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has become useful for the construction of regular affine 
groups and simple braces, as well as several other product 
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Introduction

Group factorizations G = AB into proper subgroups A, B have been considered since 
the early development of group theory. From 1933 on, they have been studied by I. Schur 
and his students [29,42] and descendants [20,21]. Itô [22] proved that G is metabelian 
if A, B are abelian. Contributions to the case where A and B are cyclic were made by 
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Rédei [30] and Cohn [10] who settled the case where A is infinite, and Douglas [11] who 
developed a reduction procedure for finite A, B. Huppert proved that G is supersolvable 
[20], but a complete description for cyclic A, B has not been carried out. Some of Douglas’ 
results were improved later by Gorenstein and Herstein [14,15].

Miller [27,28] considered factorizations with A ∩B = 1 (we call them decompositions) 
for transitive permutation groups of prime power degree, which led him to state the 
decomposition problem as a fundamental question in group theory. Zappa [43] and Szép 
[40,41] showed that decompositions give rise to mutual actions between A and B, from 
which G can be recovered as a bi-crossed product G = A �� B of A and B.

For decompositions G = A1 · · ·An into finitely many factors, it has to be assumed 
that the Ai pairwise commute, which is granted for n = 2. Hall [17,18] proved that a 
group is solvable if and only if it admits a decomposition into Sylow subgroups. Wielandt 
[42] extended Hall’s theorem to nilpotent factors.

In this paper, we study group decompositions G = AB in connection with ring-
like structures called braces [32], which were introduced as a tool for solving the set-
theoretic Yang-Baxter equation [12,13,26,31]. Apart from this original purpose, there 
is an increasing tendency to study braces in their own right [32,6,7,35,8,37,36]. For a 
quick orientation on braces and a sketch of their relationship to mathematical topics like 
flat manifolds, Chevalley groups, and Lie algebras, we refer to [35]. Here we focus upon 
braces in the context of group decompositions.

Before explaining our results, let us elaborate how braces are related to any group 
decomposition G = AB. Each pair of elements a ∈ A and b ∈ B gives rise to a unique 
factorization

ba = αβ

with α ∈ A and β ∈ B. With ba := α and ba := β, the map a �→ ba defines a left action 
of the group B on the set A, and b �→ ba gives a right action of the group A on the 
set B. Changing the roles of A and B, we also get a left action αβ := b and a right 
action αβ := a, so that there are left and right actions of A on B, and vice versa. If 
b �→ a · b denotes the inverse of b �→ ba and a �→ b · a the inverse of a �→ ab, the equation 
ba = (ba)(ba) can be rewritten as

(a · b)a = (b · a)b. (0)

With a slight modification, this equation defines an affine structure [37] of a group G, 
the modification being that the equation has to be valid for all a, b ∈ G. The operation 
a + b := (a · b)a then gives an abelian group structure for G. By [37], Theorem 2.1, an 
affine structure of a group G is equivalent to a brace A with adjoint group A◦ = G. The 
basic example of a brace is the Jacobson radical J of any ring R, with a · b := b(1 +a)−1. 
The adjoint group J◦ of J is given by Jacobson’s circle operation a ◦ b := ab + a + b.

Thus any group decomposition G = AB gives a part of a brace, where only the 
operations within A and B are undefined. If they can be inserted in a compatible fashion, 
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G becomes the adjoint group of a brace, with A and B as right ideals, constituting a 
bi-crossed product representation A �� B for that brace [2]. On the other hand, any brace 
A can be viewed as part of a bi-crossed product A �� A in a natural way (Example 2). 
For a finite brace, the p-components of the additive group give a decomposition into 
right ideals, hence a decomposition of the adjoint group G into Sylow subgroups, which 
implies that G must be solvable. Examples of solvable groups without an affine structure 
exist, but they are rare. (Bachiller’s counterexample [1] is a p-group of order 2310.)

To understand the structure of braces, it is natural to study the possible ways to 
construct them as composites of smaller ones. We already mentioned the bi-crossed 
product A �� B, where the adjoint group (A �� B)◦ coincides with the bi-crossed product 
A◦ �� B◦ of groups. Special cases are the semidirect product of braces [34] and the direct 
product A ×B. However, other types of composites have been found. For example, Catino 
et al. [5] introduced the asymmetric product A �◦B of braces, where the adjoint group is 
A◦ � B◦, while the additive group is modified by a symmetric 2-cocycle. Together with 
Hegedüs’ striking construction [19] of socle-free braces, simple braces can be obtained as 
asymmetric products [4]. We show that the asymmetric product is closely related to the 
upper shifted semi-direct product [37] of braces.

Our first main result in this paper provides a general way to amalgamate two braces 
A, B to a brace A ��δ B with adjoint group A◦ �� B◦, where the additive group is 
modified by a 2-cocycle δ (Theorem 1). All the above mentioned constructions, and also 
the lower shifted semi-direct product [37], are special cases. Despite this generality, the 
conditions for δ are very simple: they are δ(x, y) = δ(y, x) and δ(x, y)a = δ(xa, ya), and

δ(x + y, z) = δ(y · x, y · z)y + δ(y, z)

for a ∈ A and x, y ∈ B, which shows that δ is almost bilinear. Note that y ·( ) is inverse to 
( )y. Thus δ is bilinear if and only if δ(x, z)y = δ(xy, zy). The asymmetric product arises 
as the special case where B acts trivially on A (Corollary 2), while the lower shifted semi-
direct product arises when A acts trivially on B (Corollary 3). In particular, the above 
equations for δ imply the 2-cocycle condition as well as a complicated extra condition 
(Eqs. (20) and (25) in Section 3) in case of an asymmetric product.

For δ = 0 we get the bi-crossed product A �� B of braces. The socle of A ��δ B is 
determined in Proposition 5, which extends previous results for the upper and lower 
shifted semi-direct product. It follows that the socle of A �� B decreases by the passage 
to A ��δB, which can be used for the construction of simple braces. It should be noted 
that recently, several authors have constructed simple braces via product decompositions 
[3,9]. As non-involutive solutions to the Yang-Baxter equation are related to skew-braces 
[16] (where the operation · is replaced by two operations [36]), factorizations of skew-
braces have been considered [24]. For the analysis of group decompositions, the above 
equation (0) shows that we are actually dealing with braces.

As a second main result, we determine the bi-crossed products A �� B where A and B
are bicyclic braces, that is, with cyclic additive and adjoint group (Theorem 2). So the 
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adjoint group of A �� B is a bi-crossed product of cyclic groups. Surprisingly, the work 
of Douglas [11] and Rédei [30] could not provide any help, so that we had to choose a 
different approach. Corollary 2 gives a simple description for the case where A is infinite. 
It turns out that some of the groups listed in [30] cannot arise from bi-crossed products 
of braces (Example 7). On the other hand, we show that Douglas’ type reduction for 
bi-crossed products of cyclic groups [11,14,15] carries over to braces (Theorem 3).

1. Preliminaries: affine structures and braces

By S(X) we denote the symmetric group over a set X. An affine structure [37] on a 
group G is given by an action σ : G → S(G) of G on its underlying set such that the 
binary operation a · b := σ(a)(b) satisfies

(a · b)a = (b · a)b. (1)

In terms of the binary operation, an affine structure is given by Eq. (1) and the equation

ab · c = a · (b · c). (2)

Indeed, Eq. (2) implies that 1 · (1 · a) = 1 · a, which yields, since σ(1) is bijective,

1 · a = a.

Eq. (1) with b = 1 gives

a · 1 = 1.

A group G with an affine structure is equivalent to a brace [32]. For the geometric 
intuition behind this concept of affine structure, we refer to [35]. Note that Eq. (1) gives 
rise to a commutative operation

a + b := (a · b)a = (b · a)b

which makes (G; +) into an abelian group. With ab := σ(b)−1(a), the multiplication of 
G is given by the equation ab = ab + b. This leads to another equivalent description 
([32], Proposition 5) of a brace as an abelian group A = (G; +) with a binary operation 
· satisfying

a · (b + c) = (a · b) + (a · c) (3)

(a + b) · c = (a · b) · (a · c). (4)

The group A◦ := G associated to a brace A is called the adjoint group of A. For example, 
the Jacobson radical J of a ring R is a brace with adjoint multiplication
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a ◦ b = ab + a + b. (5)

Therefore, we write ◦ for the multiplication in the adjoint group A◦ of any brace. Sim-
ilarly, we use Jacobson’s notation a′ (see [23]) for the inverse of an element a ∈ A◦. 
Eq. (4) yields

(x · y) · (x · z) = (y · x) · (y · z) (6)

for all x, y, z ∈ G. A set X with a binary operation · satisfying Eq. (6) such that the 
map σ : X → S(X) with σ(x)(y) := x · y is bijective is said to be a cycle set [31]. 
By [31], Proposition 1, every cycle set is equivalent to a left non-degenerate involutive 
set-theoretic solution [13] to the Yang-Baxter equation.

Like in a Jacobson radical ring, Eq. (5) defines a ring-like multiplication (given by 
juxtaposition) for any brace A. The associativity of A◦ then turns into the equation

a(bc + b + c) = (ab)c + ab + ac. (7)

Using the right multiplication Ra ∈ End(A; +)op, that is, b �→ ba, viewed as a right 
action on the additive group of A, Eq. (7) can be written as

Rbc+b+c = RbRc + Rb + Rc.

Using the circle operation (5) in End(A; +)op, this gives a homomorphism

R : A◦ →
(
End(A; +)op; ◦

)
,

the (right) regular representation of the brace A.
More generally, a module [32] over a brace A is an abelian group M with a monoid 

homomorphism � : A◦ →
(
End(M)op; ◦

)
. With xa := �(a)(x), this means that x0 = 0

and

(x + y)a = xa + ya

x(a ◦ b) = (xa)b + xa + xb

holds for x, y ∈ M and a, b ∈ A. Equivalently, xa := xa +x is a right action of A◦ on M :

(x + y)a = xa + ya

xa◦b = (xa)b.

Thus, if x �→ a · x denotes the inverse of x �→ xa, every (right) module M can be viewed 
as a left module, satisfying
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a · (x + y) = a · x + a · y
(a ◦ b) · x = a · (b · x).

A subgroup I of a brace A is said to be a right ideal [32] if a ∈ I and b ∈ A implies 
that ab ∈ I. If ba ∈ I also holds, I is called an ideal [32]. Equivalently, I is a right ideal 
if and only if I is an A◦- submodule of A. In particular, every right ideal I is a subbrace, 
and I◦ is a subgroup of A◦. A right ideal I is an ideal of A if and only if I◦ is a normal 
subgroup of A◦. So the invariance under right multiplication refers to the adjoint action, 
while invariance under left multiplication means invariance (=normality) as a subgroup 
of the adjoint group. The socle

Soc(A) := {a ∈ A | ∀ b ∈ A : a · b = b}

of a brace A is an ideal, and the fixator

Fix(A) := {b ∈ A | ∀ a ∈ A : a · b = b}

is a right ideal of A. If Soc(A) = A, the brace A is said to be trivial.
From Eq. (3) we infer that a ·(b ◦c) = a ·(bc+c) = a ·bc+a ·c =

(
(a ·c) ·(a ·bc)

)
◦(a ·c) =(

(c · a) · (c · bc)
)
◦ (a · c), which yields

a · (b ◦ c) =
(
(c · a) · b

)
◦ (a · c). (8)

For a group G, let G = AB be a decomposition, that is, G = AB and A ∩ B = {1}. 
Then B is said to be a complement of A. Every g ∈ G has a unique representation g = ab

with a ∈ A and b ∈ B. In particular, g−1 has such a representation, which shows that 
G = AB = BA. For any a ∈ A and b ∈ B, this implies that there are unique ab ∈ B and 
ab ∈ A with ab = (ab)(ab). By [37], Proposition 3.2, the map a �→ ab defines a right action 
of B on the set A, and b �→ ab gives a left action of A on the set B. In accordance with 
[37], Section 3, these actions will be called the metacommutation actions. By a �→ b · a
we denote the inverse of a �→ ab. Then the equation ab = (ab)(ab) can be rewritten as

(b · a)b = (a · b)a, (9)

which shows that the map (a, b) �→ (ab, ab) is an involution of A × B. In particular, 
b = (ab)ab , which yields

ab = ab · b. (10)

Inverting the equation ab = (ab)(ab), we obtain b−1a−1 = (ab)−1(ab)−1. Thus (ab)−1 =
(b−1)a−1 = a · b−1, which yields

ab = (a · b−1)−1. (11)



W. Rump / Journal of Algebra 556 (2020) 725–749 731
For a ∈ A and x, y ∈ B, Eq. (9) gives (a · xy)a = (xy · a)xy =
(
x · (y · a)

)
xy =(

(y · a) · x
)
(y · a)y =

(
(y · a) · x

)
(a · y)a. Hence

a · xy =
(
(y · a) · x

)
(a · y). (12)

For any brace A, Eq. (10) gives a left action b �→ ab of A◦ on the set A. Therefore, we 
define ab := ab · b also for braces. Moreover, Eq. (11) is satisfied:

ab = (a · b′)′.

The following definition gives an analogue of group decompositions for braces.

Definition 1. We define a decomposition of a brace A to be a decomposition A = I ⊕ J

of the additive group into right ideals I and J .

The connection to group decompositions is given by

Proposition 1. Let A = I ⊕ J be a decomposition of a brace A into right ideals. Then 
A◦ = I◦J◦. The maps I → I and J → J given by a �→ ab and b �→ ab for a ∈ I and 
b ∈ J coincide with the metacommutation actions of A◦ = I◦J◦. The action a �→ ab is 
trivial if and only if J is an ideal.

Proof. Any c ∈ A is of the form c = a + b = (a · b) ◦ a = (b · a) ◦ b with a ∈ I and b ∈ J . 
Hence A◦ = I◦J◦. Replacing a by ab, this gives a ◦ b = (ab · b) ◦ ab = ab ◦ ab.

Now J is an ideal if and only if a ◦ b ◦ a′ ∈ B for all a ∈ A and b ∈ B. Since 
a ◦ b = (ab · b) ◦ ab, this condition is equivalent to ab ◦ a′ = 0, that is, ab = a. �

So the affine structure of A◦ is given by the affine structures of I◦ and J◦. Note that 
Eq. (11) can be written as a′(b′) = (ba)′, which shows that the metacommutation actions 
can also be expressed by the right actions a �→ ab and b �→ ba with a ∈ A and b ∈ B. 
Thus, I is a brace ideal if and only if the action b �→ ba is trivial, or equivalently, if b �→ ab

is trivial. This happens if and only if A is a semidirect product I � J of braces [34]. If I
and J are ideals, both metacommutation actions are trivial. We then write A = I × J

and speak of a direct decomposition of A.

2. Decomposable groups

Proposition 1 shows that any decomposition G = AB of a group G already provides 
a part of an affine structure, which has to be completed only within the subgroups A
and B. An extension criterion for affine structures of A and B to an affine structure of 
G was given in [37], Theorem 3.5. In what follows, we mostly denote elements of A by 
a, b, c, . . . and elements of B by x, y, z . . ..
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Definition 2. Let G be a group with a decomposition G = AB. We call an affine structure 
of A compatible with G = AB if a, b ∈ A and x, y ∈ B with xa = by implies that 
(cx)a = (cb)y holds for all c ∈ A.

Since AB = BA, the definition includes a concept of compatibility for B, where c ∈ A

has to be replaced by c ∈ B. Let us show first that this definition is left-right symmetric.

Proposition 2. Let G be a group with a decomposition G = AB. An affine structure of 
B is compatible with G = AB if and only if a, b ∈ A and x, y ∈ B with xa = by implies 
that x(az) = b(yz) for all z ∈ B.

Proof. By Eq. (11), the equation x(az) = b(yz) transforms into x · (a · z′) = b · (y · z′). 
So the condition is

x · (a · z) = b · (y · z), (13)

for all z ∈ B. Replacing z by ((z)x)a, the equation becomes z = b ·
(
y · (zx)a

)
, that is, 

(zb)y = (zx)a. �
Proposition 3. Let G be a group with a decomposition G = AB. An affine structure of B
is compatible with G = AB if and only if

(a · x) · (a · y) = (x · a) · (x · y) (14)

holds for a ∈ A and x, y ∈ B. Affine structures of A and B are both compatible if and 
only if Eq. (14) holds for a ∈ A, x ∈ B, and y ∈ A ∪B.

Proof. Since xa = (xa)(xa) = (xa · a)(xa), the compatibility condition (13) for B says 
that x · (a · z′) = (xa ·a) · (xa · z′). With y := z′ and a ·x instead of x, this equation turns 
into Eq. (14). The second statement follows by symmetry. �
Corollary 1. Let G = AB be a decomposition of a group G. Two affine structures of A
and B, respectively, are compatible with G = AB if and only if they extend to an affine 
structure of G.

Proof. This follows by [37], Theorem 3.5. �
Corollary 2. Let G = AB be a decomposition of a group G, and let U be a generating 
set of A. An affine structure of B (resp. A) is compatible with G = AB if and only if 
Eq. (14) holds for a ∈ U and x, y ∈ B (resp. x ∈ B and y ∈ A).

Proof. Assume that Eq. (14) holds for a ∈ {a1, a2}. By Eq. (12), (a1a2 · x) · (a1a2 · y) =(
a1 ·(a2 ·x)

)
·
(
a1 ·(a2 ·y)

)
=

(
(a2 ·x) ·a1

)
·
(
(a2 ·x) ·(a2 ·y)

)
=

(
(a2 ·x) ·a1

)
·
(
(x ·a2) ·(x ·y)

)
=
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(
(a2 · x) · a1

)
(x · a2) · (x · y) = (x · a1a2) · (x · y). For a fixed a ∈ A, Eq. (14) yields 

x · y = (a · xa) · (a · ya) = (xa · a) · (xa · ya). Hence, by Eqs. (10) and (11), we obtain 
(a′ · x) · (a′ · y) = xa · ya = (xa · a)′ · (x · y) = (x · a′) · (x · y). �
Corollary 3. Let G be a group with a decomposition G = AB. An affine structure of B is 
compatible with G = AB if and only if (x + y)a = xa + ya holds for a ∈ A and x, y ∈ B.

Proof. Since (x + y)a = b(x + y)a for some b ∈ A, and (x + y)a = (x · y)xa = (x ·
y)(xa)(xa) = c

(
(x · y)xa

)
(xa) for some c ∈ A, we have (x + y)a =

(
(x · y)xa

)
(xa). On 

the other hand, xa + ya = (xa · ya)(xa). So the condition (x + y)a = xa + ya turns into 
(x · y)xa = xa · ya. By the preceding proof, this is equivalent to Eq. (14). �
Remark. Note that the compatibility of A in Corollary 3 is equivalent to the equation 
(a + b)x = ax + bx for a, b ∈ A and x ∈ B, not x(a + b) = xa + xb. The latter equation 
need not hold in a brace. It is only valid in the associated left brace, with additive group 
given by a +′ b := (a′ + b′)′.

Example 1. Let G = A � B be a semidirect product of subgroups A, B. Then each 
pair of elements a ∈ A and x ∈ B satisfies xa = a(a−1xa). So the metacommutation 
action on A is trivial, which implies that any affine structure of A is compatible with the 
decomposition G = AB. On the other hand, an affine structure on B is compatible if and 
only if the conjugation action A → Aut(B)op is a brace homomorphism, in accordance 
with [34], Section 3, where the semidirect product of braces is defined.

Example 2. Let A be a brace. The right action a �→ ab and the left action (10) define a 
matched pair (A◦, A◦) of groups ([25], Chapter 9; [36], Remark after Definition 7), which 
yields a group A◦ �� A◦. Multiplication in the bi-crossed product A◦ �� A◦ is given by

(a, x)(b, y) = (a ◦ xb, xb ◦ y).

Hence (a, x) = (a, 0)(0, x) and (0, x)(a, 0) = (xa, xa) = (xa, 0)(0, xa), which shows that 
the actions a �→ xa and x �→ xa are the metacommutation actions of the decomposition 
A◦ �� A◦ = (A◦, 0)(0, A◦). Since x ◦ a = xa ◦ xa, the affine structure of A◦ extends to 
A◦ �� A◦, in accordance with [36], Proposition 15.

Example 3. More generally, let A and B be braces, and let (A◦, B◦) be a matched pair 
of groups. The bi-crossed product G := A◦ �� B◦ is a group with a decomposition 
G = A◦B◦. By Corollary 1 and Corollary 3, the affine structures of A◦ and B◦ extend to 
a brace A �� B with adjoint group G if and only if the right metacommutation actions 
x �→ xa and a �→ ax with a ∈ A and x ∈ B are additive. This is Bachiller’s criterion 
for matched pairs of braces ([2], Theorem 4.2). We call A �� B the bi-crossed product
of the braces A and B. The additive structure of A �� B is given as follows (cf. [34], 
Proposition 4):
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(a, x) + (b, y) =
(
(x · y) · a + (y · x) · b, x + y

)
.

The next result refines the description of a brace by a triply factorized group [39].

Proposition 4. Let A be a brace, and let A+ be its additive group, viewed as a trivial 
brace. Then a �→ (a′, a) gives an embedding A+ ↪→ A �� A of A+ as an ideal of A �� A

such that A �� A = (A, 0) � A = (0, A) � A. For a, b, c ∈ A, we have

(a, b) ◦ (c′, c) ◦ (a, b)′ = (a, b) · (c′, c) =
(
(a · (b · c))′, a · (b · c)

)
. (15)

Proof. For a, b ∈ A, we have (a′, a) ◦ (b′, b) = (a′ ◦ a(b′), ab′ ◦ b) = (a′ ◦ (a · b)′, (b ·a) ◦ b) =(
((a · b) ◦ a)′, (a · b) ◦ a

)
∈ A+. Using Eq. (8), a straightforward calculation gives

(a, b) · (c′, c) =
(
((b · c) · a) · ((c · b) · c′), a · (b · c)

)
for a, b, c ∈ A. Since (c ·b) ·c′ = (c ·b) ·(c ·(−c)) = (b ·c) ·(b ·(−c)), we have ((b ·c) ·a) ·((c ·b) ·c′) =
(a · (b · c)) · (a · (b · (−c)) = (a · (b · c)) ·

(
−(a · (b · c))

)
= (a · (b · c))′. Thus,

(a, b) · (c′, c) =
(
(a · (b · c))′, a · (b · c)

)
∈ A+.

In particular, (b′, b) ·(c′, c) = (c′, c), which shows that A+ is a trivial right ideal of A �� A.
Finally, we have 

(
(a · (b · c))′, a · (b · c)

)
◦ (a, b) =

(
(a · (b · c))′ ◦ ((b · c) · a), (b · c) ◦ b

)
and (a, b) ◦ (c′, c) = (a ◦ b(c′), bc′ ◦ c) =

(
a ◦ (b · c)′, (c · b) ◦ c

)
. So the first equation in (15)

reduces to

(a · (b · c))′ ◦ ((b · c) · a) = a ◦ (b · c)′.

Indeed, (a · (b · c)) ◦ a ◦ (b · c)′ = ((b · c) · a) ◦ (b · c) ◦ (b · c)′ = (b · c) · a. Thus Eqs. (15)
are verified, which proves that A+ is a brace ideal of A �� A. The semidirect product 
representations of A �� A follow by the formulae

(a, b) = (a ◦ b, 0) ◦ (b′, b) = (a, a′) ◦ (0, a ◦ b). �
As the structure of cocyclic braces, i.e. those with cyclic adjoint group, is completely 

known [38], it is natural to consider bi-crossed products of cocyclic braces. Exam-
ple 2 shows that two isomorphic (not necessarily cocyclic) braces determine a bi-crossed 
product in a natural way. On the other hand, there seems to be no practible way to amal-
gamate cocyclic braces by starting with the adjoint group using Douglas’ results [11], 
because Eq. (14) would rarely be satisfied. So it becomes a challenge to find matched 
pairs of cocyclic braces except those of Example 2. In what follows, Cn denotes the cyclic 
group of order n.

Example 4. G = 〈x, y, z|x4 = y2 = z2 = 1, xy = yx, yz = zy, zxz = xy〉 ∼= (C4×C2) �C2. 
Thus every element g ∈ G is of the form g = xiyjzk with i ∈ {0, 1, 2, 3} and j, k ∈ {0, 1}. 
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Then x3z is of order 4, with (x3z)2 = x2y and (x3z)3 = xyz, and G can be represented 
as a product G = 〈x〉〈x3z〉:

1 x3z x2y xyz

x z x3y x2yz

x2 xz y x3yz

x3 x2z xy yz

The metacommutation actions are obtained by representing G as a product G =
〈x3z〉〈x〉:

1 x x2 x3

x3z yz xz x2yz

x2y x3y y xy

xyz x2z x3yz z

To get a matched pair (A, B) of braces A = 〈x〉 and B = 〈x3z〉, we have to consider affine 
structures of the cyclic group C4 ∼= A◦ ∼= B◦. There are two possibilities: the trivial one, 
and an affine structure with additive group C2 × C2. Both affine structures satisfy the 
equations

a−1 · b = a · b, a · b−1 = (a · b)−1.

On the other hand, the above tables show that tx = t−1 and tx = xt ∈ {x, x3} for all 
t ∈ B. Hence x · t = t−1 and t · x ∈ {x, x−1}. For s, t ∈ B, this gives (x · s) · (x · t) =
s−1 ·t−1 = s ·t−1 = (s ·t)−1 = (s ·x) ·(s ·t). So Corollary 2 of Proposition 3 implies that B
is compatible with G = AB. Since (x, y, z) �→ (x3z, y, z) extends to an automorphism of 
G, the subgroup A is compatible with G = AB, too. Thus, each of the four possibilities 
to endow A and B with an affine structure leads to an affine structure of G.

3. Shifted bi-crossed products of braces

For most of the known constructions of braces A by amalgamation, the adjoint group 
A◦ can be represented as a semidirect product. One of the rare exceptions is the sym-
metric group S4 which does not admit a normal Sylow subgroup. If a semidirect product 
A◦ = H � N does not arise from a semidirect product of braces, it frequently happens 
that A can be deformed into a semidirect product by an additive or multiplicative 2-
cocycle. Both cases occur [37] for the braces of order 8. In this section, we extend and 
unify these constructions and compare them with the asymmetric product of braces [5,4].

Let (A, B) be a matched pair of braces. So there is a bi-crossed product A �� B with 
adjoint group A◦ �� B◦ such that the affine structures of A◦ and B◦ are compatible 
with the decomposition A◦ �� B◦ = (A◦, 0)(0, B◦) (see Example 3). In what follows, it 
will be convenient to represent the elements of A �� B as sums a + x, with a ∈ (A, 0)
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and x ∈ (0, B). Accordingly, the multiplication in (A �� B)◦ = A◦ �� B◦ has to be 
modified. For a, b ∈ A and x, y ∈ B, we have (a + x) ◦ (b + y) = (a + x)b+y + b + y =
ab+y + xb+y + b + y = a(b·y)◦b + b + x(y·b)◦y + y = ab·y ◦ b + xy·b ◦ y. More generally, we 
define

[a, x] := (a, 0) + (0, x) = (x · a, x).

So the operations in A �� B are given by

[a, x] + [b, y] = [a + b, x + y]

[a, x] ◦ [b, y] = [ab·y ◦ b, xy·b ◦ y].

We modify the addition in A �� B by a map δ : B ×B → A as follows:

[a, x] + [b, y] = [a + b + δ(x, y), x + y]. (16)

To indicate that addition has been modified via (16), we write A ��δB instead of A �� B.

Theorem 1. Let A �� B be a bi-crossed product of braces, and let δ : B × B → A be a 
map with δ(0, 0) = 0. Then A ��δB is a brace if and only if δ satisfies

δ(x, y) = δ(y, x) (17)

δ(x, y)a = δ(xa, ya) (18)

δ(x + y, z) = δ(y · x, y · z)y + δ(y, z), (19)

for a ∈ A and x, y, z ∈ B.

Proof. Associativity of addition in A ��δB says that

[a + b + δ(x, y), x + y] + [c, z] = [a, x] + [b + c + δ(y, z), y + z]

holds for a, b, c ∈ A and x, y, z ∈ B, that is,

[a+ b+ δ(x, y) + c+ δ(x+ y, z), x+ y + z] = [a+ b+ c+ δ(y, z) + δ(x, y + z), x+ y + z],

which reduces to the 2-cocycle condition

δ(y, z) − δ(x + y, z) + δ(x, y + z) − δ(x, y) = 0. (20)

Commutativity of the modified addition (16) is equivalent to Eq. (17). For z = 0, Eq. (20)
becomes δ(y, 0) − δ(x + y, 0) = 0, which yields

δ(x, 0) = δ(0, x) = 0
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for all x ∈ B. So [a, x] + [0, 0] = [a + δ(x, 0), x] = [a, x], which shows that [0, 0] is a zero 
element for the modified addition. The inverse of [a, x] is

−[a, x] = [−δ(x,−x) − a,−x].

Thus Eqs. (17) and (20) state that A ��δB is an additive group.
The remaining condition for A ��δB to be a brace is given by the equation

(
[a, x] + [b, y]

)
◦ [c, z] + [c, z] = [a, x] ◦ [c, z] + [b, y] ◦ [c, z]. (21)

Its left-hand side is

[a + b + δ(x, y), x + y] ◦ [c, z] + [c, z] = [(a + b + δ(x, y))c·z ◦ c, (x + y)z·c ◦ z] + [c, z]

= [(a + b + δ(x, y))c·z ◦ c + c + δ((x + y)z·c ◦ z, z), (x + y)z·c ◦ z + z],

while the right-hand side of Eq. (21) amounts to [ac·z ◦ c, xz·c ◦ z] + [bc·z ◦ c, yz·c ◦ z] =
[ac·z ◦ c + bc·z ◦ c + δ(xz·c ◦ z, yz·c ◦ z), xz·c ◦ z + yz·c ◦ z]. So Eq. (21) is equivalent to the 
equations

(a+ b+ δ(x, y))c·z ◦ c+ c+ δ((x+y)z·c ◦ z, z) = ac·z ◦ c+ bc·z ◦ c+ δ(xz·c ◦ z, yz·c ◦ z) (22)

and

(x + y)z·c ◦ z + z = xz·c ◦ z + yz·c ◦ z.

Since (x + y)z·c = xz·c + yz·c, the second equation is redundant. Furthermore,

(a+ b+ δ(x, y))c·z ◦ c+ c =
(
(a+ b)c·z + δ(x, y)c·z

)
◦ c+ c = (a+ b)c·z ◦ c+ δ(x, y)c·z ◦ c,

where (a + b)c·z ◦ c = ac·z ◦ c + bc·z ◦ c − c. So Eq. (22) can be rewritten as

(δ(x, y)c·z)c + δ((x + y)z·c ◦ z, z) = δ(xz·c ◦ z, yz·c ◦ z). (23)

For z = 0, this equation turns into Eq. (18). Now Eq. (18) yields (δ(x, y)c·z)c =
(δ(x, y)z·c)z = δ(xz·c, yz·c)z. Thus if we replace x by (z · c) · x and y by (z · c) · y, 
Eq. (23) becomes

δ(x, y)z + δ((x + y) ◦ z, z) = δ(x ◦ z, y ◦ z). (24)

By Eq. (20), δ(x ◦ z, y ◦ z) − δ((x + y) ◦ z, z) = δ(x ◦ z, yz + z) − δ((x ◦ z + y ◦ z− z, z) =
δ(x ◦ z, yz + z) − δ((x ◦ z + yz, z) = δ(x ◦ z, yz) − δ(yz, z), which turns Eq. (24) into

δ(x, y)z = δ(x ◦ z, yz) − δ(yz, z).
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Using Eq. (17), and replacing x by z · x and y by z · y, this is equivalent to Eq. (19). 
Conversely, Eqs. (17) and (19) yield δ(x +y, z) −δ(y, z) = δ(y ·x, y ·z)y = δ(y ·z, y ·x)y =
δ(z + y, x) − δ(y, x) = δ(x, y + z) − δ(x, y), that is, Eq. (20). �

We call A ��δ B the shifted bi-crossed product of A and B. For δ = 0 we have the 
ordinary bi-crossed product A �� B, in its additive version (see [2], Definition 4.1). The 
equations (17)-(19) take a particularly simple form if δ is bilinear:

Corollary 1. Let A �� B be a bi-crossed product of braces, and let δ : B × B → A be a 
symmetric bilinear map satisfying

δ(x, y)c = δ(xc, yc)

for x, y ∈ B and c ∈ A ∪B. Then A ��δB is a brace.

Another special case arises when A �� B is a semidirect product. By Theorem 1, there 
are two such cases:

Case 1: B acts trivially on A. For c ∈ A and x, y ∈ B, this implies that (δ(x, y)c·z)c =
(δ(x, y)z·c)z = δ(x, y)z·c. Thus, if we replace z · c by c, Eq. (23) reduces to

δ(x, y)c + δ((x + y)c ◦ z, z) = δ(xc ◦ z, yc ◦ z). (25)

Since δ(x, y)c = δ(x, y) ◦c −c, this condition is equivalent to the equation (1) in [5], The-
orem 3, where the asymmetric product of braces has been introduced. So [5], Theorem 3, 
says that for a semidirect product A �B of braces A, B, the modified addition (16) gives 
a brace A ��δ B if and only if δ is a symmetric 2-cocycle which satisfies Eq. (25). The 
authors of [5] use A �◦B for the asymmetric product. By Theorem 1, the equations (17), 
(20), and (25), which characterize the asymmetric product A �◦ B can be replaced by 
the more appealing equations (17)-(18) and δ(x + y, z) = δ(y · x, y · z) + δ(y, z). Note 
that for y = z = 0 the latter equation implies that δ(0, 0) = 0. Hence

Corollary 2. The asymmetric product A �◦B of braces is equivalent to a shifted bi-crossed 
product A ��δB where B acts trivially on A.

A multiplicative version of Eq. (19) was considered in [37], Proposition 4.1. Replacing 
x by xy, the equation becomes δ(x ◦ y, z) = δ(y, z) + δ(x, y · z). Thus, if the image of δ
is in the socle of A, Eq. (19) turns into Eq. 4.7 of [37]:

δ(x ◦ y, z) = δ(y, z) ◦ δ(x, y · z).

So the upper shifted semidirect product A �δB of [37], Proposition 4.1, can be viewed 
as an asymmetric product of braces.
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Again, the situation further simplifies when δ is bilinear. In particular, the construction 
is still useful if A and B are trivial braces. Then Eqs. (17)-(19) just say that δ : B×B → A

is an A-invariant symmetric bilinear map. Let V be a vector space over a finite field Fq, 
with a symmetric bilinear form δ : V × V → Fq. Any automorphism α of V of order q
gives rise to a semidirect product Fq � V of trivial braces, with

[λ, x] ◦ [μ, y] = [λμ, xμ + y],

where xμ := αμ(x). Thus Fq �δV is a brace if and only if δ is invariant under α, that is,

δ(α(x), α(y)) = δ(x, y).

For dimV < ∞, this example was first considered by Hegedüs [19].
Case 2: A acts trivially on B. Then Theorem 1 gives the lower shifted semidirect 

product A �δ B of braces ([37], Proposition 4.4):

Corollary 3. Let A �B be a semidirect product of braces, and let δ : B ×B → Fix(A) be 
a map satisfying δ(x, y) = δ(y, x) and

δ(x + y, z) = δ(y · x, y · z)y + δ(y, z) (26)

for x, y, z ∈ B. With the modified addition (16), A � B turns into the brace A �δ B.

Proof. For y = z = 0, Eq. (26) gives δ(0, 0) = 0. Eq. (4.18) of [37] states that the image 
of δ is in Fix(A), while [37], Eq. (4.16), holds in the semidirect product of braces. With 
xy instead of x, Eq. (26) turns into [37], Eq. (4.17). �

The following result generalizes [37], Corollary 4.3 and Corollary 4.6.

Proposition 5. Let A ��δ B be a shifted bi-crossed product of braces. For a, b ∈ A and 
x, y ∈ B,

[a, x] · [b, y] = [(a · x) ·
(
a · (b + δ(x, y))

)
, (x · a) · (x · y)]. (27)

The socle of A ��δB consists of the [a, x] ∈ Soc(A �� B) with δ(x, y) = 0 for all y ∈ B.

Proof. With [c, z] := [a, x] · [b, y], we have [ca·x ◦ a, zx·a ◦ x] = [c, z] ◦ [a, x] = [a, x] +
[b, y] = [a + b + δ(x, y), x + y]. Hence (ca·x)a = b + δ(x, y) and (zx·a)x = y, which yields 
z = (x · a) · (x · y) and c = (a · x) ·

(
a · (b + δ(x, y))

)
. This proves Eq. (27).

Thus [a, x] ∈ Soc(A �� B) if and only if (a ·x) ·
(
a ·(b +δ(x, y))

)
= b and (x ·a) ·(x ·y) = y

for all b ∈ A and y ∈ B. For b = 0, this implies that δ(x, y) = 0 for all y ∈ B. So the 
remaining condition says that [a, x] ∈ Soc(A �� B). �
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Example 5. Bachiller [2] constructed a simple brace A with adjoint group S4 (see also 
[37], Example 4). The adjoint group of its 2-component A2 is a dihedral group 〈a, b | a4 =
b2 = 1, bab = a3〉 with a := (1234) and b := (13), while the 3-component A3 is a trivial 
brace, generated by c := (123). So 〈a, b〉 = A◦

2 and 〈c〉 = A◦
3 form a Sylow basis of S4. 

The subgroup V := {1, a2, ba, ba3} of A◦
2 acts trivially on A3 and is invariant under the 

metacommutation action of A◦
3. By Eqs. (5.6) of [37], the action of c on A2 consists of 

two cycles:

c · a = a3 c · a3 = ba2 c · ba2 = a

c · a2 = ba c · ba = ba3 c · ba3 = a2.
(28)

Addition in A2 is given by the following labelling of the Fano plane:

ba ba3

b

ba2

a3 a

a2

In this representation, the automorphism (28) can be visualized as a one-third counter-
clockwise rotation. Conjugation by c is given by

c ◦ x ◦ c−1 = c−i(x) ◦ (c · x) = ci(x) + c · x,

where x ∈ A2, and i(x) = 0 if x ∈ V and i(x) = 1 otherwise. For x, y ∈ A2, this yields

c ◦ (x + y) ◦ c−1 = c ◦ x ◦ c−1 + c ◦ x ◦ c−1 + δ(x, y),

where δ(x, y) := ci(x+y)−i(x)−i(y) is a symmetric 2-cocycle which satisfies Eqs. (17)-(18). 
Eq. (19) follows since

i(x + y) − i(x) = (−1)i(x)i(x · y)

holds for all x, y ∈ A2, which is easily checked. Similarly, conjugation with c2 gives the 
2-cocycle −δ. Since conjugation with c is an automorphism of S4 which fixes the Sylow 
3-subgroup, the shifted bi-crossed products A3 ��δA2 and A3 ��−δA2 are isomorphic to 
A. We remark that there are no other non-zero maps δ : A2 × A2 → A3 which satisfy 
Eqs. (17)-(19). Moreover, any map δ : A3 × A3 → A2 which satisfies Eqs. (17)-(19)
must be zero. Indeed, Eq. (18) implies that V acts trivially on the image of δ. Hence 
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δ(A3×A3) ⊂ {0, b}. By Eq. (19), this implies that δ(c2, c) = δ(c +c, c) = δ(c, c)c+δ(c, c) =
δ(c, c) + δ(c, c) = 0, and similarly, δ(c, c) = δ(c2, c2) = 0.

4. Bi-crossed products of cyclic braces

Although the structure of bi-crossed products of cyclic groups is fairly well understood 
[11,20,14,15], and the affine structures of cyclic groups are completely known, there seems 
to be no reasonable way to understand bi-crossed products of cocyclic braces A and B
by fixing the adjoint group A◦ �� B◦. To circumvent this obstacle, we focus upon the 
additive groups of A and B. The following proposition gives a converse to Proposition 3
(cf. [2], Theorem 4.2).

Proposition 6. A matched pair of braces A, B is equivalent to an A-module structure of 
B together with a B-module structure of A such that Eq. (14) holds for a ∈ A and x ∈ B, 
and y ∈ A ∪B.

Proof. By Proposition 3 and its Corollary 3, we only have to verify that the module 
actions between A and B define a matched pair of adjoint groups, that is, (x ◦ y)a =
(xya) ◦ (ya) and x(a ◦ b) = (xa) ◦ (xa

b) for all a, b ∈ A and x, y ∈ B. With (xa)′ = (a′)x′ , 
the second condition turns into (a ◦b)x = (abx) ◦(bx). Thus, by symmetry, it is enough to 
verify the first equation, which can be rewritten as a′ · (x ◦y) =

(
(a′)y′ ·x

)
◦ (a′ ·y). Since 

a′ ·(x ◦y) = a′ ·(xy +y) = a′ ·xy +a′ ·y and 
(
(a′)y′ ·x

)
◦(a′ ·y) = ((y ·a′) ·x)a′·y +a′ ·y, the 

equation reduces to a′·xy = ((y·a′) ·x)a′·y, that is, (a′·y) ·(a′·xy) = (y·a′) ·x = (y·a′) ·(y·xy). 
This is equivalent to Eq. (14). �

By [38], Proposition 10, almost every cocyclic brace is cyclic [33], which means that it 
has a cyclic additive group. The only exceptions are braces with a special direct factor of 
order 4, which may be called the exceptional cocyclic brace. Its adjoint group is cyclic, 
while its additive group is a Klein Four group. On the other hand, there is a hierarchy 
of exceptional cyclic braces [33], including those which are not cocyclic. Here we restrict 
ourselves to bi-crossed products of braces which are bicyclic [33], that is, cocyclic and 
cyclic.

Let A and B be bicyclic braces. We identify their additive groups with Z/nZ and 
Z/mZ, respectively, where n, m ∈ N. Thus n = |A| if A is finite, and n = 0 oth-
erwise. Similarly for B. We call o(A) := n the order of A. For simplicity, we repre-
sent the elements of A and B by integers (instead of residue classes). For example, 
A = {0, 1, . . . , n − 1} if A is finite. To distinguish A from B, we write 1A and 1B , 
respectively, for the generator 1 of the additive group.

By [33], Theorem 1, A, B are determined, up to isomorphism, by their socle order 
d = o(Soc(A)) and e = o(Soc(B)). We set

q := d + 1, t := e + 1,
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and choose the generators 1A and 1B so that the affine structures of A and B are the 
canonical ones:

q = 1′A · 1A, t = 1′B · 1B .

Recall that the possible socle orders for a given order n are the divisors d of n such that 
each prime divisor of n also divides d, and 4|n implies that 4|d (see [33], Proposition 6). 
Hence q is relatively prime to n, and t is relatively prime to m. Moreover, A must be 
trivial if A is infinite. Let us write A× for the group of invertible elements in the ring 
A = Z/nZ and o(a) for the order of an element a ∈ A× in this group. The group B×

and the order o(x) for x ∈ B× are defined similarly. Then

q ∈ A×, t ∈ B×.

As before, we denote elements of A by a, b, c, . . . and elements of B by x, y, z . . .. Using 
the ring structures of Z/nZ and Z/mZ, the affine structures of A and B are given by

ba = b(1 + ad), yx = y(1 + ex). (29)

For a = 1A ◦ · · · ◦ 1A (k factors), this implies that ba = bqk. Therefore, the action of 1A
on (A; +) splits A into cycles of equal length o(q). Hence

o(q)|o(A), o(t)|o(B). (30)

By Proposition 6, a bi-crossed product A �� B is determined by the metacommutation 
actions, hence by the two elements

u := 1′B · 1A, v := 1′A · 1B . (31)

For a ∈ A and x ∈ B, this implies that

a1B = ua, x1A = vx. (32)

Hence u ∈ A× and v ∈ B×, and

o(u)|o(B), o(v)|o(A). (33)

Since A is bicyclic, the adjoint group of A is given by the quantum integers

[a]q := 1 + q + q2 + · · · + qa−1 = 1A ◦ · · · ◦ 1A︸ ︷︷ ︸
a

.

Therefore, Eqs. (32) imply that the metacommutation actions have to be
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[a]q · x = v−ax, [x]t · a = u−xa. (34)

Caution. Throughout the rest of this section, exponents of the elements q, u ∈ A× or 
t, v ∈ B× will always be regarded as integers. For example, qa should never be confused 
with a′ · q.

Theorem 2. Let A, B be bicyclic braces with q := o(Soc(A)) + 1 and t := o(Soc(B)) + 1. 
Eqs. (31) with u ∈ A× and v ∈ B× determine a bi-crossed product A �� B of braces if 
and only if (33) holds, such that for all a ∈ A and x ∈ B there exist b ∈ A and y ∈ B

with

u−x[a]q = [b]q v−a[x]t = [y]t (35)

q−a(ux − 1) = uy − 1 t−x(va − 1) = vb − 1. (36)

Proof. The conditions (33) state that (31) makes A into a B-module and B into an A-
module. Thus, by Proposition 6, we only have to deal with the compatibility condition 
(14), which can be written in the form

([a]q · [x]t) · ([a]q · 1) = ([x]t · [a]q) · ([x]t · 1), (37)

where a ∈ A and x ∈ B, and 1 ∈ {1A, 1B}. By Eqs. (34), we have [a]q · [x]t = v−a[x]t
and [x]t · [a]q = u−x[a]q. So there are unique b ∈ A with u−x[a]q = [b]q and y ∈ B with 
v−a[x]t = [y]t. This gives Eqs. (35).

Case 1: 1 = 1A. Then Eqs. (29) and (34) give [a]q · 1 = (1A ◦ · · · ◦ 1A) · 1A = q−a and 
[x]t · 1 = u−x. So we obtain ([a]q · [x]t) · ([a]q · 1) = [y]t · q−a = u−yq−a, and by Eqs. (29), 
([x]t ·[a]q) ·([x]t ·1) = u−x[a]q ·u−x = u−x(1 +u−x[a]q(q−1))−1. Thus Eq. (37) with 1 = 1A
becomes u−yq−a = u−x(1 +u−x[a]q(q−1))−1, that is, u−yq−a(1 +u−x[a]q(q−1)) = u−x. 
Multiplying by uyux, this equation becomes q−a(ux + [a]q(q − 1)) = uy, where the left-
hand side is equal to q−a(ux + qa − 1A) = q−a(ux − 1) + 1. So the equation is equivalent 
to the first equation of (36).

Case 2: 1 = 1B . Then [a]q · 1 = v−a and [x]t · 1 = t−x. So Eq. (37) becomes v−a[x]t ·
v−a = [b]q · t−x, that is, v−a(1 +v−a(tx−1))−1 = v−bt−x. In analogy to case 1, this gives 
the second equation of (36). �
Remark. Eqs. (36) could be equivalently stated as follows:

ux−y = qa−b, va−b = tx−y. (38)

To see this, use Eqs. (35) to obtain ([x]t · [a]q) · ([x]t · 1A) = [b]q · u−x = u−xq−b. Thus 
Eq. (37) with 1 = 1A becomes u−yq−a = u−xq−b, which gives the first equation of (38). 
The second one is obtained analogously. Our preference of Eqs. (36) will be seen from 
the next result.
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Corollary 1. Let A and B be bicyclic braces. If q := o(Soc(A)) + 1 is relatively prime to 
o(B) and t := o(Soc(B)) + 1 relatively prime to o(A), then Eqs. (31) with u := t and 
v := q determine a bi-crossed product A �� B of braces.

Proof. By assumption, u ∈ A× and v ∈ B×, and (33) follows by Eq. (30). Multiplying 
the first equation of (35) by q − 1, it turns into the second equation of (36). Similarly, 
the first equation of (36) follows by the second equation of (35). �

There are many examples of bicyclic braces which can be amalgamated in this way. 
For example, any pair of bicyclic braces with if |A| = pk and |B| = p� for some prime 
p determines a bi-crossed product A �� B. In particular, the corollary provides a special 
class of decomposable groups A◦ �� B◦ which should be investigated.

Corollary 2. Let A be the infinite bicyclic brace, and let B be any bicyclic brace. With 
the notations of Theorem 2, there exists a brace A �� B if and only if t, v ∈ B× and one 
of the following holds:

(a) u = 1, and the equation (t − 1)(v − 1) = 0 holds in B.
(b) u = −1 and 2|o(B), and (v2 − 1)(v − 1) = (t + v)(v − 1) = 0 holds in B.

Proof. Since o(A) = 0, we have q = 1 and u2 = 1. Assume first that u = 1. Then (33)
is satisfied for all v ∈ B×. For any x ∈ B, the first equation in (35) yields b = a. So 
the second equation of (36) is equivalent to (t − 1)(v − 1) = 0. Moreover, the remaining 
equations of (35)-(36) hold for a suitable y ∈ B.

Now assume that u = −1. Then (33) states that o(B) is even. Hence t and v are odd. 
So the parity of [x]t is equal to the parity of x. Therefore, the second equation in (35) and 
the first equation in (36) are satisfied. For x = −1B , we have b = −a. So the remaining 
equation yields t(v−1) = v−1−1 = −v−1(v−1) and t(v2−1) = v−2−1 = −v−2(v2−1), 
that is, (t + v−1)(v− 1) = (t + v−2)(v2 − 1) = 0. So the second equation can be replaced 
by (v−1 − v−2)(v2 − 1) = 0 or (v2 − 1)(v − 1) = 0. Thus, (v − v−1)(v − 1) = 0, which 
shows that (t + v−1)(v − 1) = 0 can be repaced by (t + v)(v − 1) = 0.

Conversely, assume that t(v−1) = v−1−1 and t(v2−1) = v−2−1. Then (v2−1)(v−1) =
0, which yields (v2 − 1)(v−a − 1) = 0. To verify that t(va − 1) = v−a − 1 holds for 
all a, we proceed by induction. Assume that t(va − 1) = v−a − 1. Then t(va+1 − 1) =
t(va−1)v+t(v−1) = (v−a−1)v+v−1−1 = v−a−1−1 +v−1(v−a−1)(v2−1) = v−a−1−1. 
Thus t(va − 1) = v−a − 1 holds for all a. In particular, t(v−a − 1) = va − 1, which yields 
t2(va−1) = va−1. So the right-hand equation of (36) holds for all a ∈ A and x ∈ B. �
Example 6. Theorem 2 can also be used for the construction of solvable groups. For 
instance, let A = B be the trivial cyclic brace of order 4. Thus, with the above notation, 
q = t = 1. Then u = v = −1 satisfy Eqs. (33) and (35)-(36). So there is a brace A �� B

with additive group C4 × C4. The adjoint group G = A◦ �� B◦ is that of Example 4. 
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Indeed, the tables in Example 4 give the metacommutation rules ax = (−1)xa and 
xa = (−1)ax, in accordance with Eqs. (34).

Example 7. Rédei [30] and Cohn [10] classified the bi-crossed products of cyclic groups 
where one of the group is infinite. Some of these groups cannot arise from bi-crossed 
products of braces. For example, let C0 �� C6 be a bi-crossed product, and assume that 
A, B are braces with A◦ = C0 and B◦ = C6. Then A and B must be trivial. It is easily 
verified that the metacommutation actions

xa = (−1)xa, xa = x + 2ai(x) (39)

define a bi-crossed product A◦ �� B◦, where i(x) := 0 for even x and i(x) := 1 otherwise. 
However, v = 1′A · 1B = 3 /∈ B×, which shows that Eqs. (39) don’t give a matched pair 
of braces.

Example 8. The smallest bi-crossed product A �� B of non-trivial braces A, B obtained 
by Corollary 1 of Theorem 2 for which A◦ �� B◦ is not a semidirect product and A � B

occurs for |A| = 16 and |B| = 8, both with socle order 4. Thus q = u = 5 ∈ A and t = v =
5 ∈ B, and |A �� B| = 128. If we renumber the elements of A◦ so that i ∈ {0, 1, . . . , 15}
stands for 1A ◦ · · · ◦ 1A (i factors), and similarly for B◦ = {0, 1, 2, 3, 4, 5, 6, 7}, the right 
actions (32) are given by the permutations σ = (1, 13, 9, 5)(2, 10)(3, 7, 11, 15)(6, 14) on 
A◦ and τ = (1, 5)(3, 7) on B◦, which determines the adjoint group G := A◦ �� B◦. Thus 
a ◦ 1B = y ◦ σ(a) and x ◦ 1A = b ◦ τ(x) for given a ∈ A◦ and x ∈ B◦, with y ∈ B and 
b ∈ A. So ax = σx(a) and xa = τa(x). The general commutation rule for G is as follows:

a ◦ x =
(
−τ−a(−x)

)
◦ σx(a) =

{
x ◦ σx(a) for x or a even
(x + 4) ◦ σx(a) for x and a odd.

Let NA (resp. NB) be the greatest subgroup of A◦ (resp. B◦) which is normal in G. 
Then NA ◦NB is called the nucleus [11,14] of G. Here we have NA = 〈2〉 and NB = 〈4〉. 
Thus G/NANB

∼= C2 × C4. We shall see below that the nucleus is always a brace ideal.

Proposition 7. Let A be a bicyclic brace. Every subgroup of A◦ is an ideal of A.

Proof. If A is infinite, A is a trivial brace ([38], Proposition 10). Thus let A be finite. 
For each divisor n > 0 of o(A), there is a unique subgroup nA of the additive group of 
A, and n is the index of this subgroup. Moreover, nA is a right ideal of A, hence an ideal 
since A◦ is abelian. In particular, nA is a subgroup of A◦. Since A◦ is cyclic, there are 
no other subgroups of A◦. �
Theorem 3. Let A �� B be a bi-crossed product of bicyclic braces A, B, and let NB be the 
greatest subgroup of B◦ which is normal in (A �� B)◦. Then
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NB = {x ∈ B | ∀ a ∈ A : a ◦ x ◦ a′ ∈ B} = {x ∈ B | ∀ a ∈ A : ax = a}. (40)

Moreover, NB is a brace ideal of A �� B.

Proof. For a ∈ A and x ∈ B, we have a ◦ x = ax ◦ ax. Hence a ◦ x ◦ a′ ∈ B if and only 
if ax = a. Thus NB ⊂ IB = JB holds for IB := {x ∈ B◦ | ∀ a ∈ A : a ◦ x ◦ a′ ∈ B} and 
JB := {x ∈ B | ∀ a ∈ A : ax = a}. Since IB is a normal subgroup of G := (A �� B)◦, this 
proves Eqs. (40).

By Proposition 7, NB is a brace ideal of B. Thus, to verify that NB is a brace ideal of 
A �� B, we only have to show that NB is a right ideal. Now let a, b ∈ A and x ∈ NB be 
given. Then Proposition 3 and its Corollary 1 imply that (a ·x) · (a · b) = (x · a) · (x · b) =
ax

′ · bx′ = a · b. Hence a · x ∈ NB , and thus NB is a right ideal of A �� B. �
Corollary. Let A �� B be a bi-crossed product of bicyclic braces A, B. Then the nucleus 
NA ◦NB of A◦ �� B◦ is a brace ideal of A �� B.

Proof. By Theorem 3, NB is a brace ideal of A �� B, and by symmetry, the same is true 
for NA. Hence NA ◦NB = NA + NB is a brace ideal of A �� B. �
Remark. The corollary shows that the type reduction of Douglas [11] for bi-crossed 
products of cyclic groups carries over to braces. Note that the inversion of this reduction 
process for groups is not yet fully understood. On a combinatorial level, Douglas [11]
characterized the “special” permutations σ (cf. Example 8) arising as right metacom-
mutation actions for a matched pair of cyclic groups, and introduced a derived special 
permutation σ′ which always combines with σ as a left counterpart to a bi-crossed prod-
uct. He proved that some n-th derivative is trivial, which led him to define the type to 
be the minimal length n of such a reduction. Gorenstein and Herstein [14] proved that 
all finite types actually occur.

Several further directions suggest themselves.

Problems. 1. Extend Theorem 2 to exceptional cyclic braces [33].
2. What are the shifted bi-crossed products of (bi-)cyclic braces?
3. Determine the adjoint groups of bi-crossed products of (bi-)cyclic braces.

We conclude with a property of cyclic braces of odd order which is useful for calculating 
the adjoint group in terms of the additive group.

Proposition 8. Let A be a cyclic brace of odd order n with additive group Z/nZ = 〈1〉
and q := 11 = |Soc(A)| + 1. Then s := |A/Soc(A)| satisfies [s]q = s.

Proof. By assumption, d := |Soc(A)| = q − 1 and n = ds. So we have to show that n
divides [s]q − s = (d+1)s−1

d − s, that is, nd|(d + 1)s − 1 − n. Since (d + 1)s = 1 + sd +∑s
i=2

(
s
)
di, this is equivalent to nd

∣∣∑s
i=2

(
s
)
di. So it is enough to verify
i i
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n
∣∣(s

i

)
di−1

for 2 � i � s. For a prime p and m ∈ Z, let vp(a) be the greatest k ∈ N with pk|m. 
Then we have to verify

vp(n) � vp
((

s
i

)
di−1)

for odd primes p and 2 � i � s. If p � s, this is obvious. So let us assume that p|s.
Case 1: p � i. Then vp(i!) = vp((i −1)!) � vp

(
(s −1) . . . (s −i +1)

)
. Hence vp

((
s
i

)
di−1) �

vp(sdi−1) � vp(sd) = vp(n).
Case 2: p|i. Since vp

((
s
i

))
= vp

((
s/p
i/p

))
, we proceed by induction. If i = p, then 

vp
((

s
i

)
di−1) = vp( s

pd
i−1) � vp(sd) = vp(n). Otherwise, j := i

p � 2, and the inductive hy-
pothesis gives vp

((
s
i

)
di−1) = vp

((
s/p
i/p

)
dj−1)+vp

(
di−j

)
� vp(np ) +2vp(d) � vp(n) +vp(d) =

vp(n). �
Remark. Proposition 8 does not hold for even n. For example, the bicyclic brace of order 
16 and socle order 4 (see [33], Section 4) satisfies [4]5 = 12 �= 4.

Corollary. Let A be a cyclic brace of odd order n with additive group Z/nZ = 〈1〉 and
q := 11 = |Soc(A)| + 1. For s := |A/Soc(A)| and a ∈ A,

[a + s]q = [a]q + s. (41)

Proof. Since s = [s]q ∈ Soc(A), we have [a + s]q = [a]q ◦ s = ([a]q)s + s = [a]q + s. �
Example 9. Let A be the cyclic brace of order n = 81 with socle order d = 3. As in 
Proposition 8, we identify the additive group with Z/nZ and choose q := 11 = d +1 = 4. 
Then s := |A/Soc(A)| = 27. To obtain [a]q for a ∈ {1, . . . , 81}, formula (41) shows that 
it suffices to calculate [a]q for a ∈ {1, . . . , 26}:

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
qa 4 16 64 13 52 46 22 7 28 31 43 10 40 79 73 49 34 55 58 70 37 67 25 19 76 61 1
[a]q 1 5 21 4 17 69 34 56 63 10 41 3 13 53 51 43 11 45 19 77 66 22 8 33 52 47 27
mod 27 1 5 21 4 17 15 7 2 9 10 14 3 13 26 24 16 11 18 19 23 12 22 8 6 25 20 0

With the powers qa the [a]q are obtained recursively since [a + 1]q = qa + [a]q. The 
reduction of [a]q modulo 27, given in the last line of the table, determines the adjoint 
group of the cyclic brace of order 27 with the same socle order 3. Since [a]q = qa−1

q−1 , we 
have

qa = d[a]q + 1. (42)

In this formula, the factor d implies that [a]q enters only modulo 27. Thus, if the brace 
of order 27 is given, Eq. (42) can be used to obtain the powers qa in the above table, 
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which yields the brace of order 81 by virtue of Eq. (41). In this way, the bicyclic braces 
can be obtained with a minimum amount of calculation.

References

[1] D. Bachiller, Counterexample to a conjecture about braces, J. Algebra 453 (2016) 160–176.
[2] D. Bachiller, Extensions, matched products, and simple braces, J. Pure Appl. Algebra 222 (7) (2018) 

1670–1691.
[3] D. Bachiller, F. Cedó, E. Jespers, J. Okniński, Iterated matched products of finite braces and sim-

plicity: new solutions of the Yang-Baxter equation, Trans. Am. Math. Soc. 370 (7) (2018) 4881–4907.
[4] D. Bachiller, F. Cedó, E. Jespers, J. Okniński, Asymmetric product of left braces and simplicity: 

new solutions of the Yang–Baxter equation, Commun. Contemp. Math. 21 (2019) 1850042.
[5] F. Catino, I. Colazzo, P. Stefanelli, Regular subgroups of the affine group and asymmetric product 

of radical braces, J. Algebra 455 (2016) 164–182.
[6] F. Cedó, E. Jespers, J. Okniński, Retractability of set theoretic solutions of the Yang-Baxter equa-

tion, Adv. Math. 224 (6) (2010) 2472–2484.
[7] F. Cedó, E. Jespers, del Río, Involutive Yang-Baxter groups, Trans. Am. Math. Soc. 362 (5) (2010) 

2541–2558.
[8] F. Cedó, E. Jespers, J. Okniński, Braces and the Yang-Baxter equation, Commun. Math. Phys. 

327 (1) (2014) 101–116.
[9] F. Cedó, E. Jespers, J. Okniński, An abundance of simple left braces with Abelian multiplicative 

Sylow subgroups, Rev. Mat. Iberoam., https://doi .org /10 .4171 /rmi /1168.
[10] P.M. Cohn, A remark on the general product of two infinite cyclic groups, Arch. Math. 7 (1956) 

94–99.
[11] J. Douglas, On finite groups with two independent generators, I-IV, Proc. Natl. Acad. Sci. USA 37 

(1951) 604–610, 677–691, 749–760, 808–813.
[12] V.G. Drinfeld, On some unsolved problems in quantum group theory, in: Quantum Groups, 

Leningrad, 1990, in: Lecture Notes in Math., vol. 1510, Springer-Verlag, Berlin, 1992, pp. 1–8.
[13] P. Etingof, T. Schedler, A. Soloviev, Set-theoretical solutions to the quantum Yang-Baxter equation, 

Duke Math. J. 100 (1999) 169–209.
[14] D. Gorenstein, I.N. Herstein, On the structure of certain factorizable groups, I, Proc. Am. Math. 

Soc. 10 (1959) 940–945.
[15] D. Gorenstein, I.N. Herstein, On the structure of certain factorizable groups, II, Proc. Am. Math. 

Soc. 11 (1960) 214–219.
[16] L. Guarnieri, L. Vendramin, Skew braces and the Yang-Baxter equation, Math. Comput. 86 (2017) 

2519–2534.
[17] P. Hall, On the Sylow systems of a soluble group, Proc. Lond. Math. Soc. 43 (1937) 316–323.
[18] P. Hall, A characteristic property of soluble groups, J. Lond. Math. Soc. 12 (1937) 188–200.
[19] P. Hegedüs, Regular subgroups of the affine group, J. Algebra 225 (2) (2000) 740–742.
[20] B. Huppert, Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 

(1953) 243–264.
[21] B. Huppert, Über die Auflösbarkeit faktorisierbarer Gruppen, Math. Z. 59 (1953) 1–7.
[22] N. Itô, Über das Produkt von zwei abelschen Gruppen, Math. Z. 62 (1955) 400–401.
[23] N. Jacobson, Structure of rings, Colloq. Publ. – Am. Math. Soc. 37 (1974).
[24] E. Jespers, Ł. Kubat, A. Van Antwerpen, L. Vendramin, Factorizations of skew braces, Math. Ann. 

375 (2019) 1649–1663.
[25] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 

1995.
[26] J.-H. Lu, M. Yan, Y.-C. Zhu, On the set-theoretical Yang-Baxter equation, Duke Math. J. 104 

(2000) 1–18.
[27] G.A. Miller, Groups which are the products of two permutable proper subgroups, Proc. Natl. Acad. 

Sci. 21 (1935) 469–472.
[28] G.A. Miller, Regular subgroups of a transitive substitution group, Proc. Natl. Acad. Sci. 22 (1936) 

375–377.
[29] B.H. Neumann, Decomposition of groups, J. Lond. Math. Soc. 10 (1935) 3–6.
[30] L. Rédei, Zur Theorie der faktorisierbaren Gruppen, I, Acta Math. Acad. Sci. Hung. 1 (1950) 74–98.

http://refhub.elsevier.com/S0021-8693(20)30173-3/bib29DBCBAC0F5AA95E5C10FA7CFF060344s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib8C013ABE8FF8BE57CCD4F1CDF76063EEs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib8C013ABE8FF8BE57CCD4F1CDF76063EEs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibA6EA7F18A76CCB09BE6A6F64A6AFCA7As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibA6EA7F18A76CCB09BE6A6F64A6AFCA7As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib357C0610D0B0FE87AD634AFDB6D40E3As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib357C0610D0B0FE87AD634AFDB6D40E3As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib17FD944D2A2E79696C75FFE5210DCA0As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib17FD944D2A2E79696C75FFE5210DCA0As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibC049747F9F5246500D661EBDE857A095s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibC049747F9F5246500D661EBDE857A095s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4A9B03AD44081DC0DFECF081474AB192s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4A9B03AD44081DC0DFECF081474AB192s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibF1F4DD03291EC1C0396A5E6397F4A4CEs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibF1F4DD03291EC1C0396A5E6397F4A4CEs1
https://doi.org/10.4171/rmi/1168
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4888E641AA4884E084AE66EAD91A07E0s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4888E641AA4884E084AE66EAD91A07E0s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4617441545E542D90C3C038E1FDF942As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4617441545E542D90C3C038E1FDF942As1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib472D01453BB37573990CFAF51726AE77s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib472D01453BB37573990CFAF51726AE77s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibFFEA021A2EF02D5098BB8AE2F868D64Es1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibFFEA021A2EF02D5098BB8AE2F868D64Es1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib9636FB803E303149C4646787647B77DCs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib9636FB803E303149C4646787647B77DCs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib211D64C68EA72A10B2F002EB1ECA9AD6s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib211D64C68EA72A10B2F002EB1ECA9AD6s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib09E135328CBE29A223F8EBCDDEB3517Cs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib09E135328CBE29A223F8EBCDDEB3517Cs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib3B6A1412828F3B746E7A94571EC3798Fs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib75002FE48442A02A55971F48CEBBE3E4s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibDB86C3C9C6DCEA60A7254B90F50416BCs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4A6CF4A0D3129DCA10CF652616917C65s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib4A6CF4A0D3129DCA10CF652616917C65s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib240638870A8FAB0DF3B5FFD7B91A1E91s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib39E85BB874FB4792666CE8519879743Bs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib8AE5073F7AA86335BFBB76884FA5FF66s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib76193134FC12BB163E6674B7D15C392Es1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib76193134FC12BB163E6674B7D15C392Es1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib2CA5571824E527D54FD3F458827F0A5Ds1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib2CA5571824E527D54FD3F458827F0A5Ds1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibCED9E8E9F6743F3F533797213CE1E68Bs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibCED9E8E9F6743F3F533797213CE1E68Bs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib232AE3E4E801BC06C2017D47DB4CC892s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib232AE3E4E801BC06C2017D47DB4CC892s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib114C1876A9904315D97E746C81FAE20Ds1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib114C1876A9904315D97E746C81FAE20Ds1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibE85A2F1D6DE3E3B0E71B1A2E19952659s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibEE38E4D5DD68C4E440825018D549CB47s1


W. Rump / Journal of Algebra 556 (2020) 725–749 749
[31] W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter 
equation, Adv. Math. 193 (2005) 40–55.

[32] W. Rump, Braces, radical rings, and the quantum Yang-Baxter equation, J. Algebra 307 (2007) 
153–170.

[33] W. Rump, Classification of cyclic braces, J. Pure Appl. Algebra 209 (3) (2007) 671–685.
[34] W. Rump, Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equa-

tion, J. Algebra Appl. 7 (4) (2008) 471–490.
[35] W. Rump, The brace of a classical group, Note Mat. 34 (1) (2014) 115–144.
[36] W. Rump, A covering theory for non-involutive set-theoretic solutions to the Yang-Baxter equation, 

J. Algebra 520 (2019) 136–170.
[37] W. Rump, Construction of finite braces, Ann. Comb. 23 (2019) 391–416.
[38] W. Rump, Classification of cyclic braces, II, Trans. Am. Math. Soc. 372 (1) (2019) 305–328.
[39] Y.P. Sysak, Products of groups and local nearrings, Note Mat. 28 (suppl. 2) (2008) 177–211.
[40] J. Szép, Über die als Produkt zweier Untergruppen darstellbaren endlichen Gruppen, Comment. 

Math. Helv. 22 (1949) 31–33.
[41] J. Szép, On the structure of groups which can be represented as the product of two subgroups, Acta 

Sci. Math. Szeged 12 (1950) 57–61.
[42] H. Wielandt, Über das Produkt paarweise vertauschbarer nilpotenter Gruppen, Math. Z. 55 (1951) 

1–7.
[43] G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili traloro, in: 

Atti Secondo Congresso Un. Mat. Ital., Bologna, Edizioni Cremonense, Rome, 1942.

http://refhub.elsevier.com/S0021-8693(20)30173-3/bib69474F410BFBB30F9BAD083A3F972E86s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib69474F410BFBB30F9BAD083A3F972E86s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib524238C55890641A82D9F6D090AE2A65s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib524238C55890641A82D9F6D090AE2A65s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib17E1612BF055D0391E763403B2CCCD39s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibAE0780FB85EBD0C9B6E6571F6CFA5658s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibAE0780FB85EBD0C9B6E6571F6CFA5658s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib5D8B930456D7157C373627C764692AB7s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib8F401978C3F3ED966F0854DC85AA29E8s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib8F401978C3F3ED966F0854DC85AA29E8s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bibB21384D192AD99576F979732DD4FA83Bs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib615CE9E6B28C504DF8AF79676D3D76E0s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib40085574FFE68D3214BF81845239EEFCs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib3C238F8339A83E0E56A9551F2BAFDC68s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib3C238F8339A83E0E56A9551F2BAFDC68s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib824960936C32FA53FC34581BBC8550D0s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib824960936C32FA53FC34581BBC8550D0s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib6C79285D8CF1E40CFDCF8C733D95841Cs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib6C79285D8CF1E40CFDCF8C733D95841Cs1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib99A4B6174C552D969D49EB345A1BC636s1
http://refhub.elsevier.com/S0021-8693(20)30173-3/bib99A4B6174C552D969D49EB345A1BC636s1

	Affine structures of decomposable solvable groups
	Introduction
	1 Preliminaries: affine structures and braces
	2 Decomposable groups
	3 Shifted bi-crossed products of braces
	4 Bi-crossed products of cyclic braces
	References


