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We generalize a criterion for tight monomials of quantum envelop-
ing algebras associated with symmetric generalized Cartan matri-
ces and a monomial basis property of those associated with sym-
metric (classical) Cartan matrices to their respective symmetrizable
case. We then link the two by establishing that a tight monomial
is necessarily a monomial defined by a weakly distinguished word.
As an application, we develop an algorithm to compute all tight
monomials in the rank 2 Dynkin case.
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The existence of Hall polynomials for Dynkin or cyclic quivers not only gives rise to a simple real-
ization of the ±-part of the corresponding quantum enveloping algebras, but also results in interesting
applications. For example, by specializing q to 0, degenerate quantum enveloping algebras have been
investigated in the context of generic extensions [20,8], while through a certain non-triviality prop-
erty of Hall polynomials, the authors [4,5] have established a monomial basis property for quantum
enveloping algebras associated with Dynkin and cyclic quivers. This property describes a systematic
construction of many monomial/integral monomial bases some of which have already been stud-
ied in the context of elementary algebraic constructions of canonical bases; see, e.g., [15,27,21,5] in
the simply-laced Dynkin case and [3,18], [9, Ch. 11] in general. Moreover, in the cyclic quiver case,
it has also been used in [10] to obtain an elementary construction of PBW-type bases, and hence, of
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canonical bases for quantum affine sln . In this paper, we will complete this program by proving this
property for all finite types.

The second purpose of the paper is to establish some relationship between the monomial basis
property and tight monomials. Following Lusztig [17], a monomial which is also a canonical basis
element is called a tight monomial. See also [19,1] for further work on tight monomials. We first
prove that the tight monomial criterion given in [22] for quantum enveloping algebras associated
with symmetric generalized Cartan matrices works also for all symmetrizable ones. This criterion
is built on Lusztig’s criterion for signed bases [16, Ch. 14]. Then we show in the finite type case
that a tight monomial is necessarily a monomial associated with a weakly distinguished word. Thus,
to test a monomial to be tight, it suffices to test monomials associated with weakly distinguished
words. We further conjecture that monomials associated with distinguished words cover all tight
monomials.

We organize the paper as follows. Beginning with a quiver Q with automorphism σ , we first
briefly review the relationship between representations of the path algebra A = kQ over the alge-
braic closure k = Fq of Fq and the fixed point Fq-algebra A F of the Frobenius morphism F = F Q ,σ ,q .
The generalization of the criterion for tight monomials is presented in Section 2. From Section 3 on-
wards, we assume that Q is a Dynkin quiver. In Sections 3–5, we define the generic extension map
℘ for a Dynkin quiver Q with automorphism σ and use it to establish the monomial basis property
for quantum enveloping algebras associated with (Q , σ ). In the last three sections, we discuss the
relationship between tight monomials and the monomial basis property. In Section 6, we prove that
a tight monomial is necessarily a monomial associated with a weakly distinguished word, and in Sec-
tion 7, we develop an algorithm to compute tight monomials of rank 2 and determine explicitly those
of type B2. Finally, in the last section, we verify the conjecture for type B2 that tight monomials all
arise from directed distinguished words and identify them as the canonical basis elements described
in [29].

Throughout the paper, Fq denotes the finite field of q elements and k is the algebraic closure Fq

of Fq . For an algebra B over a field, the category of finite-dimensional left B-modules will be denoted
by B-mod.

1. Preliminaries

Let Q = (Q 0, Q 1) be a finite quiver with vertex set Q 0 and arrow set Q 1, and let σ be an auto-
morphism of Q , that is, σ is a permutation on the vertices of Q and on the arrows of Q such that
σ(hρ) = hσ(ρ) and σ(tρ) = tσ(ρ) for any ρ ∈ Q 1, where hρ and tρ denote the head and the tail
of ρ , respectively.

Recall from [6] that there is a Frobenius morphism F Q ,σ ;q on the path algebra A := kQ of Q over
k = Fq defined by

F = F Q ,σ ;q : A → A,
∑

s

xs ps �→
∑

s

xq
s σ(ps),

where
∑

s xs ps is a k-linear combination of paths ps . This gives an Fq-algebra

A F = {
a ∈ A

∣∣ F (a) = a
}
.

If Q contains no oriented cycles, then A F is a finite-dimensional hereditary Fq-algebra. Conversely,
every finite-dimensional hereditary basic Fq-algebra is isomorphic to A F for some quiver Q with
automorphism σ (see [6, Th. 6.5] or [7, Th. 9.3]).

By [6, Prop. 4.2], there is a Frobenius twist functor

( )[1] : A-mod → A-mod, M �→ M[1]
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which is an equivalence of categories. Alternatively, let M be an A-module and F M : M → M be an
arbitrary Frobenius map on the k-vector space M . We define the F M -twist of M to be the A-module
M[F M ] such that M[F M ] = M as vector spaces and the A-module structure is given by

a ∗ m := F M
(

F −1
Q ,σ ;q(a)F −1

M (m)
)

for all a ∈ A, m ∈ M.

By [7, Lem. 2.5], M[F M ] is isomorphic to M[1] .
A module M ∈ A-mod is called F -stable if M ∼= M[1] . Moreover, for an F -stable A-module M ,

there is a Frobenius map F M on M satisfying

F M(am) = F Q ,σ ;q(a)F M(m) for all a ∈ A, m ∈ M,

that is, M[F M ] = M as A-modules. Consequently, we obtain an A F -module

M F = M F M = {
m ∈ M

∣∣ F M(m) = m
}
.

By [6, Th. 3.2], the correspondence M �→ M F induces a bijection between the isoclasses of F -stable
A-modules and those of A F -modules.

Suppose that Q contains no oriented cycles. Let I be the set of isoclasses of simple modules in
A F -mod. (Note that I identifies with the set of σ -orbits in Q 0.) The Grothendieck group K0(A F )

of A F -mod is then identified with the free abelian group ZI with basis I . Given a module M in
A F -mod, we denote by dim M the image of M in K0(A F ), called dimension vector of M . Then, for
each i ∈ I , we have a simple A F -module Si with dimension vector i. Hence, if dim M =∑

i∈I xi i, then
xi is the number of composition factors isomorphic to Si in a composition series of M .

The Euler from 〈−,−〉 : ZI × ZI → Z associated with (Q , σ ) is defined by

〈dim M,dim N〉 = dimFq HomA F (M, N) − dimFq Ext1
A F (M, N),

for M, N ∈ A F -mod. For i ∈ I , let di = dimFq EndA F (Si) = 〈i, i〉, and for i, j ∈ I , define

ci, j =
{

2, if i = j,
1
di

(〈dim Si,dim S j〉 + 〈dim S j,dim Si〉), if i 	= j.

The matrix C Q ,σ = (ci, j)i, j∈I is a symmetrizable generalized Cartan matrix with symmetrization D =
diag(di)i∈I .

Let g = g(C Q ,σ ) be the Kac–Moody algebra associated with C Q ,σ and let U = Uv (g) be the cor-
responding quantized enveloping algebra over the fraction field Q(v) in indeterminate v . We are
interested in the positive part U+ of U, which is by definition the Q(v)-subalgebra of U generated
by Ei , i ∈ I . Let Z = Z[v, v−1] be the Laurent polynomial ring over Z. Although the definition of U
depends on a realization of C Q ,σ , U+ depends only on C Q ,σ and is called the quantum algebra asso-
ciated with C Q ,σ (or (Q , σ )) in the sequel. Let U+ be the Z -subalgebra of U+ generated by divided

powers E(m)
i := Em

i

[m]!i
for all i ∈ I , m ∈ N, where [m]!i = [1]i[2]i · · · [m]i with [a]i = va

i −v−a
i

vi−v−1
i

(vi = vdi ).

Let Ω be the set of all words in the alphabet I . For each word w = i1i2 · · · im ∈ Ω , i =
(i1, . . . , it) ∈ It , and a = (a1, . . . ,at) ∈ Nt , define monomials

E w := Ei1 Ei2 · · · Eim ∈ U+,

E(a)
i := E(a1)

i E(a2)
i · · · E(at )

i ∈ U+. (1.0.1)

1 2 t
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Then U+ is spanned by {E w}w∈Ω , while U+ is spanned by {E(a)
i | i ∈ It , a ∈ Nt , t ∈ N}. Thus, it would

be interesting to ask how to extract monomial bases from these spanning sets. For quantum algebras
associated with a Dynkin or cyclic quiver, the answer is given in [4,5]. We will generalize this result
in Sections 3–5 to include the nonsimply-laced Dynkin cases.

2. A criterion for tight monomials: the general case

In [22], Reineke gave a criterion for a monomial to be tight (i.e., to be a canonical basis element)
in a quantum enveloping algebra associated with a symmetric generalized Cartan matrix. We will see
in this section that this criterion can be easily extended to all quantum enveloping algebras.

As in Section 1, let Q be a quiver with automorphism σ . Suppose that Q contains no oriented
cycles. Then C Q ,σ is a symmetrizable generalized Cartan matrix. Moreover, the Euler form 〈−,−〉
associated with (Q , σ ) gives a Cartan datum (I, ·) in the sense of [16, 1.1.1], where the bilinear form
ZI × ZI → Z, (x,y) �→ x · y is defined by

x · y = 〈x,y〉 + 〈y,x〉, for x,y ∈ ZI.

Thus, for each i ∈ I , i · i = 2〈i, i〉 = 2di . We will identify C Q ,σ with its associated Cartan datum (I, ·)
and speak of the quantum algebra U+ associated with (I, ·).

The algebra U+ admits an NI-grading U+ =⊕
x∈NI U+

x such that U+
x is spanned by all monomials

Ei1 · · · Eis with i1 + · · · + is = x. Given a homogeneous element x ∈ U+
x , we write |x| = x. For each

s � 2, there is a twisted product on the s-fold tensor product U+ ⊗ · · · ⊗ U+ given by

(x1 ⊗ · · · ⊗ xs)(y1 ⊗ · · · ⊗ ys) = v
∑

i> j |xi |·|y j |x1 y1 ⊗ · · · ⊗ xs ys,

where ⊗ = ⊗Q(v) , and x1, . . . , xs, y1, . . . , ys are homogeneous elements in U+ . This algebra is called
the s-fold graded tensor product of U+ and will be denoted by

(
U+)⊗̃s := U+ ⊗̃ · · · ⊗̃ U+︸ ︷︷ ︸

s

.

Following [16, 1.2.2], there is a unique algebra homomorphism r : U+ → U+ ⊗̃U+ such that r(Ei) =
Ei ⊗ 1 + 1 ⊗ Ei for each i ∈ I . Moreover,

(r ⊗ 1)r = (1 ⊗ r)r : U+ → U+ ⊗̃ U+ ⊗̃ U+.

In general, for each s � 2, there is an algebra homomorphism

r(s) : U+ → (
U+)⊗̃s

, Ei �→
∑

s1+s2=s−1

1⊗s1 ⊗ Ei ⊗ 1⊗s2 .

In particular, r = r(2) .
For i = (i1, . . . , it) ∈ It and a = (a1, . . . ,at) ∈ Nt , let E(a)

i be the monomial defined in (1.0.1). Using
[16, 1.4.2] and an inductive argument (see [22, Lem. 2.5]), we have for each s � 2,

r(s)(E(a)
i

)=
∑

a1+···+as=a

vηi,a E(a1)
i ⊗ · · · ⊗ E(as)

i , (2.0.2)
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where ar = (ar1, . . . ,art) ∈ Nt , for 1 � r � s, and

ηi,a =
∑

1�m�t
1�p<r�s

〈im, im〉apmarm +
∑

1�p<r�s
1�l<m�t

(il · im)apmarl.

The following results are taken from [16, Prop. 1.2.3] and [16, Lem. 1.4.4].

Lemma 2.1. There is a unique bilinear inner product (−,−) : U+ × U+ → Q(v) such that

(1) (1,1) = 1 and (Ei, E j) = δi, j
v2

i

v2
i −1

for all i, j ∈ I;

(2) (x, y′ y′′) = (r(x), y′ ⊗ y′′) for all x, y′, y′′ ∈ U+;
(3) (x′x′′, y) = (x′ ⊗ x′′, r(y)) for all x′, x′′, y ∈ U+ .

Here vi = vi·i/2 = vdi and (x′ ⊗ x′′, y′ ⊗ y′′) := (x′, y′)(x′′, y′′) for all x′, x′′, y′, y′′ ∈ U+ . Moreover, for each
i ∈ I and a � 0,

(
E(a)

i , E(a)
i

)=
a∏

m=1

1

(1 − v−2m
i )

= va(a+1)/2
i

(vi − v−1
i )a[a]!i

∈ (1 + v−1Z[[v−1]])∩ Q(v). (2.1.1)

Observe that the sum in (2.0.2) is taken over the decompositions of a = a1 + · · · + as each of
which defines an s × t matrix A = (arm) with rows a1, . . . ,as satisfying co(A) = a, where co(A) =
(
∑s

p=1 ap1, . . . ,
∑s

p=1 apt). We also put ro(A) = (
∑t

m=1 a1m, . . . ,
∑t

m=1 asm).

Definition 2.2. For any fixed i = (i1, . . . , it) ∈ It and a = (a1, . . . ,at) ∈ Nt , let Mi,a be the set of t × t
matrices A = (arm) with entries arm in N satisfying the conditions ro(A) = co(A) = a and arm = 0
unless ir = im . Define a quadratic form q : Mi,a → Z by setting

q(A) =
∑

1�m�t
1�p<r�t

〈im, im〉apmarm +
∑

1�p<r�t
1�l<m�t

(il · im)apmarl +
∑

1�r�t
1�l<m�t

〈ir, ir〉armarl,

for all A ∈ Mi,a .

We illustrate the definition with an example. This example will be repeatedly used in an algorithm
of computing tight monomials in the rank 2 case in Section 7.

Examples 2.3. Let (I, ·) be a Cartan datum of Dynkin type with I = {1,2}. Thus, U+ is a quantum
algebra associated with a rank 2 Cartan matrix.

(1) If i ∈ {(2,1,2), (1,2,1)} and a = (a1,a2,a3) ∈ N3, then

Mi,a = {
Ax
∣∣ 0 � x � min{a1,a3}

}
, where Ax =

[a1 − x 0 x
0 a2 0
x 0 a3 − x

]
,

and

q(Ax) = 〈i1, i1〉a11a31 + 〈i3, i3〉a31a33 + (i1 · i2)a22a31 + (i2 · i3)a13a22

+ (i1 · i3)a13a31 + 〈i1, i1〉a11a13 + 〈i3, i3〉a13a33

= 2〈i1, i1〉x(a1 − x) + 2〈i3, i3〉x(a3 − x) + (
(i1 · i2) + (i2 · i3)

)
xa2 + (i1 · i3)x2.
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(2) If i ∈ {(2,1,2,1), (1,2,1,2)} and a = (a1,a2,a3,a4) ∈ N4, then

Mi,a = {
Ax,y

∣∣ 0 � x � min{a1,a3}, 0 � y � min{a2,a4}
}
,

where

Ax,y =
⎡⎢⎣

a1 − x 0 x 0
0 a2 − y 0 y
x 0 a3 − x 0
0 y 0 a4 − y

⎤⎥⎦ ,

and

q(Ax,y) = 2
(〈i1, i1〉x(a1 − x) + 〈i2, i2〉y(a2 − y) + 〈i3, i3〉x(a3 − x) + 〈i4, i4〉y(a4 − y)

)
+ (

(i1 · i2) + (i2 · i3)
)
x(a2 − y) + (i1 · i3)x2 + (

(i1 · i4) + (i2 · i3)
)
xy + (i2 · i4)y2

+ (
(i2 · i3) + (i3 · i4)

)
y(a3 − x).

Lemma 2.1 together with (2.0.2) allows us to compute (E(a)
i , E(a)

i ) in terms of (E(ar )
ir

, E(ar )
ir

) and

(E(arm)
ir

, E(arm)
ir

) for all A = (arm) ∈ Mi,a . The proof of the following result is similar to that of
[22, Th. 2.2] for the symmetric case. However, we provide a proof for completeness.

Corollary 2.4. Keep the notation above. For i = (i1, . . . , it) ∈ It and a = (a1, . . . ,at) ∈ Nt , we have

(
E(a)

i , E(a)
i

)=
∑

A=(arm)∈Mi,a

vq(A)
∏

1�r,m�t

(
E(arm)

ir
, E(arm)

ir

)

=
t∏

r=1

(
E(ar)

ir
, E(ar)

ir

)+
∑

A=(arm)∈Mi,a\{Da}
vq(A)

∏
1�r,m�t

(
E(arm)

ir
, E(arm)

ir

)
,

where Da := diag(a1, . . . ,at).

Proof. By Lemma 2.1(3) and (2.0.2),

(
E(a)

i , E(a)
i

)= (
E(a1)

i1
⊗ · · · ⊗ E(at )

it
, r(t)

(
E(a)

i

))
=

∑
a1+···+at=a

vηi,a
(

E(a1)
i1

⊗ · · · ⊗ E(at )
it

, E(a1)
i ⊗ · · · ⊗ E(at )

i

)
=

∑
a1+···+at=a

vηi,a
∏

1�r�t

(
E(ar)

ir
, E(ar)

i

)
,

where ar = (ar1, . . . ,art) for 1 � r � t . By Lemma 2.1(2), (E(ar )
ir

, E(ar )
i ) 	= 0 unless ar = ar1 + · · · + art

and arm = 0 if im 	= ir . This implies that the matrix A = (arm) with rows a1, . . . ,at is in Mi,a , and

E(ar)
i = [ar ]!ir

[ar1]! ···[art ]! E(ar )
ir

. Therefore,

ir ir
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(
E(a)

i , E(a)
i

)=
∑

A=(arm)∈Mi,a

vηi,a
∏

1�r�t

(
E(ar)

ir
, E(ar)

i

)

=
∑

A=(arm)∈Mi,a

vηi,a
∏

1�r�t

[ar]!ir

[ar1]!ir
· · · [art]!ir

(
E(ar)

ir
, E(ar)

ir

)

=
∑

A=(arm)∈Mi,a

vηi,a
∏

1�r�t

[ar]!ir

[ar1]!ir
· · · [art]!ir

var(ar+1)/2
ir

(vir − v−1
ir

)ar [ar]!ir

=
∑

A=(arm)∈Mi,a

vηi,a
∏

1�r�t

v
∑

1�l<m�t armarl

ir

∏
1�m�t

varm(arm+1)/2
ir

(vir − v−1
ir

)arm [arm]!ir

=
∑

A=(arm)∈Mi,a

vq(A)
∏

1�r,m�t

(
E(arm)

ir
, E(arm)

ir

)
,

as required. The last equality follows from the fact that q(Da) = 0. �
Let B be the canonical basis of U+; see Remark 4.5. Following [17], a monomial E(a)

i is called tight
if it belongs to B. We now can easily extend [22, Th. 3.2] to the general case.

Theorem 2.5. Let U+ be the quantum algebra associated with a Cartan datum (I, ·). For i = (i1, . . . , it) ∈ It

and a = (a1, . . . ,at) ∈ Nt , the monomial E(a)
i is tight if and only if q(A) < 0 for all A ∈ Mi,a\{Da}.

Proof. By [16, Ch. 14] (see also [22, Prop. 3.1]),

E(a)
i ∈ B ⇔ (

E(a)
i , E(a)

i

) ∈ (1 + v−1Z[[v−1]])∩ Q(v).

Furthermore, by (2.1.1), for all A = (arm) ∈ Mi,a and 1 � r,m � t ,(
E(arm)

ir
, E(arm)

ir

) ∈ (1 + v−1Z[[v−1]])∩ Q(v).

The assertion then follows from Corollary 2.4. �
The following result is very useful in the determination of tight monomials; see Section 7 for the

rank 2 case.

Corollary 2.6. Let i = (i1, . . . , it) ∈ It and a = (a1, . . . ,at) ∈ Nt . Suppose E(a)
i is tight. Then the monomials

E(ar )
ir

E
(ar+1)

ir+1
· · · E(as)

is
, for all 1 � r � s � t, are also tight. Moreover, if E(a)

i is tight with a sincere, then ir 	= ir+1

for all 1 � r < t.

Proof. Write j = (ir, . . . , is) and b = (ar, . . . ,as). Then

E(b)
j = E(ar)

ir
E

(ar+1)

ir+1
· · · E(as)

is
.

For each B ∈ M j,b , define

B̃ =
[ Da′ 0 0

0 B 0
′′

]
,

0 0 Da
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where a′ = (a1, . . . ,ar−1) and a′′ = (as+1, . . . ,at). It is easy to see that B̃ ∈ Mi,a and q(B) = q(B̃).

Moreover, B̃ = Da if and only if B = Db . Since E(a)
i is tight, we get by Theorem 2.5 that

q(B) = q(B̃) < 0 for all B ∈ M j,b\{Db}.

Applying Theorem 2.5 again, we conclude that E(b)
j is tight, as desired.

With a similar argument, the last assertion follows from the fact that, for any positive integers a,b
and i ∈ I , the monomial E(a)

i E(b)
i is not tight. �

3. The generic extension map associated with ( Q ,σ )

One of the main ingredients in describing the monomial basis property is the generic extension
map ℘ from the set Ω of all words in the index set I of simple representations to the set of isoclasses
of all representations over Fq . Since representations of a Dynkin quiver Q over an arbitrary field
are determined by their dimension vectors, we can simply define the map ℘ by sending a word
w = i1i2 . . . ir to the generic extension Si1 ∗ Si2 ∗ · · · ∗ Sir of simple representations Si1 , Si2 , . . . , Sir of
Q over k. This definition does not make sense if k is replaced by the finite field Fq . However, the
theory developed in Section 1 can be used to generalize the definition of ℘ .

From now on, we assume that Q is a (connected) Dynkin quiver, that is, the underlying graph of
Q is a Dynkin graph (of type A, D or E). Suppose σ is an automorphism of Q . By a well-known
result in [13,12], the correspondence M �→ dim M induces a bijection between the set of isoclasses of
indecomposable A F -modules and the set of positive roots Φ+ = Φ+(Q , σ ) of the simple Lie algebra
g = g(C Q ,σ ) associated with C Q ,σ . For each α ∈ Φ+ , let Mq(α) denote the corresponding indecom-
posable A F -module. Thus, dim Mq(α) = α. By the Krull–Remak–Schmidt theorem, every A F -module
M is isomorphic to

M(λ) = Mq(λ) :=
⊕

α∈Φ+
λ(α)Mq(α)

for some function λ : Φ+ → N. Hence, the isoclasses of A F -modules are indexed by the set

P = P(Q ,σ ) := {
λ
∣∣Φ+ → N

}
,

which is clearly independent of q. For convenience, we will view each α ∈ Φ+ as the function
Φ+ → N, β �→ δαβ in P.

It is shown in [20] that for any two A-modules M and N , there is a unique (up to isomorphism)
extension G of M by N (i.e., 0 → N → G → M → 0) with minimal dimension of its endomorphism
algebra EndA(G), which is denoted by G = M ∗ N and called generic extension of M by N . Moreover,
for given A-modules L, M, N ,

(1) (L ∗ M) ∗ N ∼= L ∗ (M ∗ N),
(2) L ∗ 0 ∼= L ∼= 0 ∗ L.

Thus, there is a monoid structure on the set M Q of isoclasses of A-modules with multiplication
[M] ∗ [N] = [M ∗ N] and identity 1 = [0]. This monoid M Q has been studied in [20]. We have the
following result (see [9, Prop. 11.1]).

Lemma 3.1. Let M and N be F -stable A-modules. Then M ∗ N is also F -stable.

Proof. Since the Frobenius twist functor ( )[1] : A -mod → A-mod is an equivalence of categories, we
get (M ∗ N)[1] ∼= M[1] ∗ N[1] . From M[1] ∼= M and N[1] ∼= N it follows that (M ∗ N)[1] ∼= M ∗ N , that is,
M ∗ N is F -stable. �
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In views of this lemma, the set M Q ,σ of the isoclasses of F -stable A-modules becomes a sub-
monoid of M Q . For each vertex i ∈ I , define S{i} = Si ⊗Fq k. It is a semisimple A-module. Then, S{i},
i ∈ I , form a complete set of simple F -stable A-modules.

The following lemma can be proved by using an argument similar to that in the proof of [20,
Prop. 3.3]; see [9, Prop. 11.2].

Lemma 3.2. The monoid M Q ,σ is generated by [S{i}], i ∈ I = Γ0 .

Let MA F be the set of isoclasses of A F -modules, i.e., MA F = {[Mq(λ)] | λ ∈ P}. Applying the
correspondence M �→ M F to M Q ,σ yields

MA F = {[
M F ] ∣∣ [M] ∈ M Q ,σ

}
.

Thus, there is a map ℘ from Ω to P (or equivalently, to M A F ) defined by

[
Mq
(
℘(w)

)]= [(
S{i1} ∗ · · · ∗ S{im})F ]

, for all w = i1i2 · · · im ∈ Ω. (3.2.1)

This map ℘ : Ω → P, w �→ ℘(w) is called the generic extension map associated with (Q , σ ). By
Lemma 3.2, ℘ is surjective, and it induces a partition Ω =⋃

λ∈P ℘−1(λ).

Remark 3.3. Associated with the generic extension map ℘ , one defines a generic extension graph as in
[11, Def. 2.3]. It would be interesting to compare the generic extension graph with the corresponding
crystal graph; see [11] for the type A case.

4. The monomial basis property

Keep the notation introduced in the previous sections. Thus, (Q , σ ) is a Dynkin quiver with
automorphism, and A = kQ (resp., F = F Q ,σ ;q) is the associated path algebra (resp., Frobe-
nius morphism). Let U+ be the quantum algebra over Q(v) associated with (Q , σ ) with Z -
subalgebra U+ .

For A F -modules M, N1, . . . , Nm , let F M
N1,...,Nm

denote the number of filtrations

M = M0 ⊇ M1 ⊇ · · · ⊇ Mm−1 ⊇ Mm = 0

such that Ms−1/Ms ∼= Ns for all 1 � s � m. Ringel [25] shows that for λ,μ1, . . . ,μm ∈ P, there is an
integral polynomial ϕλ

μ1,...,μm
(T ) ∈ Z[T ], called a Hall polynomial, such that for any finite field Fq of q

elements,

ϕλ
μ1,...,μm

(q) = F
Mq(λ)

Mq(μ1),...,Mq(μm).

By definition, the (twisted generic) Ringel–Hall algebra H = HZ (Q , σ ) of (Q , σ ) is the free Z -
module with basis {uλ = u[M(λ)] | λ ∈ P}, and the multiplication is defined by

uλuμ = v〈λ,μ〉 ∑
π∈P

ϕπ
λ,μ

(
v2)uπ ,

where 〈λ,μ〉 = 〈dim M(λ),dim M(μ)〉. For each i ∈ I , we write ui = u[Si ] .
Ringel [24,26] proves that there is a Z -algebra isomorphism

U+ ∼→H, E(m)
i �→ u(m)

i := um
i

[m]! (i ∈ I). (4.0.1)

i
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In what follows, we simply identify U+ with H under this isomorphism. In particular, {uλ}λ∈P forms
a Z -basis for U+ .

For w = i1i2 · · · im ∈ Ω and λ ∈ P, let ϕλ
w(T ) denote the Hall polynomial ϕλ

i1,...,im
(T ). Thus, for each

finite field Fq , ϕλ
w(q) = F

Mq(λ)

Si1 ,...,Sim
. Let further w be written in the tight form w = jm1

1 · · · jml
l , where

ji 	= ji+1 for all 1 � i < l. We then denote ϕλ
m1 j1,...,ml jl

(T ) by γ λ
w(T ), i.e., γ λ

w(q) := F
Mq(λ)

m1 S j1 ,...,ml S jl
is the

number of reduced filtrations

Mq(λ) = L0 ⊃ L1 ⊃ · · · ⊃ Ll−1 ⊃ Ll = 0

satisfying Li−1/Li ∼= mi S ji for all 1 � i � l. A word w is called weakly distinguished if γ
℘(w)
w (T ) = T d

for some d ∈ N. We remark that distinguished words considered in [6,7] are defined by the condition
γ

℘(w)
w (T ) = 1. The weak version considered here will become apparent in Section 6 as the words

associated with tight monomials are necessarily weakly distinguished.
To each word w = jm1

1 · · · jml
l ∈ Ω in the alphabet I , where ji 	= ji+1 for all 1 � i < l, we attach a

monomial

m(w) := E(m1)
j1

E(m2)
j2

· · · E(ml)

jl
∈ U+.

If we associate the word

w i,a = i1 · · · i1︸ ︷︷ ︸
a1

· · · it · · · it︸ ︷︷ ︸
at

∈ Ω (4.0.2)

with i = (i1, . . . , it) ∈ It and a = (a1, . . . ,at) ∈ Nt , then m(w i,a) = E(a)
i in the notation of (1.0.1) when-

ever i j 	= i j+1 for all 1 � j < t . The following result answers the monomial basis question in the finite
type case.

Theorem 4.1. Let Q be a Dynkin quiver with automorphism σ and U+ (resp. U+) the quantum algebra over
Q(v) (resp. Z ) associated with (Q , σ ). For each λ ∈ P(Q , σ ), choose an arbitrary word wλ ∈ ℘−1(λ).

(1) The set {E wλ | λ ∈ P} is a Q(v)-basis of U+ .
(2) If, moreover, all wλ are weakly distinguished, then the set {m(wλ) | λ ∈ P} is a Z -basis of U+ .

This theorem generalizes [5, Th. 1.1]. Note that various integral monomial bases described in
part (2) have already been introduced in the simply-laced case; see, for example, [15,27,21,5]. When
all wλ are distinguished, part (2) is given in [9, Th. 11.13].

The proof of part (1) of the theorem will be given in the next section. We make some preparations
and prove part (2) in the rest of the section.

The degeneration order relation plays a key role in the proof and in the construction of canonical
bases. We maintain the assumption that Q is a Dynkin quiver with automorphism σ and A = kQ is
the path algebra of Q over k.

Definition 4.2. Given two A-modules M, N of the same dimension vector, we say that M degenerates
to N , or that N is a degeneration of M , and write N �dg M , if for all X ∈ A-mod,

dimk HomA(X, N) � dimk HomA(X, M).

Furthermore, the relation �dg defines a partial order on the set M Q of isoclasses of A-modules,
called the degeneration order (see [23,2]).
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· [[m]]i
The poset (M Q ,�dg) is compatible with the monoid structure on M Q (see [20]). More precisely,
for given A-modules M, N, M ′, N ′ , we have

M �dg M ′, N �dg N ′ ⇒ M ∗ N �dg M ′ ∗ N ′. (4.2.1)

Restricting the order �dg to the submonoid M Q ,σ induces a partial order relation on MA F (and
hence on P = P(Q , σ )). In other words, P has a partial order defined by

λ � μ ⇔ Mq(λ) ⊗ k �dg Mq(μ) ⊗ k, λ,μ ∈ P.

The next result follows directly from the definition and (4.2.1).

Proposition 4.3. For each w = i1i2 · · · im ∈ Ω , we have

E w = vε1(w)
∑

λ�℘(w)

ϕλ
w

(
v2)uλ, (4.3.1)

where ε1(w) =∑
1�r<s�m〈dim Sir ,dim Sis 〉.

Now, for each word w = jm1
1 · · · jml

l ∈ Ω in tight form,

m(w) = E(m1)
j1

· · · E(ml)

jl
=
(

l∏
r=1

[mr]!jr

)−1

um1
j1

· · ·uml
jl

.

Since
∏l

r=1[mr]!jr
= v−ε2(w)

∏l
r=1[[mr]]!jr

, where ε2(w) :=∑l
r=1 mr(mr −1)d jr /2 and [[m]]!i = [[1]]i[[2]]i · ·

with [[a]]i = v2a
i −1

v2
i −1

, we have, by Proposition 4.3, that

m(w) =
(

l∏
r=1

[[mr]]!jr

)−1

vε2(w)uw = vε1(w)+ε2(w)
∑

λ�℘(w)

γ λ
w

(
v2)uλ. (4.3.2)

For λ ∈ P, let

Eλ = vdim End(M(λ))−dim M(λ)uλ. (4.3.3)

If w is a directed distinguished word in ℘−1(λ) (see [5, §5] and [9, §11.2] for definition and existence
and see Section 7 for certain examples), then [5, 6.6] and [9, Lem. 11.31] imply that

ε1(w) + ε2(w) = dim End
(
M(λ)

)− dim M(λ). (4.3.4)

In particular, combining (4.3.2) and (4.3.3) yields

m(w) = E℘(w) +
∑

μ<℘(w)

fμ,℘(w)Eμ, (4.3.5)

where fμ,℘(w) ∈ Z . Thus, if we choose wλ to be directed distinguished for every λ ∈ P, then (4.3.5)



3366 B. Deng, J. Du / Journal of Algebra 324 (2010) 3355–3377
gives

Eλ = m(wλ) +
∑
μ<λ

gμ,λm
(wμ). (4.3.6)

Now (4.3.5) and (4.3.6) imply

ι(Eλ) = Eλ +
∑
μ<λ

rμ,λEμ, (4.3.7)

where ι is the Z-algebra involution on U+ defined by

ι: U+ → U+, E(m)
i �→ E(m)

i , v �→ v−1.

Corollary 4.4. For a weakly distinguished word w ∈ ℘−1(λ) with γ λ
w(T ) = T d, (4.3.5) continues to hold. In

particular, for any weakly distinguished word w ∈ ℘−1(λ),

ε1(w) + ε2(w) + 2d = dim End
(
M(λ)

)− dim M(λ).

Proof. By (4.3.2), m(w) = vs E℘(w) +∑
λ<℘(w) hμ,℘(w)Eλ, where

s = ε1(w) + ε2(w) + 2d − dim End
(
M(λ)

)+ dim M(λ).

Applying ι and (4.3.7) yields m(w) = v−s E℘(w) +∑
λ<℘(w) h′

μ,℘(w)Eλ. Hence, s = 0, giving the first
assertion. The last assertion is a direct consequence of the first one. �

This proves part (2) of Theorem 4.1.

Remark 4.5. The above result shows that one may use a monomial basis associated with weakly
distinguished words described in Theorem 4.1(2) to get the relation (4.3.7), and hence, to construct
the canonical basis B = {cλ | λ ∈ P} for U+ which is defined uniquely by the conditions

ι(cλ) = cλ, cλ ∈ Eλ +
∑
μ<λ

v−1Z
[
v−1]Eμ.

In particular, a monomial m(w) lies in B (i.e., m(w) is a tight monomial) if and only if m(w) ∈ Eλ +∑
μ<λ v−1Z[v−1]Eμ .

5. Proof of Theorem 4.1(1)

By Proposition 4.3, it suffices to prove the following statement:

(∗) For any given λ ∈ P(Q ,σ ), we have ϕλ
w(T ) 	= 0 for all w ∈ ℘−1(λ).

If σ = id, this result is a weaker version of [5, Prop. 6.2].

Proof. As before, let A = kQ be the path algebra of Q . It is well known that each A-module identifies
with a representation of Q over k. For a representation V = (V i, Vρ) of Q over k, define σ V =
(W i, Wρ) by setting Wσ(a) = Va and Wσ(ρ) = Vρ for all a ∈ Q 0 and all ρ ∈ Q 1. In other words, as an
A-module, σ V is the module obtained by twisting the A-action on V via the algebra automorphism
of A induced by σ .
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For each π ∈ P, set

Mq(π)k = Mq(π) ⊗Fq k,

which is an F -stable A-module. Let dim Mq(π)k = (ca) ∈ NQ 0 . Up to isomorphism, we can identify
Mq(π)k with a representation (Va, Vρ) of Q with Va = kca and Vρ ∈ kchρ×ctρ for all a ∈ Q 0 and
ρ : tρ → hρ ∈ Q 1. Then Mq(π)k =⊕

a∈Q 0
Va , and there is a standard Frobenius map Fπ on Mq(π)k

by taking (x1, . . . , xca ) ∈ Va to (xq
1, . . . , xq

ca ) ∈ Va . Since Mq(π)k is defined over Fq , we may suppose
that all entries in matrices Vρ , ρ ∈ Q 1, are chosen in Fq . Then M ′

q(π) = {x ∈ Mq(π)k | Fπ (x) = x}
becomes an Fq Q -module. On the other hand, the Frobenius twist Mq(π)

[Fπ ]
k = (Wa, Wρ) (rela-

tive to the Frobenius morphism F Q ,σ ;q on A) is given by Wσ(a) = Va and Wσ(ρ) = Vρ for a ∈ Q 0
and ρ ∈ Q 1. Hence, (Mq(π)k)

[Fπ ] identifies with σ (Mq(π)k). The F -stability of Mq(π)k implies that
(Mq(π)k)

[Fπ ] = σ (Mq(π)k) is isomorphic to Mq(π)k . We fix an isomorphism ψπ : σ (Mq(π)k) →
Mq(π)k , which is again defined over Fq since both modules are so. Then F ′

π := ψπ Fπ is also a Frobe-
nius map on Mq(π)k such that (Mq(π)k)

[F ′
π ] = Mq(π)k as A-modules. Then the fixed-point module

(Mq(π)k)
F ′
π = {x ∈ Mq(π)k | F ′

π (x) = x} is an A F -module, which can be identified with Mq(π).
We first show the following:

Claim. For i ∈ I , λ,μ ∈ P with μ 	= 0, if Mq(λ)k
∼= S{i} ∗ Mq(μ)k, then ϕλ

i,μ(T ) 	= 0.

From the definition, we have (see, for example, [28, Prop. 1])

F
Mq(λ)

Si ,Mq(μ) =
|E Mq(λ)

Si ,Mq(μ)|
|AutA F (Mq(μ))||AutA F (Si)| ,

where E Mq(λ)

Si ,Mq(μ)
denotes the set of pairs ( f , g) of A F -module homomorphisms such that

0 → Mq(μ)
f→ Mq(λ)

g→ Si → 0

is an exact sequence. The fact Mq(λ)k
∼= S{i} ∗ (Mq(μ)k) implies that

dimk Mq(λ)k = dimk Mq(μ)k + dimk S{i} and dimFq Mq(λ) = dimFq Mq(μ) + dimFq Si .

Since, up to isomorphism, Si is the unique A F -module of dimension vector i, any injective homomor-
phism f : Mq(μ) → Mq(λ) induces an exact sequence

0 → Mq(μ)
f→ Mq(λ) → Si → 0.

Thus, we obtain

F
Mq(λ)

Si ,Mq(μ) = |X |
|AutA F (Mq(μ))| ,

where X is the set of all injective A F -module homomorphisms f : Mq(μ) → Mq(λ). Consequently,
to show the claim, it suffices to prove that X is not empty for sufficient large q.

As indicated above, we have Frobenius maps Fλ, F ′
λ on Mq(λ)k and Frobenius maps Fμ, F ′

μ on
Mq(μ)k satisfying F ′

λ = ψλ Fλ and F ′
μ = ψμ Fμ . They induce a standard Frobenius map
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Fλ,μ : HomA
(
Mq(μ)k, Mq(λ)k

)→ HomA
(
Mq(μ)k, Mq(λ)k

)
, f �→ Fλ f F −1

μ

and a Frobenius map

F ′
λ,μ : HomA

(
Mq(μ)k, Mq(λ)k

)→ HomA
(
Mq(μ)k, Mq(λ)k

)
, f �→ F ′

λ f F ′
μ

−1
.

From the construction, via restriction of maps we can identify

HomA
(
Mq(μ)k, Mq(λ)k

)F ′
λ,μ = HomA F

(
Mq(μ), Mq(λ)

)
,

whereas

HomA
(
Mq(μ)k, Mq(λ)k

)Fλ,μ = HomFq Q
(
M ′

q(μ), M ′
q(λ)

)
.

Further, we have F ′
λ,μ = ψ Fλ,μ , where

ψ : HomA
(
Mq(μ)k, Mq(λ)k

)→ HomA
(
Mq(μ)k, Mq(λ)k

)
, f �→ ψλ f ψ−1

μ .

Let Y be the set of all injective A-module homomorphisms: Mq(μ)k → Mq(λ)k . It is an open subset
of the affine space V := HomA(Mq(μ)k, Mq(λ)k). Since Mq(λ)k

∼= S{i} ∗ Mq(μ)k , Y is not empty.
Moreover, Y is stable under both Fλ,μ and F ′

λ,μ , and thus,

X = Y F ′
λ,μ := {

y ∈ Y
∣∣ F ′

λ,μ(y) = y
}
.

For the standard Frobenius map Fλ,μ on V , we have by the theorem of Lang and Weil [14] that

∣∣Y Fλ,μ
∣∣≈ qt,

where t = dimk V and ≈ means asymptotical behaviour. The standard Frobenius map Fλ,μ on V
induces a Frobenius map F on GLk(V ) by taking g → Fλ,μg F −1

λ,μ . By the known Lang theorem, there
is ψ1 ∈ GLk(V ) such that

ψ = ψ1 F
(
ψ−1

1

)= ψ1 Fλ,μψ−1
1 F −1

λ,μ.

Hence, F ′
λ,μ = ψ Fλ,μ = ψ1 Fλ,μψ−1

1 . Then Y1 := Y ∩ ψ−1
1 (Y ) is open in V and ψ1(Y1) =

Y ∩ ψ1(Y ). It is easy to see that Y1 and ψ1(Y1) are stable under Fλ,μ and F ′
λ,μ , respectively,

and that

∣∣Y Fλ,μ

1

∣∣= ∣∣ψ1(Y1)
F ′
λ,μ
∣∣.

By |Y Fλ,μ

1 | ≈ |Y Fλ,μ | ≈ qt , we finally get that

∣∣Y F ′
λ,μ
∣∣≈ ∣∣ψ1(Y1)

F ′
λ,μ
∣∣≈ qt,

that is, |X | ≈ qt . We conclude that ϕλ
i,μ(T ) 	= 0, proving the claim.

Let w = i1i2 . . . im ∈ Ω with m � 1. If m = 1, then clearly ϕ
℘(w)
w (T ) = 1 	= 0. Now suppose m � 2

and set w1 = i2 . . . im , λ = ℘(w) and μ = ℘(w1). Then Mq(λ)k
∼= Si1 ∗ Mq(μ)k , and hence, by the
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claim above, ϕλ
i,μ(T ) 	= 0. On the other hand, by induction, we may suppose that ϕ

μ
w1 (T ) 	= 0. Thus,

there is some prime power q such that

F
Mq(λ)

Si1 ,Mq(μ) 	= 0 and F
Mq(μ)

Si2 ,...,Sim
	= 0.

This implies that

F
Mq(λ)

Si1 ,Si2 ,...,Sim
=
∑
π∈P

F
Mq(λ)

Si1 ,Mq(π) F
Mq(π)

Si2 ,...,Sim
	= 0.

Therefore, ϕ
℘(w)
w (T ) 	= 0. �

6. Tight monomials and weakly distinguished words

We are now ready to establish a relationship between tight monomials and weakly distinguished
words. Assume again that Q is a Dynkin quiver with automorphism σ . Thus, C Q ,σ is a classical
Cartan matrix (of finite type). We keep all the notation in the previous sections. In particular, U+ is
the quantum algebra associated with (Q , σ ), which is identified with H⊗Z Q(v) via Ei �→ ui = ui ⊗1,
℘ is the generic extension map, and {cλ | λ ∈ P} is the canonical basis of U+ .

Proposition 6.1. Let i, j ∈ It and a, b ∈ Nt . If both E(a)
i and E(b)

j are tight and ℘(w i,a) = ℘(w j,b), then

E(a)
i = E(b)

j .

Proof. Let λ = ℘(w i,a) = ℘(w j,b). Applying (4.3.5) gives that

E(a)
i =

∑
μ�λ

φλ,μ

(
v, v−1)Eμ and E(b)

j =
∑
μ�λ

φ′
λ,μ

(
v, v−1)Eμ,

where φλ,μ(v, v−1),φ′
λ,μ(v, v−1) ∈ Z[v, v−1]. By the statement (∗) in Section 4, φλ,λ(v, v−1) 	= 0 and

φ′
λ,λ(v, v−1) 	= 0. Since both E(a)

i and E(b)
j are tight, we must have E(a)

i = cλ = E(b)
j . �

Call a = (a1, . . . ,at) ∈ Nt sincere if ai 	= 0 for all i.

Theorem 6.2. Let i = (i1, . . . , it) ∈ It and a = (a1, . . . ,at) ∈ Nt . If E(a)
i is tight, then the word w i,a defined

in (4.0.2) is weakly distinguished. More precisely, we have ir 	= ir+1 , for all 1 � r < t, and the Hall polynomial

ϕ
℘(w i,a)

a1 i1,...,at it
(T ) = T d with

d = 1

2

( ∑
1�r<p�t

apar〈ip, ir〉 + dim Ext1(M(λ), M(λ)
))

.

Proof. Without loss of generality, we assume that a is sincere. Write λ = ℘(w i,a). By the definition
of the multiplication in H(Q , σ ),

E(a)
i = E(a1)

i1
· · · E(at )

it
= u(a1)

i1
· · · u(at )

it

=
(

t∏
var(ar−1)

ir

)
u[a1 Si1 ] · · · u[at Sit ]
r=1
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=
(

t∏
r=1

var(ar−1)
ir

)
v
∑

1�p<r�t apar〈ip ,ir〉 ∑
μ�λ

ϕ
μ
a1i1,...,at it

(
v2)uμ

=
(

t∏
r=1

var(ar−1)
ir

)
v
∑

1�p<r�t apar〈ip ,ir〉 ∑
μ�λ

ϕ
μ
a1i1,...,at it

(
v2)vdimM(μ)−dim End(M(μ))Eμ.

Since E(a)
i is tight, we have E(a)

i = cλ . Therefore,

(
t∏

r=1

var(ar−1)
ir

)
v
∑

1�p<r�t apar〈ip ,ir〉vdimM(λ)−dim End(M(λ))ϕλ
a1i1,...,at it

(
v2)= 1,

that is, ϕ
℘(w i,a)

a1 i1,...,at it
(T ) = T d′

, where

d′ = 1

2

(
−

t∑
r=1

ar(ar − 1)〈ir, ir〉 −
∑

1�p<r�t

apar〈ip, ir〉 − dim M(λ) + dim End
(
M(λ)

))
.

Since dim M(λ) =∑t
r=1 ar dim Sir =∑t

r=1 ar〈ir, ir〉 and∑
1�p,r�t

apar〈ip, ir〉 = 〈
dim M(λ),dim M(λ)

〉
= dim End

(
M(λ)

)− dim Ext1(M(λ), M(λ)
)
,

it follows that d′ = d. �
Remark 6.3. It is very likely that a Hall polynomial of the form γ λ

w(T ) (obtained by counting the
number of reduced filtrations) cannot be a nonzero power of T . Thus, we conjecture that tight mono-
mials are monomials associated with distinguished words. In fact, examples in Section 8 show that
tight monomials are monomials associated with directed distinguished words (see [9, §11.2] for a
definition).

7. Computing tight monomials: the rank 2 Dynkin case

We now develop an algorithm for computing tight monomials in the Dynkin case of rank 2. As
in Example 2.3, we consider in this section a quantum algebra U+ associated with a rank 2 Cartan
datum (I, ·) of Dynkin type. Thus, I = {1,2}. By (4.0.1), we can identify U+ with the Ringel–Hall
algebra H ⊗Z Q(v) via Ei �→ ui = ui ⊗ 1.

For i = (i1, . . . , ii) ∈ It and a = (a1, . . . ,at) ∈ Nt , we are going to determine the tightness of the
monomial

E(a)
i = E(a1)

i1
· · · E(at )

it
∈ U+.

Without loss of generality, we suppose that all ai are positive, i.e., a is sincere.
First, it is direct to see from Remark 4.5 that E(a)

i is tight whenever t � 2. In other words, the
monomials

E(a1)
1 , E(a1)

2 , E(a1)
1 E(a2)

2 , E(a1)
2 E(a2)

1 (a1 > 0, a2 > 0)
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are tight. Now we determine those for t � 3. The algorithm given below repeatedly uses the sets Mi,a
and the quadratic forms described in Example 2.3.

7.1. Type A2

The canonical basis in this case is known and consists of tight monomials; see, e.g., [15, 3.4]. As a
starting point of the algorithm, we give an independent construction. The Euler form in this case is
defined by 〈x,y〉 = x1 y1 + x2 y2 − x2 y1 for x,y ∈ ZI . Thus, the associated quiver Q has two vertices
1,2 and an arrow from 2 to 1.

If t = 3, by Theorem 6.2, it suffices to consider i ∈ {(2,1,2), (1,2,1)}, and by Example 2.3(1),

q(Ax) = −2x2 + 2(a1 + a3 − a2)x,

for all Ax ∈ Mi,a with a = (a1,a2,a3) ∈ N3. By Theorem 2.5, if E(a)
i is tight, then q(Ax) < 0 for all

0 < x � min{a1,a3}. Setting x = 1 implies a1 + a3 � a2. Hence, we obtain

E(a1)
2 E(a2)

1 E(a3)
2

(
resp., E(a1)

1 E(a2)
2 E(a3)

1

)
is tight ⇔ a1 + a3 � a2.

If t ��� 4, then all monomials E(a)
i are not tight. This can be proved by an argument similar to the

t � 5 case below. However, an application of the generic extension map defined in Section 3 shows
that the founded tight monomials above already form the whole canonical basis.

Consider an arbitrary representation M of Q labelled by (a,b, c) in the sense that M ∼= aS1 ⊕
bS12 ⊕ cS2, where S12 is the indecomposable module with dimension vector (1,1). If we choose
a = (b,b + c,a), then a1 + a3 � a2 is equivalent to a � c and ℘(2b1b+c2a) = (a,b, c). If we choose
a = (c,a + b,b), then a1 + a3 � a2 is equivalent to a � c and ℘(1c2a+b1b) = (a,b, c). Moreover, a = c
if and only if ℘(1c2a+b1b) = ℘(2b1b+c2a). Hence, we have proved the following (cf., [9, Prop. 11.35]).

Proposition 7.1.1. The set

{
E(a1)

2 E(a2)
1 E(a3)

2

∣∣ a ∈ N3, a1 + a3 � a2
}∪ {E(a1)

1 E(a2)
2 E(a3)

1

∣∣ a ∈ N3, a1 + a3 � a2
}

is a complete set of tight monomials of type A2 (and forms the canonical basis).

7.2. Type B2

The canonical basis in this case is constructed in [29]. However, not all tight monomials are iden-
tified in this construction; see Proposition 8.2 below.

Consider the following quiver Q of type A3

•
•

•

and let σ be the automorphism of Q defined by exchanging two arrows. Then

A F = (kQ )F Q ,σ ;q ∼=
[

Fq Fq2

0 Fq2

]
.

Up to isomorphism, there are two simple A F -modules S1 and S2 with dimFq S1 = 1 and dimFq S2 = 2.
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Then the Euler form 〈−,−〉 : ZI × ZI → Z of (Q , σ ) is given by

〈x,y〉 = x1 y1 + 2x2 y2 − 2x2 y1 for x,y ∈ ZI.

Also, the associated Cartan datum (I, ·) is defined by

x · y = 〈x,y〉 + 〈y,x〉 = 2x1 y1 + 4x2 y2 − 2x2 y1 − 2x1 y2,

and the associated Cartan matrix C Q ,σ = [ 2 −2
−1 2

]
has type B2.

If t = 3, by Theorem 6.2, it suffices to consider i ∈ {(2,1,2), (1,2,1)}, and by Example 2.3(1),

q(Ax) =
{−4x2 + 4(a1 + a3 − a2)x, if i = (2,1,2);

−2x2 + 2(a1 + a3 − 2a2)x, if i = (1,2,1),

for all Ax ∈ Mi,a with a = (a1,a2,a3) ∈ N3. Since 0 � x � min{a1,a3}, by Theorem 2.5,{
E(a1)

2 E(a2)
1 E(a3)

2 is tight ⇔ a1 + a3 � a2;
E(a1)

1 E(a2)
2 E(a3)

1 is tight ⇔ a1 + a3 � 2a2.

If t = 4, again by Theorem 6.2, we only need to consider i = (2,1,2,1) or (1,2,1,2). By Example
2.3(2), for each Ax,y ∈ Mi,a ,

q(Ax,y) =
{−(2x − y)2 − y2 + 4(a1 − a2 + a3)x + 2(a2 − 2a3 + a4)y, if i = (2,1,2,1);

−x2 − (x − 2y)2 + 2(a1 − 2a2 + a3)x + 4(a2 − a3 + a4)y, if i = (1,2,1,2).

Applying Theorem 2.5 gives that{
E(a1)

2 E(a2)
1 E(a3)

2 E(a4)
1 is tight ⇔ a1 + a3 � a2 and a2 + a4 � 2a3;

E(a1)
1 E(a2)

2 E(a3)
1 E(a4)

2 is tight ⇔ a1 + a3 � 2a2 and a2 + a4 � a3.
(7.0.1)

If t ��� 5, then all monomials E(a)
i are not tight. By Theorem 6.2 and Corollary 2.6, it suffices to

show the case for i = (2,1,2,1,2) or (1,2,1,2,1).
First, suppose that E(a1)

2 E(a2)
1 E(a3)

2 E(a4)
1 E(a5)

2 is tight. Again, by Corollary 2.6, both E(a1)
2 E(a2)

1 E(a3)
2 E(a4)

1

and E(a2)
1 E(a3)

2 E(a4)
1 E(a5)

2 are tight. By (7.0.1), we obtain

a1 + a3 � a2, a2 + a4 � 2a3, a3 + a5 � a4.

Then the equalities a2 + a4 � 2a3 and a3 + a5 � a4 imply a2 � a3. This contradicts the inequality
a1 + a3 � a2. Hence, E(a1)

2 E(a2)
1 E(a3)

2 E(a4)
1 E(a5)

2 is not tight. Second, suppose E(a1)
1 E(a2)

2 E(a3)
1 E(a4)

2 E(a5)
1 is

tight. Then both E(a1)
1 E(a2)

2 E(a3)
1 E(a4)

2 and E(a2)
2 E(a3)

1 E(a4)
2 E(a5)

1 are tight. Thus, by (7.0.1),

a1 + a3 � 2a2, a2 + a4 � a3, a3 + a5 � 2a4.

It follows that

2a2 + 2a4 � a1 + a3 + a3 + a5 � 2a2 + 2a4 + a1 + a5,

a contradiction. Hence, E(a1)
1 E(a2)

2 E(a3)
1 E(a4)

2 E(a5)
1 is not tight.
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In a summary, we obtain the following result.

Proposition 7.2.1. The following is a complete list of tight monomials of type B2:

(1) 1, E(a1)
1 , E(a1)

2 , E(a1)
1 E(a2)

2 , E(a1)
2 E(a2)

1 ,

(2) E(a1)
2 E(a2)

1 E(a3)
2 (a1 + a3 � a2), E(a2)

1 E(a3)
2 E(a4)

1 (a2 + a4 � 2a3),

(3) E(a1)
2 E(a2)

1 E(a3)
2 E(a4)

1 (a1 + a3 � a2 and a2 + a4 � 2a3),

(4) E(a1)
1 E(a2)

2 E(a3)
1 E(a4)

2 (a1 + a3 � 2a2 and a2 + a4 � a3), where a1,a2,a3,a4 ∈ N\{0}.

7.3. Type G2

In this case, if i = (2,1,2,1,2,1) or i = (1,2,1,2,1,2) and a = (ai) ∈ N6, then each matrix
A ∈ Mi,a has the form

A =

⎡⎢⎢⎢⎢⎢⎣
x11 0 x12 0 x13 0
0 y11 0 y12 0 y13

x21 0 x22 0 x23 0
0 y21 0 y22 0 y23

x31 0 x32 0 x33 0
0 y31 0 y32 0 y33

⎤⎥⎥⎥⎥⎥⎦ ,

where xij, yij ∈ N satisfy

3∑
j=1

xij =
3∑

j=1

x ji = a2i−1 and
3∑

j=1

yij =
3∑

j=1

y ji = a2i for 1 � i � 3.

Thus, this case can be computed by extending the algorithm above to the cases of t = 3,4,5,6 and
t � 7, and is much more complicated.1

8. Identification of tight monomials of type B2

It is proved in [9, §11.7] that tight monomials of type A2 all arise from directed distinguished
words. In this last section, we first establish a similar result for the tight monomials of type B2 given
in Proposition 7.2.1 and then identify them with the canonical basis elements described by Xi in [29].

Continue the type B2 case in the previous section and let

Φ+(Q ,σ ) = {α1,2α1 + α2,α1 + α2,α2}
be the set of positive roots, where α1 and α2 are simple roots. The Auslander–Reiten quiver of A F =
(kQ )F Q ,σ ;q in this case has the form

[P2] [S2]

[S1] [I1]

1 Using the method developed in this paper, Xiaoming Wang has completely determined all tight monomials for quantum

groups of types G2, A3, and those associated with the Cartan matrices
[ 2 −p

−1 2

]
(p � 4). See her papers: Tight monomials for type

G2 and A3, Comm. Algebra (to appear); Tight monomials for quantum enveloping algebras of rank-2 Kac–Moody Lie algebras, J. Pure
Appl. Algebra (to appear).
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where P2 and I1 are the projective cover and injective envelope of S2 and S1, respectively. Then the
dimension vectors of P2 and I1 are 2α1 +α2 and α1 +α2, respectively. Following [9, §11.2], there are
exactly five directed partitions Φ∗ of Φ+(Q , σ ) given as follows:

(1) Φ(1) = {α1,2α1 + α2}, Φ(2) = {α1 + α2,α2};
(2) Φ(1) = {α1}, Φ(2) = {2α1 + α2,α1 + α2}, Φ(3) = {α2};
(3) Φ(1) = {α1,2α1 + α2}, Φ(2) = {α1 + α2}, Φ(3) = {α2};
(4) Φ(1) = {α1}, Φ(2) = {2α1 + α2}, Φ(3) = {α1 + α2,α2};
(5) Φ(1) = {α1}, Φ(2) = {2α1 + α2}, Φ(3) = {α1 + α2}, Φ(4) = {α2}.

Each λ ∈ P(Q , σ ) = {μ | μ : Φ+(Q , σ ) → N} can be also written as a 4-tuple (a,b, c,d) ∈ N4 with

a = λ(α1), b = λ(2α1 + α2), c = λ(α1 + α2), d = λ(α2).

In other words, the corresponding A F -module Mq(λ) is given by

Mq(λ) = aS1 ⊕ bP2 ⊕ cI1 ⊕ dS1.

For each λ = (a,b, c,d), the above five directed partitions define five directed distinguished words in
the fibre ℘−1(λ):

wλ,1 = 2b1a+2b2c+d1c, wλ,2 = 1a2b+c12b+c2d, wλ,3 = 2b1a+2b2c1c2d,

wλ,4 = 1a2b12b2c+d1c, wλ,5 = 1a2b12b2c1c2d.

Since the monomials corresponding to wλ,i for i = 3,4,5 are not tight for sincere λ, we only consider
the sets of monomials in U+ corresponding to wλ,1, wλ,2 for all λ. Let

M = {
ma,b,c,d := E(b)

2 E(a+2b)
1 E(c+d)

2 E(c)
1

∣∣ a,b, c,d ∈ N
}
,

M′ = {
m′

a,b,c,d := E(a)
1 E(b+c)

2 E(2b+c)
1 E(d)

2

∣∣ a,b, c,d ∈ N
}
. (8.0.2)

By Theorem 4.1, both M and M′ form bases for U+ .

Proposition 8.1. The tight monomials given in Proposition 7.2.1 form a subset of M ∪ M′ .

Proof. First, consider the tight monomials given in Proposition 7.2.1(3), (4). Since the inequalities
a1 + a3 � a2 and a2 + a4 � 2a3 imply a4 � a3 and 2a1 � a2, while a1 + a3 � 2a2 and a2 + a4 � a3
imply a2 � a3 � 2a2, it follows that{

(a) ma,b,c,d = E(a1)
2 E(a2)

1 E(a3)
2 E(a4)

1 , if a = a2 − 2a1, b = a1, c = a4, d = a3 − a4;
(b) m′

a,b,c,d = E(a1)
1 E(a2)

2 E(a3)
1 E(a4)

2 , if a = a1, b = a3 − a2, c = 2a2 − a3, d = a4.

(8.1.1)

For those given in Proposition 7.2.1(2), we have by (8.1.1)(a){
E(a1)

2 E(a2)
1 E(a3)

2 = ma,b,0,d = E(b)
2 E(a+2b)

1 E(d)
2 ;

E(a2)
1 E(a3)

2 E(a4)
1 = ma,0,c,d = E(a)

1 E(c+d)
2 E(c)

1 .
(8.1.2)

Finally, one checks easily that there exist a,b, c,d, e, f such that
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E(a1)
2 E(a2)

1 =

⎧⎪⎪⎨⎪⎪⎩
ma,b,0,0(= E(b)

2 E(a+2b)
1 ), if a2 > 2a1;

m0,0,c,d(= E(c+d)
2 E(c)

1 ), if a1 > a2;
m′

0,e, f ,0(= E(e+ f )
2 E(2e+ f )

1 ), if a1 � a2 � 2a1.

The remaining cases are clear. �
We now identify the tight monomials given in Proposition 7.2.1 with the canonical basis elements

computed by Xi. For nonnegative integers a,b, c,d, the monomials

E(a)
1 E(d)

2 ,

E(b)
2 E(a+2b)

1 E(c+d)
2 E(c)

1 (c + d � a + b and a + 2b � c + 2d),

E(a)
1 E(b+c)

2 E(2b+c)
1 E(d)

2 (a � c and d � b),

are all the tight monomials appeared as the canonical basis elements described in [29, Th. 2.2]. Thus,
the tight monomials in Proposition 7.2.1(1), (3), (4) appear in monomial form in Xi’s basis. However,
most of the tight monomials in Proposition 7.2.1(2) do not appear in monomial form. We now use
the representation-theoretic approach to identify them.

We follow the notation introduced in (8.1.2). Thus, by Proposition 7.2.1(2), ma,0,c,d = E(a)
1 E(c+d)

2 E(c)
1

(resp., ma,b,0,d = E(b)
2 E(a+2b)

1 E(d)
2 ) is tight if a � c + 2d (resp., d � a + b). For m ∈ N and n ∈ Z, let

[m
n

]
v2

be obtained from
[m

n

]
by replaced v by v2.

Proposition 8.2. Let a,b, c,d be nonnegative integers and keep the notation above.

(1) If a � c and c � 1, then

ma,0,c,d =
∑

0�l�c

(−1)l
[

d + l − 1
l

]
v2

E(a)
1 E(c−l)

2 E(c)
1 E(d+l)

2 .

(2) If 1 � c � a � c + d, then

ma,0,c,d =
∑

0�m,l�c

(−1)m+l
[

a − c + m − 1
m

][
d + m + l − 1

l

]
v2

E(a+m)
1 E(c−l)

2 E(c−m)
1 E(d+l)

2 .

(3) If d � b and b � 1, then

ma,b,0,d =
∑

0�m�2b

(−1)l
[

a + m − 1
m

]
E(a+m)

1 E(b)
2 E(2b−m)

1 E(d)
2 .

(4) If 1 � b � d � b + a/2, then

ma,b,0,d =
∑

0�m�2b
0�l�b

(−1)m+l
[

a + 2l − m − 1
m

][
d − b + l − 1

l

]
v2

E(a+m)
1 E(b−l)

2 E(2b−m)
1 E(d+l)

2 .
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Proof. We only prove (1). Statements (2)–(4) can be proved similarly.
Let λ = (a,0, c,d) ∈ P(Q , σ ), i.e., M(λ) = aS1 ⊕ cI1 ⊕ dS2. Since ma,0,c,d is tight, we have

ma,0,c,d ≡ Eλ mod v−1L ,

where L is the Z[v−1]-submodule of U+ spanned by Eμ , μ ∈ P(Q , σ ); see Remark 4.5.
On the other hand, we denote the element in the right-hand side of the equality in (1) by Xa,c,d .

By [29, Th. 2.2], Xa,c,d is a canonical basis element and

Xa,c,d ≡ E(a)
1

(
E ′

12

)(c)
E(d)

2 mod v−1L ,

where (E ′
12)

(c) = (E ′
12)

c/[c]! with

E ′
12 = E2 E1 − v−2 E1 E2.

By the definition of the multiplication in HZ (Q , σ ), we have

E ′
12 = E2 E1 − v−2 E1 E2 = u2u1 − v−2u1u2

= v−2(u[I1] + u[S1⊕S2]) − v−2u[S1⊕S2] = v−2u[I1].

Thus,

(
E ′

12

)(c) = v−2cu[I1]/[c]! = v−2c vc2−cu[cI1] = vc2−3cu[cI1].

It then follows that

E(a)
1

(
E ′

12

)(c)
E(d)

2 = va2−a+c2−3c+2d2−2du[aS1]u[cI1]u[dS2]

= va2−a+c2−3c+2d2−2d+ac+2cduλ.

Since

dim End
(
M(λ)

)= a2 + c2 + 2d2 + ac + 2cd and dim M(λ) = a + 3c + 2d.

Thus, by (4.3.3),

E(a)
1

(
E ′

12

)(c)
E(d)

2 = vdim End(M(λ))−dimM(λ)uλ = Eλ

and, hence,

ma,0,c,d ≡ Eλ ≡ E(a)
1

(
E ′

12

)(c)
E(d)

2 ≡ Xa,c,d mod v−1L .

We finally conclude that ma,0,c,d = Xa,c,d , as required. �
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