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1. Introduction

Suppose we are given a rational map

P
1 φ→ P

2,

(X1 : X2) �→ (g1 : g2 : g3)(X1, X2), (1.1)

where g1, g2, g3 are homogeneous polynomials of degree d � 1 in the polynomial ring K[X1, X2]
with K a field. We assume that g1, g2, g3 are not all zero and that the greatest common divisor of
g1, g2, g3 over K[X1, X2] has degree < d, so that the closed image of the rational map φ is a rational
algebraic plane curve C .

The geometric modeling community is interested in the manipulation of parametrized algebraic
plane curves and has developed many tools for this purpose in the last decade. One of them is what
is called the moving curve ideal [Cox08]. Denoting by T = (T1, T2, T3) the homogeneous coordinates
of P

2
K

, a moving curve of degree ν � 0 is a polynomial
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∑
α1,α2,α3�0

α1+α2+α3=ν

Aα1,α2,α3(X1, X2)T α1
1 T α2

2 T α3
3 ,

where Aα1,α2,α3 (X1, X2) ∈ K[X1, X2]. Such a moving curve is said to follow the parametrization φ if

∑
α1,α2,α3�0

α1+α2+α3=ν

Aα1,α2,α3 (X1, X2)g1(X1, X2)
α1 g2(X1, X2)

α2 g3(X1, X2)
α3 = 0.

The set of all moving curves that follow the parametrization φ form an ideal in the polynomial ring
K[X1, X2][T1, T2, T3]. It is called the moving curve ideal of the parametrization φ.

From an algebraic point of view, the moving curve ideal of φ can be seen as the defining ideal of
the Rees algebra of the ideal I = (g1, g2, g3) in K[X1, X2]. More precisely, ReesK[X1,X2](I) is the image
of the K[X1, X2]-algebra morphism

K[X1, X2][T1, T2, T3] β→K[X1, X2][Z ] : Ti �→ gi Z

and the kernel of β is exactly the moving curve ideal of φ (see for instance [BJ03, Proposition 3.5] for
a detailed proof of this well-known fact). Notice that this ideal is naturally bi-graded: it is N-graded
with respect to the homogeneous variables T1, T2, T3 by definition, and it is also N-graded with
respect to the variables X1, X2 because the polynomials g1, g2, g3 ∈ K[X1, X2] are homogeneous.

Content of the paper

In this paper, the moving curve ideal is studied in order to address two problems that have been
recently raised by several authors. Our approach is based on the theory of inertia forms for which we
will have to develop new results.

First, we will focus on the determination of the equations of the moving curve ideal, that is to
say on the computation of a system of generators as an ideal in K[X1, X2][T1, T2, T3]. As we have
already noticed, this corresponds to the determination of the equations of a certain Rees algebra and
there is a vast literature on this topic – see for instance [Vas94] and the references therein. In our
more precise context, this question of getting a full system of generators for the moving curve ideal
of φ appears in [Cox08,HSV08,CHW08] where answers are given for a particular class of curves. In
Section 3 of this paper, we will recover these results and obtain a full system of generators of the
moving curve ideal for a new class of curves. More generally, we will provide new results on the
character of some of the generators of the moving curve ideal of any rational curve.

Then, we will focus on the study of a certain graded part of the moving curve ideal, namely the
moving curves following φ that are linear form in the variables X1, X2. Indeed, David Cox recently
observed in [Cox08] that this graded part carries a lot of geometric properties of the curve C . More
precisely, [Cox08, Conjecture 3.8] suggests a close relation between adjoint pencils on C and moving
curves following φ of degree 1 in X1, X2 and degree d − 2 (resp. d − 1) in T1, T2, T3. In Section 4,
we will investigate this relation and prove several new results. The main contribution is to show that
under suitable genericity conditions any moving curves following φ of degree 1 in X1, X2 and degree
d − 2 or d − 1 in T1, T2, T3 is an adjoint pencil on C . In general, we will show that one can always
find an adjoint pencil on C of degree d − 2 in T1, T2, T3 that belongs to the moving curve ideal
of φ, this adjoint pencil being described very simply in terms of certain determinants. Finally, as a by
product of our study, we will obtain an extension of Abhyankar’s Taylor resultant [Abh90, Lecture 19,
Theorem, p. 153] from the polynomial parametrization case to the rational parametrization case.

Another description of the moving curve ideal

Our approach to study the moving curve ideal is based on the following alternative description of
this ideal. The first syzygy module of g1, g2, g3 is known to be a free homogeneous K[X1, X2]-module
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of rank 2 and a basis of this syzygy module consists in two homogeneous elements (the notation X
and T stand for the set of variables X1, X2 and T1, T2, T3 respectively)

p = (
p1(X), p2(X), p3(X)

)
, q = (

q1(X),q2(X),q3(X)
) ∈ K[X1, X2]3

of degree μ and d − μ respectively. This is a consequence of the Hilbert–Burch Theorem. Notice that
the choice of p and q is not unique, but their degrees are fixed and depend only on the parametriza-
tion φ. We will identify p, q with the two polynomials

p(X, T ) = p1(X)T1 + p2(X)T2 + p3(X)T3,

q(X, T ) = q1(X)T1 + q2(X)T2 + q3(X)T3 (1.2)

in K[X, T ] that form what has been called a μ-basis of the parametrization φ by the geometric model-
ing community because of its importance to handle parametrized plane curves.

As an illustration of the benefit of μ-bases, we recall the following well-known formula that relates
the resultant of a μ-basis, an implicit equation C(T1, T2, T3) of C and the degree of the parametriza-
tion (1.1):

ResX1:X2(p,q) = αC(T1, T2, T3)
deg(φ) ∈ K[T ],

where α ∈ K \ {0}. Here is another characterization of the moving curve ideal of φ.

Proposition 1.1. Let (p,q) by a μ-basis of the parametrization φ . Then, the sequence (p,q) is regular in the
ring K[X, T ] and the moving curve ideal of φ is equal to the elimination ideal ((p,q) : (X1, X2)

∞) in K[X, T ].

Proof. The first assertion follows from [ASV81, §2.1], and the second from [BJ03, Proposition 3.6] for
instance. �

This result shows that the study of the moving curve ideal is equivalent to the study of the inertia
forms of two homogeneous polynomials in two homogeneous variables that form a regular sequence.
Therefore, in Section 2 we provide a detailed study of these inertia forms.

2. Inertia forms of two polynomials in two homogeneous variables

In this section we suppose given a non-zero commutative ring A and two homogeneous polyno-
mials

f1(X1, X2) = U0 Xd1
1 + · · · + Ud1 Xd1

2 , f2(X1, X2) = V 0 Xd2
1 + · · · + Vd2 Xd2

2

in the (canonically graded) polynomial ring C = A[X1, X2] with respective degree d1, d2 such that
1 � d1 � d2. We will denote by m, resp. I , the ideal of C generated by X1, X2, resp. f1, f2, and by B
the (canonically graded) quotient ring C/I . Also, we define the integer δ = d1 + d2 − 2 � 0.

We recall that the resultant of f1 and f2, denoted Res( f1, f2), is equal to the determinant of the
well-known Sylvester matrix
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0
. . .

.

.

. U0

Ud1

.

.

.

. . .

0 Ud1︸ ︷︷ ︸
d2

V 0 0
. . .

.

.

. V 0

Vd2

.

.

.

. . .

0 Vd2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
d1

which is of size d1 +d2 = δ +2. The first-order subresultants of f1 and f2 correspond to some δ-minors
of this Sylvester matrix. More precisely, by expanding the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0 0
. . .

.

.

. U0

Ud1

.

.

.

. . .

0 Ud1︸ ︷︷ ︸
d2−1

V 0 0
. . .

.

.

. V 0

Vd2

.

.

.

. . .

0 Vd2︸ ︷︷ ︸
d1−1

T0

.

.

.

.

.

.

Tδ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

along its last column, we get the polynomial

δ∑
i=0

SResδ−i( f1, f2)Ti ∈ A[T0, . . . , Tδ].

The elements SResi( f1, f2) ∈ A, i = 0, . . . , δ, are the (first-order) subresultants of f1 and f2. The ele-
ment SRes0( f1, f2) is usually called the principal subresultant.

From now on in this section, we assume that ( f1, f2) is a C-regular sequence. Our aim is to give,
under suitable other conditions, an explicit description of the ideal of inertia forms of f1, f2 w.r.t. the
variables X1, X2, that is an explicit description of the ideal (I :C m∞) consisting of all the elements
f ∈ C such that there exists an integer k with the property that mk f ⊂ ( f1, f2). Since f1 and f2 are
obvious inertia forms, it is sufficient to describe the graded B-module H0

m(B) ⊂ B since we have the
canonical isomorphism

(
I : m∞)

/I
∼→ H0

m(B) = {
f ∈ B such that ∃k ∈ N: mk f = 0

}
.

The methods we will use are inspired by [Jou97] where such a work has been done for two generic
homogeneous polynomials of the same degree, that is in the case A = Z[U0, . . . , Ud1 , V 0, . . . , Vd2 ]
with d1 = d2.

2.1. Sylvester forms, Morley forms and an explicit duality

We gather some known properties and results on the module H0
m(B) we are interested in. Notice

that H0
m(B) is a N-graded B-module; for all ν ∈ N, we will denote by H0

m(B)ν its νth graded part.
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2.1.1. The duality
As proved in [Jou96, §1.5], for all ν > δ we have H0

m(B)ν = 0. If ν = δ then it is shown that there
exists an isomorphism of A-modules A 	 H0

m(B)δ . Moreover, for all 0 � ν � δ the multiplication map
(defined by the B-module structure of H0

m(B))

Bδ−ν ⊗A H0
m(B)ν → H0

m(B)δ : b ⊗ b′ �→ bb′

induces the isomorphism of A-modules

H0
m(B)ν

∼→HomA
(

Bδ−ν, H0
m(B)δ

) : b �→ (c �→ b ⊗ c). (2.1)

This duality (recall that H0
m(B)δ 	 A) has been made explicit by Jouanolou by using the Morley

forms [Jou97, §3.11]. Before describing these forms, we recall the construction of the Sylvester forms
[Jou97, §3.10] which are the first examples of simple non-trivial inertia forms.

2.1.2. Sylvester forms
Suppose given β = (β1, β2) ∈ N × N such that |β| = β1 + β2 � d1 − 1. Then, f1 and f2 can be

decomposed in C as

f1(X1, X2) = Xβ1+1
1 f1,1 + Xβ2+1

2 f1,2, f2(X1, X2) = Xβ1+1
1 f2,1 + Xβ2+1

2 f2,2, (2.2)

where f i, j ∈ C is homogeneous of degree di − β j − 1. Therefore the determinant of the matrix
( f i, j)i, j=1,2 is a homogeneous polynomial in C of degree δ − |β|. The class of this determinant in
B turns out to be independent of the choice of the decompositions (2.2); it is a called a Sylvester form
of f1, f2 and will be denoted sylvβ( f1, f2) ∈ Bδ−|β| .

It is easy to check that, for k = 1,2, we have Xβk+1
k det( f i, j)i, j=1,2 ∈ I . We deduce that sylvβ( f1, f2)

is an inertia form of f1, f2 w.r.t. X1, X2, that is to say that

sylvβ( f1, f2) ∈ H0
m(B)δ−|β|.

The Sylvester form sylv(0,0)( f1, f2), very similar to the classical Jacobian, plays a particular rôle
since it makes explicit the isomorphism

A
∼→ H0

m(B)δ : a �→ a.sylv(0,0)( f1, f2). (2.3)

Moreover, by duality we deduce that for all α,β such that 0 � |α| = |β| � d1 − 1 we have

Xαsylvβ( f1, f2) =
{

sylv(0,0)( f1, f2) if α = β,

0 otherwise

in H0
m(B)δ.

2.1.3. Morley forms
Introducing two new indeterminates Y1 and Y2, we choose arbitrary decompositions in the poly-

nomial ring A[X1, X2, Y1, Y2]:

f i(X1, X2) − f i(Y1, Y2) = (X1 − Y1)hi,1 + (X2 − Y2)hi,2, i = 1,2. (2.4)

The determinant of the matrix (hi, j)i, j=1,2 is a polynomial in A[X1, X2, Y1, Y2] which is easily seen
to be homogeneous in the variables X1, X2, resp. Y1, Y2, of degree δ. Now, consider the ring
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B ⊗A B 	 A[X1, X2, Y1, Y2]
( f1(X1, X2), f1(Y1, Y2), f2(X1, X2), f2(Y1, Y2))

.

Since B is graded, B ⊗A B inherits of a canonical bi-grading (a grading w.r.t. the variables X1, X2 and
another one w.r.t. Y1, Y2); we set

B ⊗A B =
⊕

(p,q)∈N×N

B p ⊗A Bq =
⊕
r∈N

( ⊕
p+q=r

B p ⊗A Bq

)
=

⊕
r∈N

[B ⊗A B]r .

The Morley form of f1 and f2, denoted morl( f1, f2), is the class of det(hi, j)i, j=1,2 in B ⊗A B . It is
independent of the choice of the decompositions (2.4). Since morl( f1, f2) ∈ [B ⊗A B]δ , for all (p,q) ∈
N × N such that p + q = δ we denote by morlp,q( f1, f2) ∈ B p ⊗k Bq its homogeneous component of
bi-degree (p,q).

Recall some properties of Morley forms that will be useful in the rest of this paper (see
[Jou97, §3.11] for the proofs):

(1) Let τ be the symmetry exchanging Xi with Yi for i = 1,2. Then τ leaves morl( f1, f2) invariant
and for all pairs (p,q) ∈ N × N such that p + q = δ we have τ (morlp,q( f1, f2)) = morlq,p( f1, f2).

(2) morlδ,0( f1, f2) = sylv(0,0)( f1, f2) ⊗ 1 ∈ Bδ ⊗A B0 and hence, by the above property,
morl0,δ( f1, f2) = 1 ⊗ sylv(0,0)( f1, f2) ∈ B0 ⊗A Bδ .

(3) The fact that (Xi − Yi)morl( f1, f2) = 0 ∈ [B ⊗A B]δ+1 implies that

(b ⊗ 1)morlp,q( f1, f2) = sylv(0,0)( f1, f2) ⊗ b for all b ∈ Bq,

(1 ⊗ b)morlp,q( f1, f2) = b ⊗ sylv(0,0)( f1, f2) for all b ∈ B p .

2.1.4. Explicit duality
For all 0 � ν � δ, choosing an arbitrary decomposition

morlδ−ν,ν( f1, f2) =
∑

s

xs ⊗ ys with xs ∈ Bδ−ν, ys ∈ Bν,

we have the following isomorphism of A-modules [Jou96, §3.6] (see also [Jou07])

θν : Bδ−ν
∨ = HomA(Bδ−ν, A)

∼→ H0
m(B)ν ⊂ Bν,

u �→
∑

s

u(xs)ys. (2.5)

In particular, this isomorphism shows that it is possible to describe explicitly all the inertia forms
of f1, f2 of degree ν if one can describe explicitly the dual of Bδ−ν . This is the approach we will
follow hereafter. For technical reasons, our analysis is divided into the three intervals 0 � ν � d1 − 2,
d1 −1 � ν � d2 −2 and d2 −1 � ν � δ. Of course, depending on the values of d1 and d2, it may happen
that one or two of these intervals are empty. We recall that we always assume that 1 � d1 � d2.

2.2. Inertia forms of degree � d1 − 2

Assuming that 2 � d1 � d2, we analyze the inertia forms of f1, f2 of degree ν such that 0 � ν �
d1 − 2, or equivalently such that d2 � δ − ν � δ.

For all integers ν = 0, . . . ,d1 − 1, we introduce the new indeterminates

W = (W0, . . . , Wδ−2ν+1), T = (T0, . . . , Tδ−ν)
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and we consider the polynomials

h = W0 Xδ−2ν+1
1 + · · · + Wδ−2ν+1 Xδ−2ν+1

2 ,

ϕ = T0 Xδ−ν
1 + · · · + Tδ−ν Xδ−ν

2 .

We define the determinant D(ν) as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0 0
. . .

.

.

. U0

Ud1

.

.

.

. . .

0 Ud1

0 · · · 0︸ ︷︷ ︸
d2−ν

V 0 0
. . .

.

.

. V 0

Vd2

.

.

.

. . .

0 Vd2

0 · · · 0︸ ︷︷ ︸
d1−ν

W0 0

. . .
.
.
. W0

Wδ−2ν+1
.
.
.

. . .

0 Wδ−2ν+1
Xν

1 · · · Xν
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
ν+1

and the determinant D1(ν) as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0 0
. . .

.

.

. U0

Ud1

.

.

.

. . .

0 Ud1︸ ︷︷ ︸
d2−ν−1

V 0 0
. . .

.

.

. V 0

Vd2

.

.

.

. . .

0 Vd2︸ ︷︷ ︸
d1−ν−1

T0

.

.

.

.

.

.

Tδ−ν

W0 0

. . .
.
.
. W0

Wδ−2ν+1
.
.
.

. . .

0 Wδ−2ν+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
ν

Notice that D(0) = Res( f1, f2) and D1(0) = ∑δ
i=0 SResδ−i T i .

Lemma 2.1 (1 � ν � d1 − 1). In C[W , T ]/( f1(X), f2(X)) we have

ϕD(ν) = (−1)d1+1 D1(ν)sylv(0,0)( f1, f2).

Proof. By specialization, it is sufficient to prove the claimed equality in the generic case, that is to
say in the case where A = Z[U0, . . . , Ud1 , V 0, . . . , Vd2 ]. The proof of this lemma is a straightforward
extension of the proof of [Jou97, Lemme 3.11.18.30] that we closely follow.

Denote by (ri)i=0,...,δ−ν+1, r the rows of the matrix defining the determinant D(ν) from top to
bottom. By construction, we have

(
δ−ν+1∑

i=0

Xδ−ν+1−i
1 Xi

2ri

)
− hr = (

Xd2−ν−1
1 f1, . . . , Xd2−ν−1

2 f1, Xd1−ν−1
1 f2, . . . , Xd1−ν−1

2 f2,0, . . . ,0
)
(2.6)
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which shows that Xδ−ν+1
1 D(ν) ∈ ( f , g) and Xδ−ν+1

2 D(ν) ∈ ( f , g), i.e. that D(ν) is an inertia form of
f1, f2 w.r.t. m in C[W , T ]. Notice that D(ν) is homogeneous of degree ν in the variables X1, X2.

Since ( f1, f2) is a C-regular sequence, we have the canonical isomorphism, inverse of (2.3),

λ : H0
m

(
C[W , T ]/( f1, f2)

)
δ

∼→ A[W , T ] (2.7)

with the property that λ(b)sylv0( f1, f2) = b for all b ∈ H0
m(C[W , T ]/( f1, f2))δ . Now, consider the

A[W , T ]-linear maps

Λ : A[W , T ][X1, X2]δ−ν → A[W , T ] : F �→ λ
(

F D(ν)
)

and

v : A[W , T ]δ−ν → A[W , T ]δ−ν+1

which is given by the matrix defining D1(ν) after deleting its unique column depending on the Ti ’s.
It is clear that Λ vanishes on ( f1, f2)δ−ν , that corresponds to the first δ − 2ν columns of the ma-
trix of D1(ν), and on (h)δ−ν , that corresponds to the last ν columns of the matrix of D1(ν) since
hD(ν) ∈ ( f , g) by (2.6). Therefore, Λ ◦ v = 0 and hence Λ belongs to the kernel of v∨ , the dual of v .
Moreover, it is not hard to check that the depth of the ideal of (δ − ν)-minors of v is at least 2 and
this implies that the Buchsbaum–Rim complex associated to v∨ is acyclic; it is of the form

0 → A[W , T ]∨ 	
δ−ν+1∧ (

A[W , T ]δ−ν+1)∨ → (
A[W , T ]δ−ν+1)∨ v∨→(

A[W , T ]δ−ν
)∨

.

It follows that there exists an element a ∈ A[W , T ] such that, for all elements F ∈ A[W , T ][X1, X2]δ−ν

we have

Λ(F ) = a det
(

Xd2−ν−2
1 f1, . . . , Xd2−ν−2

2 f1, Xd1−ν−2
1 f2, . . . , Xd1−ν−2

2 f2, F , Xν−1
1 h, . . . , Xν−1

2 h
)

(notice that Xν−1
1 h, . . . , Xν−1

2 h disappear in the case ν = 0). In particular, λ(ϕD(ν)) = aD1(ν) in
A[W , T ], that is to say

ϕD(ν) = aD1(ν)sylv(0,0)( f1, f2) in
(

A[W , T ][X1, X2]/( f1, f2)
)
δ
.

By inspecting the homogeneous degrees w.r.t. U , V , T , W , we deduce that a ∈ Z. Then, to determine
a we consider the specialization

f1 �→ Xd1
1 , f2 �→ Xd2

2 , h �→ Xd1−ν−1
1 Xd2−ν

2 , ϕ �→ Xd1−1
1 Xd2−ν−1

2

which sends D(ν) to (−1)ν(d1−ν) Xν
2 and D1(ν) to (−1)(d1−ν−1)(ν+1) . We conclude that

a = (−1)ν(d1−ν)−(d1−ν−1)(ν+1) = (−1)2ν−d1+1 = (−1)d1+1

and the lemma is proved. �
It is interesting to notice that in the case ν = 0, this lemma shows that

(
δ∑

Ti Xδ−i
1 Xi

2

)
Res( f1, f2) = (−1)d1+1

(
δ∑

SResδ−i( f1, f2)Ti

)
sylv(0,0)( f1, f2)
i=0 i=0
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in C[T ]/( f1(X), f2(X)). Writing sylv(0,0)( f1, f2) = ∑δ
i=0 qi Xδ−i

1 Xi
2 with qi ∈ A, we deduce by special-

ization of Ti to qi for all i = 0, . . . , δ, and using the isomorphism (2.7), that

Res( f1, f2) = (−1)d1+1
δ∑

i=0

SResδ−i( f1, f2)qi (2.8)

in A. Observe that this is also equal to (−1)d1+1 times the determinant D1(0) where Ti is specialized
to qi for all i = 0, . . . , δ.

Given two free modules F , G and a linear map u : F → G , we will denote by Detq(u) the determi-
nantal ideal generated by the q-minors of u.

Theorem 2.2 (0 � ν � d1 − 2). Let D(ν) = ∑
|β|=ν Dβ(X1, X2)W β . The element Dβ ∈ C is an inertia form

of degree ν for all β such that |β| = ν .
Moreover, if the inequality

depthA Detδ−2ν

(
Cδ−ν−d1 ⊕ Cδ−ν−d2

f=( f1, f2)−−−−−→ Cδ−ν

)
� ν + 2 (2.9)

holds, then the collection of inertia forms (Dβ)|β|=ν is a system of generators of H0
m(B)ν .

Proof. The formula (2.6) shows that mδ−ν+1 D(ν) ⊂ ( f1, f2) in C[W ] and hence that Dβ(X1, X2) ∈ C
is an inertia form of degree ν of f1, f2 w.r.t. m for all β such that |β| = ν .

Now, let G ∈ Cν be an inertia form of f1, f2 w.r.t. m of degree ν and consider the A-linear map

ΓG : Cδ−ν → A : F �→ λ(F G),

where λ is defined by (2.7). It is clear that ΓG vanishes on ( f1, f2)δ−ν , that is to say that ΓG ◦ f = 0,
and hence that ΓG belongs to the kernel of the dual f∨ of f. Notice that the first δ − 2ν columns of
the matrix of D1(ν) give a matrix of f in appropriate monomial bases. Under the hypothesis (2.9), the
Buchsbaum–Rim complex associated to f∨ is acyclic; it is of the form

· · · →
δ−2ν+1∧

(Cδ−ν)∨ εν−−→ (Cδ−ν)∨ f∨−−→ (Cδ−ν−d1 )
∨ ⊕ (Cδ−ν−d2 )

∨,

where we recall that the map εν sends the basis element

(
Xα1

)∨ ∧ · · · ∧ (
Xαm

)∨
,

where m = δ − 2ν + 1, to

m∑
i=1

(−1)i(Xαi
)∨(

f∨
((

Xα1
)∨) ∧ · · · ∧ f∨

((
Xαi−1

)∨) ∧ f∨
((

Xαi+1
)∨) ∧ · · · ∧ f∨

((
Xαm

)∨))
.

For all set I ⊂ {1, . . . , δ − ν + 1} with cardinality |I| = δ − 2ν + 1, we denote by D I ∈ A[T ] the deter-
minant of the minor of D1(ν) corresponding to the first δ − 2ν + 1 columns and the rows indexed
by I . From the acyclicity of the above complex we deduce that there exists a collection of elements
aI ∈ A such that

λ(ϕG) =
∑

I⊂{1,...,δ−ν+1}
|I|=δ−2ν+1

aI D I ∈ A[T ]. (2.10)

To finish the proof we distinguish the two cases ν = 0 and 1 � ν � d1 − 2.
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If ν = 0, (2.10) reduces to the equality λ(ϕG) = aD1(ν) for some a ∈ A, since D1(ν) does not
depend on W in this case. Specializing ϕ to sylv(0,0)( f1, f2), we deduce that

G = Gλ
(
sylv(0,0)( f1, f2)

) = λ
(
sylv(0,0)( f1, f2)G

) = a Res( f1, f2)

because G ∈ A and this specialization sends D1(ν) to Res( f1, f2) [Jou97, Corollaire 3.10.22]. Conse-
quently, as Res( f1, f2) = D(0) = Dβ=(0,0) in this case, we have G = aD(0), i.e. D(0) is a generator of
H0

m(B)0.
Now, assume that 1 � ν � d1 − 2. By definition of (D I )I , there exists a collection of polynomials

qI (W ) ∈ Z[W ] such that

(−1)d1+1 D1(ν) =
∑

I⊂{1,...,δ−ν+1}
|I|=δ−2ν+1

D I qI (W ) ∈ A[T , W ].

The collection (qI (W )) form a basis of the homogeneous polynomials of degree ν in the variables W ,
as well as the collection (W β)|β|=ν by [Jou97, Remarque 3.11.18.22]. Therefore, there exist polynomials
H I ∈ A[X1, X2]ν such that

D(ν) =
∑

I⊂{1,...,δ−ν+1}
|I|=δ−2ν+1

H I qI (W ) ∈ A[W ]

and such that (Dβ)|β|=ν and (H I )|I|=δ−2ν+1 form two systems of generators of the same A-module.
With this notation, Lemma 2.1 gives

∑
I⊂{1,...,δ−ν+1}

|I|=δ−2ν+1

λ(ϕH I )qI (W ) =
∑

I⊂{1,...,δ−ν+1}
|I|=δ−2ν+1

D I qI (W ),

i.e. λ(ϕH I ) = D I for all I ⊂ {1, . . . , δ − ν + 1} with |I| = δ − 2ν + 1. Therefore, we deduce from (2.10)
that

λ(ϕG) = λ

(
ϕ

( ∑
I

aI H I

))
.

Now, since λ is injective, we have ϕG = ϕ(
∑

I aI H I ) in H0
m(B)δ . By identifying the coefficients in the

variables T , we deduce that the two multiplication maps by G and
∑

I aI H I from Bδ−ν to H0
m(B)δ

coincide. Therefore, by the duality (2.1) we deduce that G = ∑
I aI H I . �

Remark 2.3. In the generic case, i.e. A = Z[U0, . . . , Ud1 , V 0, . . . , Vd2 ], one can show very similarly to
[Jou97, Proposition 3.11.18.19(c)], that the inequality (2.9) holds.

Theorem 2.2 shows that D(0) = Res( f1, f2) is a generator of H0
m(B)0 if the ideal of A generated by

the subresultants SResi( f1, f2), i = 0, . . . , δ, has depth at least 2. To show that this condition cannot
be avoided we consider the following example: A = Z[U0, V 2], f1 = U0 Xd1

1 and f2 = Vd2 Xd2
2 . It is

easy to compute that Res( f1, f2) = U d2
0 V d1

d2
and H0

m(B)0 = (U0 Vd2) ⊂ A. Therefore, Res( f1, f2) is not

a generator of H0
m(B)0. Also, one can check that SResd1−1( f1, f2) = U d2−1

0 V d1−1
d2

and that all the other
subresultants vanish, so the ideal generated by all the subresultants has depth exactly 1.

Later on we will be concerned with the case ν = 1, so we describe in more detail the situation in
this case. Notice that this case may occur only if d2 � d1 � 3. For simplicity, we rename the inertia
forms Dβ(p,q) with |β| = 1 as Di(p,q), i = 0, . . . , δ − 1 in the following way:



L. Busé / Journal of Algebra 321 (2009) 2317–2344 2327
D(1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0 0
. . .

.

.

. U0

Uμ

.

.

.

. . .

0 Uμ

0 · · · 0︸ ︷︷ ︸
d−μ−1

V 0 0
. . .

.

.

. V 0

Vd−μ

.

.

.

. . .

0 Vd−μ

0 · · · 0︸ ︷︷ ︸
μ−1

W0 0

.

.

. W0

Wδ−1
.
.
.

0 Wδ−1
X1 X2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
2

=
δ−1∑
i=0

Di(X1, X2)W i .

Corollary 2.4. With the above notation, for all i = 0, . . . , δ − 1 we have, in A,

Di(p,q) = X2 SResδ−i(p,q) − X1 SResδ−i−1(p,q).

Moreover, if the inequality

depthA Detδ−2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0
. . .

.

.

. U0

Ud1

.

.

.

. . .

0 Ud1︸ ︷︷ ︸
d2−2

V 0 0
. . .

.

.

. V 0

Vd2

.

.

.

. . .

0 Vd2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
d1−2

� ν + 2

holds, then the collection of inertia forms (Di)i=0,...,δ−1 is a system of generators of H0
m(B)1 .

Proof. This is a straightforward computation from the definitions. �
2.3. Inertia forms of degree � d1 − 1 and � d2 − 2

Choosing a decomposition (2.4), we set

det
(
hi, j(X1, X2, Y1, Y2)

)
i, j=1,2 =

∑
0�|β|�δ

qβ(X)Y β .

For all integers ν such that d1 − 1 � ν � d2 − 2, we have d1 � δ − ν � d2 − 1 and we consider the
(δ − ν + 1) × (δ − ν − d1 + 2)-matrix
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Mν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0
. . .

.

.

. U0

Ud1

.

.

.

. . .

Ud1︸ ︷︷ ︸
δ−ν−d1+1

.

.

.

qβ(X)

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
1

built as follows: the left block of Mν is the matrix of the multiplication map Cδ−ν−d1 → Cδ−ν :
p �→ pf1 in the monomial bases ordered with the lexicographical order Y1 � Y2; the last column
contains the coefficients of

∑
|β|=δ−ν qβ(X)Y β in the same ordered monomial basis (Y β)|β|=δ−ν .

Set m = δ − ν − d1 + 2 and denote by �α1,...,αm , with Y α1 � · · · � Y αm and |αi | = δ − ν for all
i = 1, . . . ,m, the determinant of the m-minor of Mν corresponding to the rows of Mν indexed by
(Y αi )i=1,...,m .

Theorem 2.5 (d1 − 1 � ν � d2 − 2). The minors �α1,...,αm ∈ A[X1, X2] are independent of the choice of the
decomposition (2.4) modulo the ideal ( f1, f2) and are inertia forms of f1 , f2 w.r.t. m of degree ν = |α1| =
· · · = |αm|.

Moreover, if the inequality

depthA(U0, . . . , Ud1 ) � d1 + 1 (2.11)

holds, then the collection of minors (�α1,...,αm )Y α1 �···�Y αm is a system of generators of the A-module H0
m(B)ν .

Proof. Let (hi, j)i, j=1,2 and (h′
i, j)i, j=1,2 be two decompositions (2.4) and set

det(hi, j) =
∑

|β|�δ

qβ(X)Y β, det
(
h′

i, j

) =
∑

|β|�δ

q′
β(X)Y β .

For any choice of sequences (α1, . . . ,αm) such that Y α1 � · · · � Y αm and |αi| = δ − ν for all
i = 1, . . . ,m, we will denote by �α1,...,αm and �′

α1,...,αm
the determinants associated to the decom-

positions (hi, j)i, j=1,2 and (h′
i, j)i, j=1,2 respectively.

By Section 2.1.3, we know that

det(hi, j) − det
(
h′

i, j

) =
∑

|β|�δ

(
qβ(X) − q′

β(X)
)
Y β ∈ (

f1(Y ), f2(Y )
) A[X, Y ]
( f1(X), f2(X))

and, by taking homogeneous components for 0 � ν � δ, that

∑
|β|=δ−ν

(
qβ(X) − q′

β(X)
)
Y β ∈ (

f1(Y ), f2(Y )
)
δ−ν

B[Y ]. (2.12)

Assume now that d1 � δ − ν � d2 − 1. Since f1(Y ) is not a zero-divisor in B[Y ], we have the exact
sequence

0 → B[Y ]δ−ν−d1

× f1−−−→ B[Y ]δ−ν → (
B[Y ]/(

f1(Y )
))

δ−ν
→ 0 (2.13)

and (2.12) implies that we also have the exact sequence
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B[Y ]δ−ν−d1 ⊕ B
M̃ν−−→ B[Y ]δ−ν → B[Y ]( f1(Y )

)
δ−ν

→ 0, (2.14)

M̃ν being defined as the matrix Mν where each element qβ(X) in the last column is replaced by
the difference qβ(X) − q′

β(X) respectively. Therefore, the comparison of (2.13) and (2.14) shows, by
invariance of Fitting ideals, that the class of �α1,...,αm − �′

α1,...,αm
in B = A[X]/( f1(X), f2(X)) is null.

We deduce that �α1,...,αm is independent of the choice of the decomposition (2.4) modulo ( f1, f2), as
claimed.

Since d1 � δ − ν � d2 − 1, we have the exact sequence of A-modules

0 → Cδ−ν−d1

f1−→ Cδ−ν → Bδ−ν → 0,

where f1 denotes the multiplication by f1 and we deduce, by duality, that we have the exact sequence
of A-modules

0 → Bδ−ν
∨ → C∨

δ−ν
f1

∨−−→ Cδ−ν−d1
∨.

In particular, Bδ−ν
∨ is isomorphic to the kernel of f1

∨ .
Now, consider the Buchsbaum–Rim complex associated to f1

∨; it is of the form

· · · →
m∧(

Cδ−ν
∨) εν−−→ Cδ−ν

∨ f∨−−→ Cδ−ν−d1
∨ → 0 (2.15)

(recall m = δ − ν − d1 + 2). Since it is a complex, the image of εν is contained in Bδ−ν
∨ and hence

we can consider the composition map

θν ◦ εν :
m∧(

Cδ−ν
∨) → H0

m(B)ν .

Choosing a decomposition (2.4) and setting det(hi, j)i, j=1,2 = ∑
|β|�δ qβ(X)Y β , we deduce that θν ◦ εν

sends the basis element (Y α1 )∨ ∧ · · · ∧ (Y αm )∨ , with Y α1 � · · · � Y αm , to the determinant �α1,...,αm up
to sign. Therefore, all the determinants �α1,...,αm are inertia forms of degree ν , as claimed. Moreover,
if (2.11) holds then (2.15) is acyclic since

(U0, . . . , Ud1 )
δ−ν−d1+1 = Detδ−ν−d1+1

(
Cδ−ν−d1

× f1−−−→ Cδ−ν

)
.

Therefore

depthA
(
Detδ−ν−d1+1

(
Cδ−ν−d1

× f1−−−→ Cδ−ν

))
� d1 + 1

and it follows that the image of εν is exactly Bδ−ν . We hence deduce that θν ◦ εν is surjective. �
The case d1 = 1 is particularly interesting because then the matrix Mν is square for all ν (such

that d1 − 1 = 0 � ν � d2 − 2 = δ − 1). Therefore, if (2.11) holds then H0
m(B)ν is a free A-module of

rank 1 generated by det(Mν). In other words, for all 0 � ν � d2 − 2 we have the isomorphism

A
∼→ H0

m(B)ν : a �→ a det(Mν).

For the sake of completeness, we give an alternate construction of a system of generators of H0
m(B)

in this case. This system was discovered independently in [CHW08] and [HSV08].
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Since d1 = 1, we have f1 = U0 X1 + U1 X2. We know by (2.3) that the Sylvester form hδ( f1, f2) =
sylv(0,0)( f1, f2) ∈ H0

m(B)δ is a generator of H0
m(B)δ . Now, for all integer i = 1, . . . , δ we define hδ−i by

induction with the formula

hδ−i( f1, f2) = sylv(0,0)

(
f1,hδ−i+1( f1, f2)

) ∈ Bδ−i .

Proposition 2.6 (d1 = 1, 0 � ν � d2 − 2 = δ − 1). With the above notation, hν( f1, f2) is an inertia form of
f1 , f2 of degree ν and is equal to det(Mν) up to sign in H0

m(B)ν . In particular, if depthA(U0, U1) � 2 then hν

is a generator of H0
m(B)ν .

Proof. By specialization, it is sufficient to prove the claimed equality in the generic case, so we
assume that A = Z[U0, U1, V 0, . . . , Vd2 ]. In this case, depthA(U0, U1) � 2 and hence det(Mν) is a
generator of H0

m(B)ν . By construction, we have, for all ν = 0, . . . , δ − 1,

(X1, X2)hν ⊂ ( f1,hν+1) ⊂ A[X1, X2].

Therefore, since sylv(0,0)( f1, f2) ∈ H0
m(B), we deduce that hν , for all ν = 0, . . . , δ, is an inertia form

of f1, f2. Moreover, hν is homogeneous of degree ν in X1, X2, hence hν ∈ H0
m(B)ν , and by construc-

tion hν and det(Mν) are both homogeneous of degree δ − ν + 1, resp. 1, in the variables U0, U1,
resp. V 0, . . . , Vd2 . It follows that there exists aν ∈ Z such that hν = aν det(Mν) for all ν = 0, . . . , δ − 1.
Finally, to prove that aν = ±1 for all ν we observe that the specialization sending f1 to X1 and f2

to Xd2
2 sends hν to Xν

2 , for all ν = 0, . . . , δ − 1. The last statement of this corollary is contained in
Theorem 2.5.

Observe that, as a consequence of this proof, det(M0) and h0 are both equal to Res( f1, f2) up to
sign. �

Going back to the general setting of this paragraph, we now examine in more detail the case ν = 1
to make a link with subresultants. This case may occur only if d1 = 1 or d1 = 2. Since we have already
studied the case d1 = 1 above, we concentrate on the case d1 = 2.

So we assume that f1 = U0 X2
1 + U1 X1 X2 + U2 X2

2 . For simplicity, we rename the inertia forms of
degree ν = 1, that is �α1,...,αδ−1( f1, f2) with |αi| = δ − 1 = d2 − 1. In this case, we have to consider
the maximal (d2 − 1)-minors of the (d2 − 1) × (d2)-matrix

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0
. . .

U1 U0
. . .

U2 U1
. . .

U2︸ ︷︷ ︸
d2−2

.

.

.

qβ(X)

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
1

.

We define the inertia forms �i , i ∈ {1, . . . ,d − 2} by the formula (δ = d2 here)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U0 0
. . .

.

.

.

U1 U0
. . . qβ(X)

U2 U1
. . .

.

.

.

U2︸ ︷︷ ︸
M1

T0

.

.

.

.

.

.

Tδ−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
1

=
δ−1∑
i=0

�δ−i T i .

Lemma 2.7 (d1 = 2, ν = 1). For all i = 0, . . . , δ − 1, we have, in A,

�i = X2 SResi+1( f1, f2) − X1 SResi( f1, f2).

Proof. We claim that this is a consequence of Lemma 2.1 applied with

ϕ =
∑

|β|=δ−1

qβ(Y )Xβ = morlδ−1,1( f1, f2).

Indeed, denoting D(X) the determinant D(1) in this case, the properties of Morley’s forms imply that

ϕD(X) = D(X)morlδ−1,1( f1, f2) = D(Y )sylv(0,0)( f1, f2)(X)

in C[W ][X, Y ]/( f1(X), f2(X))(X). Then, Lemma 2.1 shows that

ϕD(X) = −D1(Y )sylv(0,0)( f1, f2),

so by comparison of these two equalities and duality it follows that D(Y ) = D1(Y ) in C[W ][Y ]. There-
fore,

δ−1∑
i=0

Di(Y )W i = D(Y ) = D1(Y ) =
δ−1∑
i=0

�δ−i(Y )W i

and hence �i = Dδ−i for all i = 0, . . . , δ − 1, as claimed. �
2.4. Inertia forms of degree � d2 − 1

This last case is the easiest one. For all integers ν such that d2 − 1 � ν � δ, we have 0 � δ − ν �
d1 − 1. Since I is generated in degree at least d1, we have a canonical isomorphism Cδ−ν 	 Bδ−ν and
hence Cδ−ν

∨ 	 Bδ−ν
∨ . Therefore, the morphism (2.5) is completely explicit as it is easy to find a basis

of the A-module Cδ−ν
∨; for instance the dual of the monomial basis (Xα)|α|=δ−ν of Cδ−ν .

Lemma 2.8. For all ν ∈ N such that 0 � δ − ν � d1 − 1, the following equality holds in Bδ−ν ⊗A Bν =
Cδ−ν ⊗A Bν

morlδ−ν,ν( f1, f2) =
∑

|α|=δ−ν

Xα ⊗ sylvα( f1, f2).
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Proof. The proof of [Jou97, Proposition 3.11.13] works verbatim. �
It follows that for all integers ν such that d2 − 1 � ν � δ, the isomorphism (2.5) is given by

θν : Cδ−ν
∨ ∼→ H0

m(B)ν ,(
Xα

)∨ �→ sylvα( f1, f2)

and we have the

Theorem 2.9 (d2 − 1 � ν � δ). The collection of all the Sylvester forms of degree δ − ν , that is
(sylvα( f1, f2))|α|=δ−ν , yields an A-basis of H0

m(B)ν .

Finally, as we did in the previous sections we make explicit the case ν = 1 for later purposes. Here,
the only interesting situation occurs when d1 = d2 = 2 and we have

sylv0,1( f1, f2) =
∣∣∣∣ U0 U2

V 0 V 2

∣∣∣∣ X1 +
∣∣∣∣ U1 U2

V 1 V 2

∣∣∣∣ X2 = SRes2( f1, f2)X2 − SRes1( f1, f2)X1,

sylv1,0( f1, f2) =
∣∣∣∣ U0 U1

V 0 V 1

∣∣∣∣ X1 +
∣∣∣∣ U0 U2

V 0 V 2

∣∣∣∣ X2 = SRes0( f1, f2)X1 − SRes1( f1, f2)X2. (2.16)

3. Equations of the moving curve ideal

We take again the parametrization (1.1)

P
1
K

φ→ P
2
K
,

(X1 : X2) �→ (g1 : g2 : g3)(X1, X2).

Without loss of generality, we will assume hereafter that the greatest common divisor of g1 , g2 , g3 over
K[X1, X2] is a non-zero constant in K. Moreover, we will restrict our study to the case of interest where
the algebraic curve C , image of φ, has degree at least 2.

Let p(X, T ), q(X, T ) be a μ-basis of the parametrization φ, where p, resp. q, has degree μ,
resp. d − μ, in the variables X1, X2. By Proposition 1.1, the moving curve ideal of φ is equal to the
ideal of inertia forms of p, q with respect to the ideal (X1, X2). Therefore, the results developed in
Section 2 can be used to give some of the generators of the moving curve ideal of φ, and sometimes
a whole system of generators. To proceed, we set

p = U0(T )Xμ
1 + · · · + Uμ(T )Xμ

2 , (3.1)

q = V 0(T )Xd−μ
1 + · · · + Vd−μ(T )Xd−μ

2 ,

where U0, . . . , Uμ and V 0, . . . , Vd−μ are linear forms in A = K[T1, T2, T3] and assume, without loss of
generality, that 1 � μ � d−μ. We also define C = A[X1, X2], m = (X1, X2), δ = μ+ (d−μ)−2 = d−2
and consider the graded quotient ring B = C/(p,q).
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3.1. The case μ = 1

From Section 2, we have the following list of inertia forms of p and q:

{
det

(
Mν(p,q)

) ∈ H0
m(B)ν for 0 � ν � δ − 1, see Theorem 2.5,

sylv(0,0)(p,q) ∈ H0
m(B)δ for ν = δ, see Theorem 2.9.

(3.2)

It turns out that this collection of inertia forms always gives a system of generators of the moving
curve ideal of φ, as conjectured in [HSV08, Conjecture 4.5] and proved in [CHW08, Theorem 2.3].

Proposition 3.1 (μ = 1). The two polynomials p,q and the collection of inertia forms (3.2) form a system of
generators of the moving curve ideal of φ .

Proof. According to Theorems 2.5 and 2.9, we only have to prove that depthA(U0, U1) � 2. This in-
equality is a direct consequence of the facts that deg(C) � 2 and that p is by definition a syzygy of
minimal degree of g1, g2, g3. �
3.2. The case μ = 2

From Section 2, we have the following list of inertia forms of p and q:

⎧⎨
⎩

Res(p,q) for ν = 0, see Theorem 2.2,

�α1,...,αδ−ν (p,q), |αi | = δ − ν for 1 � ν � δ − 2, see Theorem 2.5,

sylvα(p,q), |α| = δ − ν for δ − 1 � ν = δ, see Theorem 2.9.

(3.3)

Under suitable conditions, this collection of inertia forms gives a system of generators of the
moving curve ideal of φ. The following proposition is an extension to [HSV08, Proposition 4.2] and
[HSV08, Proposition 4.4] which deal with the cases d = 4 and d = 5 respectively.

Proposition 3.2 (μ = 2). If deg(φ) = 1 and d = 4 then p, q and the collection of inertia forms (3.3) form a
system of generators of the moving curve ideal of φ . Moreover, the same result holds if deg(φ) = 1, d > 4 and
V (U0, U1, U2) = ∅ ⊂ P

2
K

.

Proof. If deg(φ) = 1 then Eq. (2.8) implies that

depth
(
SRes0(p,q), . . . ,SResδ(p,q)

)
� 2.

Indeed, Res(p,q) is an implicit equation of the curve C and it is irreducible. Therefore, Res(p,q) is a
generator of H0

m(B)0 by Theorem 2.2.
Now, since V (U0, U1, U2) = ∅ we deduce that depthK[T ](U0, U1, U2) � 3 and hence, from Theo-

rem 2.5, that the collection of inertia forms �α1,...,αδ−ν (p,q), |αi | = δ − ν is a system of generators of
H0

m(B)ν for all 1 � ν � δ − 2. Finally, Theorem 2.9 shows that sylvα(p,q), |α| = δ − ν , is a system of
generators of H0

m(B)ν for ν = δ − 1 and ν = δ. �
Two comments are in order here. First, the hypothesis V (U0, U1, U2) = ∅, implicitly assumed in

[HSV08, Proposition 4.9], is not superfluous since otherwise there exist some counterexamples. Also,
we mention that this latter condition corresponds to the geometric property that there is no singular
point on the curve C of multiplicity d − 2, the maximum possible value for a singular point on C in
this case by [SCG07, Theorem 3].

Secondly, we showed that if deg(φ) = 1, i.e. φ is birational onto C , then the greatest common
divisor of the subresultants SResi(p,q), i = 0, . . . ,d − 2 is a non-zero constant. We can actually prove



2334 L. Busé / Journal of Algebra 321 (2009) 2317–2344
along the same line in [BD04] that this is an equivalence. Moreover, in this case the inertia forms
X1SResi(p,q) − X2 SResi+1(p,q), i = 0, . . . ,d − 3, yield rational maps from P

2 to P
1 that all induce

the inverse of the parametrization φ.

3.3. The case μ � 3

From Section 2, we have the following list of inertia forms of p and q:

⎧⎪⎨
⎪⎩

Dβ(p,q), |β| = ν for 0 � ν � μ − 2, Theorem 2.2,

�α1,...,αm (p,q), |αi | = δ − ν for μ − 1 � ν � d − μ − 2, Theorem 2.5,

sylvα(p,q), |α| = δ − ν for d − μ − 1 � ν = δ, Theorem 2.9.

(3.4)

By Theorem 2.9, we know that the inertia forms sylvα(p,q), |α| = δ − ν , form a system of genera-
tors for H0

m(B)ν for d − μ − 1 � ν = δ. Also, by Theorem 2.2, the collection of inertia forms Dβ(p,q),
|β| = ν , form a system of generators of H0

m(B)ν for all ν � μ − 2 provided that

depthA

(
Cd−2μ ⊕ A

(p q)−−−→ Cd−μ

)
� μ (3.5)

(in particular φ has to be birational onto C ). The latter inequality can only be satisfied if μ = 3
since depthA(T1, T2, T3) = 3. By Theorem 2.5, the collection of inertia forms �α1,...,αm (p,q), with
m = δ − ν − μ + 2 and |αi| = δ − ν , is a system of generators for H0

m(B)ν for μ − 1 � ν � d − μ − 2
if the inequality depthA(U0, . . . , Uμ) � μ + 1 � 4 holds. But such an inequality never holds in A.

3.4. Inertia forms of degree 1

We finally gather the results concerning the inertia forms of degree 1 that we will need in the
next section.

If μ = 1 we have seen that H0
m(B)1 is isomorphic to A and hence generated by a unique determi-

nant, or equivalently by an iterated Sylvester form.
If μ � 2 the inertia forms of degree 1 that we have described are always built from subresultants.

More precisely, we proved that for all i = 0, . . . , δ − 1 = d − 3, the polynomials

X1 SResi(p,q) − X2 SResi+1(p,q)

are inertia forms of degree 1. Moreover, they generate H0
m(B)1

• if μ = 2 and d = 4 (see Eqs. (2.16)),
• if μ = 2, d � 5 and V (U0, U1, U2) = ∅ ⊂ P

2,
• if μ � 3 and

depthA Detd−4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0
. . .

.

.

. U0

Uμ

.

.

.

. . .

0 Uμ︸ ︷︷ ︸
d−μ−2

V 0 0
. . .

.

.

. V 0

Vd−μ

.

.

.

. . .

0 Vd−μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
μ−2

� 3

(notice that the above matrix has d − 2 rows).
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As we will mention in the next section, there are examples that show that such conditions are
necessary.

4. Adjoint pencils

As in Section 3, suppose given the parametrization (1.1)

P
1
K

φ→ P
2
K
,

(X1 : X2) �→ (g1 : g2 : g3)(X1, X2)

and assume that the greatest common divisor of g1, g2, g3 over K[X1, X2] is a non-zero constant
in K. Moreover, we will also assume hereafter that φ is birational1 onto its image, that is to say the
curve C , and that K is an algebraically closed field. We recall that p(X, T ), q(X, T ) denote a μ-basis
of the parametrization φ, where p, resp. q, has degree μ, resp. d − μ, in the variables X1, X2 and
1 � μ � d − μ.

Since C is a rational plane curve, it is well known that the genus of C is zero, that is to say that

(d − 1)(d − 2)

2
=

∑
p∈Sing(C)

mp(mp − 1)

2
, (4.1)

where the sum is over all the singular points, proper as well as infinitely near, of C and mp denotes
the multiplicity of C at p. Notice that to distinguish the infinitely near singularities of C , we call a
proper singularity of C a usual singular point of C in the (T1 : T2 : T3)-projective plane.

Definition 4.1. An algebraic curve D is said to be adjoint to C if D is going with virtual multiplicity
mp − 1 through all the singular points, proper as well as infinitely near, of C of multiplicity mp .

The notions of virtual multiplicity and virtually going through are quite subtle and essential to
formulate a correct and useful inductive definition of adjoint curves. However, since we will not
handle these notions in the sequel, we will not go further into the details and refer the reader to
[CA00, Sections 4.1 and 4.8]. We just mention that if p is a proper singular point of C of multiplicity
mp , then a curve D goes through p with virtual multiplicity mp − 1 if it has multiplicity at least
mp − 1 at p. Therefore, it is clear what is an adjoint to a curve having no infinitely near singularity.

The curve C being rational, it can be shown that curves adjoint to C of degree � d − 3 do not
exist, whereas curves adjoint to C of degree � d − 2 are guaranteed to exist. Of course, the character
of curves adjoint to C of degree d − 2 and d − 1 is particularly interesting.

An adjoint pencil on C of degree m is a one-parameter family of curves adjoint to C of degree m.
It is hence of the form X1 D1(T ) + X2 D2(T ) where D1, D2 are homogeneous polynomials in K[T ]
of degree m. Recently, David Cox noticed that moving curves of φ following C of degree d − 2
(resp. d − 1) that are linear in X1, X2 sometimes give adjoint pencils on C (we refer the reader to
[Cox08, Conjecture 3.8 and Remark 3.9] for precise statements). Denote by Ld−2(φ) (resp. Ld−1(φ))
the finite K-submodule of the moving curve ideal of φ consisting of moving curves of degree d − 2
(resp. d − 1) that are linear in X1, X2. In what follows, using the results of Section 3 we determine
explicit moving curves in Ld−2(φ) and Ld−1(φ) that give adjoint pencils on C . Point out that a sim-
ilar study could be done for moving curves of degree 2,3, etc. in X1, X2 using the same approach.
However, we will stick to the case of moving curves linear in X1, X2 because of its geometric content.

According to the notation of Section 3, the study of Ld−2(φ) and Ld−1(φ) relies on the study of the
elements in H0

m(B)1, where A = K[T ], B = A[X1, X2]/(p,q) and m = (X1, X2), that are homogeneous

1 As a consequence of Luröth’s Theorem, any rational curve can be properly re-parametrized, so this condition is not restric-
tive.
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of degree d − 2 or d − 1 in the variables T1, T2, T3. In the rest of the paper, we will always assume
that d � 3; this is not restrictive because a rational curve of degree � 2 has no singular point. Finally,
observe that since we are assuming that φ is birational onto C , the inertia forms of degree 0 of p,
q with respect to the ideal (X1, X2) are generated by Res(p,q) ∈ K[T ] which is an irreducible and
homogeneous polynomial of degree d. Therefore, the inertia forms of degree 0 of p, q w.r.t. X1, X2 do
not contribute to Ld−2(φ) or Ld−1(φ).

We begin with the simple case μ = 1 before turning to the case μ � 2 for which we will need to
give another characterization of adjoint curves.

4.1. The case μ = 1

The μ-basis associated to the parametrization φ of C is of the form

p(X, T ) =
3∑

i=1

pi(X)Ti = U0(T )X1 + U1(T )X2,

q(X, T ) =
3∑

i=1

qi(X)Ti = V 0(T )Xd−1
1 + V 1(T )Xd−2

1 X2 + · · · + Vd−1(T )Xd−1
2 .

Lemma 4.2 (μ = 1, d � 3). The curve C has a unique (proper) singular point p (of multiplicity d−1). Moreover,
U0(p) = U1(p) = 0.

Proof. Since d � 3, Eq. (4.1) implies that there exists at least one singular point on C . By a suitable
linear change of coordinates one may assume that this point is at the origin: p = (0 : 0 : 1). Then, we
claim that p3 = 0 in (1.2). If this is true, clearly U0(p) = U1(p) = 0 and we will have

C(T1, T2, T3) = Res(p,q) = Res(p1T1 + p2T2,q)

that shows that ordpC(T1, T2, T3) � d − 1, i.e. p is a singular point of multiplicity � d − 1. Then, it
will follow by (4.1) that p has multiplicity exactly d − 1 and that it is the unique singular point of C .

To prove that p3 = 0 we proceed by contradiction and assume that p3 �= 0. Since C(p) = 0, we de-
duce that Res(p3,q3) = 0 and hence that p3 divides q3. Therefore, by a change of μ-basis if necessary,
we can assume that q3 = 0. But then, by inspecting the Sylvester matrix of p and q we have

C(T1, T2,1) = Res(p,q) = Res(p3,q1T1 + q2T2) + R(T1, T2),

where ordpR(T1, T2) � 2. Since p is a singular point, the term Res(p3,q1T1 + q2T2) must vanish, that
is p3 must divide q = q1T1 + q2T2, a contradiction with the fact that the couple (p,q) is a μ-basis
of φ. �

In Section 2.3 we defined the matrix

M1(p,q) =

⎛
⎜⎜⎜⎜⎜⎝

U0 0
. . .

U1 U0
. . .

0 U1︸ ︷︷ ︸
d−3

.

.

.

qβ(X)

.

.

.

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
1

,

where
∑

|β|=d−3 qβ(X)Y β = morld−3,1(p,q), and we proved that
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det
(
M1(p,q)

) ∈ Ld−1(φ).

The two following propositions recover [CHW08, Theorem 3.2] – see also Proposition 2.6.

Proposition 4.3 (μ = 1, d = 3). The element p is a K-basis of L1(φ) and gives an adjoint pencil on C .
Moreover, any element in L2(φ), which is K-generated by T1 p, T2 p, T3 p and sylv(0,0)(p,q), gives an adjoint
pencil on C .

Proof. From Section 3.1, we know that L1(φ) = 〈p〉K and that

L2(φ) = 〈
T1 p, T2 p, T3 p, sylv(0,0)(p,q)

〉
K
.

By Lemma 4.2, p is the unique singular point of C , it has multiplicity 2 and U0(p) = U1(p) = 0.
Moreover, sylv(0,0)(p,q) ∈ (U0, U1) by construction and hence it also vanishes at p. �
Proposition 4.4 (μ = 1,d > 3). The element det(M1(p,q)) ∈ Ld−1(φ) gives an adjoint pencil on C .

Proof. By construction qβ ∈ (U0, U1). Therefore, from the definition of M1(p,q) we deduce that

det
(
M1(p,q)

) ∈ (U0, U1)
d−2.

Now, if p be is a singular point of C , then by Lemma 4.2 p is unique with multiplicity d − 1 and
U0(p) = U1(p) = 0. Therefore, det(M1(p,q)) vanishes at p with multiplicity at least d − 2. Notice that
det(M1(p,q)) �= 0 for it is a generator of H0

m(B)1 which cannot be zero since Res(p,q) ∈ H0
m(B)0 is

non-zero. �
In general, if d > 3 and μ = 1 an element of Ld−2(φ) ⊕K Ld−1(φ) is not an adjoint pencil on C ,

but one can always find one, namely det(M1(p,q)). Indeed, from Section 3.1 we have

Ld−2 = 〈(
T α p

)
|α|=d−3

〉
K

and Ld−1 = 〈(
T α p

)
|α|=d−2,det

(
M1(p,q)

)〉
K
.

So the element p of the μ-basis has degree μ = 1 and hence contribute to Ld−2(φ) ⊕K Ld−1(φ)

without producing an adjoint pencil on C (see e.g. [Cox08, Example 3.7]).

4.2. Adjoint and polar curves

Instead of using directly Definition 4.1 to show that a certain curve D is adjoint to C , we will
use a property of adjoint curves that allows us to prove that D is adjoint to C by looking at the
intersection of C and D at all the proper singularities. This approach has the advantage of avoiding
the consideration of the infinitely near singularities of C through a desingularization process of C . To
state this property, we first need to fix some notation.

Given two plane curves D and D′ that intersect in a finite set of points, we denote by
multp(D, D′) the intersection multiplicity of D and D′ at the point p, and by multp(D) the mul-
tiplicity of D at p. Recall that

multp(D) = min
L line through p

multp(D, L),

where the minimum is taken over all the lines L passing through the point p, and also that
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multp(D) = ordpD(T1, T2, T3),

where D(T1, T2, T3) is an implicit equation of D.
Given γ = (α(x), β(x)) a branch of D centered at p, the intersection multiplicity of γ and D′ at p

is defined as

multp(γ , D′) = ordpD ′(α(x), β(x)
)
.

Then, the multiplicity of γ at p is

multp(γ ) = min
L line through p

multp(γ , L)

and multp(D) is equal to the sum of the multiplicities of the branches of D.

Definition 4.5. Suppose given a curve D ⊂ P
2 with equation D(T1, T2, T3) = 0 and a point q =

(q1 : q2 : q3) ∈ P
2. The polar curve of C w.r.t. q is the curve defined by the equation

q1
∂ D

∂T1
+ q2

∂ D

∂T2
+ q3

∂ D

∂T3
= 0.

Proposition 4.6. (See [CA00, Theorem 6.3.1].) Let C ⊂ P
2 be a curve, q ∈ P

2 be a point not lying on C and Pq

be the polar curve of C w.r.t. q. A curve D ⊂ P
2 is adjoint to C if and only if

multp(γ , D) � multp(γ , Pq) − multp(γ , Lq) + 1

for all proper singular points p of C and all branches γ of C centered at p, where Lq denotes the line joining
the points p and q.

It should be noticed that the quantity multp(γ , Pq) − multp(γ , Lq) is independent of the choice
of the point q /∈ C . We also recall that a birational parametrization of a plane algebraic curve gives
naturally parametrizations for all the branch curves. In particular, the number of irreducible branches
at a singular point p is the number of its distinct pre-images under the parametrization (see for
instance [CA00, Proposition 3.7.8]).

4.3. The case μ � 2

An implicit equation of the curve C of degree d is given by Res(p,q) ∈ K[T ], where (p,q) is a
μ-basis. The next result shows that the first-order subresultants SResi(p,q), i = 0, . . . ,d − 2, define
curves of degree d − 2 that are adjoint to C (notice that since 2 � μ � d −μ, we must have d � 4). To
prove this, we will need the following lemma that can be found in [BM09, Lemma 5.1]; we include
the proof for the convenience of the reader.

Lemma 4.7. Suppose we are given two homogeneous polynomials

g1(X1, X2) = ad1 Xd1
1 + ad1−1 Xd1−1

1 X2 + · · · + a1 X1 Xd1−1
2 + a0 Xd1

2 ,

g2(X1, X2) = bd2 Xd2
1 + bd2−1 Xd2−1

1 X2 + · · · + b1 X1 Xd2−1
2 + b0 Xd2

2 ,

of degree d1,d2 � 2, respectively, and with coefficients ai ’s and b j ’s in R[T ] where R is a commutative ring.
Then, we have the following equality in R[T , x]:
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∂ Res(g1, g2)

∂T
= (−1)d1+d2

∣∣∣∣ ∂ g1
∂T (x,1)

∂ g2
∂T (x,1)

∂ g1
∂ X1

(x,1)
∂ g2
∂ X1

(x,1)

∣∣∣∣ SRes0(g1, g2) modulo
(

g1(x,1), g2(x,1)
)
.

Proof. Consider the polynomials

g1(X1 + xX2, X2) = ax
d1

Xd1
1 + ax

d1−1 Xd1−1
1 X2 + · · · + ax

1 X1 Xd1−1
2 + ax

0 Xd2
2 ,

g2(X1 + xX2, X2) = bx
d2

Xd2
1 + bx

d2−1 Xd2−1
1 X2 + · · · + bx

1 X1 Xd2−1
2 + bx

0 Xd2
2 ,

where the ax
i ’s and the bx

j ’s are polynomials in R[T , x]. By the base change formula for subresultants
[Hon97], we have the equalities in R[T , x]:

Res
(

g1(X1 + xX2, X2), g2(X1 + xX2, X2)
) = Res

(
g1(X1, X2), g2(X1, X2)

)
,

SRes0
(

g1(X1 + xX2, X2), g2(X1 + xX2, X2)
) = SRes0

(
g1(X1, X2), g2(X1, X2)

)
.

Therefore, expanding the determinant

Res
(

g1(X1 + xX2, X2), g2(X1 + xX2, X2)
) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ax
d1

0 · · · 0 bx
d2

0 0

ax
d1−1 ax

d1

.

.

. bx
d2−1

. . . 0
.
.
.

. . . 0
.
.
. bx

d2

ax
0 ax

d1
bx

1 bx
d2−1

0 ax
0 ax

d1−1 bx
0

.

.

.

.

.

.
. . .

.

.

. 0
. . . bx

1
0 · · · 0 ax

0 0 0 bx
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
with respect to its two last rows, we get

Res(g1, g2) = (−1)d1+d2

∣∣∣∣ax
0 bx

0
ax

1 bx
1

∣∣∣∣ SRes0(g1, g2) + (
ax

0

)2
�1 + ax

0bx
0�2 + (

bx
0

)2
�3,

where �i (i = 1,2,3) are polynomials in the ax
i ’s and bx

j ’s. Taking the derivative with respect to the
variable T , we deduce that

∂ Res(g1, g2)

∂T
= (−1)d1+d2

∣∣∣∣ ∂2ax
0 ∂2bx

0
ax

1 bx
1

∣∣∣∣ SRes0(g1, g2) modulo
(
ax

0,bx
0

)
(4.2)

in R[T , x]. But it is easy to check that

ax
0 = g1(x,1), bx

0 = g2(x,1), ax
1 = ∂ g1

∂ X1
(x,1) bx

1 = ∂ g2

∂ X1
(x,1)

and therefore to deduce that (4.2) is the claimed equality. �
Theorem 4.8 (μ � 2, d � 4). For all i = 0, . . . ,d−2, the equation SResi(p,q) = 0 defines a plane curve which
is adjoint to C .
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Proof. Recall that the curve C of degree d is parametrized by the generically injective rational map

P
1 φ→P

2 : (X1 : X2) �→ (g1 : g2 : g3)(X1, X2)

and that (p,q) stands for a μ-basis of φ. Hereafter, we will denote by D the curve defined by
SRes0(p,q) = 0. It is well defined by properties of the first principal subresultant and the μ-basis.
We first prove that the curve D defined by SRes0(p,q) = 0 is adjoint to C by using the characteriza-
tion of adjoint curves given in Proposition 4.6.

So let p be a proper singular point of C and γ be an irreducible branch of C centered at p. By a
linear change of coordinates in P

2, we can assume that p is the origin (0 : 0 : 1) and that the point
q = (0 : 1 : 0) does not belong to C . Also, by a linear change of coordinates in P

1, we can assume that
φ(0 : 1) = p; turning to the affine parameter (x : 1) ∈ P

1 with x ∈ K, we have φ(0) = p and we can
assume that

ordpφ1(x) � ordpφ2(x), ordpφ3(x) �= 0,

where (φ1(x) : φ2(x) : φ3(x)) is a local parametrization of γ .
The polar curve Pq of C with respect to q is the curve of equation

∂ Res(p,q)

∂T2
(T1, T2, T3) = 0

and therefore

multp(Pq, γ ) = ordp

(
∂ Res(p,q)

∂T2

(
φ1(x),φ2(x),φ3(x)

))
.

Similarly, the line Lq joining the points p and q is the line of equation T1 = 0 and hence

multp(Lq, γ ) = ordpφ1(x).

Also, we have

multp(Dq, γ ) = ordp

(
SRes0(p,q)

(
φ1(x),φ2(x),φ3(x)

))
.

Now, set

J (x) =
∣∣∣∣ p2(x) q2(x)∑3

i=1 p′
i(x)φi(x)

∑3
i=1 q′

i(x)φi(x)

∣∣∣∣ ∈ K[x],

where the notation f ′(x) stands for the derivative of the polynomial f (x) with respect to the vari-
able x. Since (p,q) is a μ-basis of φ, we have

∑3
i=1 pi(x)φi(x) = 0 and

∑3
i=1 qi(x)φi(x) = 0. Therefore,

Lemma 4.7 shows that

multp(D, γ ) = multp(Pq, γ ) − ordp J (x).

Since φ1(x) =
∣∣∣ p2(x) q2(x)

p3(x) q3(x)

∣∣∣, we have

φ′
1(x) =

∣∣∣∣ p′
2(x) q′

2(x)
p (x) q (x)

∣∣∣∣ +
∣∣∣∣ p2(x) q2(x)

p′ (x) q′ (x)

∣∣∣∣ .
3 3 3 3
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Furthermore, the equality
∑3

i=1 pi(x)φi(x) = 0 shows that we have ordp p3(x) � ordpφ1(x) since
ordpφ2(x) � ordpφ1(x). Similarly, ordpq3(x) � ordpφ1(x) and we deduce that

ordp

∣∣∣∣ p2(x) q2(x)
p′

3(x) q′
3(x)

∣∣∣∣ = ordpφ1(x) − 1.

But

J (x) =
∣∣∣∣ p2(x) q2(x)

p′
1(x) q′

1(x)

∣∣∣∣φ1(x) +
∣∣∣∣ p2(x) q2(x)

p′
2(x) q′

2(x)

∣∣∣∣φ2(x) +
∣∣∣∣ p2(x) q2(x)

p′
3(x) q′

3(x)

∣∣∣∣φ3(x)

and since ordp(φ3) = 0 we get ordp J (x) = ordpφ1(x) − 1. Finally, we deduce that

multp(D, γ ) = multp(Pq, γ ) − multp(Lq, γ ) + 1

that proves that D is adjoint to C by Proposition 4.6.
To finish the proof, we need to consider the equations SResi(p,q) = 0 for all i = 1, . . . ,d − 2. As

observed in Section 3, under the hypothesis μ � 2 the polynomials X1 SResi(p,q) − X2 SResi+1(p,q)

are inertia forms of (p,q) with respect to the ideal (X1, X2). It follows that for all i = 0, . . . ,d − 3,
there exist an integer Ni such that

X Ni
1

(
X1 SResi(p,q) − X2SResi+1(p,q)

) ∈ (p,q) ⊂ K[X][T ],
X Ni

2

(
X1 SResi(p,q) − X2SResi+1(p,q)

) ∈ (p,q) ⊂ K[X][T ].

From the properties of the curve D of equation SRes0(p,q) = 0 we just proved, we deduce incremen-
tally that for all i = 1, . . . ,d − 2, the equation SResi(p,q) = 0 defines an algebraic curve, say Di , such
that

multp(Di, γ ) � multp(D, γ )

(notice that it is actually almost always an equality) at each proper singular point p of the curve C . �
We are now ready to state results on the relation between adjoint pencils on C and moving curves

following φ of degree 1 in X1, X2 and degree d − 2 (resp. d − 1) in T1, T2, T3.

Corollary 4.9 (μ = 2, d = 4). Any non-zero element in L2(φ) or L3(φ) gives an adjoint pencil on C .

Proof. By Section 3, if d = 4 we know that the two moving curves

sylv0,1(p,q) =
∣∣∣∣ U0 U2

V 0 V 2

∣∣∣∣ X1 +
∣∣∣∣ U1 U2

V 1 V 2

∣∣∣∣ X2 = SRes2(p,q)X2 − SRes1(p,q)X1,

sylv1,0(p,q) =
∣∣∣∣ U0 U1

V 0 V 1

∣∣∣∣ X1 +
∣∣∣∣ U0 U2

V 0 V 2

∣∣∣∣ X2 = SRes0(p,q)X1 − SRes1(p,q)X2

form a system of generators of L2(φ) over K and that

L3(φ) = 〈(
Tisylv(0,1)(p,q)

)
,
(
Tisylv(1,0)(p,q)

) 〉
.
i=1,2,3 i=1,2,3 K
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Therefore, the claimed result follows from that fact that SResi(p,q) = 0 defines a curve adjoint to C
for all i = 0,1,2. �

The case μ = 2, d > 4 is more intricate. Following Section 2.3, we have to consider the (d − 2) ×
(d − 3)-matrix

M1(p,q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0
. . .

U1 U0
. . .

U2 U1
. . .

U2︸ ︷︷ ︸
d−4

.

.

.

qβ(X)

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
1

.

Its first (d − 4) columns are the coefficients of the polynomials

Xd−5
1 p, Xd−6

1 X2 p, . . . , X1 Xd−6
2 p, Xd−5

2 p

in the monomial basis Xd−3
1 , Xd−2

1 X2, . . . , Xd−3
2 and its last column contains the coefficients of the

polynomials
∑

|β|=d−3 qβ(X)Y β in the monomial basis Y d−3
1 , Y d−2

1 Y2, . . . , Y d−3
2 . We proved in Theo-

rem 2.5 that the maximal minors �i , i ∈ {1, . . . ,d − 2}, of M1(p,q) obtained by removing the ith row
are elements in L2(φ). Moreover, we proved in Lemma 2.7 that

�i = X1 SResi(p,q) − X2 SResi+1(p,q)

for all i = 1, . . . ,d − 2. We deduce the

Corollary 4.10 (μ = 2, d > 4). All the determinants �i , i ∈ {1, . . . ,d − 2}, give adjoint pencils C . Moreover, if
V (U0, U1, U2) = ∅ ⊂ P

2
K

then any non-zero element in L2(φ) or L3(φ) gives an adjoint pencil on C .

Notice that the hypothesis on the depth of the ideal (U0, U1, U2) cannot be avoided since XiaHong
Jia found an example of an element in L3(φ), with μ = 2, d = 6, which is not an adjoint pencil on C .
For this example, p does not depend on the variable T3 and hence depthK[T ](U0, U1, U2) � 2. Also,
as mentioned earlier, notice that this condition corresponds to the absence of a (proper) singularity
of multiplicity d − 2, the maximum possible value.

Finally, let us consider the case μ � 3. Since 1 � μ � d − μ, we must have d � 6. In Section 2.2
we have identified the collection of degree 1 inertia forms (Di(X1, X2))i=0,...,d−3 that satisfy to the
equalities (see Corollary 2.4)

Di = X2 SResd−2−i(p,q) − X1 SResd−3−i(p,q).

Corollary 4.11 (μ � 3). The polynomials Di(X1, X2), i = 0, . . . ,d − 3, give adjoint pencils on C . Moreover, if

V
(
Detd−4

(
Cd−μ−3 ⊕ Cμ−3

(p q)−−−→ Cd−3
)) = ∅ ⊂ P

2
K

(4.3)

then any element in Ld−2(φ) or Ld−1(φ) give an adjoint pencil on C .
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We point out that XiaHong Jia found an example of an element in Ld−2(φ) ⊕K Ld−1(φ), with
μ = 3, d = 7, which is not an adjoint pencil of C . For this example the equality (4.3) does not hold
(more precisely, p does not depend on the variable T3 for this example).

4.4. Abhyankhar’s Taylor resultant

In its book [Abh90, Lecture 19], Abhyankar defines the Taylor resultant of two polynomials
f (t), g(t) ∈ K[t] as the resultant that eliminates the variable t from the two polynomials

f (t) − f (s)

t − s
= f ′(s) + f ′′(s)

2! t + f ′′′(s)

3! t2 + · · · , (4.4)

g(t) − g(s)

t − s
= g′(s) + g′′(s)

2! t + g′′′(s)

3! t2 + · · · (4.5)

(notice that the above equalities hold if K has characteristic zero). We will denote it by �(t) ∈ K[t].
As stated in the theorem page 153, this Taylor resultant is a generator of the conductor of k[ f (t), g(t)]
in k[t]. In particular, assuming ( f (t), g(t)) to be a parametrization of the irreducible plane curve C , it
yields the singularities of C counted properly, that is to say that

�(t) = γ

l∏
j=1

(t − γ j)
ε j ,

where 0 �= γ ∈ K, γ1, . . . , γl are distinct elements in K, ε1, . . . , εl are positive integers and it holds
that

(P1) P = (α,β) ∈ C is a (proper) singular point on C if and only if (α,β) = ( f (γ j), g(γ j)) for some
j ∈ {1, . . . , l}.

(P2) If P = (α,β) ∈ C is a (proper) singular point on C then

∑(α,β)
ε j =

∑P
νi(νi − 1),

where
∑(α,β) is the sum over those j for which (α,β) = (p(γ j),q(γ j)), and

∑P is the sum
over those i for which the point Ti either equals P or is infinitely near to P and has multiplic-
ity νi .

(P3) deg(�(t)) = (deg(C) − 1)(deg(C) − 2) if all the singular points of C , proper as well as infinitely
near, are at finite distance.

Notice that Abhyankar used the right side of Eqs. (4.4) and (4.5) and hence required characteristic
zero for the ground field K. In [vdEY97], this point was overcome by considering the resultant of the
left side of these equations, and the Taylor resultant was renamed the D-resultant. Then, in [EK05]
the D-resultant is expressed in terms of a certain subresultant.

Abhyankar’s Taylor resultant, or D-resultant, only treats rational curves that admit a polynomial
parametrization. Therefore, one can ask for a generalization of this resultant for any rational plane
curve, that is to say for the case where f (t) and g(t) are not polynomials but rational functions
in K(t). In [GRY02] a partial answer to this question is proposed: If f (t) = fn(t)/ fd(t) and g(t) =
gn(t)/gd(t), the authors define the Taylor resultant as the resultant that eliminates t from the two
polynomials

fn(t) fd(s) − fd(t) fn(s)
,

gn(t)gd(s) − gd(t)gn(s)
. (4.6)
t − s t − s
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However, this generalization does not represent exactly the singular points of the rational curve
parametrized by ( f (t), g(t)). Indeed, Eqs. (4.6) introduce a symmetry that mixes the four rational
curves parametrized by x = f (t)±1, y = g(t)±1 (see [GRY02, Theorem 3.1] for more details).

Using the notation (1.1), we claim that the polynomial

�(t) = SRes0(p,q)
(

g1(t,1), g2(t,1), g3(t,1)
) ∈ K[t] (4.7)

provides an appropriate extension of the Taylor resultant to the rational case, having exactly the
same properties (P1), (P2), (P3). Indeed, in the proof of Theorem 4.8 it is proved that the inequal-
ities of Proposition 4.6 are all equalities when the curve D is the curve defined by the polynomial
SRes0(p,q)(T1, T2, T3). This guarantees that its intersection with the curve C and is the adjoint divisor
of C and therefore that the properties (P1)–(P3) hold.

It should be noticed that the polynomial (4.7) already appeared in the paper [CS01] where the
authors showed that its roots are in correspondence with the proper singularities of C . However, they
did not prove the adjunction property of this polynomial.
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