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1. Introduction

Irredundant irreducible decomposition of ideals is an important tool in Commutative 
Algebra and Algebraic Geometry. It leads to the notions of primary decomposition, 
associated primes as well as to arithmetic properties. Many recent works (see [2], [5], 
[6], [11], [12], [13], [17], [20], [21], [22]) concern associated primes of powers of a square 
free monomial ideal. The most recent work in this topic is the preprint in [13] in which 
the authors describe the set of associated primes of powers of an edge ideal IG ⊂ R :=
K[x1, . . . , xd] of a graph G. Let recall that the asymptotic stability of Ass(R/Ik) was 
proved by M. Brodmann [1]. For an edge ideal IG, Chen, Morey and Sung [2] give a 
process to described prime ideals in Ass(R/IkG), in particular they proved that if G is 
a simple connected non bipartite graph then m ∈ Ass(R/IkG) for k large enough. On 
the other hand Martinez-Bernal, Morey and Villarreal [17] proved that Ass(R/IkG) ⊂
Ass(R/Ik+1

G ) for k ≥ 1, this result is known as persistence of associated primes for 
edge ideals of graphs. If G is a simple connected bipartite graph then by Theorem 5.9 
of [20] we know that Ass(R/I lG) = Ass(R/I l+1

G ) for l ≥ 1, the smallest k such that 
Ass(R/I lG) = Ass(R/I l+1

G ) (or depth(R/I lG) = 0, respectively) for all l ≥ k is denoted 
by astab(IG) (or dstab(IG), respectively). Note that since depth(R/I lG) = 0 if and only 
if m ∈ Ass(R/I lG), we have that dstab(IG) ≤ astab(IG). Recently, T.N. Trung [22] has 
improved the upper bound for dstab(IG) resulting from the upper bound for astab(IG)
in [2].

It is well known that for any monomial ideal J , the irredundant irreducible decom-
position of J is unique up to order. The set of ideals appearing in the irredundant 
irreducible decomposition of J is denoted by Irr(J) and its elements are called irre-
ducible components of J . In this work for the first time we are able to describe explicitly 
the set Irr(IkG) and so we improve some results contained in the mentioned papers. To 
be more precise, it is well known that an irreducible component of IkG can be written as 
mb := (xbi

i | bi > 0, i = 1, . . . , d)R, where b = (b1, . . . , bd) ∈ Nd \ {0}. We associate to 
mb the sets U = {xi | bi ≥ 1}, Z = {xi | bi = 0} and the vector a = (a1, . . . , ad) ∈ Nd

defined by ai = bi − 1 if bi ≥ 2 and ai = 0 otherwise. In all this work we study the 
relations between the sets U, Z and the vector a.

In section 2 we recall some facts about irreducible decomposition of monomial ideals 
and their translation in terms of corner elements as studied in the book [18]. We also 
give some definitions and basic properties of edge ideals of a graph.

In section 3 we describe the non embedded irreducible components and especially 
give a formula for the number of non embedded irreducible components of powers of 
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edge ideals IG of a graph G (see Theorem 3.1). It coincides with a polynomial of degree 
the big height of IG in accord with the main result in [3]. The above result can be 
applied to the case of square free monomial ideals, it will be published in our forthcoming 
paper.

In section 4 we give important properties of graphs related to factor-critical. In par-
ticular we recall Lovász’s Theorem [14] on an ear decomposition of factor-critical graphs 
and the canonical decomposition of a graph given by Edmonds and Gallai into three sets 
A(G), C(G), D(G), known as the Gallai-Edmonds Structure Theorem (see [4] and [7]).

In section 5 we prove that embedded irreducible components of powers of edge ideals 
of graphs are described in terms of factor-critical sets by using Gallai-Edmonds Structure 
Theorem. Concretely, we prove in Theorem 5.3 that an irreducible component is given 
by a vector a such that the replication S = pa(G) has C(S) = ∅ (see Definition 2.10). 
As a consequence we can show that graphs G with C(G) = ∅ play a crucial role in this 
subject. We prove in Corollary 5.14 the strong persistence of associated primes: namely if 
J is an irreducible component of IkG then we can describe several irreducible components 
of Ik+1

G that comes directly from J and have the same radical as J , which improves the 
result in [17]. If G is a simple connected bipartite graph in Corollary 5.12 we get a short 
proof of Theorem 5.9 of [20].

In section 6, we will apply our main results to study the set Irr(IkG) for k � 0. From 
one side we improve the main results of [2] and [22] by giving short and conceptual proofs 
in Theorem 6.3 and Theorem 6.9. From the other side we can precise the main result of [3]
that counted the number of irreducible components of IkG for k � 0 (see Theorem 6.11). 
Moreover, we also improve the results in [12] and [21] by describing graphs which have 
dstab(IG) ≤ 3 with a short proof (see Corollary 6.6).

2. Irreducible decomposition and corner elements

Let K be a field, R := K[x1, . . . , xd] a polynomial ring, m := (x1, . . . , xd) its unique 
graded maximal ideal and J ⊂ R be a monomial ideal. We denote by [[R]] the set of all 
monomials of R, V = {x1, . . . , xd}, and μ(J) the number of minimal generators of J .

Notation 2.1. (i) For a non zero vector a = (a1, . . . , ad) ∈ Nd, set xa = xa1
1 · · ·xad

d , 
ma := (xai

i | ai > 0, i = 1, . . . , d)R and Supp(a) = Supp(xa) := {xi | ai > 0}.
(ii) For every set S ⊂ V , let 1S be its characteristic vector, i.e. its ith-coordinate is 1

if xi ∈ S and 0 otherwise. For instance we have 1V = (1, . . . , 1).
(iii) In this article we use the same notation for a subset F ⊂ V and the induced 

subgraph G[F ] on F , unless is ambiguous.

Now we need some results from [18].

Definition 2.2. A monomial M ∈ [[R]] is a J-corner element if M /∈ J but x1M, . . . ,
xdM ∈ J . The set of corner elements of J in [[R]] is denoted by CR(J).



318 M. Morales, N.T. Dung / Journal of Algebra 556 (2020) 315–339
Fact 2.3. (i) It is clear that the J-corner elements are precisely the monomials in (J :R
m) \ J , or in other words, CR(J) = [[(J :R m)]] \ [[J ]].

(ii) The set CR(J) is finite.
(iii) If rad(J) = m, then it is well known that t(R/J) = card(CR(J)) is the type of 

the ring R/J .

The following theorem gives us some methods for computing irreducible decomposi-
tions for monomial ideals (see [18], Theorem 6.3.5, Theorem 7.5.3 and Theorem 7.5.5). 
Set Irr(J) be the set of irredundant irreducible components of a monomial ideal J . Let 
recall that every irreducible ideal in the ring R is of the type mb for some non zero vector 
b ∈ Nd.

Theorem 2.4. Let J ⊂ R be a monomial ideal.
(i) Assume that rad(J) = m. Let CR(J) = {xcj | cj ∈ Nd, j = 1, . . . , t(R/J)} be 

the set of corner elements of J . Then J = ∩t(R/J)
j=1 mcj+1

V is the unique irredundant 
irreducible decomposition of J .

(ii) Assume that rad(J) 	= m and J = (xbj | bj ∈ Nd, j = 1, . . . , μ(J))R. Let 
m be an integer which is equal or bigger than every coordinate of the vectors bj. Set 
J ′ := J + m(m+1)1V and CR(J ′) = {xcj | cj ∈ Nd, j = 1, . . . , t(R/J ′)} be the set of 
corner elements of J ′. Then J = ∩t(R/J ′)

j=1 m̃cj+1
V is the unique irredundant irreducible 

decomposition of J , where m̃cj+1
V is obtained from mcj+1

V by deleting all monomials of 
the type xm+1

1 , . . . , xm+1
d from its generators.

Remark 2.5. (i) With the notations of Theorem 2.4, let xcj be a corner element of 
J ′ := J + m(m+1)1V . Note that since J ′ is m-primary, we have all coordinates of cj
are non zero. Let Uj := {xi | cji < m}, Zj := V \ Uj . We can write cj = aj + m1Zj

, 
with Supp(aj) = Uj . Then m

aj+1
Uj is an irreducible component of J . Note that Uj is 

independent of m and in fact for all i, aji < max{bji | 1 ≤ j ≤ μ(J), 1 ≤ i ≤ d}, where 
xbj is generators of J .

(ii) It follows that any irreducible component of a monomial ideal J ⊂ R is of the 
type ma+1U for some vector a ∈ Nd with Supp(a) ⊂ U ⊂ V .

From now on, let G = (V, E) be a simple connected graph with the vertex set V =
V (G) = {x1, . . . , xd}, the edge set E = E(G) and IG := (xixj | xixj ∈ E)R its edge 
ideal. Now we need some definitions.

Definition 2.6. (i) A set C ⊂ V is a vertex cover of G if for every edge xy ∈ E we have 
either x ∈ C or y ∈ C.

(ii) A set S ⊂ V is called a clique set of G if the induced subgraph G[S] is a complete 
graph and it is called a coclique (or independent set) of G if the induced subgraph G[S]
has no edges. The family of coclique sets of G, denoted by Δ(G), is the simplicial complex 
called independence complex of G.
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(iii) A matching of G is a set of disjoint edges of G. The maximum cardinal of all 
matchings in G, denoted by ν(G), is called the matching number of G. A maximum 
matching of G is a matching whose cardinal is ν(G). A perfect matching of G is a 
matching that all the vertices of G are involved.

For a set S ⊂ V we denote by N(S) the set of vertices that are adjacent to some 
element in S.

Remark 2.7. (i) A set C ⊂ V is a vertex cover of G if and only if V \C is a coclique and 
C is a minimal vertex cover of G if and only if V \ C is a maximal coclique.

(ii) A set Z ⊂ V is a coclique if and only if N(Z) ∩Z = ∅ and Z is a maximal coclique 
if and only if V = N(Z) ∪ Z.

Let U ∪ Z = V be a partition of V . With the notations in 2.1, we can resume the 
above facts for edge ideals in the following corollary.

Corollary 2.8. Let k, m ∈ N such that m ≥ k and a = (a1, . . . , ad) ∈ Nd such that 
Supp(a) ⊂ U (see Remark 2.5). The following conditions are equivalent:

(i) The ideal ma+1U belongs to Irr(IkG).
(ii) ai < k for all i = 1, . . . , d and the ideal ma+1U +m(m+1)1Z ∈ Irr(IkG +m(m+1)1V ).
(iii) ai < k for all i = 1, . . . , d and the monomial xaxm1Z is a corner element of 

IkG + m(m+1)1V .
(iv) ai < k for all i = 1, . . . , d and we have

(1) xaxm1Z /∈ IkG + m(m+1)1V .
(2) For every u ∈ V we have uxaxm1Z ∈ IkG + m(m+1)1V .

(v) ai < k for all i = 1, . . . , d and we have

(1) xaxm1Z /∈ IkG.
(2) For every u ∈ U we have uxaxm1Z ∈ IkG.

Remark 2.9. Let ma+1U ∈ Irr(IkG), where a ∈ Nd with Supp(a) ⊂ U and Z = V \U . We 
have

(i) The set Z is a coclique. Indeed, it is certainly true if �Z ≤ 1. We can assume 
�Z ≥ 2. Suppose that there exist u 	= v ∈ Z such that uv ∈ IG. Then (uv)m ∈ ImG ⊂ IkG
for m ≥ k, which implies xaxm1Z ∈ IkG + m(m+1)1V , a contradiction.

(ii) For any u /∈ Z we have either u ∈ N(Supp (a)) or u ∈ N(Z).

Definition 2.10. Let a ∈ Nd be a non zero vector and we set Ai = {xi = x
(1)
i , . . . , x(ai)

i }
for each ai > 0. The graph S := pa(G) with the vertex set V (S) = ∪ai>0Ai and the 
edge set E(S) = {x(l)

i x
(m)
j | xi ∈ Ai, xj ∈ Aj , xixj ∈ E} is called the replication of G by 
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Fig. 1. IG has 22 irreducible components.

the vector a. The support of S is the set Supp(S) := V (S) ∩ V = Supp(a), we denote 
NG(S) = N(V (S) ∩ V ). For small values of ai ≤ 3 sometimes we will write xi, x′

i, x
′′
i

instead of x(1)
i , x(2)

i , x(3)
i .

Example 2.11. As an application of the above result, let us compute the irreducible 
decomposition of IG. Since IG is a square free ideal, any ideal in Irr(IG) is of the type 
m1U for some U ⊂ V . Let Z = V \U , then x1Z is a corner element of IG +m2(1V ), which 
implies that Z is a coclique. Moreover, it is a maximal coclique in V , since for every 
u ∈ U , we have ux1Z ∈ IG + m2(1V ), which implies that there exists some v ∈ Z such 
that uv is an edge in G.

This proves that the irreducible (prime) ideals in Irr(IG) are of the type m1U for some 
set U ⊂ V such that Z = V \ U is a maximal coclique in V . This also shows that IG is 
the Stanley-Reisner ideal associated to Δ(G). Note that the set Irr(IG) is also the set of 
minimal associated primes of IkG, for any k ≥ 1.

Example 2.12. Let G be the graph with ν(G) = 4 in Fig. 1. Let consider the 11-variables 
polynomial ring K[a, b, . . . , k]. Then we have 22 maximal coclique sets

{a, d, h, j, k}, {a, d, g, i}, {b, d, h, j, k}, {b, d, g, i}, {c, d, h, j, k}, {c, d, i}, {a, e, h, j, k},

{a, e, g, i}, {b, e, h, j, k}, {b, e, g, i}, {c, e, h, j, k}, {c, e, i}, {a, f, h, j, k}, {a, f, i},

{b, f, h, j, k}, {b, f, i}, {c, f, h, j, k}, {c, f, i}, {a, d, g, j, k}, {b, d, g, j, k}, {a, e, g, j, k},

{b, e, g, j, k}.

Hence IG has 22 irreducible components.

3. Non embedded irreducible components of Ik
G

Now we can describe the non embedded components of IkG for any k. The proof with 
minor changes can be extended to hypergraphs and will appear in a forthcoming paper 
on hypergraphs.

Theorem 3.1. (i) Let Z ⊂ V be a maximal coclique, U := V \ Z and M a monomial. 
Then Mxk1Z is a corner element of IkG + m(k+1)1V if and only if M is a monomial of 
degree k − 1 with support in U .
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(ii) Every non embedded irreducible component of IkG can be written as ma+1U for 
some set U ⊂ V such that Supp(a) ⊂ U , Z := V \U is a maximal coclique inside V and 
M := xa is a monomial of degree k − 1.

(iii) Let Z1, . . . , Zρ be the maximal coclique sets inside V and μi = d − �Zi. Then 
the number of non embedded irreducible components of IkG is exactly 

∑ρ
i=1

(
μi−1+k−1

μi−1
)
, it 

coincides with a polynomial of degree bight(IG) −1, where bight(IG) is the biggest height 
of irreducible components of IG.

Proof. (i) Let M be a monomial of degree k−1 with support in U . Since Z is a maximal 
coclique, for each u ∈ U we have ux1Z ∈ IG. Hence we have that Mx(k−1) 1Z ∈ Ik−1

G

and uMxk 1Z ∈ IkG. Now we prove that Mxk 1Z /∈ IkG. Assume conversely, so there exist 
generators M1, . . . , Mk of IG and a monomial N such that Mxk 1Z = M1 · · ·MkN . If 
every monomial Mi contains at least one variable of M then we have a contradiction 
with the fact that M is a monomial of degree k− 1. Hence there is a monomial, say M1, 
not containing any variable in M . That means SuppM1 ⊂ Z. It is a contradiction since 
Z is an independent set.

Conversely, let M be any monomial such that Mxk1Z is a corner element of IkG +
m(k+1)1V . Note that since Mxk1Z /∈ IkG + m(k+1)1V , we have Supp (M) ⊂ U . Since 
Z is maximal coclique, for any u ∈ U , we have ux1Z ∈ IG. Hence if deg(M) > k

then Mxk1Z ∈ IkG, a contradiction. So deg(M) ≤ k − 1. Also for u ∈ U we have 
uxk1Z ∈ IkG, then there exist generators M1, . . . , Mk of IG and a monomial N such 
that uMxk1Z = M1 . . .MkN . For i = 1, . . . , k, every monomial generator Mi of IG
contains at least one variable of uM . This implies deg(uM) ≥ k, so deg(M) ≥ k − 1. 
Therefore we get that deg(M) = k − 1 and the support of M is contained in U as 
required.

(ii) Since any non embedded irreducible component corresponds to a maximal coclique 
set, this claim is implied immediately from (i).

(iii) In order to count the number of non embedded irreducible components of IkG we 
have to count the monomials of degree k − 1 with support in the complement of each 
maximal coclique set. Assume that Z1, . . . , Zρ are maximal coclique sets inside V . Then 
for each Zi we have a complement set Ui = V \Zi with its cardinal is μi, for i = 1, . . . , ρ. 
It is well known that the number of monomials of degree k − 1 with support in Ui is 
provided by the Hilbert function H(k) =

(
μi−1+k−1

μi−1
)

of the polynomials ring with μi

variables. It coincides with a polynomial of degree μi−1 for k ≥ 0. Therefore the number 
of non embedded irreducible components of IkG is exactly 

∑ρ
i=1

(
μi−1+k−1

μi−1
)
. �

Example 3.2. In Example 2.12, the graph G has 22 maximal coclique sets, where 13
with 5 elements, 4 with 4 elements and 5 with 3 elements. Hence there are 22 minimal 
vertex cover sets, where 13 with 6 elements, 4 with 7 elements and 5 with 8 elements. 
By Theorem 3.1 there are exactly 13

(5+k
k

)
+ 4

(6+k
k

)
+ 5

(7+k
k

)
non embedded irreducible 

components of Ik+1
G for k ≥ 0.
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4. Factor-critical graphs, Gallai-Edmonds’s canonical decomposition

In this section we study factor-critical graphs. The notion factor-critical graph was 
introduced by Gallai [8]. Factor-critical graphs may be characterized in several different 
ways, other than their definition by Gallai [8], Edmonds [4], Lovász [14]. For basic def-
initions please refer to the books of Lovász and Plummer [16], Yu and Lu [23] and of 
Schrijver [19].

Definition 4.1. A graph G is called factor-critical if for any vertex v in G the graph G −v

has a perfect matching. A set F ⊂ V is called factor-critical if the induced subgraph on 
F is factor-critical. A set H ⊂ V is called matching-critical if the induced subgraph on 
H is a disjoint union of factor-critical graphs.

A path P in G is a subgraph, given by a sequence of distinct vertices v0, . . . , vk such 
that vivi+1 is an edge in G for all i = 0, . . . , k − 1. The vertices v0, vk are called the 
end points of P . A circuit or closed path is a subgraph of G with a vertex set v0, . . . , vk
and an edge set all the edges vivi+1 for i = 0, . . . , k, where vk+1 = v0. Note that this 
definition implies that P has no chords, but like an induced subgraph of G it can have 
chords.

Remark 4.2. (i) Let v ∈ G, set F = {v}, then F is factor-critical.
(ii) It is clear that odd circuits are factor-critical.
(iii) If F is factor-critical, then
(1) The number of vertices of F is odd and ν(F ) = �(F )−1

2 .
(2) Every graph F̃ such that V (F̃ ) = V (F ) and E(F ) ⊂ E(F̃ ) is factor-critical. In 

particular complete odd graphs are factor-critical.

Definition 4.3. ([9]) An ear decomposition G0, G1, . . . , Gk = G of a graph G is a sequence 
of graphs with the first graph G0 being a vertex, edge, even cycle, or odd cycle, and each 
graph Gi+1 is obtained from Gi by adding an ear.

Adding an ear is done as follows: take two vertices a and b of Gi and add a path Pi

from a to b such that all vertices on the path except a and b are new vertices (present 
in Gi+1 but not in Gi). An ear with a 	= b is called open, otherwise, closed. An ear with 
Pi having an odd (even) number of edges is called odd (even).

The following result in [14] and [16] gives us a nice characterization of a graph G being 
factor-critical.

Theorem 4.4. A simple graph G has an odd ear decomposition G0, G1, . . . , Gr = G if and 
only if G is factor-critical.

Let G be a factor-critical graph such that �(V ) ≥ 3. We have the following remark.
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Remark 4.5. (i) Let G0, G1, . . . , Gr = G be an odd ear decomposition of G. Then
(1) G0 can be either a vertex or an odd circuit. If G0 is a vertex then G1 is an odd 

circuit. Hence without loss of generality we can assume that G0 is an odd circuit.
(2) We can assume that the circuit G0 is chord-less, since otherwise G0 can be de-

composed in an odd circuit and an odd ear.
(ii) For any vertex u ∈ V , there is an odd ear decomposition G0, G1, . . . , Gr = G with 

u ∈ V (G0). In that case the G0 can have chords.
(iii) For any vertex u ∈ V , the set N(u) contains at least two vertices. In particular 

G does not have leaves.
(iv) If G = pa(H) for some graph H with l = �V (H), a := (a1, . . . , al) ∈ Nl \{0} and 

G0, G1, . . . , Gr = G is an odd ear decomposition, then we can assume that G0 ⊂ V (H)
and G0 is chord-less.

(v) A factor-critical graph can have several odd ear decompositions.

Example 4.6. (i) A factor-critical graphs has 3 vertices if and only if it is a triangle.
(ii) A factor-critical graph G has 5 vertices if and only if

(1) It is the union of two triangles with a common vertex.
(2) It is a pentagon with a set (eventually empty) of chords.

(iii) If G has an ear decomposition given by a triangle and an open ear of length 3
then G is a pentagon with chords.

Concerning odd ear decompositions we have some results.

Lemma 4.7. (i) Let F be factor-critical with �(F ) ≥ 3 and an edge ab such that a ∈ F, b /∈
F . Then p1{a,b}+1F

(G) is factor-critical with ν(p1{a,b}+1F
(G)) = ν(F ) + 1.

(ii) Let F be factor-critical and an edge ab in F . Then p1{a,b}+1F
(G) is factor-critical.

(iii) Let F be factor-critical with �(F ) ≥ 3, F0, F1, . . . , Fr = F an odd ear decompo-
sition, i.e. Fi+1 is obtained from Fi by adding an odd ear Pi (open or closed) with end 
points ai, bi for i = 0, . . . , r. Then p1{ai,bi}+1F

(G) is factor-critical.
(iv) Let F, F ′ be factor-critical graphs with �(F ), �(F ′) ≥ 3 such that F ∩ F ′ = {a}. 

Then F ∪ F ′ is factor-critical.
(v) Let F, F ′ be factor-critical graphs with �(F ), �(F ′) ≥ 3 such that F ∩ F ′ = ∅ and 

assume that there is an edge ab in G such that a ∈ F, b ∈ F ′. Then p1{a}+1F +1F ′ (G) is 
factor-critical.

Proof. In order to prove that replicated graphs are factor-critical, by Theorem 4.4 we 
need only to consider their ear decompositions.

(i) Let F0, F1, . . . , Fr = F be an odd ear decomposition. Let c ∈ V (F ) be a neighbor 
of a and P the path with edges ca′, a′b, ba. Then F0, F1, . . . , Fr, Fr ∪ P is an odd ear 
decomposition of p1{a,b}+1F

(G).
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(ii) Do similarly to the claim (i) by choosing the path P with edges ba′, a′b′, b′a.
(iii) Recall that Fi+1 is obtained from Fi by adding an odd ear Pi. Let Pi :

aid1, d1d2, . . . , dlbi be a path, where d1, . . . , dl /∈ V (Fi). On the other hand there ex-
ist c, e ∈ Fi such that c is a neighbor of ai and e is a neighbor of bi. Let P ′

i :
ca′i, a

′
id1, d1d2, . . . , dlb′i, b

′
ie be a path. Now we change the path Pi by P ′

i in the ear 
decomposition of F , the other ears are unchangeable, we get an ear decomposition of 
p1{ai,bi}+1F

(G).
(iv) Let F0, F1, . . . , Fr = F and F ′

0, F
′
1, . . . , F

′
s = F ′ be odd ear decompositions of F

and F ′, respectively such that F ∩F ′ = {a}. By Remark 4.5 we can assume that a ∈ F ′
0. 

Then F0, F1, . . . , Fr, F ′
0 ∪ F, F ′

1 ∪ F, . . . , F ′
s ∪ F is an odd ear decomposition of F ∪ F ′.

(v) By (i) we have that p1{a,b}+1F
(G) is factor-critical having only a common point 

with F ′, so we can apply (iv). �
For any simple graph G, denote by D(G) the set of all vertices in G which are missed 

by at least one maximum matching of G, and A(G) the set of vertices in V − D(G)
adjacent to at least one vertex in D(G). Let C(G) = V −A(G) −D(G) and odd (D(G))
be the number of odd connected components of D(G). More generally let S ⊂ V and 
G[S] its induced subgraph of G. The induced graphs A(G[S]), D(G[S]), C(G[S]) will be 
denoted by A(S), D(S), C(S).

At first, we recall the Gallai-Edmonds Structure Theorem given independently by J. 
Edmonds [4] and T. Gallai [7]. We give here a condensed version of [23, Theorem 1.5.3].

Theorem 4.8. Let G be a graph. Then

(i) Every odd component H of G −A(G) is factor-critical and V (H) ⊆ D(G).
(ii) Every even component H of G −A(G) has a perfect matching and V (H) ⊆ C(G).
(iii) For every non empty set X ⊆ A(G), the set NG(X) contains vertices in at least 

�(X) + 1 odd components of G −A(G).
(iv) ν(G) = 1

2 [�(V (G)) − odd (D(G)) + �(A(G))].

Following Lovász [15] we can describe maximum matchings in G as follows: Every 
maximum matching of G is a union of a perfect matching of C(G), a matching from 
A(G) to the components of D(G), that is a set of �(A(G)) edges, each such edge contains 
a vertex in A(G) and a vertex in some component of D(G) and a maximum matching 
of each component of D(G).

The set A(G) is also called Gallai-Edmonds set and is the unique subset of G satisfying 
the Gallai-Edmonds Structure Theorem as expressed in the following Corollary.

Corollary 4.9. Let G = A ∪D∪C be a partition such that D is a matching-critical set, C
has a perfect matching and for any X ⊂ A, the set NG(X) contains vertices in at least 
�(X) + 1 odd components of D. Then A(G) = A, D(G) = D and C(G) = C.

As an application we have the following result.
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Lemma 4.10. Let A(G), D(G), C(G) be the canonical decomposition of the graph G, e =
{xi, xj} an edge in D(G) and S = p1e+1G

(G). Then A(S) = A(G), D(S) = D(G) ∪
{x(2)

i , x(2)
j } and C(S) = C(G).

Proof. Let F1, . . . , Fs be the connected components of D(G), we can assume that e is 
an edge of F1. Then we have by Lemma 4.7, (ii) that p1e+1F1

(G) is factor-critical. So 
p1e+1F1

(G) ∪F2∪. . .∪Fs = p1e+1D(G)(G) is matching-critical. Now we apply Corollary 4.9
to S with A = A(G), D = p1e+1D(G)(G) and C = C(G). Note that vertices of e in 
1e +1D(G) have coordinate 2 while the other in D(G) have coordinate 1. Hence we have 

A(S) = A(G), D(S) = D(G) ∪ {x(2)
i , x(2)

j } and C(S) = C(G) as required. �
We will need the following particular case of Gallai-Edmonds Structure Theorem.

Corollary 4.11. If C(G) = ∅ then
(i) ν(G) = ν(D(G)) + �(A(G)).
(ii) All elements in A(G) are involved in any maximum matching of G and each edge 

of this matching contains at most one element of A(G).
(iii) For any odd component F of D(G) and every u ∈ F , each maximum matching 

M of G − u provides a perfect matching of F − u.
(iv) �(A(G)) < odd (D(G)).
(v) For every subset X ∈ A(G), the set NG(X) contains vertices in at least �X + 1

components of D(G).

The following corollary is a part of the Stability Lemma [23, Theorem 1.5.5].

Corollary 4.12. Let A′ be a subset of A(G). Then

A(G−A′) = A(G) −A′, D(G−A′) = D(G), C(G−A′) = C(G).

5. Embedded irreducible components of Ik
G

In this section, we will study embedded irreducible components of IkG by using Gallai-
Edmonds Structure Theorem 4.8. We know that any embedded irreducible component of 
IkG can be written as ma+1U , where a ∈ Nd is a non zero vector and Supp(a) ⊂ U ⊂ V . 
In Theorem 5.3 and Theorem 5.7, we will give necessary and sufficient conditions for 
ideals of the form ma+1U belong to Irr(IkG). At first, we need the following lemmas.

Lemma 5.1. Let M, M ′ be two monomials of R.
(i) Let G be a simple graph. Suppose that Supp(M ′) ∩N(SuppM) = ∅ and Supp(M ′)

is a coclique set. Then M ∈ IkG if and only if MM ′ ∈ IkG.
(ii) Let I, J be monomial ideals. If M ∈ I + J and M /∈ J then M ∈ I.
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From now on, let G = (V, E) be a simple graph, a ∈ Nd a nonzero vector and 
S := pa(G) the replication of G by vector a (see Definition 2.10).

Lemma 5.2. Let D(S), A(S) and C(S) be the Gallai-Edmonds decomposition of S. Then 
we have x(j)

i ∈ D(S) (or in A(S) or in C(S), respectively) if and only if x(1)
i ∈ D(S) (or 

in A(S) or in C(S), respectively), for all i = 1, . . . , d and j = 1, . . . , ai.

Proof. It is enough to prove the necessary condition, for j ∈ {2, . . . , ai}. Firstly, suppose 
that x(1)

i ∈ D(S). Let M be a maximum matching of S avoiding x(1)
i . We have to 

consider two cases:
(a) If M avoids x(j)

i then we have ν(S − x
(1)
i ) = ν(S − x

(j)
i ) = ν(S).

(b) If M does not avoid x(j)
i then by interchanging x(1)

i with x(j)
i , we get a maximum 

matching Mj of S containing x(1)
i , but avoiding x(j)

i . Then ν(S − x
(j)
i ) = ν(S).

Thus both cases imply that x(j)
i ∈ D(S) by definition.

Secondly, suppose that x(1)
i ∈ A(S) = NS(D(S)) −D(S). Then there exists u ∈ D(S)

such that u is a neighbor of x(1)
i . It implies that x(j)

i is a neighbor of u, but x(j)
i /∈ D(S), 

otherwise by the first claim x(1)
i ∈ D(S), a contradiction. Hence x(j)

i ∈ A(S).
Finally, the claim for the set C(S) follows by the claims for D(S) and A(S). �

Theorem 5.3. Let k � 2 be an integer, a ∈ Nd be a nonzero vector, U ⊂ V such that 
Supp(a) ⊂ U . Let denote Z := V \U and S := pa(G) the replication of G by a. Assume 
that Supp(a) ∩N(Z) = ∅. Then the following statements are equivalent:

(i) ma+1U is an embedded irreducible component of IkG.
(ii) The sets S and Z satisfy the following properties

(1) Z is a coclique set, ν(S) = k − 1 and V = NG(D(S)) ∪ Z ∪N(Z).
(2) C(S) = ∅, i.e. S = D(S) ∪A(S) in the Gallai-Edmonds’s canonical decomposition.

Proof. Firstly, if we choose m = k in Corollary 2.8(v) then we have that ma+1U belongs 
to Irr(IkG) if and only if xaxk1Z /∈ IkG and for any u ∈ U we have uxaxk1Z ∈ IkG.

(i) ⇒ (ii). Since ma+1U is an embedded irreducible component of IkG, by Remark 2.9
and Example 2.11, Z is a non maximal coclique set and V \ Z ∪ N(Z) 	= ∅. Let u ∈
V \ Z ∪N(Z), we will prove that u ∈ N(D(S)). Since xaxk1Z /∈ IkG we have ν(S) < k. 
Moreover since u ∈ U we have uxaxk1Z ∈ IkG. Since Z is a coclique set and Supp a ∩
N(Z) = ∅, by Lemma 5.1, (i) we have uxa ∈ IkG. Then uxa = Me1 . . .MekM

′, for some 
e1, e2, . . . , ek ∈ E(G), but since xa /∈ IkG, the vertex u must belong to some of the edges 
e1, e2, . . . , ek. Hence there exists 1 ≤ i ≤ k, v ∈ Supp(a) such that ei = uv. It follows 
that k > ν(S) ≥ ν(S − v) ≥ k − 1, which implies ν(S) = ν(S − v) = k − 1. Therefore 
v ∈ D(S) by definition of D(S), so u ∈ N(D(S)) as required and claim (1) is over.

In order to prove claim (2), note that by Theorem 4.8, D(S) is matching-critical. By 
hypothesis Supp(a) ∩ (Z ∪ N(Z)) = ∅, so by (1) we have Supp(a) ⊂ NG(D(S)). Since 
(S \D(S)) ∩ V ⊂ Supp(a) ⊂ NG(D(S)), we have (S \D(S)) ∩ V ⊂ A(S) ⊂ S \D(S) by 
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Fig. 2. (a2, . . . , l2) is not an irreducible component of I6
G.

definition. We can see from Lemma 5.2 that S\D(S) 	= ∅ if and only if (S\D(S)) ∩V 	= ∅
and S \D(S) ⊂ A(S), hence S \D(S) = A(S) and we have C(S) = ∅ by definition.

(ii) ⇒ (i). Since ν(S) = k − 1, we have xa ∈ Ik−1
G \ IkG. On the other hand Z is a 

coclique set and N(Supp(a)) ∩ Z = ∅. Hence xaxk1Z /∈ IkG by Lemma 5.1 (i). In order 
to complete our claim we have to prove that for any u ∈ U we have uxaxk1Z ∈ IkG. We 
have two cases:

• If u ∈ U ∩ N(Z) then there exists v ∈ Z such that uv ∈ IG. So uxaxk1Z =
(uv)xa(xk1Z

v ) ∈ IkG.
• If u ∈ U \ N(Z) then by hypothesis u ∈ NG(D(S)). Hence there exists w ∈ D(S)

such that uw ∈ IG. By the definition of D(S) we have ν(S) = ν(S − w), which implies 
that xa

w ∈ Ik−1
G , hence uxa = (uw)xa

w ∈ IkG. �
With the notations of the above Theorem we will show in Lemma 5.5 that every 

connected component of D(S) contains an odd circuit. In the next example we illustrate 
this condition.

Example 5.4. In Fig. 2 we have A(G) = {j, k}, D(G) has four connected components 
F1 = {a, b, c}, F2 = {d, e, f}, F3 = {g, h, i}, F4 = {l} and C(G) = ∅. Note that F4 is an 
isolated point in D(G). We have a · · · l ∈ I5

G \ I6
G but is not a corner element of I6

G, since 
la · · · l /∈ I6

G. This shows that (a2, . . . , l2) is not an irreducible component of I6
G.

Note that for any sets F, Z ⊂ V , F ∩N(Z) = ∅ is equivalent to N(F ) ∩ Z = ∅.

Lemma 5.5. Let F, Z ⊂ V be two disjoint sets and D ⊂ F . Suppose that Z is a coclique 
set and N(F ) ∩ Z = ∅.

(i) The following statements are equivalent:
(1) V = N(D) ∪ Z ∪N(Z)
(2) N(F ) \N(Z) ⊂ N(D) and Z is maximal such that N(F ) ∩ Z = ∅.
(ii) If one of the above conditions (1) or (2) is satisfied then D has no isolated vertices. 

In addition, if D is matching-critical then every connected component of the induced 
graph on D contains an odd circuit.

Proof. (i) (1) ⇒ (2). Let u ∈ N(F ) \N(Z). Since N(F ) ∩ Z = ∅ we have u /∈ Z. Hence 
the equality V = N(D) ∪ Z ∪ N(Z) implies u ∈ N(D). Now suppose that Z is not 
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maximal such that N(F ) ∩ Z = ∅. Then there exists Z ′ � Z a coclique set such that 
N(F ) ∩ Z ′ = ∅. Let v ∈ Z ′ \ Z. Then we have v /∈ N(F ) and therefore v /∈ N(D). 
Hence the equality V = N(D) ∪Z ∪N(Z) implies v ∈ N(Z), a contradiction since Z ′ is 
coclique.

(2) ⇒ (1). Let u ∈ V \Z ∪N(Z). Then the set Z ′ = Z ∪ {u} is coclique. If u /∈ N(F )
then we have N(F ) ∩ Z ′ = ∅, it is a contradiction to the maximality of Z. Hence 
u ∈ N(F ) \N(Z) ⊂ N(D). Our claim is done.

(ii) We have D ∩ (N(Z) ∪ Z) = ∅ by the hypothesis F ∩ (N(Z) ∪ Z) = ∅. By (1), we 
have D ⊂ N(D), i.e. for every vertex u ∈ D, there is at least an edge uv with v ∈ D. 
Moreover, if D is matching-critical, every connected component of the induced graph on 
D contains an odd circuit by Theorem 4.4 and Remark 4.5. �
Lemma 5.6. Let G be a simple connected graph. Z := {z1, . . . , zλ} ⊂ V be any non empty 
coclique set and R′ = R[z−1

1 , . . . , z−1
λ ]. Let b ∈ Nd such that Supp(xb) ⊂ N(Z) and M a 

monomial with Supp(M) ⊂ V \(Z∪N(Z)). Then for l ∈ N, we have Mxb ∈ I lGR
′\I l+1

G R′

if and only if M ∈ I
l−|b|
G \ I l+1−|b|

G .

Proof. Since Z is coclique IGR′ is a proper ideal. Note that for every u ∈ N(Z), there 
exists some j such that uzj ∈ IG and u = uzjz

−1
j . Hence we have u ∈ IGR

′. This implies 
that IGR′ = IG\(N(Z)∪Z)R

′ + NR′, where N is the ideal generated by N(Z).
Suppose that Mxb ∈ I lGR

′ \ I l+1
G R′. Since I lGR

′ is a proper monomial ideal, there 
are monomial generators f1, . . . , fl of IGR′ and a monomial N ∈ R′ such that Mxb =
f1 . . . flN . It is an equality in R′, so we can assume that no unit appears in the right 
member. Since Mxb /∈ I l+1

G R′ we have Supp(N) ⊂ V \ (N(Z) ∪ Z). Suppose that 
f1, . . . , fi ∈ IG\(N(Z)∪Z)R

′ and fj ∈ N(Z) for every j > i. Because of the equality 
of monomials we have i = l − |b|. Hence M = f1 . . . fl−|b|N with f1, . . . , fl−|b| ∈ IG, 
which means that M ∈ I

l−|b|
G . On the other hand if M ∈ I

l+1−|b|
G then M ∈ I

l+1−|b|
G R′

since Supp(M) ⊂ V \ (Z ∪ N(Z)). So we have Mxb ∈ I l+1
G R′, a contradiction. Hence 

M ∈ I
l−|b|
G \ I l+1−|b|

G as required.
Conversely, suppose that M ∈ I

l−|b|
G \ I

l+1−|b|
G . Since Supp(M) ⊂ V \ (Z ∪ N(Z))

and Supp(xb) ⊂ N(Z) we have Mxb ∈ I lGR
′. Assume that Mxb ∈ I l+1

G R′. Since I l+1
G R′

is a proper monomial ideal, there are monomial generators f1, . . . , fl+1 of IGR′ and a 
monomial N ∈ R′ such that Mxb = f1 . . . fl+1N . It is an equality in R′, so we can 
assume that no unit appears in the right member. If there exists u ∈ Supp(xb) that 
divides N then we can cancel it in both sides of the equality. Hence we can suppose that 
Mxb′ = f1 . . . fl+1N

′ for some monomial xb′ dividing xb and Supp(N ′) ∩Supp(b′) = ∅. 
Every variable appearing in xb′ should appear in f1 . . . fl+1. By canceling in both sides 
the variables in xb′ we get M ∈ I

l+1−|b′|
G ⊂ I

l+1−|b|
G , a contradiction. �

Theorem 5.7. Let ma+1U be an embedded irreducible component of IkG and Z = V \ U . 
Assume that Supp(a) ∩N(Z) 	= ∅. Let a = b +c with b, c ∈ Nd the unique decomposition 
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such that Supp(b) = Supp(a) ∩ N(Z), Supp(c) = Supp(a) \ N(Z) and δ =| b |. Then 
Supp(c) ∩N(Z) = ∅ and mc+1U is an embedded irreducible component of Ik−δ

G .

Proof. Since ma+1U is an embedded irreducible component of IkG, by Remark 2.9, Z is a 
coclique set and by Example 2.11, Z is not maximal. Hence we need only to prove that 
mc+1U ∈ Irr(Ik−δ

G ). For m ≥ k, we have by Corollary 2.8(v) that ma+1U ∈ Irr(IkG) if and 
only if

xaxm1Z /∈ IkG (1) and for every u /∈ Z uxaxm1Z ∈ IkG (2).

By definition of c, we have N(Supp(c)) ∩ Z = ∅. In order to prove mc+1U ∈ Irr(Ik−δ
G ), 

again by Corollary 2.8(v) we need to prove

xcxm1Z /∈ Ik−δ
G (1′) and for every u /∈ Z uxcxm1Z ∈ Ik−δ

G (2′).

Suppose conversely xcxm1Z ∈ Ik−δ
G . Then there are f1, . . . , fk−δ monomial generators 

of IG and a monomial N such that xcxm1Z = f1 . . . fk−δN . If there exist z ∈ Z and an 
index i such that fi = zu then u ∈ N(Z), it is impossible since (Supp(c) ∪Z) ∩N(Z) = ∅. 
It follows that xm1Z divides N . Hence xc = f1 . . . fk−δN

′. On the other hand, by the 
definition of b and note that Supp(c) = Supp(a) \ N(Z), we have Supp(xb) ⊂ N(Z). 
So for m ≥ δ we have xbxm1Z ∈ IδG. Finally, we get xaxm1Z = xcxbxm1Z ∈ IkG, a 
contradiction to (1). Therefore (1′) is proved.

Now we prove (2′). Let u /∈ Z and R′ = R[z−1
1 , . . . , z−1

λ ] be a localization of R by Z. 
We have from (2) that uxcxbxm1Z ∈ IkGR, which implies uxcxb ∈ IkGR

′. By definition of 
localization, the condition uxcxb ∈ Ik+1

G R′ implies that uxcxbxm1Z ∈ Ik+1
G R for m � 0, 

writing uxcxbxm1Z as a product of k + 1 generators of IGR gives us a contradiction to 
(1). Hence uxcxb /∈ Ik+1

G R′. Now by applying Lemma 5.6 for two cases, we have: if 
u ∈ N(Z) then xc ∈ Ik−1−δ

G , which implies uxcxm1Z ∈ Ik−δ
G ; if u ∈ V \ (N(Z) ∪ Z), 

then we have uxc ∈ Ik−δ
G , hence uxcxm1Z ∈ Ik−δ

G as required. �
Theorem 5.8. Let ma+1U be an embedded irreducible component of IkG and xb be a mono-
mial with support in N(Z). Suppose that N(Supp(a)) ∩ Z = ∅. Then ma+b+1U is an 
embedded irreducible component of Ik+|b|

G .

Proof. Similar to Theorem 5.7. Since ma+1U is an embedded irreducible component of IkG, 
the coclique set Z is not maximal, hence we need only to prove that ma+b+1U ∈ Irr(Ik−δ

G ). 
By Theorem 5.3 and Corollary 2.8(v), for m ≥ k we have that xaxm1Z /∈ IkG and 
uxaxm1Z ∈ IkG for every u /∈ Z. By Corollary 2.8(v) we have to prove that xaxbxm1Z /∈
I
k+|b|
G for every m ≥ k + |b| and uxaxbxm1Z ∈ I

k+|b|
G for every u /∈ Z.

Suppose that xaxbxm1Z ∈ I
k+|b|
G . Then there are f1, . . . , fk+|b| monomial generators 

of IG and a monomial N such that xaxbxm1Z = f1 . . . fk+|b|N . Let v ∈ Supp(xb), 
then either v divides N or fi for some 1 ≤ i ≤ k + |b|. In both cases we have that 
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Fig. 3. (a2, b2, c2, d2, f), (a2, b2, c2, d, f2), (a2, b2, c2, d, e, g2), (a2, b2, c2, d, e2, g) ∈ Irr(Ik
G).

xaxb−1vxm1Z ∈ I
k+|b|−1
G . Repeating this argument we will have xaxm1Z ∈ IkG, a con-

tradiction.
Let u /∈ Z and xb = xb1

1 . . . xbd
d . For each bi > 0, there exist zi ∈ Z such that xizi ∈ E

which implies (xizi)bi ∈ IbiG . Hence 
∏

i(xizi)bi ∈ I
|b|
G . Note that even if an element zi

can appear several times in this product then its power is at most |b|. So 
∏

i(xizi)bi
divides xbx|b|1Z which implies xbx|b|1Z ∈ I

|b|
G . On the other hand since for any u /∈ Z

and m ≥ k we have uxaxm1Z ∈ IkG, so we have uxaxbx(|b|+m)1Z ∈ I
k+|b|
G . Our claim is 

done. �
Remark 5.9. By the Theorem 5.7, in order to describe the embedded irreducible com-
ponents of IkG, it is necessary and sufficient to describe the pair (S := pa(G), Z) as in 
Theorem 5.3, where S = A(S) ∪D(S) is in the Gallai-Edmonds decomposition such that 
ν(S) = k−1, and Z is a coclique set such that NG(S) ∩Z = ∅, V = NG(D(S)) ∪N(Z) ∪Z. 
In this situation, let b be any vector with support in N(Z). Then the irreducible com-
ponent associated to pa+b(G) is an embedded irreducible component of Ik+|b|

G .

Example 5.10. Let G be the graph as in Fig. 3, with V = {a, b, c, d, e, f, g} and 
E = {ab, ac, bc, ad, de, ef, fg}. Consider the ring R = K[a, b, c, d, e, f, g] and IG =
(ab, ac, bc, ad, de, ef, fg) ⊂ R. We have only one matching-critical subgraph Y ⊂ G

which is the triangle with vertices a, b, c. There are two coclique sets Z1 = {e, g}
and Z2 = {f} such that N(Y ) ∩ Z1 = ∅, N(Y ) ∩ Z2 = ∅ and maximal for this 
property. Hence (a2, b2, c2, d, f), (a2, b2, c2, d, e, g) are irreducible components of I2

G. On 
the other hand we have N(Z1) = {d, f}, N(Z2) = {e, g}. Hence by applying Theo-
rem 5.7, Theorem 5.8 and Remark 5.9 we have (a2, b2, c2, d2, f), (a2, b2, c2, d, f2), and 
(a2, b2, c2, d, e, g2), (a2, b2, c2, d, e2, g) are irreducible components of I3

G.

Corollary 5.11. There is at least an embedded component in Irr(IkG) if and only if there 
is an odd circuit C in G with ν(C) ≤ k − 1.

Proof. Let ma+1U ∈ Irr(IkG) be an embedded component and Z := V \U . Let a = b + c
be the decomposition given in Theorem 5.7, in particular we have Supp(b) ⊂ Supp(a) ∩
N(Z) and Supp(c) ∩N(Z) = ∅. So mc+1U is an embedded irreducible component of Ik−|b|

G

by Theorem 5.7. Set S := pc(G), then we have by Theorem 5.3 that S = A(S) ∪D(S)
in the Gallai-Edmonds decomposition, and ν(S) = k− | b | −1. Let F1 ⊂ D(S) be 
a factor-critical connected component of the matching-critical set D(S). We have from 
Theorem 4.4 that F1 has an odd ear decomposition P0 ⊂ P1 ⊂ . . . ⊂ Pr = F1 such that 
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P0 is an odd circuit. We can assume by Remark 4.5 that P0 is a subgraph of G. Hence 
we have a circuit P0 in G with ν(P0) ≤ ν(F1) ≤ ν(D(S)) ≤ ν(S) = k− | b | −1.

Conversely, let C be an odd circuit with ν(C) ≤ k − 1. Then C is factor-critical. 
Let Z be any coclique set such that N(C) ∩ Z = ∅ maximal for this property and 
U = V \Z. It implies by Theorem 5.3 that m1C+1U is an embedded irreducible component 
of Ik−|b|

G I
ν(C)+1
G . Let e be any edge of C. Then by Lemma 4.7 p1C+(k−ν(C)−1)1e

is factor-
critical and hence we have m1C+(k−ν(C)−1)1e+1U is an embedded irreducible component 
of IkG by Theorem 5.3. �

It is well known that a graph G has no odd cycles if and only if is bipartite. As an 
immediate consequence of Corollary 5.11 we can recover and precise Theorem 5.9 of [20].

Corollary 5.12. A graph G is a bipartite graph if and only if IkG has no embedded ir-
reducible components for every k ≥ 1. For bipartite graphs Theorem 3.1 describes all 
irreducible components of IkG for any k ≥ 1. In particular the number of irreducible 
components of IkG coincides with a polynomial of degree bight(IG) − 1.

The next result improves Theorem 3.1 of [12] and Theorem 2.8 of [21].

Corollary 5.13. Every embedded component in Irr(I2
G) equals m1F +1U , where U ∪ Z is a 

partition of V , Z is a coclique set and F ⊂ U is a triangle such that N(F ) ∩Z = ∅, V =
N(F ) ∪N(Z) ∪ Z.

Proof. Let ma+1U ∈ Irr(I2
G) be an embedded component. From the proof of Corol-

lary 5.11 we get 1 ≤ ν(P0) ≤ ν(F1) ≤ ν(D(S)) ≤ ν(S) = 2− | b | −1. This implies that 
the vector b is null and P0 = S such that ν(P0) = 1. Therefore S is a triangle in G by 
Example 4.6. Now take F := S, then we have a = 1F .

Reciprocally let F be a triangle, ν(F ) = 1, we know that F is factor-critical. Let Z
be any coclique set such that N(F ) ∩Z = ∅, maximal for this property and U = V \ Z. 
Hence m1F +1U is an embedded component of I2

G by Lemma 5.5 and Theorem 5.3. �
As a consequence of our results in this section we get the following strong persistence

which improves [17, Theorem 2.15].

Corollary 5.14. Let ma+1U ∈ Irr(IkG). Then we have at least one irreducible component 
ma′+1U ∈ Irr(Ik+1

G ) such that Supp(a) = Supp(a′) and ai ≤ a′i for all i = 1, . . . , d. In 
particular if m1U is an associated prime of IkG then m1U is an associated prime of I lG for 
all l ≥ k.

Proof. If ma+1U ∈ Irr(IkG) is a non embedded component then the conclusion follows 
from Theorem 3.1. If ma+1U ∈ Irr(IkG) is an embedded component, let Z := V \ U and 
a = b +c be the decomposition given in Theorem 5.7. Let S := pc(G). From the proof of
Corollary 5.11 we get ν(S) = k− | b | −1 and S = A(S) ∪D(S) in the Gallai-Edmonds 
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decomposition, with D(S) a matching-critical set. Let e be any edge in D(S) and S′ =
S := pc+1e

(G), by Lemma 4.10 we have A(S′) = A(S), C(S′) = C(S) = ∅ and D(S′) is 
obtained from D(S) by replication of the edge e. So ν(D(S′)) = ν(D(S)) +1 which implies 
ν(S′) = ν(S) +1 = k− | b |. Moreover D(S) ∩V = D(S′) ∩V , so NG(D(S′)) = NG(D(S)). 
Hence S′ satisfies the hypothesis of Theorem 5.3, and mc+1e+1U ∈ Irr(Ik−|b|+1

G ). By 
applying Theorem 5.8 we have ma+1e+1U ∈ Irr(Ik+1

G ) Taking a′ = a + 1e we get the 
result. �
6. Behavior of Irr(Ik

G) for k large enough

The edge subring K[G] := K[e | e ∈ E] ⊂ R of G is the subalgebra of R generated by 
the edges of G by considering each edge as a monomial in R. In other words, to any edge 
e ∈ E of G we associate a variable Ye and have a morphism ϕ : K[Ye | e ∈ E] → R from 
a polynomial ring to R defined by ϕ(Ye) = e. Let I(G) be the kernel of ϕ, then we have 
K[Ye | e ∈ E]/I(G) = K[G] and I(G) called toric edge ideal is a toric ideal generated 
by binomials. Note that the edge subring of G is a graded algebra generated in degree 
2, thus it can be regarded as a standard graded algebra by assigning degree 1 to its 
generators and there is a natural homogeneous isomorphism between the edge subring 
K[G] and the special fiber ring of the edge ideal IG of G. Therefore, the Krull dimension 
of K[G] equals the Krull dimension of the special fiber ring of the edge ideal IG, which is 
called the analytic spread and denoted by l(IG). It follows from [10, Theorem 3.3] that 
l(IG) = dimK[G] = �V if G contains an odd circuit and l(IG) = dimK[G] − 1 = �V − 1
if G is bipartite.

In this section we will apply our main results to study the set Irr(IkG) for k � 0. 
From one side we improve the main results of [2] and [22] by giving short and conceptual 
proofs in Theorem 6.3 and Theorem 6.9. From the other side we can precise the main 
result of [3] that counted the number of irreducible components of IkG for k � 0.

First we give a direct corollary of Theorem 5.3 for irreducible components of IkG such 
that its radical is the maximal ideal.

Corollary 6.1. Let a ∈ Nd and S = pa(G). Then ma+1V is an embedded irreducible 
component of IkG if and only if

(i) ν(S) = k − 1, V = NG(D(S)).
(ii) S = A(S) ∪D(S) in the Gallai-Edmonds decomposition, that is C(S) = ∅.

Proof. The claim follows by applying Theorem 5.3 with Z = ∅. �
We have by virtue of Lemma 5.5 that every connected component of the matching-

critical set D(S) in 6.1 contains an odd cycle.
Let S = pa(G) be a matching-critical set. Note that ν(S) =| a | −β0(Supp(a)), where 

β0(Supp(a)) = β0(S) is the number of connected components of Supp(a).
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Lemma 6.2. Let G be a simple connected non bipartite graph and F a factor-critical 
subset of G. Then

(i) If F � G then there exists a vector a ∈ Nd with F ⊂ Supp(a) such that pa(G)
is factor-critical, Supp(a) � NG(pa(G)) = V , E0 ⊂ V \ Supp(a) and ν(pa(G)) =
�Supp(a) − ν(F ) − 1, where E0 is the set of leaves in G.

(ii) There exists a vector b ∈ Nd with Supp(b) = V such that pb(G) is factor-critical 
and ν(pb(G)) = �V − ν(F ) − 1.

Proof. (i) We consider two cases. If N(F ) = V then we take a = 1F , so pa(G) = F

satisfies all conditions.
If N(F ) 	= V then there exists an independent set Z which is maximal such that 

N(F ) ∩ Z = ∅. We have by Lemma 5.5 that V = N(F ) ∪ Z ∪ N(Z). Now set F1 :=
F, a1 = 1F . Since G is connected we have F1 � N(F1) \ E0. Let uv ∈ E(G) such 
that u ∈ N(F1) \ (E0 ∪ Supp(a1)) and v ∈ F1, by applying Lemma 4.7 we have that 
pa1+1{u,v}(G) is factor-critical. Proceeding similarly for all vertices in N(F1) \ (E0 ∪
Supp(a1)) we can construct a factor-critical graph F2 = pa2(G) such that Supp(a2) =
N(F1) \E0 and ν(F2) = ν(F1) +�Supp(a2) \Supp(a1). Similarly, by successive applications 
of Lemma 4.7, we can construct factor-critical graphs F1, . . . , Fτ such that for i = 2, . . . , τ
Fi = pai

(G), Supp(ai) = NG(Fi−1) \ E0, ν(Fi) = ν(Fi−1) + �Supp(ai) \ Supp(ai−1) and 
Fτ � N(Fτ ) = V . On the other hand

ν(F2) = ν(F1) + �Supp(a2) \ Supp(a1)

ν(F3) = ν(F2) + �Supp(a3) \ Supp(a2)

· · ·
ν(Fτ ) = ν(Fτ−1) + �Supp(aτ ) \ Supp(aτ−1)

which implies ν(Fτ ) = ν(F1) + �Supp(aτ ) \Supp(a1), but �Supp(a1) = �F1 = 2ν(F1) +1. 
Hence ν(Fτ ) = ν(F1) + �Supp(aτ ) − �Supp(a1) = �Supp(aτ ) − ν(F1) − 1. Our claim is 
proved by taking a = aτ .

(ii) By the claim (i), there exists a vector a such that pa(G) is factor-critical and 
Supp (a) � NG(pa(G)) = V . Let V \Supp(a) := {xi1 , . . . , xiσ} and ej an edge which one 
vertex is xij and the second vertex is in Supp(a), for j = 1, . . . , σ. Let b = a +

∑σ
j=1 1ej . 

Then we have by Lemma 4.7 that pb(G) is factor-critical with Supp(b) = V and 
ν(pb(G)) = �V − ν(F ) − 1. �

Now we can improve the main result of [22].

Theorem 6.3. Let G be a simple connected non bipartite graph, IG its edge ideal and 
F a factor-critical subset of G with the biggest matching number. Then m ∈ Ass(IkG)
for k = �V − ε0(G) − ν(F ), where ε0(G) is the number of leaves in G. In particular 
dstab(IG) ≤ �V − ε0(G) − ν(F ).
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Proof. If G is factor-critical then G has the biggest matching number among all factor-
critical subgraphs of G. Factor-critical graphs do not have leaves and ν(G) = �V −
ν(G) − 1. We can apply Corollary 6.1 to S = p1V

(G) = G and k = ν(G) + 1 to get 
that m2(1V ) ∈ Irr(IkG). Since rad(m2(1V )) = m we have dstab(IG) ≤ k = �V − ν(G). So 
we can assume that F is a proper factor-critical subset of G with the biggest matching 
number. By Lemma 6.2 there exists a vector a ∈ Nd with F ⊂ Supp(a) such that 
pa(G) is factor-critical, Supp(a) � NG(pa(G)) = V , E0 ⊂ V \ Supp(a) and ν(pa(G)) =
�Supp(a) − ν(F ) − 1, where E0 is the set of leaves in G. We can apply Corollary 6.1 to 
S = pa(G) and k = ν(pa(G)) +1 to get that m1S+1V ∈ Irr(IkG). Since rad(m1S+1V ) = m, 
we have dstab(IG) ≤ ν(pa(G)) + 1 = �Supp(a) − ν(F ) ≤ �V − ε0(G) − ν(F ). �

If G is not factor-critical and has no leaves then we can get better bounds for dstab(IG)
and astab(IG).

Corollary 6.4. Let G be a simple connected non bipartite graph without leaves. If G is 
not factor-critical then dstab(IG) < �V − ν(F ) for any proper factor-critical subgraph F
of G.

Proof. Suppose that dstab(IG) = �V − ν(F ) for some proper factor-critical subgraph F
of G. By Lemma 6.2 there exist a vector a ∈ Nd with F ⊂ Supp(a) such that pa(G)
is factor-critical, Supp(a) � NG(pa(G)) = V and ν(pa(G)) = �Supp(a) − ν(F ) − 1. 
Therefore it implies

dstab(IG) = �V − ν(F ) ≤ ν(pa(G)) + 1 = �Supp(a) − ν(F ).

So �V ≤ �Supp(a), but Supp(a) ⊆ V , hence Supp(a) = V . It is a contradiction to the 
fact that Supp(a) � NG(pa(G)) = V . �

In practice we can find the best bound by working on matching-critical sets, but the 
process is more difficult to control. A set D ⊂ V is called dominant in G if V = N(D). 
We also say that pa(G) is dominant in G if V = NG(pa(G)).

Corollary 6.5. Let G be a simple connected non bipartite graph. Let a ∈ Nd such that 
ma+1V ∈ Irr(IkG). Then there exists c ∈ Nd such that mc+1V ∈ Irr(Ik′

G ), with k′ ≤ k, 
ci ≤ ai for all i = 1, . . . , d and pc(G) is matching-critical with dominant in G. As a 
consequence we have

dstab(IG) = min{ν(pa(G)) + 1 | a ∈ Nd, pa(G) is matching-critical, dominant in G}.

Proof. Let S = pa(G). Then we have by Corollary 6.1 that S = D(S) ∪ A(S). Now let 
c ∈ Nd such that D(S) = pc(G), we can see D(S) satisfies the conditions of Corollary 6.1. 
Hence mc+1V ∈ Irr(Ik′

G ) with k′ = ν(D(S)) + 1 ≤ ν(S) + 1. Moreover, we have by 
Corollary 5.14 that dstab(IG) is the smallest k such that m ∈ Ass(IkG). So by computing 
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the minimum in the formula for dstab(IG), it is enough to consider vectors a such that 
pa(G) is matching-critical and dominant in G. Note that by Lemma 5.5 every connected 
component of pa(G) contains an odd cycle. �

The next result recovers and extends Theorem 3.1 of [12] and Theorem 2.8 of [21].

Corollary 6.6. Let G be a simple connected non bipartite graph then:
(i) dstab(IG) = 2 if and only if there is a dominant triangle in G.
(ii) dstab(IG) = 3 if and only if no triangle is dominant in G and pa(G) is dominant 

in G, where a is one of the following vectors:
(1) 1Δ + 1{u,v}, where Δ is a triangle, u ∈ Δ, v /∈ Δ, uv ∈ E.
(2) 1Δ1 + 1Δ2 , where Δ1, Δ2 are triangles with at most one common vertex.
(3) 1Γ, where Γ is a pentagon.

Proof. (i) By Corollary 6.5, dstab(IG) = 2 if and only if there is a vector a such that 
pa(G) is matching-critical dominant in G with ν(pa(G)) = 1. Since pa(G) contains an 
odd cycle, we have pa(G) is a triangle.

(ii) We have by Corollary 6.5 that dstab(IG) = 3 if and only if there is a vector a
such that pa(G) is matching-critical dominant in G with ν(pa(G)) = 2. If pa(G) is not 
connected then pa(G) is the union of two disjoint triangles. If pa(G) is connected, then 
pa(G) is factor-critical and contains an odd cycle, so we have 3 ≤ �Supp(a) ≤ 5. If 
�Supp(a) = 3 then the triangle defined by Supp(a) is matching-critical dominant in G, 
hence dstab(IG) = 2, a contradiction so 4 ≤ �Supp(a) ≤ 5. We have two cases:

If �Supp(a) = 4, then let Supp(a) = {u1, u2, u3, u4}. So we can assume that 
V (pa(G)) := {u1, u′

1, u2, u3, u4}. Since pa(G) is factor-critical we have that pa(G) − u4
has a perfect matching, which is necessarily u1u2, u′

1u3. On the other hand pa(G) − u3
has a perfect matching, which is necessarily u1u2, u′

1u4. Similarly pa(G) − u1 has a 
perfect matching, which is necessarily either (a) u1u2, u3u4 or (b) u1u3, u2u4 or (c) 
u1u4, u2u3. In case the (a) we have a = 1{u1,u3,u4} + 1{u1,u2}. In case the (b) we have 
a = 1{u1,u2,u4} + 1{u1,u3} and in the case (c) we have a = 1{u1,u2,u3} + 1{u1,u4}. So in 
all the cases a = 1Δ + 1{u,v}, where Δ is a triangle, u ∈ Δ, v /∈ Δ, uv ∈ E.

If �Supp(a) = 5 then since pa(G) is factor-critical, all coordinates of the vector a
which are in Supp(a) equal to 1. Hence pa(G) is a factor-critical subgraph of G, so is 
either a pentagon with eventually some chords or a union of two triangles with only a 
common vertex and eventually some chords. �

In the following example we compute the first irreducible component which radical is 
the maximal ideal.

Example 6.7. Let V = {a, . . . , l} (see Fig. 4) and choose S = {a, . . . , j}. Hence we can 
check that C(S) = ∅, D(S) = {a, . . . , i} and A(S) = {j}. Therefore S satisfies the second 
condition of Corollary 6.1 but not the first. By applying Lemma 4.7, (i) we have that the 
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Fig. 4. dstab(IG) = 5.

graph S′ := p1S+1{i,k}(G) is matching-critical with C(S′) = ∅, D(S′) = {a, . . . , i, i′, k}
and A(S′) = ∅. Hence S′ satisfies the conditions of Corollary 6.1 with ν(S′) = 4. Thus 
(a2, . . . , h2, i3, j, k2, l) ∈ Irr(I5

G). In this example, the bound given by [2] and [22] is 
dstab(IG) ≤ 11, but we have seen that dstab(IG) ≤ 5. In fact by using Corollary 6.5 we 
can prove that dstab(IG) = 5.

Lemma 6.8. Let L be the set of leaves in G. Then for any set A ⊂ V such that every 
connected component of the induced subgraph G[A] contains an odd circuit, we have 
N(A) = N(A \ L).

Proof. It is clear that N(A \ L) ⊂ N(A). We have to prove that N(A) ⊂ N(A \ L). Let 
u ∈ N(A), so we have N(u) ∩A 	= ∅. We have two cases:

If N(u) ∩A 	⊂ L then there exists v /∈ A \ L such that uv ∈ E, so u ∈ N(A \ L).
If N(u) ∩ A ⊂ L, let l ∈ L such that l ∈ N(u) ∩ A, since A has no isolated vertices 

there exists v ∈ A such that lv ∈ E, but l is a leaf in G so we have u = v ∈ A. Let A′ be 
the connected component of G[A] containing u and w be a vertex in a circuit contained 
in A′. Since A′ is connected, there is a path v0 := u, v1, . . . , vl = w in A′. If w = v1 then 
v1 /∈ L and if w 	= v1 then v1 has at least u, v2 as neighbors. So we have v1 /∈ L and 
v1 ∈ N(u), a contradiction or the second case can not happen. �

Now we can improve the main result of [2]. Note that parts (i) and (ii) are a weak 
version of [13, Theorem 4.3].

Theorem 6.9. Let G be a simple connected non bipartite graph, C a smallest odd circuit 
in G and L the set of leaves in G.

(i) If m1U is an embedded associated prime of IkG and Z := V \ U then there exist a 
set H ⊂ U \L such that every connected component of the induced graph on H contains 
an odd circuit and U = N(H) ∪N(Z).

(ii) Let U ⊂ V such that Z := V \U is a coclique set and there exist a set H ⊂ U \L
such that every connected component of the induced graph on H contains an odd circuit 
and U = N(H) ∪ N(Z). Then m1U is an embedded associated prime of IkG, for some 
k ≤ �H − ν(C).

(iii) astab(IG) ≤ �(V \ L) − ν(C).
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(iv) Suppose that G is not factor-critical and has no leaves. Then astab(IG) < �V −
ν(C).

Proof. We know that m1U is an embedded associated prime of IkG if an only if there 
exists some vector a ∈ Nd such that Supp(a) ⊂ U and ma+1U is an embedded irreducible 
component of IkG. We have by Remark 2.9 that Z = V \ U is a coclique set.

(i) We can suppose that k is the smallest possible number by Theorem 5.14. Let 
a = b + c be the decomposition given in Theorem 5.7, in particular we have Supp(b) ⊂
Supp(a) ∩N(Z) and Supp(c) ∩N(Z) = ∅. So mc+1U is an embedded irreducible compo-
nent of Ik−|b|

G , which implies that m1U is an embedded associated prime of Ik−|b|
G . Since 

k is the smallest possible number such that m1U is an embedded associated prime of 
IkG, we have b is null. Set S := pa(G), we have by Theorem 5.3 that S = A(S) ∪D(S)
in the Gallai-Edmonds decomposition, and ν(S) = k − 1. From Corollary 4.11 we have 
ν(S) = ν(D(S)) + �(A(S)). Let a′ be the vector defined by a′i = 0 if xi ∈ A(S) ∩ V and 
a′i = ai if xi ∈ D(S) ∩ V . Then we have by Theorem 5.3 that ma′+1U is an embedded 
irreducible component of Ik−�(A(S))

G and hence m1U is an embedded associated prime of 
I
k−�(A(S))
G . Therefore A(S) = ∅ and S = D(S) by the smallest property of k. Thus S is 

matching-critical such that NG(S) ∩Z = ∅ and U = NG(S) ∪N(Z). Now we need to show 
that there exists some set H ⊂ U \ L such that N(H) = NG(S). Indeed, let S1, . . . , Ss

be the connected components of S. Since Si is factor-critical for each i = 1, . . . , s, we 
can assume by Remark 4.5 that there is an odd circuit Ci such that Ci ⊂ V (Si) ∩ V . 
Moreover, since any vertex in Ci is not a leaf we have Ci ⊂ (V (Si) ∩ V ) \ L. Therefore, 
applying Lemma 6.8 to A := V (S) ∩V we have N(V (S) ∩V ) = N((V (S) ∩V ) \L). Now 
choose the set H := (V (S) ∩ V ) \ L and taking notice that NG(S) = N(V (S) ∩ V ), we 
get the result.

(ii) Let H1, . . . , Hs be the connected components of the induced subgraph on H. 
Since Hi is connected and contains an odd circuit Ci, by applying Lemma 6.2, there 
exists a vector bi ∈ Nd with Supp(bi) = Hi such that pbi

(G) is factor-critical and 
ν(pbi

(G)) = �Hi−ν(Ci) −1. Let b = b1 + . . .+bs. Then pb(G) is matching-critical and 
since N(H) = NG(pb(G)) we have U = NG(pb(G)) ∪N(Z). It implies by Theorem 5.3
that mb+1U is an embedded irreducible component of Iν(pb(G))+1

G . So m1U is an embedded 
associated prime of IkG for k = ν(pb(G)) + 1. Our claim is over.

(iii) Let m1U be an embedded associated prime of IkG for some k and H ⊂ U \L a set 
defined as in (i). Thanks to (ii), we can choose k = ν(pb(G)) + 1 and hence we have

ν(pb(G)) =
s∑

i=1
(�Hi − ν(Ci) − 1) ≤ �H − ν(C) − 1 ≤ �(V \ L) − ν(C) − 1,

which implies by Corollary 5.14 that m1U is an embedded associated prime of I lG for 
every l ≥ �(V \ L) − ν(C). This shows that astab(IG) ≤ �(V \ L) − ν(C).

(iv) Let m1U be an embedded associate prime of IkG. We assume that k is the smallest 
possible number. We consider two cases:
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(1) If U = V then by Corollary 6.4 we have that k < �V − ν(C).
(2) If U 	= V then there exists H ⊂ U as in (i) such that k ≤ �H−ν(C) ≤ �U−ν(C) <

�V − ν(C). It then follows that astab(IG) < �V − ν(C), as required. �
Let I ⊂ R be an ideal, bight(I) the biggest height of the associated primes of R/I and 

l(I) the analytic spread of I. Denote irI(k) be the number of irreducible components of 
Ik. Now we recall the main result of [3].

Theorem 6.10. Let I be an ideal of R. Then there exists a polynomial IrI(k) with rational 
coefficients such that irI(k) = IrI(k) for sufficiently large k. Moreover we have

bight(I) − 1 ≤ deg(IrI(k)) ≤ l(I) − 1.

For edge ideals we will prove in the next theorem that deg(IrIG(k)) characterize if a 
graph is bipartite or not and deg(IrIG(k)) can take only one of the two extreme values.

Theorem 6.11. Let G be a simple connected graph. Then
(i) If G is bipartite then for k ≥ 1, the function irIG(k) coincides with a polynomial 

with rational coefficients IrIG(k) of degree bight(IG) − 1.
(ii) If G is non bipartite then the function irIG(k) is bounded below by the Hilbert 

function of K[G](−l), where l = ν(pa(G)) +1 is the smallest number such that there is a 
factor-critical graph pa(G) with support V . In particular for k � 0 the function irIG(k)
coincides with a polynomial with rational coefficients IrIG(k) of degree �V − 1.

Proof. (i) If G is bipartite then our claim follows immediately from Corollary 5.12.
(ii) Now we assume that G contains an odd circuit. By Lemma 6.2, there exists a 

replicated graph S = pa(G) which is factor-critical and with support V , hence ma+1V

is an irreducible component of Iν(S)+1
G . Let Λ = (λe) ∈ NE , kΛ =

∑
e∈E λe and set 

PΛ =
∏

e∈E,λe �=0 e
λe ∈ [[R]]. It follows from Lemma 4.7 that pa+

∑
e∈E λe1e

(G) is factor-
critical with ν(pa+

∑
e∈E λe1e

(G)) = ν(S) +kΛ. Hence ma+(
∑

e∈E λe1e)+1V is an irreducible 

component of Iν(S)+kΛ+1
G . In terms of corner elements it is equivalent to say that PΛxa

is a corner element of Iν(S)+kΛ+1
G +m(m+1)1V where m is an integer bigger or equal than 

ν(S) +kΛ +1. Two vectors Λ, Γ ∈ NE give the same irreducible component of Iν(S)+kΛ+1
G

if and only if PΛxa, PΓxa give the same corner element of Iν(S)+kΛ+1
G + m(m+1)1V , that 

is PΛxa = PΓxa which is equivalent to PΛ = PΓ. It is equivalent to say that 
∏

e Y
λe
e −∏

e Y
γe
e ∈ I(G) where I(G) is the toric edge ideal. It follows that the number of irreducible 

components of the type ma+(
∑

e∈E λe1e)+1V in Iν(S)+kΛ+1
G is given by HK[G](kΛ), where 

HK[G] is the Hilbert function of the ring K[G]. Hence irIG(ν(S) + kΛ + 1) is bounded 
below by HK[G](kΛ). From one side we know that for k big enough HK[G](k) coincides 
with a polynomial of degree dimK[G] − 1 = �V − 1. From another side by Theorem 6.10
for k big enough we have irIG(k) coincides with a polynomial of degree at most �V − 1. 
Our claim is over. �
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