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Abstract

We veritfy Uno’s invariant conjecture for Steinberg’s triality groups 3 D4(q), q apower of an odd prime p,
in the defining characteristic p. Uno’s invariant conjecture is a refinement of Dade’s invariant conjecture.
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1. Introduction

Let G be a finite group and p a prime dividing the order of G. There are several conjectures
connecting the representation theory of G with the representation theory of certain p-local sub-
groups (i.e. the p-subgroups and their normalizers) of G. For example, it seems to be true, that
if P is a Sylow p-subgroup of G, then the number of complex irreducible characters of G of
degree coprime with p equals the same number for the normalizer Ng (P).

This conjecture, called McKay conjecture [22], and its block-theoretic version due to
Alperin [1] were generalized by various authors. In [20], Isaacs and Navarro proposed the fol-
lowing refinement of the McKay conjecture: If £ is a residue class modulo p different from zero,
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then the two numbers above should still be equal when we count only those characters having a
degree in the residue classes k or —k.

In a series of papers [8—10], Dade developed several conjectures expressing the number of
complex irreducible characters with a fixed defect in a given p-block of G in terms of an alter-
nating sum of related values for p-blocks of certain p-local subgroups of G. In [9], Dade proved
that his (projective) conjecture implies the McKay conjecture. Motivated by the Isaacs—Navarro
conjecture, Uno [23] suggested a further refinement of Dade’s conjecture.

In this paper, we show that Uno’s invariant conjecture holds for Steinberg’s simple triality
groups > Dy4(g) with ¢ a power of an odd prime p, in the defining characteristic p. This implies
that Dade’s invariant conjecture is true for 3D4(q), q odd, in the defining characteristic. Since
3D4(g) has a trivial Schur multiplier and a cyclic outer automorphism group, it follows that
Dade’s inductive conjecture is also true for 3D4(q) in this case. Together with the results in [2]
this completes the proof of Dade’s conjecture for 3 D4(q), ¢ odd.

The methods we use are similar to those in [18]. By a theorem of Borel and Tits [5], the
normalizers in G of radical p-chains are exactly the parabolic subgroups of G. So we count
characters of these chain normalizers which are fixed by certain outer automorphisms. Our cal-
culations are based on the character table of > D4 (g) in the character table library of the Maple [7]
part of CHEVIE [13] and the character tables of the parabolic subgroups of 3D4(g) which have
been computed in [16] (and which are also implemented as generic CHEVIE character tables).

This paper is organized as follows: In Section 2, we fix notation and state Dade’s and Uno’s
invariant conjectures in detail. In Section 3, we state and prove some lemmas from elemen-
tary number theory which we use to count fixed points of certain automorphisms of 3 D4(g). In
Section 4, we compute the fixed points of the outer automorphisms of 3Dy (q), ¢ odd, on the
irreducible characters of the triality groups and their parabolic subgroups. In Section 5, we ver-
ify Uno’s invariant conjecture for >Dy4(q), ¢ = p” odd, in the defining characteristic p. Details
on irreducible characters and conjugacy classes of the triality groups are summarized in tabular
form in Appendix A.

2. Conjectures of Dade and Uno

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R, where
O, (N(R)) is the largest normal p-subgroup of the normalizer N(R) := Ng(R). Denote by
Irr(G) the set of all irreducible ordinary characters of G, and by Blkva) the set of p-blocks.
If H <G, B € Blk(G), and d is an integer, we denote by Irr(H, B, d) the set of charac-
ters x € Irr(H) satisfying d(x) = d and b(X)G =B (in the sense of Brauer), where d(x) =
logp(|H|p) — logp(x(l)p) is the p-defect of x and b() is the block of H containing .

Given a p-subgroup chain

C: Php<Pi<---<P,
of G, define the length |C|:=n, Cy: Py < P; <--- < Py and
N(C)=Ng(C):=Ng(Po) N Ng(P1)N---N NG(Pp).
The chain C is said to be radical if it satisfies the following two conditions:

(a) Py=0p,(G) and
(b) P =0p,(N(Cy)) for1 <k <n.
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Denote by R = R(G) the set of all radical p-chains of G.

Suppose 1 - G — E — E — 1 is an exact sequence, so that E is an extension of G by E.
Then E acts on R by conjugation. Given C € R and ¢ € Irr(Ng(C)), let Ng(C, ¢) be the
stabilizer of (C, ¥) in E, and

Ng(C,¥) :=NEg(C,¥)/Ng(C).

For B € BIk(G), aninteger d > 0 and U < E,letk(Ng(C), E, d, U) be the number of characters
in the set

Irr(Ng(C), B,d, U) := |y e lt(NG(C), B, d) | Ng(C,y) = U}.
Dade’s invariant conjecture can be stated as follows:

Dade s Invariant Conjecture. (See [10].) If O,(G) =1 and Be BIk(G) with defect group
D(B) # 1, then

> (=DIk(NG(C). B.d.U) =0,
CeR/G

where R/ G is a set of representatives for the G-orbits of R.

Let H be a subgroup of G, ¢ € Irr(H), and let r (¢) = rp(¢) be the integer 0 < r(¢) < (p—1)
such that the p’-part (|H|/¢(1)),y of |H|/¢(1) satisfies

(ﬂ> =r(p) mod p.
o)/,

Given 1 <r < (p+1)/2,let Irr(H [r]) be the subset of Irr(H) consisting of those characters ¢
with r(¢) = £r mod p. For Be BIk(G), C € R, aninteger d > 0 and U < E, we define

Irr(NG (C), B,d, U, [r]) :=Trr(Ng(C), B, d, U) NTrr(Ng (C), [r])

and k(Ng(C), B,d, U, [r]) := |Irr(Ng(C), B, d, U, [r])|. The following refinement of Dade’s
conjecture is due to Uno.

Uno’s Invariant Conjecture. (See [23, Conjecture 3.2].) If 0,(G) =1 and Be BIk(G) with
defect group D(B) # 1, then for all integersd > 0and 1 <r < (p+1)/2,

> (=Dk(NG(C). B.d. U.[r]) =0.
CeR/G

Note that if p =2 or 3, then Uno’s conjecture is equivalent to Dade’s conjecture.
Let Aut(G) and Out(G) be the automorphism and outer automorphism groups of G, respec-
tively. We may suppose E = Out(G). If moreover, Out(G) is cyclic, then we write

k(NG(C), B,d, |U|,[r]) :==k(Ng(C), B,d, U, [r]).
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For G =3 D4(q), Out(G) is cyclic and the Schur multiplier of G is trivial. So the invariant
conjecture for G is equivalent to its inductive conjecture.

3. Notation and lemmas from elementary number theory

From now on, we always assume that p is an odd prime, n is a positive integer and g = p".
We write ¢; for the ith cyclotomic polynomial in g, for example: ¢ =qg — 1, po =q + 1,
B=q>+qg+1,ps=q>*—q+1,¢010=g*—g>+ 1. We denote by N= {0, 1, 2, ...} the set of
natural numbers including zero. In the next section, we will use the following lemmas, the first
of which is folklore:

Lemma 3.1. Suppose m,n,a € Z with m,n > 0. Then gcd(@™ — 1,a" — 1) = la? — 1| where
d = gcd(m, n).

Proof. Sincea” — 1 =(a!—1)- Y7 adi anda” — 1 = (a? — 1)- 7' a® we have ad — 1|
a™—1,a"—1.Nowlett |a™ —1,a" —1,s0a™ =a" =1 mod t. Hence the multiplicative order
of @ mod ¢ is a divisor of m, n and then also of d. Thus a? =1 mod t. O

Lemma 3.2. Let t be a positive integer with t | 3n. Define 6 :== 1 ift |n and § := % ift{n. Then
the following hold.

(i) ged(p' —1,g—1)=p* — 1.
(i) ged(p' —1,g+1)=2.
(iii) ged(p' —1.¢>°—1)=p' — 1.
(iv) ged(p' — 1,¢° + 1) =2.
P41 if28t | n,
2 if 28t {n.

(i) ged(p +1,g+1)=] > yastin,
BT AT =\ 0o 1 if2setn.

(v) ged(p' +1,q — 1)={

pl+1 if28t|n,
2 if 28t n.
2 if 28t | n,
pr+1 if2sttn.

(vii) ged(p' + 1,43 - 1) ={
(viil) ged(p' +1,¢° +1) = {

Proof. (i) and (iii) are clear by Lemma 3.1.

(ii) Suppose d = ged(p' — 1,4+ 1). Sinceg +1 | ¢> +1and p' —1|¢> — 1 by Lemma 3.1,
it follows that d | ged(g® — 1, 4% +1) =2.

(iv) is analogous to (ii).

(vi) Suppose 28t {n. Ifd | p' +1,q + 1, thend | p* — 1 and so d | p*" — 1 as 2t | 3n. Thus
dlg@® =1, +landd | (@ +1)—(¢>—1)=2.

Suppose 28t 1 n. Then ¢, n have “the same 2-part,” i.e. there are k, f,,, n, € N with odd #,n,
such that £ = 2% - £,, n = 2% .n,,. Hence p' + 1 = —((—p? )« — 1) and ¢ + 1 = —((—p* ) — 1).
So Lemma 3.1 implies ged(p' +1,g+1) = gcd((—pzk)’“ -1, (—pzk)”“ -1 = |(—p2k)5’“ —1|=
Po .
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(viii) Suppose 28t tn. If d | p' +1,¢4°> + 1, then d | p> — 1 and p* — 1| p>* — 1, so that
d|ged(g® -1, +1)=2.

Suppose 268t 1 n. There are k, t,,, n, € N with odd #,n,, such that r = 2k ty, n = 2k . ny. By
Lemma3.1, p’ +1=—((—p*)u — 1) | (=p>)¥ —1.So0 p' + 1|43+ 1.

(v) Suppose 28t { n. There are k, t,,n, € N with 241, and 2 | n,, such that t = 2% . 1, n =
2% . 1,. Hence p' + 1= —((=p>)« — 1) and ¢ — 1 = (—p%)™ — 1. So Lemma 3.1 implies
ged(p' + 1.g — 1) = ged((—p? ) — 1, (= p¥ ) — 1) = |(=p*) — 1| = p¥ + 1.

Suppose 28t {n. If d | p' +1,q — 1, then by (viii), d | ¢> + 1,q — 1 and so d | ged(g® + 1,
g —1=2.

(vii) Suppose 28t tn. Then 2¢ | 3n and p' + 1| p* — 1. Hence p' + 1| p> —1=¢> — 1.
Suppose 251 1 n, then the proof is analogous to (v). O

Lemma 3.3. Let t, m be positive integers and let 6 be as in Lemma 3.2. Suppose t | 3n and
28t 4n. If2™ | q — 1, then 2™ | p® — 1.

Proof. Suppose ¢ = p” = 1 mod 2" and let ¢ be the Euler function. Then ¢(2") = 2"~!
and p¥@") =1 mod 2. The conditions ¢ | 3n and 28t { n imply that £ € Z is odd. Thus,
ged(5;,9(2™)) = 1 and there are x,y € Z such that x - & + y - ¢(2") = 1. So pit =
th(x<§'—l+y~go(2’”)) =q"- pzSty:p(Zm) =1mod?2™. 0O

Lemma 3.4. Leta,b, c,d,i, j,m;,my € Z withm | b,
a-i+b-j=0 mod(m;-mp) and @))
c-i+d-j=0 mod (my). 2)
Suppose D := gcd(ad — bc, my - my) is a divisor of my. Then

(@) mq |1i.
() Ifmy =1, then ¢ | i and "% | j.

Proof. (a) Since m | b thereis a b’ € Z such that b = b’ - m . Multiplying the second congruence
with m1, we get

a-i+mb -j=0 mod(m-my) and

mic-i+mid-j=0 mod (m;-mj).

Multiplying the first congruence with d, the second with —b’ and adding up, we get (ad — bc)i =
0 mod m - my. Since D divides m,, we can conclude m, - i =0 mod m - my and hence m | i.

(b) Multiplying congruence (1) by d and subtracting b times congruence (2), we get D - i =
0 mod m2, hence 72 | i. Multiplying congruence (2) by a and subtracting ¢ times congruence (1),
we get D - j =0 mod my, hence ¢ | j. O

4. Action of automorphisms on irreducible characters

Let G =3D4(q) be Steinberg’s simple triality group defined over a finite field with ¢ = p”
elements (always assuming that p is odd). Let O = Out(G) and A = Aut(G). Then O = («)
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and A = G x («), where « is a field automorphism of order 3n. We fix a Borel subgroup B and
maximal parabolic subgroups P and Q of G containing B as in [16]. In particular, « stabilizes
B, P and Q.

In this section, we determine the action of O = Out(G) on the irreducible characters of the
chain normalizers. Our notation for the parameter sets of the irreducible characters of G, B, P
and Q is similar to the CHEVIE notation and is given in Table A.1 in Appendix A.

The first column of this table defines a name for the parameter set which parameterizes those
characters which are listed in the second column of the table. The characters of G are numbered
according to the character table of 3D4(q) in the CHEVIE library, and for the characters of B,
P, O we use the notation from [16]. The list of parameters in the third column of Table A.1 in
Appendix A is of the form

k=0,...,n1—1 or

where the n;’s are polynomials in g with integer coefficients. In the first case, the parameter k
can be substituted by an element of Z, but two parameters which differ by an element of n{Z
yield the same character. In the second case, the parameter vector (k, /) can be substituted by an
element of Z x Z, but two parameter vectors which differ by an element of n{Z x n,Z yield the
same character. In other words, k can be taken to be an element of Z,,, and (k, /) can be taken to
be an element of Z,,, x Z,,. The groups Z,, and Z,, x Z,, are also called character parameter
groups (see Section 3.7 of the CHEVIE [13] manual). The next lines of Table A.1 list elements
which have to be excluded from the character parameter group. The remaining parameters are
called admissible in the following. Different values of admissible parameters may give the same
character. The fourth column of Table A.1 defines an equivalence relation on the set of admissible
parameters. If no equivalence relation is listed we mean the identity relation. The parameter set
is defined to be the set of these equivalence classes. Finally, the last column of Table A.1 gives
the cardinality of the parameter set.

We consider the example p /3. The character parameter group is Z,3 _; X Zq—1. The parameter
vectors (k,/) and (—k, k + [) yield the same character and the equivalence class of (k,l) is
{(k,]), (—k,k +1)}. Hence, the characters p x3(k,[) are parameterized by the set

pli={{&, D, (=k, k+D} | (k,1) € Zys_y x Zy_1, k#0}.

If we want to emphasize the dependence of a parameter set, say p I3, from g we write pI3(q).
Table A.1 does not give any detailed information about the parameter sets ¢ I20, G 123, G 129, G 30,
6131, ¢ I32, 6 I33, since we will not need an explicit knowledge of these sets (note that ¢ I, ¢ 123,
619, 6130, 6131, 6132, G133 parameterize the regular semisimple irreducible characters of G).
The data in Table A.1 is taken from the CHEVIE library and the appendix of [16].

We will also consider the action of O = Out(G) on the regular semisimple conjugacy classes
of G. The parameter sets for these classes are defined analogously to the parameter sets for the
irreducible characters (cf. Section 3.8 of the CHEVIE manual) and are listed in Table A.2 in Ap-
pendix A. The first column of Table A.2 defines a name for the parameter set which parameterizes
those conjugacy classes of G which are listed in the second column of the table. The notation
for these classes is taken from Table A.2 in [16]. The third column of Table A.2 in Appendix A
describes the class parameter groups and the admissible parameters. The fourth column defines
an equivalence relation on the set of admissible parameters, and the parameter set is defined to be
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the set of these equivalence classes. Finally, the last column gives the cardinality of the parameter
set.

The information about the parameters in Table A.2 (except for the equivalence relations)
is taken from Table A.l in the appendix of [16]. The equivalence relations were determined
as follows: Up to conjugacy, G has exactly 7 maximal tori and these are described by sets
To, Ty, ..., Te (see [11, Table 1.1], and the remarks in [16, Section 3]). The regular semisim-
ple conjugacy classes cs(i, j), cg(i), c11(i), c12(, j), c13(, j), c14(i), c15(i, j) correspond to
Ty, T1, T, T3, Ty, Ts, T respectively. Let W;, j =0,1,...,6, be the Weyl group of T; (see
p- 42 in [11]). The equivalence classes in Table A.2 in Appendix A correspond to the orbits
of W; on T;. Using Table 2.1 in [16], the representatives in Table A.1 in [16] and the information
about the W;’s in Table A.3 in [15], one can compute the orbits of W; on T;. These computations
were carried out using computer programs, written by the second author, which are based on the
GAP [12] part of CHEVIE.

The action of O = Out(G) on the conjugacy classes of elements of G, B, P and Q induces
an action of O on the sets Irr(G), Irr(B), Irr(P) and Irr(Q) and then an action on the parameter
sets. Using the values of the irreducible characters of G, B, P and Q on the classes listed in the
last column of Tables A.3—A.7 we can describe the action of O on the parameter sets.

For an O-set I and each subgroup H < O let C;(H) denote the set of fixed points of / under
the action of H. In the following proposition we determine |C;(H)| where I runs through all
(disjoint) unions of parameter sets which are listed in Table A.8 except for g 120 U g I3 U g 19 U
6 130U G131 Ug 132U I33. This last union of parameter sets parameterizes the regular semisimple
irreducible characters of G and will be treated separately since it requires different methods.

Proposition 4.1. Let t | 3n and I # g0 U G123 U gl29 U G130 U g I31 U g 132 U g I33 be one of
the (disjoint) unions of parameter sets listed in Table A.8. If H = (a') is a subgroup of O, then
the second and third columns of Table A.8 show the number of fixed points |C;(H)| of I under
the action of H.

Proof. We have to consider the following parameter sets 1.
First let

le{chUgly,chUgho,clzUglaUglsUgls,cl7, 6111, 612,
gly, pIgUploUglioUpgly, pligUplioUpglyU gy,
pls, ploUplioU plioUplhs, plis, plie, pI17U pligU pligU ply,

ols, 017, 018, o lo, o110 U o111 U gl12 U g 113}.

The degrees and character values on the conjugacy classes listed in Tables A.3—A.7 show
C;(H) =1 and hence |C;(H)| = |I|. We demonstrate this for the parameter set [ = plgU p 19U
pl12U pI13. The degrees in Table A.5 show that p x9 and p x19 are the only irreducible characters
of P of degree %q3 (q> +1)(g — 1)2. Furthermore, p x12 and p x13 are the only irreducible charac-
ters of P of degree 3¢°(g® — 1)(¢> — 1). Hence, pxo% € {p x9. px10} and px12% € {p X12. P X13}-
The class representatives in Table A.7 in [16] show that the conjugacy class ¢3¢ is fixed by «
and we can see from the character Table A.10 of P in [16] that the values of p x9 and p xj0 on
c3,0 are different. Similarly, the values of pxj2 and px13 on c3 o are different. So, p ;% = pxi
fori =9,10,12,13 and |C;(H)| = |1|.
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In each of the following cases, we have that the action of « on [ is given by x* = px for all
x € I using the character values on the classes listed in the last column of Tables A.4—A.7. We
demonstrate this for the parameter set / = pI3 U pls. The degrees in Table A.7 show that the
p x3(k,1)’s are the only irreducible characters of P of degree q3 +1,s0 px3k, D% = px3(k’,1")
for some {(k’,1’), ...} € pIz. We see from the class representatives in Table A.7 in [16] that «
acts on the semisimple conjugacy classes of P like the pth power map which implies that the
values of px3(k’,1") and px3(pk, pl) on the semisimple classes coincide. Then, the character
values of p x3(k, [) (see the character Table A.10 in [16]) imply that the values of p x3(k’,1’) and
px3(pk, pl) coincide on all classes, hence p x3(k’,1") = p x3(pk, pl) and therefore p x3(k,[)* =
px3(pk, pl). Similarly, p x4(k)* = p x4(pk). Hence, x* = px forall x € I.

Let I = g3 UGl If x = {k,—k} € I, then x € C;(H) if and only if (p' — 1)k =0 or
(p' + Dk=0. Let

Cy:={{k,—k}e C;(H) | (p' £1)k=0},

sothat C;(H)=C_UCy and C_ N Cy =@. We claim
. . q—1
C_ =ik, —k} e 6113 ‘klsamultlple of I——_1
pol —1

The inclusion D is clear. Let x = {k, —k} € C_. If x € gI1, then (p' — 1)k =0 mod g + 1
and Lemma 3.2(ii) implies 2 - k = 0, which is impossible. Hence x € gI13 and (p' — )k =
0 mod ¢ — 1. By Lemma 3.2(i), k is a multiple of (¢ — 1)/(p?" — 1), proving the claim. Now we
consider C.

If 28¢ { n, we claim Cy = {{k, —k} € ¢ 1,3 | k is a multiple of (g — 1)/(p® +1)}. The inclusion
Disclear. Let x = {k, —k} € Cy. If x € g 171, then (p' + 1)k =0 mod ¢ + 1 and Lemma 3.2(vi)
implies 2 - k = 0 which is impossible. Hence x € g/j3 and (p’ + Dk =0 mod g — 1. By
Lemma 3.2(v), k is a multiple of (g — 1)/(p® + 1) and the claim holds.

If 28¢ { n, we claim Cy = {{k, —k} € g 21 | k is a multiple of (¢ + 1)/(p® 4 1)}. The inclusion
Disclear. Let x = {k, —k} € C,.. If x € I3, then (p' + 1)k =0 mod g — 1 and Lemma 3.2(v)
implies 2 - k = 0 which is impossible. Hence x € glp; and (p' + 1)k =0 mod g + 1. By
Lemma 3.2(vi), k is a multiple of (¢ + 1)/(p5’ + 1) and the claim holds.

Thus in all cases, |C;(H)| = |C_| + |Cy| = (p* —3)/2+ (p® —1)/2=p —2.

Letl e{chsUglhisUghaUgly, chieUglioUglsUgls}. Then glisUglhisUglaU
Gl7 and gI16 U gI19 U gI25 U g Irg are isomorphic H -sets, so that we can assume [ = g 115 U
¢higUgla Ul Define J := {{k, —k} [k € Z,3_ 1} \ {{0}, {(g®> = 1)/2}} and J' := {{k, —k} |
ke Zg 3\ {0}, {(g® +1)/2}}. The sets J and J' become H-sets by x® := px forall x € J, J'.
By construction and the definition of character parameter groups, ¢ I1s > {{k, —k} € J | ¢ — 11k}
as H -sets. Furthermore, mapping {m, —m}+— {(g — 1) -m, —(q — 1) - m} defines an isomorphism
of H-sets gI15 >~ {{k, —k} € J | g — 1| k}. Hence, J >~ gIi5 U gIig as H-sets. Similarly, J" ~
61Ia UG lp7 as H-sets, and finally I ~ J U J’ (disjoint union) as H -sets, so that we can identify
I=JuUlJ.

If x ={k, —k} €I, thenx € C;(H) if and only if (p' — 1)k =0or (p’ + 1)k =0. Let

Cy:={{k,—k}e C;(H) | (p' £1)k=0},



J. An et al. / Journal of Algebra 316 (2007) 79-108 87

sothat C;(H)=C_UC4 and C_ N C4 =¢. We claim

3
—1
c. = {{k, —kyeJ ‘ k is a multiple of L 1}.
.

The inclusion D is clear. Let x = {k, —k} € C_. If x € J/, then (p' — 1)k =0 mod ¢> + 1 and
Lemma 3.2(iv) implies 2 -k = 0, which is impossible. Hence x € J and (p’ — 1)k = 0 mod g3 —1.
By Lemma 3.2(iii), k is a multiple of (q3 —1)/(p' —1), proving the claim. Next, we consider C, .

If 26t { n, we claim C = {{k, —k} € J | k is a multiple of (¢> — 1)/(p’ + 1)}. The inclusion
Disclear. Let x = {k, —k} € C4. If x € J/, then (p’ + 1)k = 0 mod q3 + 1 and Lemma 3.2(viii)
implies 2 - k = 0, which is impossible. Hence x € J and (p’ + 1)k = 0 mod ¢> — 1. By
Lemma 3.2(vii), k is a multiple of (q3 —1)/(p" + 1) and the claim holds.

If 26t { n, we claim C = {{k, —k} € J' | k is a multiple of (¢> + 1)/(p’ + 1)}. The inclusion
Disclear. Let x = {k, —k} € C1. If x € J, then (p' + 1)k = 0 mod q3 — 1 and Lemma 3.2(vii)
implies 2 - k = 0 which is impossible. Hence x € J' and (p’ + 1)k = 0 mod ¢ + 1. By
Lemma 3.2(viii), k is a multiple of (¢> 4+ 1)/(p’ + 1) and the claim holds.

Thus in all cases, |C;(H)|=|C—|+ |C+|=(p' —=3)/2+ (p' —1)/2=p" = 2.

Let I = gly. If (k,[) € I, then (k,l) € C;(H) if and only if (p' — 1)k = 0 mod q3 -1
and (p" — 1)l =0 mod ¢ — 1. By Lemma 3.2(i) and (iii), this is equivalent with (p’ — 1)k =
0 mod ¢> — 1 and (p* — 1)/ =0 mod g — 1. Hence

qS

pt

-1 -1
Ci(H)= {(k,l) el ‘ k is a multiple of 1 and / is a multiple of C{”—l}
_ por —

and [C;(H)| = (p' = D(p* — ).

Let I € {gh,gls, pI1, pl7, 0ls}. If k € I, then k € C;(H) if and only if (p! — Dk =
0 mod g — 1. By Lemma 3.2(i), this is equivalent with (p* — Dk=0mod g — 1. So we get
Ci(H)={k eI |kisamultiple of (g — 1)/(p® — 1)} and |C;(H)| = p*" — 1.

Let I € {gI5, pl17, P15, 011, o2}. If k € I, then k € C;(H) if and only if (p' — Dk =
0 mod ¢> — 1. So we get C;(H) = {k € I | k is a multiple of (g3 — 1)/(p' — 1)} and
|ICi(H)|=p' —1.

Let I = pI3 U ply. First, we compute |C, ,(H)|. Let

_ { {k, D), (=k,k+D}e Cpory(H) | p'k =k, p'l=1) ifi =1,
KD, (ke kDY e Cor(H) | plhk=—k, pll=k+1} ifi=2.

If x ={(k,0),(—=k,k + 1)} € pl3, then x € U; if and only if (p' — 1)k = 0 mod q3 — 1 and
(p" — DI =0 mod g — 1. By Lemma 3.2(i) and (iii), this is equivalent with (p’ — 1)k =
0 mod ¢> — 1 and (p* — 1)/ =0 mod g — 1. Hence
g’ —1 q—1
Uy = {{k.D). (k. k+D} e pl3 ( o ‘kandW ‘1

and |U1| = (p' —=2)(p” = /2.

Suppose 28¢ tn. If x = {(k,1), (—k,k + )} € pl3, then x € U, if and only if (p' + 1)k =
0 mod g3 — 1 and (p' — 1)/ =k mod g — 1. Since 258t ¥ n we have 2¢ | 3n, and hence, by
Lemma 3.2(i) and (vii), (g — 1) /(p*" = 1), (¢° — D) /(p' + 1), (¢°> — 1)/ (p* — 1) € Z. We claim
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= {{(k, D). (—k.k+D) € ply ‘ there exists m & Z such that

31 31 -1
k:q -mand ! = 9 -m mod a
p’-l—l p2t_1 p‘”—l

The inclusion D is clear. Suppose x = {(k, ), (—k, k +1)} € U,. Then (p’ + 1)k =0 mod g —1
and Lemma 3.2(vii) imply that there exists m € Z such that k =m - (q3 —1)/(p' +1). Because
(p' —1)I =k mod g — 1 there exists z € Z such that (p' — )l =m(¢> —1)/(p' +1)+z- (g —1).
Thus

q—1
pSt_l

Z
Cc

with ¢ := e Z. Slnce <

) =1 by Lemma 3.2(i), we conclude

psr 1
(z/c) € Z, proving the clalm. Hence |Ua|=p (p‘” —1)/2.

Suppose 28t 1 n. If {(k, 1), (—k, k + 1)} € Uy, then (p’ + 1)k =0 mod q3 — 1, Lemma 3.2(vii)
and the definition of p I3 imply k = (¢> —1)/2mod ¢> — 1. Thus, (p' — Dl =k = (¢>+q+1) x
(g—1/2=3(¢q—-1)/2=(q —1)/2mod g — 1. By Lemma 3.3, each power of 2 dividing g — 1
also divides p’ — 1 and hence also (g — 1)/2, a contradiction. Hence, U, = . So

(Stl

(P =D —1)  if28t{n,

[Cos (D] = 1U1] + 102 {(p’—Z)(p&—l)/Z if 251 1 n.

Next we calculate |C,j, (H)|. If x = {k,q3k} € ply, then x € C,1,(H) if and only if (p' — 1) x
k=0 or (p —¢g>k=0mod (¢g° + 1)(g — 1). Suppose (p' — 1)k = 0. By Lemma 3.2(1)
and (iv), we can find x, y € Z and an odd integer u such that ged(x, ) = gcd(y, ) =1 and
pPr—1=p" =1 -u,qg—1=(p*—1)-x and g3 +1 =2y. Hence ged(p’ — 1, (¢° +1)(q—1)) =
ged((p® — D) - u, (p* — D2xy) = (p” — 1) - ged(u, 2xy) = (p* — 1). Thus (p* — Dk =
0 mod (¢> + I)(g — 1) and so % | k. But then (¢° + 1) | k, a contradiction to
the definition of ply. So we have proved that x € C,r,(H) if and only if (p’ — q3)k =
0 mod (¢> + 1)(g — 1).

Suppose 28t { n. If {k, gk} € C,1,(H), then (p" — gk =0 mod (g3 + 1)(g — 1). Thus
(p' + Dk=0mod (g3 + 1) and (p' — 1)k =0 mod g — 1. By Lemma 3.2(i) and (viii), we get
q37+1 | k and "5,_11 | k. Since "3—“ |q3 +1 and qa,_ll | ¢> — 1 and since p% — 1 is even, we have

gcd(q32+1, L l) =1landso & 2“ . 5, 1 |k The condition 28tJ(n implies (p‘S’ — D +1)|

. Hence

pt—l=gq
in this case C,,14 (H) =
Suppose 2571 n. We claim

3 1 _1
Con(H) = {{k,q3k} €ply ‘ k is a multiple of (@"+Dg -1 }

(pr+D(p -1

3
Letk = % -m for some m € Z. Because t | 3n and 28t { n we have 2¢ | 3n — ¢. Since

(p" + D(p® — 1) is a divisor of (p' — 1)(p' + 1) = p* — 1 we then get (p' + D(p* — 1) |
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p3n—t -1 ThuS (p3n—t _ l)k — ﬂ(q:; + 1)(q —_ 1) cm = 0 mOd (q3 + 1)(q - 1) SO
: PADGPT—D) B '

(p' — ¢k =0mod (¢> + 1)(¢ — 1) and {k, ¢°k} € C,,1,(H).
Conversely, suppose {k, >k} € C,1,(H). Then (p' — g3k =0 mod (¢> + 1)(¢ — 1). Hence
(p' + Dk =0mod g> + 1 and (p’ — 1)k =0 mod g — 1. By Lemma 3.2(i) and (viii), (p’ + 1) x

3 _ . 3
k=0modg>+1and (pP — 1)k =0 mod g — 1. So ‘lf,,j} | k and p‘g,jl | k. Since z,j} |

41 g-1 y=1
PSR p5’—1 .

| k, and the claim holds. So by the definition of pl4, we get |Cpy, (H)| =

g3 +1and p%,__ll | ¢> — 1 and since p%,__ll is odd by Lemma 3.3, we have gcd(

@+Dg=D
(P +D (PP -1)
PP —1)/2.

So in both cases, |C;(H)| = |Cp 1, (H)| +|C,1,(H)| = (p' — 1)(p® —1).
Let I = ploy U plx. Then plri(q) ~ g113(¢>) and pIrn(q) =~ g 1»1(¢°) as H-sets. Thus

Therefore

’CI(H)| = |CP121(q)UP122(q)(H)| = |C(;113(q3)U0121(q3)(H)| = Pt -2

Let I = gI3U gl4. First, we compute |C, 1, (H)]|. Let

L { {1, (k+¢3l, D)} € Cory,(H) | p'k =k, pli=1} ifi =1,
TGk D, (k+ ¢sl, —DY € Cur(H) | plk=k+¢3l, p'll=—1} ifi=2.

If x ={(k, 1), (k+ ¢3l,-1)} € oIz, then x € Uy if and only if (p' — Dk =0 mod q3 -1
and (p’ — 1)l =0 mod ¢ — 1. By Lemma 3.2(i) and (iii), this is equivalent with (p’ — 1)k =
0 mod ¢> — 1 and (p* — 1)/ =0 mod g — 1. Hence

q—1

pét -1 ’ l}
and [U)| = (p' — 1)(p*" —2)/2.

Suppose 28t tn. If x = {(k, 1), (k + ¢31, —1)} € o1, then x € U, if and only if (p' — )k =

¢l mod g® —1and (p' + 1)l =0mod g — 1. We have (p* + D(p' = D) | (p' + D(p' = 1) =

p* — 1 which is a divisor of p* — 1 =¢> — 1 because 2¢ | 3n. Together with Lemma 3.2(iii)

3 3
.. . qg—1 q°—1 q°—1
and (v) this implies T DD =T

3

q° —1
Uy = {{(k,l),(k—i—d)gl,—l)} € ol | o |k and

€ Z. We claim

Uy = {{(k,l), (k+¢sl, —D)} € oI5 ‘ Im € 7 such that

—1
| = mandk=——— . mmod
por+1 P+ D' -1 p—1

g’ —1 113—1}

The inclusion D is clear. Suppose x = {(k, 1), (k+¢3l, —1)} € Up. Then (p' +1)I =0mod g — 1
and Lemma 3.2(v) imply that there exists m € Z such that [ =m - (g — 1)/(p®" + 1). Because
(p' — Dk = ¢3l mod g3 — 1 there exists z € Z such that (p' — Dk =m¢3(g — 1)/ (p* +1) +z-
(g —1). Thus

P+ D(pt -1 pr—1
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This proves the claim and shows |Us| = p% (p' — 1)/2.

Suppose 28t 4 n. If {(k, 1), (k + ¢31, =)} € U, then (p’ + 1) =0 mod g — 1, Lemma 3.2(v)
and the definition of I3 imply [ = (¢ — 1)/2 mod g — 1. Thus (p' — Dk = ¢3l = (g3 -
1)/2 mod ¢* — 1. By Lemma 3.3, each power of 2 dividing ¢> — 1= (g — D(g*> +¢q + 1)
also divides p’ — 1 and hence also (¢> — 1)/2, a contradiction. Hence U, = . So

(P =D —1)  if2stn,

C =U =
| QI3(H)| Uil + 102 {(pt_l)(pat_z)/z if 281 1 n.

Next we calculate |C,,r, (H)|. If x = {k, g3k} € ola, then x € C, 1, (H) if and only if (p' —1)x
k=0or (p' — q3)k =0 mod (q3 —1)(g + 1). Suppose (p' — 1)k = 0. By Lemma 3.2(iii), we
have % | k and so g + 1 | k, a contradiction to the definition of gl4. So x € C,;,(H) if
and only if (p' — ¢>)k =0 mod (¢° — 1)(g + 1).

Suppose 28 { n. If {k,q’k} € Cy,(H), then (p' — ¢*)k =0 mod (¢°> — 1)(g + 1). Thus
(p' — Dk=0mod (¢ — 1) and (p' + Dk =0 mod ¢ + 1. By Lemma 3.2(iii) and (vi), we

ols

get%lkan %|q3+lan 3 1 and since p' — 1 is even, we
3 3

have gcd(ﬂ, 1 _1) =1 and so % . q,:l D

—l=q3— 1 SO that q . Hence

in th1s case, C,,1,(H) =
Suppose 257 1 n. We claim

3 -1 1
Con(H)= {{k,q3k} €ols ‘ k is a multiple of (q g+ }

P+ -n )

3
Letk = % - m for some m € Z. Because ¢ | 3n and 287 { n we have 2¢ | 3n — ¢. Since

(PP + D(p' — 1) is a divisor of (p' + 1)(p' — 1) = p* — 1 we then get (p% + 1)(p' — 1) |
p~t — 1. Thus (p*" ' — Dk = ﬁﬁ(ﬁ —1(g+1)-m=0mod (g°> — 1)(g +1). So
(p' — ¢k =0mod (¢° — 1)(g + 1) and {k, gk} € C,1,(H).

Conversely, suppose {k, q3k} € CQ14(H) Then (p' — q3)k 0 mod (q — 1)(q + 1) Hence

(p' — Dk = Omodq —land (p' +

({;:1 | k. Slnce | g> — 1 and ‘{52_1 | ¢> + 1 and since ‘11)1 } is odd by Lemma 3 3 we have
gcd(q, Is [{;;11) = 1. Therefore % | k, proving the claim. So by the definition of o /4

we get |Cor, (H)| = p* (p' — 1)/2.
So we get in both cases |C;(H)| = |Cp 1, (H)| + |Cy1,(H)| = (P -DP—-1. O

Now, we deal with the regular semisimple irreducible characters of G.

Proposition 4.2. Let t | 3n, I :=gIo0Uglz U gl UGl Uglz Uglsn UGl and H = (o)
a subgroup of O. Then

(a) |C1(H)| is equal to the number of those regular semisimple conjugacy classes of G which
are stabilized by o'.
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(b) Ift{n (respectively t | n), then |C;(H)| is equal to the number of regular semisimple conju-
gacy classes of 3 D4(p'/3) (respectively G2 (p")).
(©) |C1(H)| = p" - p¥ — p' — p® +2 with § as in Lemma 3.2.

Proof. The set / parameterizes the regular semisimple irreducible characters of G. We fix some
notation. Let F, be a finite field with g elements, F an algebraic closure of F, and G a simple
simply connected algebraic group of Dynkin type D4 defined over F. In the same way as in [11,
Section 1], we choose a graph automorphism y : G — G of order 3 arising from the symmetry
of the D4 Dynkin diagram and a field automorphism & : G — G obtained from the map F — F,
x> xP. Setting F:=a&" oy =y oa" we get G :3D4(q) =GF={geG|F(g) =g} Since
the restriction &|g : G — G of & to G generates Out(G) we can assume &|g = «.

For L € {G, G}, let Sreg (L) be the set of all regular semisimple conjugacy classes of L. If p
is an endomorphism of L, then let Seg (L) :={C € Sreg(L) | C? = C} be the set of p-stable
regular semisimple conjugacy classes of L. Finally, let Irr’S_(G) be the set of regular semisimple
irreducible characters of G.

By Corollary 3.10 of Springer—Steinberg [4, p. 197], the map C — C NG is a bijection from
Sreg(G)F onto Sree(G) and this bijection induces a bijection between the set of regular semisim-
ple conjugacy classes of G fixed by «’ and the set of F-stable regular semisimple conjugacy
classes of G fixed by &' . It follows that, since &' raises every element of a maximally split torus
of G to its p’th power, the automorphism o/ maps each regular semisimple conjugacy class (g)g
of G to the class (gpl)G. In other words, o acts on the regular semisimple conjugacy classes of
G like the p’th power map (this does not mean, that &’ maps every regular semisimple element
of G toits p’th power).

(a) Since G = 3D4(q) is selfdual (in the sense of [6, Section 4.4, p. 120]), the number
|Sreg(G)“‘t| of fixed points of &' on Sy (G) is equal to the number of fixed points of o’ on

reg(G) By definition, the latter equals |C7(H)]|.

(b) In this part of the proof, we imitate an argument which is used in the proof of Lemma 4.1
in [3]. As we have seen at the beginning of this proof, there is a bijection from the set of regular
semisimple conjugacy classes of G fixed by « onto Sreg(6)<F @) the set of fixed points of
Sreg(a) under the action of the group (F,&’). So by (a), we have |C;(H)| = |8reg(G)"‘7| =
|Sreg (G) ).

reg

Case 1. Suppose ¢ { n, then (F,a') = (@" o y,&@') = (@3 o y,a@') = (@3 o y). Thus

IC1(H)| = |Sreg(G)F Y | = |S1e(GT7°7)|. Since G& ¥ =3 Dy(p'/3), we get |C;(H)| =
|Sree G Da(p'/3))], proving (b) in this case.

Case 2. Suppose 7 | n. By the character table of G,(p’) in the CHEVIE library, the number of
regular semisimple conjugacy classes of Go(p') is p*' — 2p’ + 2. So we have to show, that the
number |C; (H)| of fixed points of o on I = I (g) is equal to p* — 2p’ 4+ 2. As a first step, we
reduce to the case r = n. By assumption ¢ | n, so (F,a') = (@" oy, &'y = (y,a') = (@ oy, a&’).
Thus |C; (H)| = |Sreg(G) 7| = [Steg (G)T'* NSpeg (G)¥' | = [Sreg (C Da(p"))® |. From part (a),
we know |Sreg(3D4(p’))°"| =|Cypry(H)| and thus |C;(H)| = |Cypry(H)|,i.e. |C;(H)| is equal
to the number of fixed points of &’ on I (p"). Hence, in the following, we can and do assume that
t=n.
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So we have to show that the number of fixed points of @” on I(p") =1(g) =1 is equal to
p —2p" +2=¢g% — 2q + 2. By part (a), we know that the number |C;(H)| of fixed points of
" on I is equal to the number of regular semisimple conjugacy classes of G stabilized by «”.
The regular semisimple conjugacy classes of G are parameterized by the sets Jg, J3, J11, J12,
J13, J1a, Jis in Table A.2 in Appendix A via the representatives given in Table A.l in [16].
The action of «” on the regular semisimple conjugacy classes of G induces an action on the
set J :=Jg U Jg U Jj1 U Jpp U Ji3 U Jig U Jis (disjoint union). Since «” acts on the regular
semisimple conjugacy classes like the gth power map, we can see from the representatives in
Table A.1 in [16], that the action of &” on J is given by x*" = gx for all x € J and that each
of the sets J; (j =6,8,11,12,13, 14, 15) is invariant under this action. In particular, we have
|IC;(H)| = Zjejc |Cy; (H)| where Jg :=1{6,8, 11,12, 13, 14, 15}.

Now, we determine the numbers |C; (H)| of fixed points of «” on J; by a direct calculation
using the parameter sets in Table A.2.

Suppose J' = Jg. As we can see from Table A.2, each element of J' = Jg is an equivalence
class consisting of 12 vectors and we number these vectors according to their order in Table A.2,
i.e. the vector (i, j) gets the number 1, the vector (—i, —j) gets the number 2, (i,i — j) gets the
number 3, and so on. We will consider the following sets of fixed points:

Ur={{G, j),...) eCr(H) | qi=i, qj = j},
Us:={{G, j),...} e Cpr(H) | qi = =i, qj =—j},

Up:={{G, j),...} €Cr(H) | gi = —qboi + ¢3j, qj =—i +2j},

where the first congruence is always modulo ¢> — 1, the second always modulo ¢ — 1. Then
Cy(H) =}, Uy. We claim that Uy, = form =2,3, ..., 12.

Suppose {(i, j),...} e U3 UUjg. Thengj =i — j mod g — 1. Hence ¢ — 1 | i — 2, contra-
dicting the definition of Jg. Thus Uz = Uyp = ¥.

Suppose {(i, j),...} e UgUUj2. Thengj = —i +2j mod g — 1. Hence g — 1 | i — j, contra-
dicting the definition of Jg. Thus Ug = Uy, = @.

Suppose {(i, j), ...} € Us. Then we have (g +1)i = 0 mod g>—1land (g+1)j =0mod g —1.
By Lemma 3.2(v) and (vii), we have gcd(g + 1,¢g>—1) = ged(g+ 1,9 — 1) =2,50 2 =
0 mod ¢g> — 1 and 2j = 0 mod ¢ — 1. By definition of J’ = Jg, we have i 0 mod ¢ — 1
and j 2 0 mod g — 1. It follows that i = (¢°> — 1)/2mod ¢> — 1 and j = (g — 1)/2 mod g — 1.
Setting [ := (g — 1)/2, we get i = ¢3/ mod ¢> — 1 and j = mod ¢ — 1, contradicting the
definition of Jg. Thus U, = 0.

Suppose {(i, j),...} € Us. Then (g + 1)i=0mod g°> — 1 and i + (¢ — 1)j =0 mod ¢ — 1.
From Lemma 3.4(a) (with m| = ¢3 and my = ¢1), we get that there is [ € Z with i = ¢3l. So
(g + D@3l =0 mod ¢p3(¢ — 1) and ¢3/ =0 mod ¢ — 1. Hence (¢ + 1)/ =0 mod g — 1 and
¢3l =0mod g — 1. Thus 2/ =0 mod ¢ — 1 and 3/ =0 mod ¢ — 1. This implies =0 mod g — 1
and so i = 0 mod q3 — 1, contradicting the definition of Jg. Thus Us = .

Suppose {(i, j),...} € Us. Then (g — 1)i +¢3j =0mod ¢g> — 1 and (g +1)j =0mod g — 1.
From Lemma 3.4(a) we get that there is [ € Z with i = ¢3l. Thus, (¢ — D@3l + ¢3j =
0 mod ¢> — 1. Hence, (g — 1) + j =0 mod ¢ — 1, and so j =0 mod ¢ — 1, contradicting
the definition of Jg. Thus, Us = @.
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Suppose {(i, j),...} € Us. Then (g — 1)i + ¢3j =0 mod ¢> — 1 and —i + (g +2)j =
0 mod g — 1. From Lemma 3.4(a) we get that there is [ € Z withi = ¢3l. Thus (g — )3l +¢3j =
0 mod g3 — 1. Hence (g — 1)+ j =0 mod g — 1, and so j =0 mod ¢ — 1, contradicting the
definition of Jg. Thus Ug = 0.

Suppose {(i, j),...} € U7. Then (g 4+ 1)i —¢p3j =0mod ¢g°> — 1 and (g — 1)j =0 mod g — 1.
From Lemma 3.4(a) we get that there is [ € Z with i = ¢3l. Thus (g + 1)¢3l — ¢3j =
0 mod ¢ — 1. Hence (g + 1)/ — j =0 mod ¢ — 1, and so j = 2/ mod g — 1, contradicting
the definition of Jg. Thus U7 = @.

Suppose {(i, j), ...} € Us. Then g%i —¢3j =0mod g> — 1 and —i + (¢ +2)j =0mod g — 1.
From Lemma 3.4(a) we get that there is [ € Z with i = ¢3/. Thus g>¢3] — ¢3j =0 mod g — 1.
Hence g2l — j =0mod ¢ — 1, and so j =/ mod g — 1, contradicting the definition of Js. Thus
Ug =0.

Suppose {(i, j), ...} € U1. Then we have (g2 +2¢)i —¢3j =0mod g> —landi+(g—1)j =
0O mod g — 1. From Lemma 3.4(a) we get that there is [ € Z withi = ¢3/. So (q2 +29)p3l — 3 j =
0 mod ¢3(¢ — 1) and ¢3/ + (¢ — 1)j =0 mod ¢ — 1. Hence (q2+2q)l—j50modq—1
and ¢3/ =0 mod g — 1. Thus 3/ — j =0 mod ¢ — 1 and 3/ =0 mod ¢ — 1. This implies
Jj =0mod g — 1, contradicting the definition of Jg. Thus Uy = 4.

So only U] contributes to the fixed points, i.e. |Cy (H)| = |Uj|. Since gi =i mod g> —1and
gj = j mod g — 1 is equivalent with (g — 1)i = 0 mod ¢> — 1 which is equivalent to ¢3 | i, we get
|ICp(H)| = |{{(, j),...} € Jg | i isamultiple of ¢3}|. So we have to compute the number N of all
admissible parameter vectors (i, j) with ¢3 | i. By definition of Jg, a vector (i, j) € an,l X Lig—1
is admissible if and only if it does not satisfy any of the following conditions (i)—(vi):

(i) i=0mod ¢> —1,
(i) j=0modgqg — 1,
(iii) i = ¢3l mod g3 — 1 and j =1 mod ¢ — 1 for some [ € Z,
(iv) i = ¢3l mod g3 — 1 and j =2/ mod g — 1 for some [ € Z,
(v) i=jmodg —1,
(vi) i=2j mod g — 1.

It is straightforward to calculate the number of all vectors (i, j) € Zq3_ | X Zy—1 with ¢3 ti
satisfying one of the conditions (i), ..., (vi), then to calculate the number of vectors satisfying
two of the conditions (i), ..., (vi) and so on. From these numbers, using the include—exclude
formula, we get the number N’ of all admissible parameter vectors (i, j) with ¢3{i:

N,Z{q4—4q3+q2+6q—4 if g =1mod3,
q* —4q> +q*+ 64 if ¢ # 1 mod 3.

By Table A.2, the number N,  of all admissible parameter vectors is g* — 4¢> +2¢* — 2g + 15.
From this, we get the number N = N,y — N’ of all admissible parameter vectors (i, j) with ¢3 | i.
Dividing N by 12, the cardinality of the equivalence classes, we get:

g% —84+19

€] = %Z =g
1 @94 if g £ 1 mod 3.

if g =1 mod 3,
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Suppose J' = Ji5. Analogously to Jg, using Lemma 3.4(a) with m| = ¢¢ and mp = ¢, we
can show, that only the second parameter vector contributes to the fixed points, namely gi =
—imod ¢®+1and gj =—j mod g + 1 which is equivalent with (g 4+ 1)i =0 mod g3 + 1 which
is also equivalent with ¢¢ | i. So by computing admissible parameter vectors using the definition
of J' = Ji5 we get

q>—4q+7
[Crm]=1
@=D4=3 i g £ —1 mod 3.

if g = —1mod 3,

Suppose J' = Jg. Let

Uiy :={{i,—i.q%1, —¢’i} € Cp(H) | qi = +i},

Ugr = {{i, —i,q3i, —q3i} e Cy(H) | qi = :|:q3i},

where the congruences are mod (g3 —1)(g+1). Then C;(H) = U UU_{ UU>UU_5. We claim
that Uy = U_p = #. Suppose {i, —i, ¢°i, —q>i} € U;. Then (¢ — 1)i =0 mod (¢> — 1)(g + 1).
Hence ¢3(q + 1) | i. In particular, ¢ + 1 | i, contradicting the definition of Jg. So U; = 0.
Suppose {i, —i, q%i, —q3i} € U_1. Then (¢ + 1)i =0 mod (¢°> — 1)(g + 1). Hence ¢°> — 1|
i, contradicting the definition of Jg. So U_; = @. Suppose {i, —i, q’i, —q3i} € U_>. Then
gi = —¢%i mod (¢ — 1)(g + 1) and hence g(g*> + 1)i =0 mod (¢°> — 1)(¢g + 1). Since
q(@*+1) 1q(¢®+1)and (¢° — 1)(g +1) | ¢° — 1, we have ged(g(¢* + 1), (¢° — D)(g +1)) =2
and so 2i =0 mod (¢> — 1)(g + 1). Thus (¢> — 1)(¢ + 1)/2| i and in particular ¢ + 1 | i, con-
tradicting the definition of Jg. So U_» = ¢. Thus only U, contributes to the fixed points, namely
gi = ¢3i mod (g3 —1)(¢+1) whichis equivalent with g(g®>—1)i =0mod (g3 —1)(g+1). Since
ged(g(g? —1), (g3 — 1) (g +1)) = g% — 1, this is equivalent with (g% — 1)i =0 mod (¢> — 1)(¢ +
1), which is equivalent with ¢3 | i. So by the definition of J' = Jg we get |C;/(H)| = @.

Suppose J’ = J1;. Analogously to Jg, we can show that only the third parameter vector con-
tributes to the fixed points, namely ¢i = ¢>i mod (¢> + 1)(g — 1) which is equivalent with
(g> — )i =0 mod (¢ + 1)(¢ — 1), which is equivalent with ¢ | i. So by the definition of
J'=Jn we get |Ci(H)| = 452,

Suppose J' = Jio. As we can see from Table A.2 each element of J' = Jy; is an equivalence
class consisting of 24 vectors and we number these vectors according to their order in Table A.2,
i.e. the vector (i, j) gets the number 1, the vector ((2qg + 1)i — gqj, $>(2i — j)) gets the number 2,
and so on. Let

U= {{G. ...} eCr) | qi=i. qj = j}.
Ur:={{G.j)....} €Cp(H) | qi =g+ Di—gqj, qj =¢$(2i — j)},

U= {{G. )),...} €Cp(H) |qi=j—i, qj = j —2i},

where the congruences are always modulo ¢> 4+ ¢ + 1. Then, C;/(H) = U,2n4=1 Upn.
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Suppose {(i, j), ...} € U;. Then we have (g — 1)i = (g — 1)j =0 mod g2 + g + 1. We have

3 ifg=1mod 3,
d((g — 12, ¢* 1) =
ged(lg = 1% a" +q+1) {1 if ¢ 1 mod 3.
If ¢ = 1 mod 3, then Lemma 3.4(b) (withml:landm2=q2+q+1)impliesqz+3—q+1|iand

2
%|j,WhiChimpliCSjEOOI'jEiE—2qi or2i=jor2i=0=(1—g?)jmodqg?+q+

1, a contradiction to the definition of J' = Jy,. If g # 1 mod 3, then Lemma 3.4(b) (withm| =1
and ms> = g% + g + 1) implies j = 0 mod g2 + g + 1, contradicting the definition of J' = J;5.
Hence U; = {J. Analogously, using Lemma 3.4(b), it is straightforward to see that U,, = ¢ for all
m#5,7,11, 18.

Suppose {(i, j),...} € Us. Then gi =i — j and ¢j = ¢j mod g> + ¢ + 1, which is equivalent
with j = (1 — ¢)i mod g + g + 1. Suppose {(i, j),...} € U7. Then gi = (2q + 1)i — ¢j and
qj =2(q + )i — qj mod g + q + 1, which is equivalent with (g + 1)i = ¢j mod g% + ¢ + 1.
This again is equivalent with j = —gi mod g% + ¢ + 1. Suppose {(i, j), ...} € Uj;. Then gi =i
and ¢j = qj — 2qi mod g% + ¢ + 1, which is equivalent with i = 0 mod g2 + g + 1. Suppose
{(, j),...} €Uig. Then gi = —i + (¢ +1)j and ¢j = —2i + (¢ +2)j mod g + g + 1, which is
equivalent with i = j mod g% + ¢ + 1. So by the definition of J' = Ji, we get

4(q+22)4(q71)
Cpr(H)| =
| | % if ¢ # 1 mod 3.

if g =1mod3,

Suppose J' = Ji3. As we can see from Table A.2, each element of J is an equivalence class
consisting of 24 vectors which we number from 1 to 24 according to their order in Table A.2. We
define Uy, ..., Uyq analogously to the case J' = Jy3. Analogously to the case J' = Ji2, using
Lemma 3.4(b), it is straightforward to see that U, = ¢ for all m #£ 6, 17, 19, 23.

Suppose {(i, j),...} € Us. Thengi =i+ (g — 1)j and ¢j =2i + (g —2)j mod g> —q + 1,
which is equivalent with i = j mod ¢> — ¢ + 1. Suppose {(i, j),...} € Uj7. Then qi = j — i
and ¢j = ¢j mod g% — g + 1, which is equivalent with j = (¢ + 1)i mod g% — g + 1. Suppose
{(i, j),...} € Upg. Then gi = (2g — 1)i — gj and gj =2(g — 1)i — gj mod g> — g + 1, which
is equivalent with j = ¢i mod ¢> — g + 1. Suppose {(i, j),...} € U»3. Then gi = —i and gj =
qj —2qi mod g> — g + 1, which is equivalent with i =0 mod ¢g> — ¢ + 1. So by the definition
of J' = Ji3 we get

49=2@+tD  ip.— _

|Cj/( )|: 51 if g=—1mod 3,
d9(¢=1) if g % —1 mod 3
24 q .

Suppose J' = Ji4. Analogously to Jg, we can define Uy and Uy, and show Uy = Uiy =@
(using the fact that g — 1, g + 1, g (¢ — 1), g(g> + 1) are relatively prime to g* — g% + 1). Hence
|ICy(H)[=0.

So finally, we have

|Ci(H)| =|Cy(H)| =) |Csi(H)|=¢"—2q +2=p* —2p' +2,
Jjelg

where Jg := (6,8, 11,12, 13, 14, 15}.
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(c) From the character tables of > D4(p'/?) and G»(p') in the CHEVIE library we get that if
t{n (respectively ¢ | ), then the number of regular semisimple conjugacy classes of D4 (p'/?)
(respectively G (p')) is equal to p*/3 — p' — p'/3 42 (respectively p* —2p' +2). O

Remark. The field automorphism «” and the graph automorphism y are both outer automor-
phisms of order 3 of 3Dy4(q). Hence, the number of regular semisimple classes of 3D4(g)
fixed by ” is equal to the number of regular semisimple classes of *Dy(q) fixed by y. So
when counting such conjugacy classes we may replace o” by y. By [14, p. 104], the sub-
group 3Dy (q)? of fixed points of >D4(g) under the graph automorphism y is isomorphic with
G2(q). So after the reduction to t = n the natural way to prove part (b) of Proposition 4.2 in
case ¢ | n would be to show that every regular semisimple class of 3D4(g) fixed by y intersects
3D4(q)” = G1(q) in exactly one regular semisimple conjugacy class and that every regular semi-
simple class of 3D4(g)? occurs in this way. We have not been able to find such a proof using
only general arguments on endomorphisms of groups of Lie type. In the following, we sketch
a proof of Proposition 4.2, part (b), in case ¢ | n, which uses specific properties of the structure
of 3D4(q).

We continue to use the notation of the proof of Proposition 4.2. Suppose ¢ | n. Then
(F,a') = (@"0y,@) = (y,&@) = (@ oy, &"). Thus |C1 (H)] = [Seg(G) )] = [Sreg (G)F 7 N
Sreg(G)¥' | = Sreg CDa(p)” |. It suffices to show that [Sreg (* Da(p) | = [Sreg G Da(p")? | =
|Sreg CD4(p")Y)] = |Sree(G2(p"))] and so we may assume that £ = n.

Let G=G x (y) and s € S;e(G) such that T = Cg(s) is a maximal torus. Since o stabi-
lizes the conjugate G-class (s)g, it follows that [Cz(s) : T] =3 and so Cg(s) < Ng(T). But
Ng(T)=Ng(T) x Z3, so

Ce(s)=T xZs.

By [14, 9-1(3)] G contains exactly two conjugacy classes C| and C; of elements of order 3
such that C; € G. As shown in the proof of [14, 9-1(3)] we may suppose y € Ci and gy € C3
for some g € M := G” ~ Gy(q) with |g| = 3. In addition, G8¥ = PGL;'(q) or [qS].SLz(q)
according as ¢ = nl mod 3 or 3 | g. In the later case, moreover G87 = Cp(g) < M. Replac-
ing s by its G-conjugate, we may suppose y € Cz(s) or gy € Cg(s). We claim that we may
suppose

y € Cg(s) orequivalently se M.

Suppose y ¢ Cg(s), so that g =5l mod 3 and s € K := G87 ~ PGLg’(q). Since |g| = 3, it
follows by [17, Appendix B], that Cj(g) ~ SL1(¢) or GL}(g). But g € K and Cp(g) < K, so
Cum(g) = GL3(9).

Since T = C¢(s) is a maximal torus of G, it follows that Cg (s) < T is a maximal torus of K,
so that Cg (s) ~ Zqz,l vZLg—1 X Zg— Or Zq2+nq+1' In the first two cases, Cg (s) is conjugate in
K to a subgroup of Cps(g), so that we may suppose s € Cpr(g) < M.

Suppose Cg(s) = Zy24pg41> 80 that T > Zpo poiy X L2y p,4q- Let x be an element
of M of order 3 such that L, := Cp(x) = SL](¢). By [21, Table II], L, < Cg(x) =
Z?zﬂqﬂ o SLY(q).Zs. If Z:= Z(Cg(x)), then Z = Zqzﬂqﬂ and Z N Ly = Z(Ly) = Z3. Let
Z' > Ly 4 pg+1 be a maximal torus of L, so that C6(ZZ") = Zyp py iy X L2y g1 - Replacing
Cs(ZZ") by a G-conjugate, we may suppose T = Cg(ZZ').
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As shown in the proof of (2.11) in [2],
Nu(Z')=Nyyw,)(Z')=(Z',p,0) and Nygzz)(T)=(T,p,0)

where p € Ny (Ly)\ L, with |[p| =2 and o € L, with |o| =3, and po =o0p. Since Cg(Ly) =Z
and since y € Cg(Ly), it follows that y normalizes Z and so normalizes T = C(ZZ'). But gy
also normalizes T, so g € Ng(T)\ T.

Now Ng(T)/T =~ SL,(3) has a cyclic Sylow 3-subgroup, we may suppose g = o, SO
g centralizes p. Since p € M, it follows that gy centralizes p and p € G8¥ = K. In par-
ticular, p normalizes T8” = Ck(s) and 2 | [Nk (Ck(s))/Ck (s)|. This is impossible, since
Nk (Ck (9))/Ck () ~ Z3.

Thus the claim holds and if y stabilizes a G-class (s)g, then

MO (s)G # 0.

Ifr,' € M N (s)g, then Cy(z) and Cyy(¢) are two maximal tori of M. Since C(¢) and C(t')
are G-conjugate, it follows that Cys(¢) and Cyy(¢') are M-conjugate and so (¢)y = (t')ps. Thus
|Sreg CD4(p) | = |Sreg(G2(P)).

Proposition 4.3. Let t | 3n, H = (¢!) < O and let (I,J) € {(gls, pL3), (817, p12),

(chaUgln, ohaUgls), (cliiYUghs, pl11Upla), (8112, 9l6), (8113, 9117), (8114, 0 118),
(8115, 0119) (8116, 0120)}. Then |Ci(H)| = |Cy(H)|.

Proof. By construction, pxg(k) = p xﬁ(k)P is induced from the «-stable Borel subgroup B
for all k € plg = pl3 (see p. 790 in [16]) and induction of characters induces a bijection from
{Bx6(k) | k € ple} onto {pxg(k) | k € pIg} mapping pxe(k) to pxg(k). We have pxg(k*) =
Pxs()% = (Bx6())* = (xc(k)*)F = (5x6(k*))F. So the above-mentioned bijection is an
isomorphism of H-sets. Hence, glg > plg as H-sets and |Cp 1, (H)| = |C, (H)|. Analogously,
|C3114(H)| = |CQ118(H)|» |C3115(H)| = |CQ119(H)| and |C3116(H)| = |CQ120(H)| (see the con-
struction of g x ;5(k), 0 X 19(k) and ¢ x,,(k) on p. 795 in [16]).

Let (1, J) be one of the remaining pairs. Then / = J as sets. Using the character values on
the classes listed in the last column of Table A.5, we know that the action of @ on 7, J is given
by x¢ = px forall x € I, J. Hence [ >~ J as H-sets. O

5. Uno’s invariant conjecture for 3D4(q), ¢ odd

In this section, we prove Uno’s invariant conjecture for G = 3D4(q) in the defining charac-
teristic p, where ¢ = p" with an odd prime p. As in the previous section, let O = Out(G) = (&),
where « is a field automorphism of order 3n. We fix a Borel subgroup B and maximal parabolic
subgroups P and Q of G containing B as in [16]. In particular, we may assume that « stabilizes
B, P and Q.

By the remarks on p. 152 in [19], G has only two p-blocks, the principal block By and
one defect-0-block (corresponding to the Steinberg character). Hence we have to verify Uno’s
conjecture only for the principal block By.

According to the Borel-Tits theorem [5], the normalizers of radical p-subgroups are parabolic
subgroups. The radical p-chains of G (up to G-conjugacy) are given in Table 1.
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Table 1

Radical p-chains of G

c Ng(C) N4 (©)
(& {1} G A

Cy {1} < 0p(P) P P x {a)
C3 {1} < Op(P) < Op(B) B B x (a)
Cy {1} < 0p(0) 0 0 X (a)
Cs {1} < 0p(Q) < 0p(B) B B x (o)
Cg {1} < Op(B) B B x (a)

Since Cs and C¢ have the same normalizers Ng(Cs) = NG (Cg) and N4 (Cs5) = N4(Cpg), it
follows that

k(NG (Cs), By, d, u,[r]) =k(NG(Cs), Bo,d, u,[r])

for all d € N and u | 3n. Thus the contribution of Cs and Cg in the alternating sum of Uno’s
invariant conjecture is zero. So Uno’s invariant conjecture for G is equivalent to

k(G, Bo,d,u,[r]) +k(B, Bo.d,u,[r]) =k(P, Bo,d,u,[r]) + k(Q, Bo.d,u,[r]) (3
foralld eN,u|3nand 1 <r<(p+1)/2.

Theorem 5.1. Let p > 2 be a prime and Ba p-block of G =3Dy(p") of positive defect. Then B
satisfies Uno’s invariant conjecture.

Proof. By the proceeding remarks, we can assume B = Bop. Suppose u | 3n and set ¢ := 37"
and H := (a'). Let S € {G, B, P, Q}. By the character tables in the appendix of [16], we have
k(S, Bo,d,u,[r]) =0 when d ¢ {5n,8n,9n, 11n, 12n} and [r] ¢ {[1], [2]}. Moreover, if [r] =
[2], then we may suppose d = 8n or 9n.

(i) If d = 5n, then we have k(G, Bo,d,u,[1]) = |C;;,(H)| = k(P, By, d,u,[1]) =
|ICpre(H)| =1, and k(B, By, d, u,[1]) =k(Q, By, d, u,[1]) = 0 by Tables A.3 and A.8. Thus
(3) holds in this case.

(ii) If d = 8n, then we have k(G, By, d,u,[1]) = |C;1,(H)| = k(Q, Bo,d,u,[1]) =
|Cyo1o(H)| = 1. By Tables A4 and A.8, we have k(B, Bo,d,u,[1]) = |Cy1;(H)| = p—1
and k(P, Bo,d,u,[1]) = Zje{15,21,22}|CP1j(H)| = p' — 1. In addition, we have k(B, By,
d,u,[2]) = ZJ»EJB |Cyr;(H)| = 4 with Jp := {18,19,20,21} and k(P, Bo,d,u,[2]) =
Zjer |Cpr;(H)| =4 with Jp := {17, 18, 19, 20}. Thus (3) holds in this case.

(iii) If d = 9n and [r] = [1], then Table A.5 and Proposition 4.3 imply, that (3) is equivalent
to |Ciry, (H)| = [C,15(H)|, which is true by Table A.8. If d =9n and [r] = [2], then Table A.5
and Proposition 4.3 imply, that (3) is equivalent to

D |Cor, ()| + Y |Cory ()| = D [Cor, ()| + Y |Cpr, (H))|

jela jeJp jelp Jj€Jg

with the index sets Jg := {3,4,5,6}, Jp :={8,9,10,11}, Jp :={9,10,12,13} and Jgp :=
{10, 11,12, 13}. By Table A.8, the sums on both sides of the above equation are equal. Thus
(3) also holds in this case.
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(iv) If d = 11n, then Table A.6 and Proposition 4.3 imply, that (3) is equivalent to

D | Cor; ()| + | Cpis(H)| = |Cp iy (H)| + |Cop iy (HD | + |Cyp 1 ()|
Jj€lc

with Jg := {2, 10, 16, 19, 25, 28}. By Table A.8, we have

> | Cor; (| + |Cpis(H)| = p' + p* = 1= |Coy ()| + | C oy (H)| + | C o1y (D)
Jj€lg

with § as in Lemma 3.2. Thus (3) also holds in this case.
(v) If d = 12n, then Table A.7 implies, that (3) is equivalent to

Do |Cor, ()| + Y |Cory ()| = D |Cor, ()| + Y |Cpr; ()|

jeJg JjeJp jeJp Jj€Jo

with Jg :={1,9, 13, 15, 18, 20, 21, 23, 24,27, 29, 30, 31, 32, 33}, J :={1, 2, 3,4}, Jp :={1, 3,
4,5,6} and Jg :={1,3,4,5, 6}. By Tables A.7 and A.8, we have

k(G, Bo,d,u,[11) + k(B, By, d, u,[1]) = Z |Cor, ()| + Z |Cyr, (H)| =2p' p”
jelc JeJB

and

k(P. Bo.d,u,[11) + k(Q. Bo.d,u.[11) = > |Cpr; ()| + > |Cpr,(H)| =2p' p*
jeJp Jj€Jo

with § as in Lemma 3.2. Thus (3) also holds in this case. O
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Appendix A
Table A.1
Parameter sets for the irreducible characters of G, B, P, Q
Parameter set Characters Parameters Equivalence- Number of
relation characters
clhi=:- X1+ X12 1
=cln
—3
cliz3=cha x13(k), k=0,...,q -2 {k=—k} =
—1
x14 (k) k#0, 4=
2
chs=che | s, e, | k=0,..q>+q tk=—k) 5t
=gl x17(k) k#0
3 _ ®—¢*-q-3
clis=clo x18(k), k=0,...,q4° =2 {k=—k} 3
x19(k) q— 11k,
31
k#£0, ‘iT
4_4.310,2
G 1o x20(k, D) see the remarks in Section 4 M
—1
6l =cln x21 k), k=0,....q {k=—k} =
1
x22(k) k#0,
. . g4 —2g+1
G123 x23(k) see the remarks in Section 4 —
2_
G124 =Glos x24(k), x25(k), k=0.....q> —q {k=—k} 14
=gl x26 (k) k#0
3_,2
617 =G s X7 (k). k=0.....4% fk=—k) ogte-l
x28(k) q+11k,
3
q°+1
k#0, 75—
. . g*=243+1
G129 x29(k) see the remarks in Section 4 —
4.0,3_,2
G130 x30(k, 1) see the remarks in Section 4 W
4_r3_,2
G131 x31(k, D) see the remarks in Section 4 %
4_2
G132 x32(k) see the remarks in Section 4 g Zq
4_5,319,2
G133 x33(k, 1) see the remarks in Section 4 %
511 pxi(k.0) k=0,....q° =2 @ =D —1)
[=0,...,q—-2
1263 Bx2(k) k=0,...,9 -2 q—1
513 BX3 k) k=0.....q° =2 ¢ —1
Bl4 BX4 1
815 B x5k k=0,...,9 -2 q—1
816 BX6k) k=1,....q+1 q+1
Bl7 Bx7(k) k=0,...,q -2 g1
gl =" BX8:--+» BX11 1
=gl
511> Bx12(k) k=0,....4°=2 ¢ —1
8113 Bx13(k) k=0,....q4°+q a*+q+1
Bl14=B1i5 Bx14k), px15(k) | k=0,1 2
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Table A.1 (continued)

101

IParameter set Characters Parameters Equivalence- Number of
relation characters
116 BX16k) k=1,...,q—1 g—1
117 Bx17(k) k=0,...,q°-2 PRI
Blig="-- BX185---» BX21 1
=Bl
pli=ph px1(k), pxa(k) k=0,....q =2 q-1
3
Pl px3k.D k=0,...,q° =2 (k) =21
=0,...,g—2k#0 = (—k, k+1)}
3
122 pxak) k=0,..., k=q¢°k) @
a*—a*+q-2
@+ 11k
pls pxs5k) k=0,...,q° -2 ¢ -1
pls PX6 1
124 px7(k) k=0,...,q—2 g1
pls pxg(k) k=1,...,g+1 g+1
plo=plio PX9, PX10 1
2
Pl px11(k) k=0.....q>+q {k = —k} -
k#0
rlio=pl3 PX12: PX13 1
2 7*=q
P14 px14(k) k=0,....4> —q k= —k) 7
k#£0
plis=--- PX15:--+» PX20 1
=prlp
3_
12431 px21(k) k=0,...,¢4° =2 (k= —k} q—23
31
k "IT
3_
Pl px22(k) N AS {k = —k} 1
>+
k#0, 3
oli=9h 0x1K), o x5 (k) k=0,...,¢3 -2 PR
3
ol ox3k, D) k=0,...,¢> -2 (k. 1) GRS
1=0,....,4—-21#0 = (k+¢3l, =D}
3_
014 0x4k) k=0,....4*+¢°—q -2 (k=4%%k) 2@ =1
q+ 1tk
ols 0 x5(k) k=0,....,q -2 g—1
ole="- 0Xe -2 0X13 1
=9ol13
=3
ol 0X140) k=0,....,9 -2 (k= —k} =
k0, 5
1 -1
olis 050k k=0,....q:k#0, 93 | {k=—k} a1
ohe 0X16®k) k=0,....¢° -2 B -
oli7 0X17k) k=0.....q>+¢ +q+1
olis=ol19 0x18). 0x19k) | k=0,1 2
0120 0 X20() k=1,....,q—1 g—1

For the parameter sets g I, g 123, g 129, - - -

, G I33 see the remarks at the beginning of Section 4.
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Table A.2
Parameter sets for the regular semisimple conjugacy classes of G
Param. Classes Parameters Equivalence relation Number of
set classes
Jo c6,0(i. J) i=0,....q° -2 (G ) 5t —44°
j=0.....q=2 =(=i.—)) +2¢° —2
i,j#0 =@i—J) +15)
i #¢3l or =(—i,—i+))
J#L =(—3j,—J)
1=0,...,q—-2 =@{—¢3j,i—2j)
i #¢3lor =(—i+¢3j.))
J#2, =(—i+¢3j,—i+2))
[=0,....q-2 = (q¢2i —¢3/.i —2J)
g—1ti—j, = (q¢2i —¢3j.i —J)
g—11i=2j =(—qp2i+¢3j,—i +J)
= (—q¢2i+¢3j,—i +2))}
g e8.0(0) i=0,..., i=—i=q3% =—q¢%) q“i#
a*+q’—q-2
qg+1,4° - 14,
i e11.00) i=0..... (i =—i = g% = —¢%) o'+
0t -’ +q-2
q—1.¢>+1]i,
Ji2 c12,00. J) i=0.....4° +¢q {G.)) 2" +24°
J=0.....4* +¢q =((2q + Di —4j. $22i = j)) ~q%~29)
J#0,-2qi =(qj — 29+ i, 2q + 1) j —2¢7i)

2i#j,(1—g%j

=0 —¢2j,—2qi — )
=0—Jj.4q))
=(—¢2j,20—(q+2)))
=(2q + i —qj,2¢2i — qJ)
=(0,2i —¢2))

=@ —Jj.¢1J—2qD)
=(h2j—i,¢2))

= (i,qj —2qi)
=(i—j,2i—j)

= (—i,—J)

=(qj — 2q + Di, ¢2(j —2i))
=(2q+Di—qj,2¢2i —(2q+ 1))
=(¢2) — i, 291+ ))

=0 —i,—q))
=(¢2j—i,(q+2)j—2i)
=(qj — 2g + i, qj — 2¢2i)
= (=i, ¢pj —2i)

= —i,2qi —¢1))

=@ —¢2j,—P2J)
=(—i,2qi —qJ)

= —i,j—20)}
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Table A.2 (continued)
Param. Classes Parameters Equivalence relation Number of
set classes
13 c13,00. J) i=0,....4°—q ) (gt =243
j=0.....4> —q =(qj — (2 — Di.¢1(j —20)) —q%+29)
J#0,2qi =(Q2g—Di—qj,2¢1i — (29— 1))
2i#j, (1=q?)j =(i+¢1).29i =)
=(0-Jj.—aqj)
=@{+¢1.2i+@—2))
=(qj — 2q — Di,qj —2¢1i)
=(,2i +¢1])
=(0—Jj,2qi —¢2))
=(—i—¢1j,—¢1))
= (i,2qi — qj)
=(0—-Jj2i—-))
=(=i,—))
=(Q2q—Di—qj,$12i —j)
=(qj—(2q—Di,(2q —1)j —2¢1i)
=(-i—¢1j,J —2q0)
=0 —i4q))
=(-i—¢1j,-2i—(q—2D))
=(2g —Di—qj,2¢1i —q))
= (=i, =2i = ¢1))
= —i,¢2) —2q0)
=(+9¢1/,91J)
= (—i,qj —2qi)
=(—i,j—20)
; ol P 4_,2 =i dBi= a3 ¢~
14 c14,000) i=0,....4" —¢q li=-i=q’i=-q} 7
i#0
Jis c15,00. ) i=0,....q° (G, j) = (—i.—)) 5g* 243
i=0,....q =@.i—j) +2¢% —4q
i,j#0 =(=i,—i+)) +3)
i # ¢el or =(—96j,—J)
J#L =(—¢6j,i —2))
1=0,....q =(-i+¢6j.J)
i # ¢el or =(—i+¢ej,—i +2))
J#2l, =(qd1i —deJ. i —2))
1=0,....q =(g¢1i —d6j.i — J)
g+1ti—j, =(—qd1i +dej. —i+))
g+ 11i-2j = (=q¢1i +d6Jj, —i +2))}
For the definition of the ¢;’s see the beginning of Section 3.
Table A.3
The irreducible characters of the chain normalizers of defect 5n
Group Character Degree Parameter Number Class
G X7 a’¢12 (e2i 1
P PX16 qa’¢1 rlis 1
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Table A.4
The irreducible characters of the chain normalizers of defect 8n
Group Character Degree Parameter Number Class
G X12 q*$3¢6612 Gli2 1
B px17(k) ‘1 sl ¢ -1 c11,0()
BX18 %1144)124)3 slig 1 C1,11,€2,0
BX19 %q4¢12¢3 slio 1 C1,11,€2,0
BX20 %q4¢12¢3 B0 1 C1,11-€2,0
BX21 %q4¢%¢3 B2 1 1,115 €2,0
P PX15 q*¢1 rlis 1
PX17 %q4¢1¢2¢6 rl7 1 c1,4
PX18 %q4¢1¢2¢6 rlig 1 c1,4
PX19 %444)124)3 rly 1 c1,4
PX20 %q4¢12¢3 pho 1 1,4
px21 (k) a*¢1¢206 phi 1@*-3) cg,0(i)
Px22(k) ‘o3 pln 1@*-1n c11,00)
o] 0Xg ‘o143 0lo 1
Table A.5
The irreducible characters of the chain normalizers of defect 9n
Group Character Degree Parameter Number Class
G x3 130301 le2k] 1
x4 393302 Gla 1
X5 Jadele3 Gls 1
X6 YR Gle 1
xit P p3gedin Gl 1
x14 (k) Pord3dedin Gl ICE) c11,0(0)
x17(k) q3¢2¢§¢12 clir %q(q +1 ¢5,0(0)
x22(k) P> d163¢6012 6o 3 —=1 c10,0()
x26(k) 193012 G e fag—1) c11,0(0)
B Bx7(K) a*¢143 8 q—1 e8,0()
BX8 %4342%4)3 Blg 1 €1,8,€4,0
BX9 %q3¢%¢3 Blo 1 €1,8,€4,0
BX10 %q3¢%¢3 slo 1 €1,8,€4,0
BX11 %q3¢%¢3 Bl 1 C1,8:€4,0
Bx12(k) ¢ l2 -1 10,0(1)
Bx13(k) o7 T 9 +q+1 e5,0()
BXx14(k) %q3¢]2¢3 Bl14 2 €1,105 €3,0
Bx15k) 130703 Blis 2 €1,105 €3,0
BX16(K) oo Bli6 q—1 €1,6:€1,12: 1,16
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Table A.5 (continued)
Group Character Degree Parameter Number Class
P px2(k) 7 ph q-1 ¢5,0()
PX9 T30 dn6 rly 1 €3,0
PX10 %q3¢12¢2¢6 rho 1 €3,0
P11 (k) ¢ dr¢6 pl 1@+ c6,0(i)
PX12 %q3¢f¢2¢3 rln 1 €3,0
PX13 %q3¢%¢2¢3 rl3 1 €3,0
Px1a®) 791203 pha ) c10,0(0)
0 0Xg o3 ols 1
0X10 %q3¢1¢2¢3 oho 1 €3,0,€3,3
0X11 %q3¢1¢2¢3 ol 1 €3,0,€3,3
0X12 %q3¢12¢3 ol 1 €3,0,€3,3
0X13 1303 ¢s o3 1 €3,0-€3,3
0x14k) 16263 oli4 Tq-3) c5,0(0)
015k o3 ohis TICE) c10,0())
0X16®) o1 olie -1 cg,0(1)
0Xx17k) R oh7 > +q+1 ¢6,0(i)
0x3k) 13676203 ols 2 €1,8:€2,0
0X19(k) 13636203 oho 2 €1,8,€2,0
0 X0 q3¢]2¢2¢3 o0ho q—1 €1,5:¢1,9:€1,12
Table A.6
The irreducible characters of the chain normalizers of defect 11n
Group Character Degree Parameter Number Class
G X2 qé12 ¢ 1
X10 qP3P6912 Glo 1
x16(k) q¢%¢§¢12 Glie %(q + g c5,0(1)
x19(k) qb20302012 6119 3@ —q>—q-3) c8,0(0)
x25 (k) a6 93612 6 s Ta@ -1 c10,0(0)
x28 (k) q0163¢6612 G 3@ —D@>+1) c11,00)
B Bx5(k) 9193 Bls q—1 c7,0()
BX6(Kk) q6793 8ls q+1 c1,17(d)
P P x7(k) 91920396 prl q—1 ¢5.0(0)
pxs(k) a$1$20396 pls q+1 c1,9@)
0 0%, k) q oh a1 c8,0())
0X7 993243 ol 1
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Table A.7

The irreducible characters of the chain normalizers of defect 12n

Group Character Degree Parameter Number Class

G X1 1 cli 1
X9 $396912 Glo 1
x13(k) b20306612 63 1q-3) cs5,0(0)
x15 (k) 2212 chis fag+1) cg,0(i)
x18(k) b2302 912 chs 1@ —q*—q-3) c8,0()
x20(k. 1) 30302912 6o 5@-3*—q*—q-5) c6,0(i. j)
x21 (k) P1396012 G121 %(4 -1 c8,0(0)
x23(k) P1926302¢12 63 1@-D@+¢*+q-1 cg,0(i)
x24(k) b103612 Gl 39(g —1) €10,0(0)
x27(k) P19306¢12 Gl g -1 +4¢% c11,0()
x29 (k) P19203 P12 G129 %(q D@ —g*—q-1 c11,0()
x30(k. 1) D2H302 012 610 #a(q+2)(q+1)(g—1) c12,00. J)
x31(k. 1) PIH363¢12 613 %a(q+ (g — (g —2) €13,00. )
x32(k) 2332 ¢l 1%@+ D@ -1 c14,0()
x33(k, 1) BT B3P6012 613 5@ - —qg*+q-3) c15,00, )

B Bx1(k,1) 1 sl @ -Dg-1 c12,00, )
Bx2(k) $163 J:26) q—1 c6,0()
Bx3(k) 1 Bl3 -1 c9,0(0)
BX4 ¢12¢3 Bls 1

P px1k) 1 pl qg—1 cs5,0()
px3(k.1) b6 Pl I -1 -2 9,00 J)
px4(k) o193 ply %q3(q -1 c12,0(0)
pxs(k) P1¢206 pls a*—1 c7,0(0)
PX6 P2 2306 pls 1

0 ox, (k) 1 ol -1 cg,0(0)
0x3k.D b ol3 1@ -Dq-2 9,00, j)
0x4K) ¢ ol Ta@® -1 c11,00)
0x5(k) D123 ols q—1 c4,0()
0Xg ¢12¢2¢3 ole 1
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Table A.8

Number of fixed points of H = (a) on parameter sets of the irreducible characters

107

)Parameter set [

Number of fixed points |C;(H)|

ift | n ift4n
I Uglo 2 2
ch UGl 2 2
G UGgliUGIsUgls 4 4
tedéi 1 1
G111 1 1
G112 1 1
6113 Ughi ) PP -2
GlisUGlisUghaUghy p-2 p=2
6116 UGI19UglsUgls p'=2 p-2
G120 UGh3VUglhyUgloVUcliiUglnUcglss p* —2p' +2 pH3—pt—p'P 42
Bl (' —1? (' =D -1
sl ph—1 pR—1
B3 p-1 pr-1
A 1 1
15 p—1 pR—1
BlsUploUplioU gl 4 4
BI17 p-1 pr-1
BligUpligUplnUph 4 4
pli pr—1 PR -1
pl3Upl, (p' =12 (' =npp'B -1
pls pr-1 pr-1
pls 1 1
pl7 pr—1 pA—1
ploUpligUpliaVUpli3 4 4
rlis 1 1
rli6 1 1
pli7U pligUpligU ply 4 4
phi1Upln pl =2 pl =2
oli pl—1 pl—1
oh pl—1 pl—1
ol3Uoly (p' =12 (' =D -1
ols pl—1 pt/3—l
ole 1 1
ol 1 1
ols 1 1
ol 1 1
oli0Uoh1VUolinUols 4 4

The unions of parameter sets in this table are disjoint unions.
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