,...} be a subset of

7).

:::) of Twy. Then o = B0 for some 8,v,8 € E(PBw). O

z2
T3

T3
T4

W with infinite complement, and let o be any of the three elements (Z;
(sl ) or (2]

If « € PBx, and if W C X is such that any edge {z,y} of « satisfies either
z,y EWUW orz,y € (X\W)U(X\ W), then we define the restriction of o to W to
be the induced subgraph of a on vertex set W U W’; note that this restriction belongs
to PBw .

If {W; :i € I} is some collection of pairwise disjoint sets, and if «; € PByy, for all 4,

then we denote by (J,¢;
equal to the union of the edge sets of the «;. Sometimes this operation is denoted & or

T4
x3

T2
T3

T3
T4

a; the Brauer graph with vertex set (J;.; W; and with edge set

® (see for example [8,43]), but since we view the elements of partial Brauer monoids as
graphs, U seems more appropriate for our purposes.

The proof of the next lemma uses cycle-trail notation for elements of Zx, which we
now describe.
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(i) A finite cycle is a permutation (x1,...,z;,) of a set {x1,...,2z,} that maps
T To > oo > Ty > T

(ii) An infinite cycle is a permutation (..., z_1,xg,x1,x2,...) of a set
{-..,2_1,20,%1,22,...} that maps -+ +— x_1 > Tg > T3 — Tog > .

(iii) A finite trail is a partial bijection [z1,...,2,] of a set {z1,...,2;,} that
maps Ij — Zg — -+ > Xy, This trail has domain {z1,...,2,—1} and codomain
{z2,. .., Tm}

(iv) A right-infinite trail is a partial bijection [x1,x2,...] of a set {z1,za, ...} that maps
Z1 +> T +> ---. This trail has domain {z1, o, ...} and codomain {z,x3,...}.

(v) A left-infinite trail is a partial bijection [...,z2,21] of a set {x1, z2,...} that maps

-+ oo +— x1. This trail has domain {3, x3,...} and codomain {1, za,...}.

The cycle in (i) is called an m-cycle, and the trail in (iii) an m-trail; these are called
trivial if m = 1, or non-trivial if m > 2. Note that a trivial cycle is the identity map
on a one-element set, while a trivial trail is the empty map on a one-element set. Cycles
and trails may be regarded as elements of suitable partial Brauer monoids, using the
identification of Zx with a submonoid of PBx described above. It is easy to see that any
element of Zxy may be uniquely decomposed as a (disjoint) union of cycles and trails.

Lemma 5.6. If X is an infinite set, and if a € Tx is such that def(a) = codef(a) >
max(Ro, sh(a)), then a € Ex.

Proof. For the proof, we define the fail set and cardinal of o by
Fail(a) = X \ (Dom(«) U Codom(a)) = Def(a) N Codef () and fail(a) = |Fail(«)|.

We consider two cases, according to whether sh(a) < fail(«) or sh(a) > fail(a).

Case 1. Suppose first that sh(a) < fail(«a). We first claim that fail(er) > Rg. To prove
this, suppose to the contrary that fail(c) < Rg. Then

codef(ar) = |Codef ()| = |Fail(er) U (Codef(«) \ Fail(«))]
= fail(a) + |Codef () \ Fail(a)].

Since codef(a) > Ry and fail(a) < R, we have |Codef(«) \ Fail(«)| = codef () > Ng.
Now,

Codef(a) \ Fail(a) = (X \ Codom(e)) \ (X \ (Dom(cr) U Codom(cv)))
= Dom(a) \ Codom(a) C Sh(a).

It follows that ¥y < |Codef(«) \ Fail(a)| < sh(a) < fail(a) < Vg, a contradiction.

This completes the proof of the claim that fail(a) > Ny. Consequently, and using
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sh(a) < fail(«), we may fix two subsets Y,Z C Fail(a) such that Y N Z = & and
Y| = |Z] = sh(a). We also fix bijections ¢ : Sh(a) - Y and ¢ : Sh(a) — Z.
Now suppose « has

(i) non-trivial finite cycles {a; :4 € I},  (iv) right-infinite trails {oy : | € L},
(ii) infinite cycles {a; : j € J}, (v) left-infinite trails {a, : m € M},
(iii) non-trivial finite trails {ay, : k € K},

where the indexing sets I, J, K, L, M are assumed to be pairwise disjoint. Note that we
have not listed the trivial cycles and trails. Write @ = T U J U K U L U M. Note that
Sh(a) = [lyeq Dom(ay). For each g € Q, let X; = Dom(ay) U Codom(ayg), and put

Wy = Xq UDom(ag)¢ UDom(ayg ).

If i € I and «; is an m-cycle, then |W;| = 3m; if k € K and oy is an m-trail, then
|[Wi| = 3m — 2; and if ¢ € JUL UM, then |X,| = |[W,| = |[W, \ Xy = No. For each
q € Q, let B, be the unique element of Zyy, with the same transversals as a,. Then
by Lemma 5.3, 5.4 or 5.5, as appropriate, there exist vq, 04,64 € E(PBw,) such that
Bq = Vq04€4- Note that Fix(a) C X\U,cq Wy C Fix(a)UFail(a). Put V = X\U, .o Wo,
and let ¢ € PBy be the Brauer graph with edge set {{z,2'} : = € Fix(«)}. With ¢
denoting any of v, d, e, we define £ = (U, &- Then by construction, v,4d,e € E(PBx)
and o = yde.

Case 2. Now suppose sh(a) > fail(a). For simplicity, write A = Dom(«a) and B =
Codom(a), and put By = (A N B)a, noting that B\ By = (A \ B)a. In the proof
of [15, Lemma 27], it was shown that |A\ B| = |B\ A| = |B\ Bi|. Fix a bijection
¢: A\ B — B\ A, and define 8,7 € Zx by

b

) b
b¢) weAnB, beA\B

ba

8= (s

and y= (a‘g

>aeAmB,beA\B'

Evidently, we have o = 37y, so the proof will be complete if we can show that 5,7 € Ex.
Now, v maps B bijectively onto itself, so def(y) = codef(y) = fail(y) = |X \ B| =
codef(a) > Ng. Because of Case 1, we will be able to conclude that v € Ex if we can
show that def(y) > sh(y). Define C = {x € AN B : za # z}, and note that Sh(a) =
(A\ B)UC. But also Sh(v) C (B\ A) UC, and so

sh(y) <|B\ A|+ |C| =|A\ B| 4 |C| = sh(a) < codef(a) = def(y).

As noted above, this completes the proof that v € £x. It remains to show that 5 € £x.

Now, £ maps A bijectively onto B, mapping A N B identically onto itself, and A\ B
onto B\ A. Since A\ B and B\ A are disjoint, it follows that the cycle-trail decomposition
of B consists of 1-cycles (one for each element of AN B), 1-trails (one for each element
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ap bp cp dp

ap b cp d ﬁknh
»BJ ..\\. = Oh
*Wh

Fig. 7. Verification of the equation 8, = npopmh from the proof of Lemma 5.6; see the text for more details.

of Fail(8) = X \ (AU B)), and 2-trails (one for each element of A\ B). Note also that
sh(B) = |A\ B| = |B\ A|]. We must consider two subcases.

Case 2.1. First consider the case in which sh(8) < Rg. Now,
def(B) = | X \ 4| = def(a) and codef(8) = | X \ B| = codef(a).
Thus, def(8) = codef(8) > Ry = max(Ro, sh(8)). Also,
Ng < def(8) =X\ Al = |B\ A| + | X \ (AU B)| = sh(p) + fail(s).
From sh(8) < R, it then follows that fail(8) > Rg. Consequently, sh(3) < R, < fail(g),
and so B € £x, by Case 1.
Case 2.2. Finally, suppose sh(5) > Xy. Choose some indexing set H with |H| = sh(f) =
|A\ B|. Since |H| > Ry, we may write
A\B={ap:he H}U{by,:he H}.

For h € H, put ¢, = a8 and dp, = by 5. Then the 2-trails of g are

{lan, cn], [bn,dp] : h € H}.

For each h € H, let W), = {an,bn,cn,drn}, and let By = [ap,cp] U [by,dr] € PBw, be
the restriction of g to Wj,. In Fig. 7, we show that for each h, f5;, = npopmy, for some
My On, Th € E(PBw,). Put V.= (ANB)U(X \ (AUB)), and let ¢ € PBy be the Brauer
graph with edge set {{z,2'} : € AN B}. With ¢ denoting any of 7,0, 7, we define
£ =CUUpey &n- Then n,0,m € E(PBx) and = now, completing the proof. O

We have already noted that PBx is a submonoid of the larger partition monoid
Px. The idempotent-generated subsemigroup of Px was described in [15, Theorem 30].
We do not need to give the full details of this result, or even fully define Px itself,
but we will make some comments that are relevant to the current situation. To an
element « of Py, one may associate the singularity and cosingularity parameters, denoted
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sing(a) and cosing(a), respectively; see [15, p. 115]. Of crucial importance here is that
when a € PBx, we have sing(a) = def(«) and cosing(«) = codef() in our current
terminology. There is also a notion of the shift and support, sh(a) and supp(«), of
an element a of Px, and these coincide with our current definitions in the case that
a € PBx; but note that supp(a) was denoted warp(a) in [15].

Recall from [15,51] that an element € PBx is a projection if a? = a = a*. It is easy
to see, using (3.2), that for any o € PBx, both aa* and a*« are projections. Hence, if «v is
any idempotent from PBx, then again using (3.2), a = aa*a = a(aa)*a = (aa*)(a*a)
is the product of two projections. Thus, £x is also equal to the subsemigroup of PBx
generated by all projections. The next result follows from the first paragraph of the proof
of [15, Theorem 30].

Lemma 5.7. Let X be an infinite set, let B1,...,0r € PBx be projections, and put o =
B1 - Br. If supp(B;) > Ry for some i, then def(a) = codef(a) > max(Xg,sh(a)). O

We are now ready to state and prove the first main result of this section, which
characterises the elements of the idempotent-generated subsemigroup £x = E(PBx) of
PBx.

Theorem 5.8. If X is an infinite set, then

Ex = {a € PBx : def(a) <1 and sh(a) =0}
U{a € PBx : def(a) > 2 and supp(a) < Np}
U{a € PBx : def(a) = codef () > max(No, sh(x))}.

Proof. During the proof, we will write

e O ={aePBy :def(a) <1 and sh(a) = 0},
o Oy ={a € PBx :def(a) > 2 and supp(a) < Ng},
e Q3 ={a € PBx : def(a) = codef(a)) > max(Xg, sh(a))}.

First suppose o € Ex. As discussed above, we may write « = f1--- S, where
Bi,..., Bk € PBx are projections. If supp(B;) > Ny for some i, then @ € Qg, by
Lemma 5.7. Next, suppose supp(f;) < R for all <. Put W; = Supp(p;) for each 4, and let
W = Ule W;, noting that |[W| < Rg and Supp(a) C W. For each ¢, let ; € E(PBw ) be
the restriction of 3; to W. Then 1 - - -y, € E(PBw), and it quickly follows from Theo-
rem 5.2 that o = 31 - - - B € Q1 U Q5. This completes the proof that Ex C Q1 Uy U Q3.

To prove the reverse inclusion, first note that ; Uy C Ex also follows quickly from

Z: gl . Then o = B~J, where

B = (Z:}%, v = (Zz) and § = (Zim. By Lemma 5.1, 8, € E(PBx). Also, v € ITx

Theorem 5.2. Now suppose a € (23, and write a = (
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satisfies def(y) = def(a), codef(y) = codef(a) and sh(y) = sh(a), so that def(y) =
codef(y) > max(Xg,sh(y)). Lemma 5.6 then gives v € Ex, and the proof is complete. O

Remark 5.9. We note for later reference that any element « of Ex satisfies def(a) =
codef (). Indeed, this is obvious if @ € Q3 (in the notation of the above proof), and
follows quickly from Lemma 3.1 if o € Q7 U Q5.

Remark 5.10. Even though PBx is a submonoid of Px, the idempotent-generated sub-
semigroup E(PBx) is not simply the intersection of E(Px) with PBx. Indeed, any
a € PBx with def(a) = 1 and supp(a) < Ng is a product of idempotents from Px, as
follows from [15, Theorem 30] or [12, Proposition 16]; however, such an « is only a prod-
uct of idempotents from PBx if « is itself an idempotent, as follows from Theorem 5.8.

Now that we have characterised the elements of Ex = E(PBx), we wish to calculate
the relative rank of PBx modulo £x. In Lemma 4.3 above, we proved that PBx = aGx /3
for suitably chosen one-sided units o € G¥ and 8 € G&. The next lemma gives the
analogous result for £x; instead of requiring that h*(a) = h(8) = |X|, we make the
weaker assumption that codef(a) = def(5) = | X]|.

Lemma 5.11. Let X be an infinite set, and let o« € G& and B € G% with codef(a) = def(3)
= |X|. Then PBx = a€xp.

Proof. Choose any partitions {A, : x € X} and {B, : ¢ € X} of Codef(a) and Def(f),
respectively, with |A,| = |By| = 2 for all # € X. Define (full) Brauer graphs oy =

( H B1 = ( 1}ﬁ ag = aay and By = f16. Then aq, 1 € E(PBx), and

ar=(sfa) ek = (") gk h(a2) = h(9) = |X]

Now let v € PBx be arbitrary. We follow steps (i)—(v) in the proof of Lemma 4.3 to define
an element 0 € PBx such that v = azdfa; however, after step (v), we instead define all
the elements of (X \ X1) U (X \ X2)’ to be singletons of 6. Since def(d) = codef(d) = |X]|,
Theorem 5.8 gives § € Ex. But then v = as6f2 = a(a1661)8 € ax B, as required. O

We may now calculate the relative rank of PBx modulo £x = E(PBx).

Theorem 5.12. Let X be an infinite set.

(i) We have rank(PBx :Ex) = 2.
(ii) If a, B € PBx, then PBx = (Ex U {a, B}) if and only if (renaming if necessary)
a € G, B e Gk and codef(a) = def(8) = | X]|.

Proof. Lemma 5.11 gives the backwards implication in (ii), and also rank(PBx : Ex) < 2
the reverse inequality follows from Lemma 2.11(iii).
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For the forwards implication in (ii), suppose «, € PBx are such that PBx =
(Ex U{a, B}). By Lemma 2.11(i), we may assume without loss of generality that o € G&
and B € G%. We must show that codef(a) = def(3) = |X|. By duality, it suffices to
prove the statement concerning «.. To do so, let v € PBx be such that def(y) < |X| =
codef(y), and consider an expression v = d; - - - d;, where all of the factors belong to
Ex U{a,pB}. For 0 < i < k, let 7y = 01---9;. Then for any i, Lemma 3.8(iv) gives
def(vy;) < def(yidi41---0r) = def(y) < |X]|. Since codef(yy) = 0 and codef(y,) =
codef(y) = |X|, we may define j = min{i : codef(y;) = | X|}, noting that 1 < j < k
and codef(y;_1) < |X]. If also codef(d;) < |X|, then Lemma 3.8(iv) would give | X| =
codef(ry;) = codef(y;-10;) < codef(y;_1)+ codef(d;) < |X|, a contradiction. So we must
have codef(d;) = | X|; thus, the proof will be complete if we can show that a = ;. Now,
if also def(d;) = | X/, then since | X| > Rg and | X| > codef(~y;_1), Lemma 3.13(iii) would
give def(y;_10;) > def(d;) = | X|, contradicting def(y;_1d;) = def(y;) < |X|. So we must
in fact have def(d;) < |X| = codef(d;). As noted in Remark 5.9, we def(e) = codef(e)
for all € € Ex, so it follows that §; € {«,3}. Also, since 8 € G%, we have codef(3) =
0 # | X| = codef(d;), and so §; = . O

Remark 5.13. Note that Theorem 5.12(i) is true for 2 < | X| < Rq as well. However, if X
is finite, then PBx = (£x U {«, B}) if and only if Gx = (a, 8). This all follows from the
proof of [9, Proposition 3.16].

6. Idempotents and two-sided units

We now turn our attention to the submonoid F(PBx) = (E(PBx) U G(PBx)) of
PBx generated by its idempotents and (two-sided) units. We will continue to write Gx =
G(PBx), Ex = E(PBx), and so on, and from now on, we will also write Fx = F(PBx).
By Lemma 2.5(iii), we have Fx = ExGx = GxEx. In Theorem 6.1, we characterise the
elements of Fx. Theorems 6.3, 6.5 and 6.16 calculate rank(PBx : Fx ), rank(Fx : £x) and
rank(Fx : Gx ), respectively; these theorems also characterise the minimal-size generating
sets modulo the stated submonoids.

In order to prove the main results, we will need several preparatory lemmas. Although
the main focus of the current section is idempotents and two-sided units, some of these
lemmas hold in the larger submonoids

FrL(PBx) = (E(PBx)UGL(PBx)) and  Fr(PBx) = (E(PBx)UGRgr(PBx)),

and will also be of use when we study these submonoids in Section 7. For simplicity,
we will denote these submonoids by F% and F%, respectively. The elements of these
monoids are described in Theorem 6.6.

We begin with a characterisation of the elements of Fx = F(PBx). In what follows,
we will often use the next result without explicit reference; since its statement and proof
hold regardless of whether X is finite or infinite, we make no restrictions on the size
of X.
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Theorem 6.1. If X is an arbitrary set, then
fX = E(PBx)gX = ng(PBx) = {Ot S PBX : def(a) = codef(a)}.

Proof. First note that E(M)G(M) = G(M)E(M) C F(M) for any monoid M. It re-
mains to show that

(i) Fx C {a € PBx : def(a) = codef(a)},
(ii) {a € PBx : def(a) = codef(a)} C E(PBx)Gx.

(i). By Lemma 3.1, def(a) = codef(a) for all @« € PBx if X is finite. So suppose
X is infinite, and let @ € Fx. Then a = fv for some § € Ex and v € Gx. Then
def(B) = codef(8), by Theorem 5.8 (cf. Remark 5.9). Lemma 4.2 then gives def(a) =
def(8) = codef(8) = codef(a).

aiC

(ii). Suppose a € PBx is such that def(a) = codef(a), and write o = (bv Di . Since

def(a) = codef(a), there is a permutation 8 € Gx such that a;8 = b; for all 7 € I. But
then a = (af~1)3, with af=t = (‘“ % an idempotent, by Lemma 5.1. O

@

Remark 6.2. An element x of a monoid M is unit regular if * = xax for some unit
a € G(M). As noted in [24, Section 3|, = is unit regular if and only if z = eg for
some idempotent e € E(M) and unit g € G(M). Thus, Theorem 6.1 shows that Fx =
E(PBx)G(PBx) is the set of all unit regular elements of Fx, and that the unit regular
elements form a submonoid of PBx; cf. [24, Corollary 3.7]. The unit regular elements of
an arbitrary monoid do not necessarily form a submonoid; for example, this is not the
case for finite partition monoids, as may easily be shown using GAP [48]. Unit regularity
also plays an important role in ring theory; see for example [19,29].

Now that we have characterised the elements of Fx, we can calculate its relative rank
in PBx.

Theorem 6.3. Let X be an infinite set.

(i) We have rank(PBx : Fx) = 2.
(ii) If a, 8 € PBx, then PBx = (Fx U{a,B}) if and only if (renaming if necessary)
a € GR, B e Gk and codef(a) = def(3) = | X]|.

Proof. (i). Since £x C Fx, Theorem 5.12 gives rank(PBx : Fx) < rank(PBx :Ex) = 2.
Lemma 2.11(iv) gives the reverse inequality.

(ii). If the stated conditions on a, § hold, then Lemma 5.11 gives PBx = (Ex U {a, 8}),
so that certainly PBx = (Fx U{«, 8}). Conversely, suppose PBx = (Fx U{a, 8}). The
proof of Theorem 5.12 works almost unmodified to show that «, 8 satisfy the stated con-
ditions. The only difference is that the elements 61, ..., d; used during the proof belong
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now to Fx U{a, 8}, rather than to Ex U {«, 8}. The key property of elements ¢ € Ex
used in the proof of Theorem 5.12 was that def(e) = codef(g); but this is also true if
instead € € Fx, by Theorem 6.1. O

Remark 6.4. Comparing Theorems 5.12 and 6.3, we see that for any «, 8 € PBx,

PBx = (Ex U{a, B}) & PBx = (Fx U{a,B}).

Since Fx contains both Gx and £x as submonoids, we would naturally like to calculate
the relative rank of Fx modulo these two submonoids. The case of £x is easily dealt
with; the following is an immediate consequence of Lemma 2.14 (cf. Remark 2.16), and
the fact that rank(Gx) = |Gx| = 2/XI (as Gx is uncountable).

Theorem 6.5. Let X be an infinite set.

(i) We have rank(Fx :Ex) = 21X
(if) If Q C Fx, then Fx = (Ex UQ) if and only if Gx = (Gx N Q). O

The value of rank(Fx :Gx) is harder to determine; again, it involves the number of
infinite cardinals not exceeding |X|. As noted above, some of the preliminary results
we require will be formulated so as to be of use when we study the larger monoids
FE = Fr(PBx) and F& = Fg(PBx) in Section 7. We begin by characterising the
elements of F% and F&. Recall that we write G% = G1(PBx) and G = Gr(PBx).
Also recall that F% = ExGL = FxGL (cf. Remark 2.7). Again, we will often use the
next result without explicit reference.

Theorem 6.6. If X is an arbitrary set, then

(i) F& = E(PBx)G% = {a € PBx : codef(a) < d (a)},

(ii) FB =GRE(PBx) = {a € PBx : def(a) < co

Proof. We just prove (i), as (ii) is dual. Since E(M)Gr(M) C Fr(M) for any monoid
M, it suffices to show that

(a) F& C {a € PBx : codef(a) < def(a)},
(b) {a € PBx : codef(a) < def(a)} C E(PBx)G%.

(a). Suppose o € F%, and write o = 7, where 8 € Fx and v € G%. By Theorem 6.1
and Lemma 4.1(ii), we have def() = codef(8) and codef(y) = 0. Combined with parts
(iv) and (v) of Lemma 3.8, it follows that codef(a) = codef(S7) < codef(3)+codef(y) =

def(B) < def(B) = def(a).
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(b). Suppose a € PBx is such that codef(a) < def(a). Write o = [Z}%, recalling
that this notation lists all of the non-transversals of «, not only the hooks. Choose an
injective map ¢ : Codef(a) — Def(a), and let U = X \ (Dom(a) U Codef(a)¢). Let

B € PBx have transversals, and upper and lower non-transversals
{{ai,a} viel}y, {Cj:jeld}, {Dpp:ke K}u{{u'}:ueclU},
respectively. Let v € PBx have transversals and upper non-transversals
{{a;,bj} i € I} U {{zg,2'} : x € Codef ()} and {{u} :u e U},

respectively. Then o = By, with 3 € E(PBx) by Lemma 5.1, and v € G% by
Lemma 4.1(ii). O

Remark 6.7 (Cf. Remark 6.2). An element x of a monoid M is right-unit regular if
x = zax for some right unit a € Gr(M); left-unit regularity is defined analogously.
(See [4] for the corresponding concept in ring theory.) If we write Ur(M) for the set of
all right-unit regular elements of M, then one may show that

GL(M)E(M) € Ur(M) € E(M)G(M). (6.8)

We do not have E(M)GL(M) C GL(M)E(M) in general, however. Indeed, consider
an element o € PBx with h(a) = s*(a) 1 and s(a) = h*(a) = 0. Then
a € FE = E(PBx)GL, by Theorem 6.6(i). However, we claim that o ¢ GXE(PBx).
To see why this is the case, suppose to the contrary that a = (v, where 3 € GL
and v € F(PBx). Now, codef(y) < codef(8y) = codef(a) = 1. If codef(y) = 1, then
since also def(y) = codef(v), by Remark 5.9, we must have s(y) = 1, in which case
Lemma 3.11(i) would give 0 = s(«a) = s(B87v) = s(8) + s(v) > s(v) = 1, a contradiction.
Thus, codef(y) = 0. But then Theorem 5.8 gives sh(vy) = 0 (since certainly v € £x), and
soy=1,and a = By = f € G, contradicting codef(a) # 0.

On the other hand, it is not hard to show that Ur(PBx) = E(PBx)G% = FL.
Indeed, by (6.8), it suffices to show that F% C Ur(PBx). To do so, let o € F&, write
U = Codom(a) and V = Codef (), and fix an injective map ¢ : V' — Def(«). Then it is

UZ)) e g
The next result will be used often, and highlights an important property of the ele-
ments of F%.

u

easy to see that a = afa, where g = (

ua !

Lemma 6.9. If X is an arbitrary set, and if oq,...,ap € FE, then def(a;---a;) <
def(ay - -ag) foralll <i<j<k.

Proof. We have
def(ai cee CVj) S def(ai R Oéj(Oéj+1 s Otk)) S def((a1 cee Oti_l)Oéi e (CVj+1 s Oék)),

by Lemmas 3.8(iv) and 3.12, respectively. O



464 J. East / Journal of Algebra 534 (2019) 427-482

The next lemma introduces a certain special kind of subset €2 of Fx that will play an
important role in this section and the next. The lemma immediately following will show
that for any such subset Q, we have Fx = (Gx U ), and we will see later that Q is of
minimal possible size with respect to this property.

Lemma 6.10. Let X be an infinite set, and let Q = {a,, B, p=1 0rRo < p < |X|} C
Fx, where for each p,

tap) = t(Bu) = X, slow) <p=hlew),  h(Bu) < p=s(Bu),

and etther

(1) 5°(a) < 11 = h*(a,) and h*(B,) < = 5°(By), or
(i) h*(o) < p = s"(ay) and s*(B,) < p=h"(By).

Then for any cardinal 0 < v < |X|, there exists o,,7, € (Gx UQ) such that

t(oy) = t(r,) = |X|, h(o,) = h*(0,) = s(1,) = s™(1) = v,
s(oy) = s*(o,) = h(1,) = h*(1,) = 0.

Proof. We use transfinite induction. First, let g, 79 be any elements of Gx. Now suppose
1 < v < |X] is such that elements o, 7, of the desired form exist for all cardinals k < v.

Case 1. Suppose first that 1 < v < Rg. Consider the elements o,_1,7,—1 € (Gx U Q),
guaranteed to exist by the above induction hypothesis. Note that when p© = 1, we must
be in case (i), as codef () = def(ay) = s(a1) +2h(a1) = 2, and similarly codef(5;) = 1.
Write Codef(aq) = {a,b} and Codef(81) = {c}, where a,b,c € X, and where a,b are
distinct (but note that possibly ¢ € {a,b}). Choose distinct u,v € Dom(o,_1) and any
w € Dom(7,_1), and let 7,6 € Gx be such that ay = u, by = v and ¢d = w. Then
oy = a1yo,—1 and 7, = $167,-1 have the desired properties. (For future reference, we
note that in fact 0,7, € (Gx U{a1,61}).)

Case 2. Suppose now that Xy < v < |X|. We begin by proving the existence of o,. We
first claim that:

there exists v € (Gx U ) such that t(v) = | X]|, h(y) = v and s(v) = 0. (6.11)

By assumption, «, € 2 satisfies ¢(e,) = |X| and s(a,) < v = h(a,). Clearly (6.11)
holds if s(a,) = 0 (we take v = ), so suppose s(a,) > 1. For simplicity, we write
k = s(ay,). (Note that x might be finite.) By the induction hypothesis, since k¥ < v, there
exists 0, € (Gx U Q) with t(0,) = |X|, k(o) = h*(0x) = k and s(oy) = s*(0,) = 0.
Let V be the set of upper singletons of a,. Since codef(o,) = 2k and |V| = &, with
Kk < |X]|, there is a permutation m € Gx that maps Codef (o) bijectively onto a subset
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W C VUDom(a,) with V C W (we may take W = V if & is infinite). Then v = o,ma,
satisfies the conditions of (6.11). A dual argument (using «,, in case (i) or 3, in case (ii))
shows that:

there exists 6 € (Gx U ) such that t(6) = | X|, h*(0) = v and s*(J) = 0. (6.12)
With v and § as in (6.11) and (6.12), and since 7,6 € Fx, Theorem 6.1 gives
codef(y) = def(y) = 2v = codef (§) = def(0).

Since also t(y) = |X| = t(9), there exists a permutation e € Gx that maps Codom(y)
bijectively onto Dom(¢), and it follows that o, = yed has the desired properties.

The existence of 7, is demonstrated in almost identical fashion, with the symbols s and
h swapped, and using (3, in place of a,,. The only place where special care is required is
as follows. In order to prove the analogue of claim (6.11)—i.e., to prove that there exists
v € (Gx UQ) such that t(y) = | X|, s(y) = v and h(y) = 0—we write k = h(5,), but we
then utilise the element 79, (rather than o) to ensure that a permutation 7 € Gx exists
so that v = 7,70, has the desired properties. Note that 2k < v follows from k < v,
since v > Ng. 0O

Lemma 6.13. Let X be an infinite set, and let Q& C Fx be as in Lemma 0.10. Then
Fx = (QX U Q>

Proof. Let v+ € Fx be arbitrary, and write A\ = t(y), up1 = h(7), po = h*(y),
vy = s(y) and v = s*(y). By Lemma 4.2, it suffices to demonstrate the existence of
any 0 € (Gx UQ) with

Ho) =X, h(d) =p, h(0)=p2, s(0)=w, s°(6) =1,

since then v € GxdGx. Theorem 6.1 gives 211 + v1 = def(y) = codef () = 2us + vs.

Case 1. Suppose first that A = | X|. Consider the elements 7, ,0,,, Ty, , Tv, € (Gx UQ) as
given by Lemma 6.10. Post-multiplying o,, by a suitable permutation if necessary, and
keeping in mind that t(o,,) = t(7,,) = | X|, we may assume without loss of generality
that Def(r,,) € Codom(c,,) and also |Codom(cy,) \ Def(7,,)| = |X|. It then follows
that

t(J#ITVl) = |X|a h(aluTl/l) = M1, 5(0#17—1/1) =.

Similarly, we may assume that

t(auzTVz) = |X|7 h*(o'/l«le/z) = M2, S*(UuzTyz) = 2.
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Since codef(o,, 7, ) = def(0,, 70, ) = 211 + 11 = 2p9 + 19 = codef (0, 7,,) = def(op,T0,),
and since t(o,,7,) = t(ou,7,) = |X|, there is a permutation 7 € Gx that maps
Codom(o, 7y, ) bijectively onto Dom(oy,7,,). Then § = (o,, 7y, )7(0,,Ty,) has the de-
sired parameter values.

Case 2. Suppose now that A < |X|. Since |X| = A + def(y) = A + codef(y), we have
def(y) = codef(y) = | X|. Write Dom(y) = A. By Lemma 4.2, post-multiplying by a
permutation if necessary, we may assume that ~ = [Z}%, again recalling that this

Cy
a| By

o[B, and ¢ =

notation lists all of the non-transversals. Clearly v = de, where § = [

[a}%; by symmetry, it suffices to show that ¢ € (Gx U Q). Fix a decomposition X =

a

Y U Z where |X| = [Y] = |Z|, and put U = ey By and V = {J,., B>. Then § =
0192, where §; = [m gy and 6y = [x gz . By Case 1, we have
TPy lzc AUV, yeYy TIPz1zecAUU, 2z€2

51,52€<QXUQ>. Od

The previous lemma will be used to give an upper bound on the size of generating
sets for Fx modulo Gx. The next two lemmas work towards establishing that this is also
a lower bound.

Lemma 6.14. Let X be an infinite set, and let p be a cardinal such that either up = 1
or Nog < p < |X|. Let an,...,cn € FE, write B = a1y, and suppose B € Fx and

t(B) = X

(i) If s(B) < p = h(B), then a; € Fx, s(a;) < u = h(a;) and t(ay) = | X| for some
ie{l,..., k}.

(ii) If h(B) < pu = s(B), then o; € Fx, h(ay) < p = s(a;) and t(o;) = |X| for some
ie{l,... k}.

Proof. Throughout the proof, we will frequently use Lemma 3.8 and Theorems 6.1
and 6.6 without explicit mention.

(ii). Suppose h() < p = s(B). Note then that codef(8) = def(8) = s(B) + 2h(B) =
p. For 0 < i < k, put 5; = ay---;. Then for any such i, Lemma 6.9 gives
codef(f3;) < def(5;) < def(ay -+ ay) = def(8) = p. Since codef(5y) = 0, we may define
j = max{i : codef(8;) < u}. Since codef(S;) = codef(B8) = u, we have 0 < j < k. Since
Corollary 3.10(i) gives t(aj4+1) = |X]|, the proof will be complete if we can show that

(a) ajt1 € Fx, (b) hlajy1) <, (c) s(aj1) = p.
From the definition of j, we have

codef(8;) < p and p < codef(B;4+1) = codef(B;a+1) < codef(B;) + codef (ax;11).
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Thus, by the form of u, codef(a;11) > p. Together with Lemma 6.9, it follows that
p < codef(a;q1) < def(aji1) < def(ay -+ - ax) = def(8) = p.

Thus, def(a;4+1) = codef(a;11) = p. In particular, (a) holds.

To show that (b) holds, suppose to the contrary that h(cj41) > p. Then h(ojq1)
> codef(f;), so Lemma 3.13(ii) gives h(Bjaj41) > h(B;) + h(aj41) — codef(5;)
h(oj41) — codef(5;). If p = 1, then codef(f;) = 0, while if y > R, then h(a;41)
i > Ro. Thus, in either case, h(ajq1) — codef(B;) = h(a11), and so u > h(p)
h(Bjajt1---ax) > h(Bjaji1) > h(ajy1) — codef(8;) = h(ajy1) > u, a contradiction.
This completes the proof of (b).

In light of p = def(aj41) = s(oj41) + 2h(aj41) and h(ej41) < p, and by the form of
, it follows that s(aj41) = p, giving (c).

v Iv Iv

(i). Suppose s(8) < u = h(f). This time, codef(8) = def(5) = 2u. If 11 > Ry, then 2u =
1, and the proof carries on in essentially the same way as in (ii), above. For the ;1 = 1 case,
we define j = min{s : def(c;) > 1}, noting that codef(«;) < def(a;) = 0 for all ¢ < j, so
that v = ay - - - aj_; belongs to Gx. Then v '8 = a; - - - ay, with s(y ™1 8) = s(8) = 0, by
Lemma 4.2. Lemma 6.9 gives 1 < def(a;) < def(ay ---ax) = def(8) = 2. Also, s(aj) <
s(aj---ag) = s(y71B) = 0, so that s(a;) = 0. Together with 1 < def(;) < 2, it then
follows that def(c;) = 2, and h(a;) =1. O

Lemma 6.15. Let X be an infinite set, and suppose Q C FE is such that Fx C (Gx UQ).
For any cardinal v such that n =1 or Xg < p < | X/,

(i) there exists o, € Q with oy, € Fx, s(ay) < p= h(ay,) and t(a,) =|X|,
(ii) there exists 8, € Q with B, € Fx, h(Bu) < 1= s(8,) and t(8,) = | X]|.

Proof. The proofs being essentially identical, we just prove (i). Let v € Fx be such
that s(y) < p = h(v) and t(y) = | X]|, where pp = 1 or Ry < p < |X|, and consider an
expression v = dj - - - 0, where each of the factors belong to Gx UQ. Lemma 6.14(i) says
that one of the ¢; satisfies §; € Fx, s(6;) < p = h(d;) and t(d;) = | X|. So we may take
o, = 6;, noting that §; ¢ Gx (as h(4;) >0). O

We have now gathered all the facts needed to prove the final main result of this section.

Theorem 6.16. Let X be an infinite set, and let p be the number of cardinals p satisfying
No < p < |X|.

(i) We have rank(Fx :Gx) =2+ 2p.
(ii) If p < Rg, and if Q@ C Fx with | = 2+ 2p, then Fx = (Gx U Q) if and only if Q
has the form described in Lemma 6.10.
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Proof. First, if Q C Fx is of the form given in Lemma 6.10, then Lemma 6.13 gives
Fx = {(Gx U Q). This gives rank(Fx :Gx) < |Q = 2 + 2p, and also the backwards
implication in (ii).

Next, suppose 2 C Fx is such that Fx = (Gx U Q) and |Q| = rank(Fx :Gx). By
Lemma 6.15 (noting that Q@ C Fx C ]-')Ig), for any cardinal g such that g = 1 or
No < p < [X],

(a) there exists o, € Q with s(a,) < p = h(a,) and t(a,) = | X|,
(b) there exists 5, € Q with h(8,) < p = s(8,) and t(5,) = | X|.

The elements from (a) and (b) are distinct, and there are 2 + 2p of them. Thus,
rank(Fx :Gx) = || > 2 + 2p. This completes the proof of (i).

To complete the proof of (ii), suppose from now on that p < Rg. By the dual version
of Lemma 6.15 (noting also that Q C Fx C F&), for any cardinal p such that u =1 or
No < p < |X],

(c) there exists v, € Q with s*(v,) < p = h*(v,) and t(v,) = |X]|,
(d) there exists 0, € Q with h*(0,,) < p = s*(6,) and t(6,) = | X]|.

The elements from (c) and (d) are also distinct, and there are 2 + 2p of them. Since
1] =2+ 2p < Ny, it follows that

Q={oy,Bu:p=1orRog < pu<|X|}={y,d,:p=10r Ry <p <X}

Now, def(a1) = codef(y1) = 2, def(51) = codef(61) = 1 and def(ay,) = def(8,) =
codef(vy,) = codef(d,) = p for all Xy < p < |X|. Since Q@ C Fx, all these elements have
equal defect and codefect, so a; =1, f1 = 61, and {o,, 8.} = {yu, 0.} for p > V.
It quickly follows that @ = {c,, [, : p =1 or Ry < p < |X|} satisfies the conditions of
Lemma 6.10. O

Remark 6.17. Again, the assumption p < Nq is essential in Theorem 6.16(ii). Indeed, if
p > Vg, then not only could we add a superfluous element 7 to a generating set {2 of the
form given in Lemma 6.10 without increasing its size (cf. Remark 4.13), but the elements
given in (a)—(b) in the above proof might have little overlap with the elements given in
(¢)—(d). For example, we might have s*(ay) = s(y1) = 2, so that ay # 71.

7. Idempotents and one-sided units

This section concerns the submonoids

Fr(PBx) = (E(PBx)UGL(PBx)) and  Fr(PBx)= (E(PBx)UGRr(PBx))
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of PBx generated by its idempotents and left units, or idempotents and right units,
respectively. We will continue to use the abbreviations Ex = E(PBx), G% = G1(PBx),
FE = FL(PBx), and so on. The elements of F% and F¥ were characterised in Theo-
rem 6.6. The main results of this section calculate the relative rank of PBx modulo F%
(Theorem 7.1), and the relative ranks of 7% modulo each of the submonoids Fy, £x, G%
and Gx (Theorems 7.6, 7.7, 7.14 and 7.17, respectively); we also classify the minimal-size
generating sets modulo the stated submonoids. The corresponding statements for F%
are dual, and are easily deduced.

Theorem 7.1. Let X be an infinite set.

(i) We have rank(PBy : F&) = 1.
(ii) If « € PBx, then PBx = (F% U {a}) if and only if o € G& and codef(a) = | X]|.

Proof. If o € G& and codef(a) = |X]|, then for any 8 € G% with def(3) = | X|, Theo-
rem 6.3(ii) gives PBx = (Fx U{a, 8}) C (FE¥U{a}) C PBx. This gives the backwards
implication in (ii), and also the inequality rank(PBx : F%) < 1; since PBx # F%, the
reverse inequality is obvious.

For the forwards implication in (ii), suppose a € PBy is such that PBx = (FkU{a}).
Lemma 2.11(i) says that (F% \ Fx) U {a} contains an element of G¥. Every element
of FL£\ Fx satisfies codef(y) < def(7y), but every element § of G satisfies def(§) = 0.
It follows that a € G&. It remains to show that codef(a) = | X|. To do so, let 0 € PBx
be such that def(o) < |X| = codef(c), and consider an expression o = 71 - - - 7y, where
Y,k € FE U {a}. Corollary 3.10(ii) gives codef(y;) = |X| for some i. It suffices to
show that v; = a. To do so, suppose to the contrary that ~; € ]-")L(, and note then that
| X| = codef(y;) < def(v;), giving def(~;) = | X|. Then Lemma 6.9 gives |X| = def(y;) <
def(y1 - -yx) = def(o) < | X|, a contradiction. O

We now begin the task of calculating the relative rank of % modulo the submonoids
mentioned above.

Lemma 7.2. Let X be an infinite set, and let @ = {a, : p=1 or Xg < p < |X|} C F&,
where for each p, codef(ay,) < p = def(ay). Then for any 0 < v < |X|, there exists
o, € (Gx UQ) with def(o,) = v and codef(o,) = 0.

Proof. We use transfinite induction. The result is clearly true for v = 0 (take o to be any
element of Gx ). Next, suppose 1 < v < N is such that the lemma holds for all cardinals
Kk < v. If v < Ny, then 0, = 0,1 has the desired properties; indeed, Lemma 4.1(ii)
gives g,_1,01 € Q)L(, and so o, € Q)L(, which gives codef(c,) = 0, while Lemma 3.11(v)
gives def(o,) = def(o,_1) + def(a1) = v. Next suppose v > Rq. If codef(a,) = 0, then
we just take o, = «,,, so suppose codef(a,) > 1, and write k = codef(a,, ). Since k < v,
o, € (Gx UQ) exists, by the induction hypothesis, and we have t(a,) = t(o,) = |X]|.
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Since also codef(a,) = def(o,) = &, it follows that there is a permutation = € Gx such
that Codom(ay, )m = Dom(o). Then o, = a,wo,; has the desired properties. O

Remark 7.3. Since every element « of 2 (as in Lemma 7.2) has codef(a) < | X/, it follows
that t(a) = | X| for all @ € Q.

Lemma 7.4. If X is an infinite set, and if Q C F% is as in Lemma 7.2, then
Fb = (FxuQ).

Proof. Since FL = FxG% (cf. Remark 2.7), it suffices to show that GX C (Fx UQ). So
[e7% Bl L . [e2% B, .
let v = (I H € Gy be arbitrary. Put § = (a H € E(PBx), and write p = def(7y).

Then codef(§) = def(§) = p also. Since ¢(d) = t(*y) = |X| = t(o,), where g, € (GxUQ) is
as in Lemma 7.2 (cf. Remark 7.3), there is a permutation m € Gx such that a,7m = zo !

m
for all € X. It follows that v = dmo, € (Fx UQ). O

Lemma 7.5. Let X be an infinite set, and suppose Q C FL is such that F& = (Fx UQ).
Then Q contains a subset of the form described in Lemma 7.2.

Proof. Let p be a cardinal such that 4 = 1 or Ng < pu < |X|. We must show
that there exists @ €  such that codef(a) < p = def(a). Let 0 € F% be
such that codef(o) < u = def(o), and consider an expression o = g ---«ag, where
each factor belongs to Fx U Q. By Corollary 3.10(ii), def(coy;) > p for some 4. Let
j = max{i : def(o;) > p}. Lemma 6.9 gives def(a;) < def(ay ---ax) = def(o) = p, and
so def(a;) = p. The proof will be complete if we can show that codef(a;) < p,
since then also «o; ¢ Fx, which would give a; € Q. Suppose to the contrary that
codef(cj) > p. Combined with codef(a;) < def(a;) = p, it follows that codef(c;) = p.
Put 8 = aj41 - - - ag, and note that by Lemma 3.8(iv) and the definition of j, def(5) <
def(ajq1) + - - - + def(ag) < p. Thus, we have

[codef(a;) =1 or codef(a;) > N and codef(a;) > def(f),
so we obtain codef(a;8) > codef(e;) = p from the dual of Lemma 3.13(iii).
Lemma 3.8(v) then gives u > codef(o) = codef(a - - - ;) > codef(a;5) > 1, a contra-
diction. O

The next result follows quickly from Lemmas 7.4 and 7.5.

Theorem 7.6. Let X be an infinite set, and let p be the number of cardinals p satisfying
No < p < [X].

(i) We have rank(F%: Fx) =1+ p.
(ii) If p < No, and if Q@ C F& with |Q] = 1+ p, then F& = (Fx UQ) if and only if Q
has the form described in Lemma 7.2. O
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Since G(FL) = Gx (cf. Lemma 2.8), and since F% \ Gx is an ideal of F% (cf. Lem-
mas 2.3 and 2.8), we may also quickly deal with the situation modulo Ex.

Theorem 7.7. Let X be an infinite set.

(i) We have rank(F%:Ex) = 21X,
(i) If Q C FE, then FE£ = (Ex U Q) if and only if Gx = (Gx N Q) and Q contains a
subset of the form described in Lemma 7.2.

Proof. (i). This follows from Lemma 2.14(iii), and the fact that rank(Gx) = |Gx| =
21X = | FL.

(ii). If @ C FEL, then Lemma 2.14(ii) says that F% = (£xUQ) if and only if Gx = (GxNQ)
and FL = (Fx U (Q\ Gx)). By Lemmas 7.4 and 7.5, this latter condition is equivalent
to Q\ Gx (and hence Q) having a subset of the form described in Lemma 7.2. O

Now we move on to the task of calculating rank(F% : G%).

Lemma 7.8. Let X be an infinite set, and let @ = {a,, B, p=10r Ny < p <|X|} C
Fx, where for all p,

V)

(i) s(on) < p=h(oy) and t(o,) = |X],
(ii) h(Bu) < p=s(Bu) and t(B,) = |X|,
(i) 7 () = 5*(By) = o o 5" () = h*(5) =

Then F& = (GL U Q).

Proof. Since FL = FxG%, by Remark 2.7, it suffices to show that Fx C (GL U Q). Let
1 be a cardinal such that u =1 or Ry < p < |X|. We claim that there exist elements
Yy 0 € (G U Q) such that

Vur O € Fxy () =(6,) = IX|, s(vu) <p=hlv), h(d,) <p=s0),

and either

(a) 5%(yu) < p="h"(yu) and h*(6,) < p = s"(6,), or
(b) h*(3) < 1 = 5" (1) and 5*(8,,) < p = h* ().

We prove the claim only in the case in which h*(a,,) = s*(8,,) = p (i.e., the first option in
assumption (iii)) holds, with the other case being virtually identical. Suppose the set of
lower singletons of ay, is V', where V' C X. Since Codom(c,,) € X \ V and t(oy,) = | X],
we have |X \ V| = |X|. Let ¢ € G% be any element such that Dom(¢) = X \ V. Then
Vu = o€ satisfies
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s(yu) = s(ay) <p=hlow) =h(y), () =0, P (W) =p,  ty) = |1X].
Similarly, there exists n € G& such that 0, = Bun satisfies
h(o,) <p=s(u), h*(6,) =0, s"(0u)=p, td,) =I|X|
This completes the proof of the claim. We now note that the set
I'={yu0u:p="1o0rN <p<|X][}

is of the form described in Lemma 6.10. Lemma 6.13 then gives Fx = (GxUI') C (GXUQ),
as required. O

Remark 7.9. If Q is of the form described in Lemma 6.10, then Q is also of the form
described in Lemma 7.8, but the converse is not necessarily true.

Lemma 7.10. Let X be an infinite set, and suppose £ C ]-")L( is such that Fx C (Gx UQ).
For any cardinal p such that p =1 or Rg < p < |X|,

(i) there exists oy, € Q with oy, € Fx, h*(ay) = p, def(ay,) = 2p and t(oy,) = | X|,
(ii) there exists 5, € Q with B, € Fx, s*(B.) = p, def(8,) = p and t(B,) = | X|.

Proof. The proofs being almost identical, we just prove (i). Let o € Fx be such that
s*(o) < p = h*(0), noting that codef(c) = 2u, and consider an expression o = - - - g,
where the factors all belong to Gx U 2. By Corollary 3.10(ii), h*(y;) > p for some i.
Combined with Lemma 6.9, we obtain

2p < 207 (7;) < codef(v;) < def(y;) < def(yy -+ - ) = def(o) = 2p,

so we have equality throughout. In particular, it follows that hA*(y;) = p, and that
def(y;) = codef(vy;) = 2u; the latter also gives 7; € Fx. Corollary 3.10(i) gives t(7;) =
| X|. We put a, = ; (note that v; ¢ Gx, because def(y;) #0). O

Remark 7.11. Note that there could be some overlap between the elements from (i) and
(ii) in Lemma 7.10: namely, if @ > Rg, then it is possible to have «, = §,,. However, if

W # v, then oy, # oy, and B, # B,

Lemma 7.12. Let X be an infinite set, let p be the number of cardinals p satisfying
Rg < p < |X]|, and suppose p < Rg. If Q C ]—")L( is such that [N Fx| < 24 2p and
Fx C (Gx UQ), then QN Fx has the form described in Lemma 7.8, in which case
QN Fx| =2+ 2p.

Proof. By Lemma 6.15,  contains a subset I't = {o,, [, : p=1o0r Xy < p < [X]},
where for each u,
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(a) au € Fx, s(au) < p=h(oy) and t(a,) = | X|,
(b) By € Fx, h(B,) < p=s(B,) and t(5,) = |X]|.

Since I'y C Fx, it follows that 'y € QN Fx. Since 2+ 2p = |T'1| < |QN Fx| < 2+ 2p,
it follows that |2 N Fx| =2+ 2p = |TI'y]. Since p < N, it also follows that QN Fx =T.
It remains to show that for each u, either

Bla) = (B) =i or  s'(au) =W (B) = (7.13)

By Lemma 7.10, © contains a subset I'y = {,,0,, : p =1 or g < p < | X[}, where for
each u,

() Yu € Fx, h*(yu) = p, def(v,) = 2p and t(v,,) = |X],
(d) 0u € Fx, 5" (0p) = p, def(d,) = p and £(d,) = [X].

Again, 'y C QN Fx =Ty (but, as in Remark 7.11, we might have |T's| < |I'1|). Now,
aq,B1,71,01 are the only elements of finite (co)defect in (a)—(d). Since def(ay) = 2,
def(f1) = 1, def(vy1) = 2 and def(6;) = 1, it follows that @3 = 71 and 51 = ;. It
follows that (7.13) holds when p = 1. Next, suppose p > Ng. Then def(c,) = def(8,) =
def(y,) = def(6,,) = p, and so v,,6,, € {a,, B,}. Thus, one of the following must hold:

*(ﬁu) = M, Or (g
(o) = p, or (h) R*(B) =

If (e) or (f) holds, then (7.13) holds. If (g) holds, then because Ry < p = codef(5,) =
s*(Bu) + 2h*(B,), we must have s*(8,) = p or h*(8,) = p, so that (7.13) still holds.
Case (h) is treated similarly. O

Theorem 7.14. Let X be an infinite set, and let p be the number of cardinals p satisfying
No < p < [X].

(i) We have rank(FL% :G%) =2+ 2p.
(ii) If p < Vo, and if Q C F& with |Q = 2 + 2p, then F% = (GL U Q) if and only if
is of the form described in Lemma 7.8.

Proof. Lemma 7.8 gives rank(F% : GL) <2+ 2p and the backwards implication in (ii).

Next, suppose 2 C F% is such that || = rank(F%:G%) and FL = (G UQ) =
(Gx U (G \ Gx)UQ). For simplicity, we will write ' = (G% \ Gx) U Q, so that
FE = (Gx UT). By Lemma 7.10 (cf. Remark 7.11), T contains a subset I'y
such that 'y € Fx and |I';] > 1+ p. By parts (ii) and (iii) of Lemma 4.1,
GE\ Gx = {a € PBx : codef(a) = 0 # def(a)}. It follows that (G4 \ Gx) N Fx = 2,
and so I'y CT'NFx = QN Fy. Hence, rank(F%:GL) = Q| > QN Fx| > [Ty > 1+ p.
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If p > Ny, then 14+ p = p =2+ 2p, and so the proof of (i) is complete in this case. For
the remainder of the proof, we assume that p < Ng.

Now, I' C F% is such that [I'N Fy|=|QNFx| < Q] = rank(F% :GL) <2+ 2p and
Fx C(Gx UT). Lemma 7.12 then says that QN Fx = I'N Fx has the form described in
Lemma 7.8, and has size 2 + 2p. But then 2 + 2p > rank(F%:GL) = |Q] > |QN Fx| =
2+ 2p. It follows that rank(F% : G&) = 24 2p, completing the proof of (i). We also have
2] = |2 N Fx|; thus, since €2 is finite, Q@ = QN Fx has the specified form. 0O

The last task of this section is to calculate rank(F% : Gx). We have already done a lot
of the preliminary work for this, but we require one more lemma.

Lemma 7.15. Let X be an infinite set, and let Q = Q1 U Qs, where

O =A{aw, By p=10rRo < p < [X[} C Fx and
Q={y,:p=10rR<p<|X|}CFL

satisfy

(i) s(au) < p=hla,) and t(e,) = |X],

(i) h(Bu) < p=s(Bu) and t(B,) = |X],

i) h*(au) = s"(Bu) = p or 5™ () = K*(Bu) = p,
(iv) codef(y,) < p = def(vy,).

VA

A
—
jar
jar

Then F% = (Gx UQ).

Proof. We first claim that (Gx U Q) contains a subset
I'={ou,mu:p=10r Ny <pu<|X|}

such that for all ,

t(on) = t(ru) = X1, s(op) < p=hlou), h(7) < = 8(14),
s°(0,) < p=h"(0,),  h*(r) < p=s(1.).

Before we prove the claim, we note that the lemma will then follow. Indeed, I" has
the form described in Lemma 6.10, and €5 has the form described in Lemma 7.2, so
Lemmas 6.13 and 7.4, respectively, give Fx = (Gx UT) and F& = (Fx UQy). But then
FED(GxUQ) = (Gx UTUQ) D (Gx UTUQ) = ((Gx UT) UN) = (Fx UQ,) = FL.

To establish the claim, we consider two cases.
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Case 1. Suppose first that p = 1. From assumption (ii), we have s(81) = 1 and h(31) = 0,
and so def(f1) = 1. Since 1 € Fx, we have codef(51) = 1 as well. Consequently, we must
have h*(51) = 0 and s*(/31) = 1. Because of h*(51) = 0, assumption (iii) gives h*(ay) = 1.
From assumption (i), we have h(a1) = 1 and s(a;) = 0, so that codef(ay) = def(ay) = 2;
together with h*(a1) = 1, it follows that s*(ay) = 0. Thus, we may take oy = ay and
T =P

Thus, we have established the claim in the case y = 1. Before we consider the in-
finite case, we note that the argument in Case 1 of the proof of Lemma 6.10 (see in
particular the final, parenthesised, sentence) shows that for any 1 < v < Ng, there exist
ou, Ty € (Gx U{ay, 1}) such that

h(o,) =h*(o,) =s(r) =s* (1) =v and s(o,) = 8*(0,) = h(1,) = h*(1,) = 0.

Since v < Vg, these trivially satisfy t(o,) = t(1,) = | X]|.

Case 2. We prove the claim for infinite u by transfinite induction. Suppose Ry < p < | X|
is such that appropriate elements o,, 7, exist for all cardinals x < p. We just prove
the existence of o, as the existence of 7, is similar. Let § € {a,, 3.} be such that
h*(8) = p. Since t(a,) = t(6) = |X|, and since codef(cy,) = def(d) = p, there is a
permutation 7 € Gx that maps Codom(a,) bijectively onto Dom(6). Let € = 76, so
that

e€(GxUQ), tle)=1X|, s(e)<p=h(e), h'(e)=nup.

If we also had s*(¢) < p, then we could take o, = . So suppose instead that s*(¢) = p.
Let V' be the set of lower singletons of e, where V' C X, noting that |V| = u. We
observed above that (25 has the form described in Lemma 7.2, so by that lemma, there
exists n € (Gx UQs) C (Gx UQ) such that def(n) = p and codef(n) = 0. Let £ € Gx be
any permutation that maps V' bijectively onto Def(n). Then o, = eén € (Gx U Q) has
the desired properties. O

Remark 7.16. The sets €7 and €5 in the statement of Lemma 7.15 have the forms

described in Lemmas 7.8 and 7.2, respectively.
Here is the final main result of this section.

Theorem 7.17. Let X be an infinite set, and let p be the number of cardinals p satisfying
Ry < p <X

(i) We have rank(FL :Gx) = 3 + 3p.
(ii) If p < Vo, and if Q C F& with |Q = 3 + 3p, then F% = (Gx UQ) if and only if Q
is of the form described in Lemma 7.15.
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Proof. Lemma 7.15 gives rank(F% : Gx) < 3+ 3p and the backwards implication in (ii).

Next, suppose 2 C F% is such that |Q| = rank(F%:Gx) and FL = (Gx U Q).
Since Fx C F& = (Gx UQ), Lemma 6.15 shows that () contains a subset ; such
that Q1 C Fx and |Q;] = 2 + 2p. Also, since certainly F% = (Fx UQ), Lemma 7.5
shows that ) contains a subset 5 of the form described in Lemma 7.2. Note that
|Q2] = 1+ p, and that Qy C FZ \ Fx. In particular, since Q; N Qy = @, it follows that
rank(FL:Gx) = Q] > || + Q2| = 3 + 3p, completing the proof of (i).

To complete the proof of (ii), suppose p < Ng, and let Q,Q1, Q5 be as in the previous
paragraph. Then by finiteness of all three sets, and since |Q] = |Q1] 4 |Q2], we must have
Q = Q; UQy. We have already noted that {25 has the form described in Lemma 7.2, and
that Qs C F&\ Fx and Q; C Fx. Thus, 2N Fx| = [Q1] =2+ 2p, and so Lemma 7.12
says that ; = QN Fx has the form described in Lemma 7.8. Thus, = 7 U s has
the form described in Lemma 7.15 (cf. Remark 7.16). O

8. Sierpinski rank and the semigroup Bergman property

Recall from [50] that the Sierpiriski rank of a semigroup S, denoted SR/(.9), is the least
integer n such that every countable subset of S is contained in an n-generator subsemi-
group of S, if such an integer exists; otherwise, we say S has infinite Sierpinski rank and
write SR(S) = co. Every finitely generated semigroup trivially has finite Sierpiniski rank,
and this then coincides with the rank of the semigroup, as defined in Section 2. Recall
from [45] that a semigroup S has the semigroup Bergman property if every generating
set for S has a bounded length function. Finite semigroups trivially have the Bergman
property, but this is not true of arbitrary finitely generated semigroups (consider a free
semigroup of finite rank). The main results of this section (Theorems 8.3 and 8.8) use
results of previous sections to calculate the Sierpinski rank for each of the monoids
PBx,Ex,G%, GR, Fx, FL, FE and also determine which of them have the semigroup
Bergman property.

For the proof of the first lemma, we recall again that PBx is a submonoid of the
larger partition monoid Px. As before, we will not recall the full definition of Px here;
the reader may refer to [14,15], where the focus was on the infinite case. Recall from [45]
that a semigroup S is strongly distorted if there exists a sequence (ai,as,as,...) of
natural numbers, and a natural number N such that, for all sequences (s1, $2, 83, ...) of
elements from S, there exists a subset T' of S with |T| = N such that each s, can be
factorised as a product of length at most a,, over T. It follows from [45, Lemma 2.4 and
Proposition 2.2(i)] that a strongly distorted semigroup that is not finitely generated has
the semigroup Bergman property.

Lemma 8.1. If X is an infinite set, then PBx is strongly distorted.

Proof. Let (y1,72,73,--.) be a sequence of elements of the partition monoid Px. It
was shown in [14, Theorem 37] that there exist elements «, 8 € Px such that v, =
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aBa”B?(a*)"B*a* for each n. We will not repeat the construction here, but it is easy
to check that if all the elements ~,, belong to PBx, then the constructed elements «, 3
(and hence also a*, 8*) belong to PBx as well. It follows that PBx is strongly distorted;
we take N =4 and a,, =2n + 6 for alln. O

It follows from the previous proof that SR(PBx) < 4. In Theorem 8.3, we will show
that SR(PBx) = 2; the proof we give is an adaptation of an ingenious argument of Hyde
and Péresse [38] originally purposed for the symmetric inverse monoid Zx. Recall that
a permutation a € Gx is an involution if a* = 1 (we consider the identity element to
be an involution). Part (i) of the following lemma was proved in [25, Lemma 2.2], and
part (ii) in [38, Lemma 2.4].

Lemma 8.2. Let X be an arbitrary set, and let o € Gx .

(i) There exist two involutions 5,y € Gx such that o = 5.
(ii) There exists an involution § € Gx such that a=! € (a,ad). O

Recall that if & € PBx, and if ¥ C Dom(a) and Z C Codom(«), then Ya =
{ya:y€eY}and Za™t ={za"t: 2 € Z}.

Theorem 8.3. If X is an infinite set, then PBx has the semigroup Bergman property,
and SR(PBx) = 2.

Proof. Since PBx is uncountable, it is not finitely generated. The Bergman property
then follows immediately from Lemma 8.1 and the above-mentioned results from [45]. We
noted above that SR(PBx) < 4. Since also SR(PBx) > 2 (as PBx is not commutative),
it suffices to show that any three elements of PBx belong to a subsemigroup generated
by two elements. With this in mind, let 1, 72,73 € PBx be arbitrary. We will construct
elements «, 8 € PBx such that 1,792,773 € {a, 3).

Since X is infinite, we may fix a decomposition X = | |72, X; = XoU X7 U Xo U -+,
where | X;| = |X]| for each i. We let a € PBx be any element with h*(«) = |X| and
Xia = X1 for all ¢ > 0. Note that Dom(a) = X and that Codom(a) = X \ Xo =
Ui=, Xi. The definition of f is far more involved, and is achieved in a number of stages.
First, for each ¢ € {11,...,18}, let 0; € Gx, be an involution of X;; the exact definition
of the o; will be given later. We then let 5 be any element of PBx such that

s h(B) =|X], e Dom(B) = U?iu Xi,
o X;f =X, forallie{11,...,18}, and the restriction of 8 to X; is o; for all such ¢,

o X198 = X19 U Xy, o X918 = Ugl Xi,
o XooB =U;20 Xis o (UZg Xi)B = Xo.
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It is easy to check that Codom(3) = X. Also, since the o; are involutions, 32 does not
depend on the choices of ¢;. This means that we may use 52 to define the involutions
i, with no fear of circularity. Note also that Dom(3?) = Ufill X;, Codom(B?) = X
and h($?) = |X|, with the last of these following from Lemma 3.8(ii). It follows from
Lemma, 4.3 that PBx = aGx (2. Thus, there exist 61, 62,83 € Gx such that v; = ad; 52,
for i = 1,2,3. By Lemma 8.2(i), there exist involutions e1,...,66 € Gx such that
81,02,83 € (e1,...,26). Note that the J; and ¢; do not depend on the involutions o,
since their definitions involve only o and 2. (This is why we used PBx = aGx3? in-
stead of PBx = aGx [, which is also true, in order to define the §; and ¢;.) The proof
will be complete if we can show that e1,...,e6 € (o, ).
Now we define 7 = a??$ and 7 = o?' a2, Tt is routine to check that

Dom(7) = Codom(7) = X and Codom(m) = Dom(7) = Xy, (8.4)
and that m,7 do not depend on the choices of the involutions ;. (Note also that

h*(r) = h(r) = |X]|, but this will not concern us.) In light of (8.4), we have
7" = 1, and 77 € Gx. By Lemma 8.2(ii), there is an involution e7 € Gx such that

(r7)* = (7n7)~t € (77, (n7)e7). For reasons that will become clear later, we also let
eg = 1 be the identity of Gx. We now use the involutions €1, ...,e5 € Gx to define the
involutions o; € Gx,, for i = 11,...,18. First, it is easy to check that

Dom(rt*a™) = X and Codom(7*a™) = X, for any n € N,

and that 7*a™ does not depend on the choices of the ;. It follows that for ¢ € {1,...,8},
the domain and codomain of (7*a!%t%)*c;(7*al%+%) are both equal to Xjgo.4; for any
such i, we let 0194, be the restriction of (7*a0t%)*; (7*a19+%) to X1044. So 0 € Gy, for
each such i, and each o; is an involution because the ¢; € Gx are involutions. We have
now completed the definition of 5.

For i € {1,...,8}, define n; = a*?Ba!?TBall=i3a1%32. One may check that
Dom(n;) = Codom(n;) = X, so that n; € Gx. Furthermore, if ¢ € {1,...,8}, then for any
r € X, we have 20?2820 = x7al0t € X144, so that 2?2820 3 = (zral®T) o0y,

Using this, and the fact that aa® = 77 = 1, we then calculate

xn; = (xa226a10+i6)a11—i6a10ﬂ2 — (II)T((XlO_H)0’10+1‘0411_i50410/62
— x,ﬂ_al()Jri[(T*alOJri)*si (T*OKIOJri)]OéllfiﬂalOﬂZ
_ .’E’]TalO-H(0[10+i)*7'€2"7'*0£2150[10ﬂ2
a10+i<a10+i)*]

= x7| Te T T] = amTe;.

Thus, 7; and (77)e; contain the same transversals. Since n; and (77)e; both be-
long to Gy, it follows that they are equal. In particular, (n7)e; € («, ) for all
i €{1,...,8}. Taking ¢ = 8, and recalling that eg = 1, we obtain 77 = (77)eg € (a, ().
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Then also (w7)~! € (r7,(77)e7) C (o, B). It follows that for any i € {1,...,8},
gi = (n7)7Y(n7)e; € (o, B). As noted above, this completes the proof. O

Remark 8.5. In the definition of a and S in the above proof, we specified that h*(a) =
h(B) = |X|, but said nothing about singletons. Thus, as with Lemma 4.3 (cf. Corol-
lary 4.4), a, 8 could be chosen to have no singletons: i.e., to belong to Bx, the set
of all full Brauer graphs. This means that any countable subset of PBx belongs to a
subsemigroup of PBx generated by two elements of Bx.

We now move on to consider the monoids £x, Q)L(, gﬁ?,fx,ff{,f)]g. We require the
following two results; the first is [13, Proposition 5 and Remark 7], and the second follows
from [25, Theorem 3.5].

Lemma 8.6. Let M be a monoid, write G = G(M), and suppose M \ G is an ideal of M.
If SR(G) and rank(M : G) are both finite, then SR(M) = SR(G) +rank(M :G). O

Theorem 8.7. If X is an infinite set, then the symmetric group Gx has Sierpinski
rank 2. O

We are now ready to prove the second main result of this section.
Theorem 8.8. Let X be an infinite set. Then

(i) SR(Ex) = o0,
2n+6 if | X| =R, wheren € N
(i) SR(GE) = SR(GH) = SR(Fx) = rIx| =
00 otherwise,
3n+8 if | X| =N, wheren € N
0 otherwise,

(iii) SR(F%) =SR(FE) = {

(iv) None of £x, gﬁ,gﬁ,}"x,fﬁ,fg have the semigroup Bergman property.

Proof. (i). For y € X, define ¢, = (i) X\(y}
e Y

subset of X, and put I' = {¢, : y € Y'}. It suffices to show that I' is not contained in
a finitely generated subsemigroup of £x. To do so, suppose I' C (), where Q C Ex.

. Let Y C X be a countably infinite

Fix some y € Y, and consider an expression ¢, = a1 --- oy, where ag,...,a; € .
Without loss of generality, we may assume that a3 # 1. By Lemma 3.8(iv), def(aq) <
def(ai - - - ag) = def(eyy) = 1, so Theorem 5.8 gives sh(ai) = 0. If def(a1) = 0, then we
would have a1 = 1, which we have excluded, so we must have def(«;) = 1; together with
sh(aq) = 0, it follows that a; = ¢, for some z € X. But then z is an upper singleton of
aq, and hence also of aj -+ -« = €y, so it follows that z = y, giving ¢, = o € Q. We
have shown that I C €2, and so || > R, as required.
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(ii) and (iii). Let Qx denote any of Q)L(, ]—')I} or Fx; the cases in which Qx is g;? or ]:)1?
are dual.

Suppose first that |X| = N,,, where n € N. Lemmas 2.3, 2.8 and 2.9, show that
G(Qx) = Gx and that Qx \ Gx is an ideal of Qx. Theorems 4.12, 6.16 and 7.17 give

rank(G% : Gx) = rank(Fx : Gx) = 2n + 4 and rank(F% :Gx) = 3n + 6.

The stated formulae for SR(Qx) now follow from Lemma 8.6 and Theorem 8.7.

Suppose now that |X| > N, for all n € N. For each n, let a,, € Qx be such that
def(a,) = R, and suppose Q C Qx is such that {a, : n€ N} C (Q). Let n € N
be arbitrary, and consider an expression «,, = BBk, where £1,...,8r € Q. Corol-
lary 3.10(ii) gives def(83;) > R,, for some i. But then, since Q C F%, Lemma 6.9 gives
def(B;) < def(By---Bx) = def(ay,) = N, so that def(5;) = N,,. Thus, Q contains an
element of defect ®,, for each n € N, and it follows that [Q > Xg. Thus, {a,, : n € N} is
not contained in any finitely generated subsemigroup of Fx, and so SR(Fx) = oc.

(iv). Let Qx denote any of Ex, Q)L(, }')Ig or Fx; the cases in which Qx is Q)Ig or }')1?” are
dual. We claim that there exists a generating set I' of Qx such that every element of
Qx of finite defect has defect at most 2.

Before we prove the claim, we that show the length function with respect to any
such generating set I' is unbounded. To do so, let n € N be arbitrary. We must show
that there exists a € Qx such that any factorisation of a over I' involves at least
n factors. To do so, let a € Qx be such that def(a) = 2n. Consider an expression
a = BB, where B1,...,0; € . If def(B;) > g for some 4, then Lemma 6.9 would
give 2n = def(B; - - - Br) > def(B;) > Vg, a contradiction. Thus, each §; has finite defect,
and so, by assumption, we must have def(5;) < 2 for each i. Together with Lemma 3.8(iv),
this gives 2n = def (81 - - - Br) < def(B1) + - - - + def(Br) < 2k, so that k > n. That is, any
factorisation of a over Gx U I must involve at least n factors.

It remains only to prove the above claim. If Qx is one of g}o Fx or .7-')’—;, then
Lemma 4.10, 6.13 or 7.15, respectively, gives a subset €2 of Qx such that I' = Gx U Q
has the desired form. It remains to prove the claim for £x. For x € X, let €, be as in

t (i). For distinct ,y € X, defi gE:(}% . Let Q1,0,95 be as i
part (i). For distinct z,y efine 7, orn) ex\ o) et 1,5, 03 be as in
the proof of Theorem 5.8, and put

F'={1}U{es:z e X}U{ney 2,y € X, 2 #y}UQs.

It follows quickly from the proof of [9, Theorem 3.18] that (I' \ Q3) = ©Q; U Qs. In
particular, Theorem 5.8 gives Ex = Q; Uy U Q3 C (T') C Ex, so (I') = Ex. Clearly T
has the desired form. 0O
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Remark 8.9. If 3 < n = | X| < Ny, then g)L( = g§ =Gx, }')I} =FB=Fy =PBx and Ex
are all finite, and so

SR(Gx) =rank(Gx) =2, SR(PBx) = rank(PBx) = 4,
SR(€Ex) =rank(Ex) =1+ ("erl) — %

Indeed, the first of these is folklore, while the second and third are parts of [9, Propo-
sition 3.16 and Theorem 3.18]. It follows from Theorem 8.8(ii) that the Continuum
Hypothesis is equivalent to the assertion that Fr has Sierpinski rank 8.
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