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Introduction and the main results

Throughout this article, K will denote a fixed algebraically closed field. By an algebra we mean
an associative, finite-dimensional K-algebra with an identity, which we moreover assume to be basic
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and indecomposable. Any such algebra A can be written as a bound quiver algebra, that is, A= KQ /I,
where Q = Q4 is the Gabriel quiver of A and I is an admissible ideal in the path algebra KQ of Q.
For an algebra A, we denote by mod A the category of finite-dimensional right A-modules and by £24
the syzygy operator which assigns to a module M in mod A the kernel §£24(M) of a minimal projective
cover P4(M) — M of M in mod A. Then a module M in mod A is called periodic if 2} (M) = M for
some n > 1. Further, the category mod A is called periodic if any module M in mod A without non-zero
projective direct summands is periodic. It is known that the periodicity of a module category mod A
forces the algebra A to be selfinjective, that is, the projective and injective modules in mod A coin-
cide. Many important selfinjective algebras A are even symmetric, that is there exists an associative,
non-degenerate, symmetric K-bilinear form (—, —): A x A — K. The category of finite-dimensional
A-A-bimodules over an algebra A is equivalent to the category mod A® over the enveloping algebra
A® = A°? @k A of A. An algebra A is called periodic if A is a periodic module in mod A®. It is well
known that if A is a periodic algebra then the module category mod A is periodic and the period
of any module M in mod A without non-zero projective direct summands divides the period of A
in mod A¢. The problem whether an algebra A with periodic module category mod A is a periodic
algebra is an exciting open problem. Recently it has been proved that any selfinjective algebra A
of finite representation type is a periodic algebra (see [11]). Apart from algebras of finite type, the
most prominent periodic algebras are the preprojective algebras of generalized Dynkin type and their
deformations.

Preprojective algebras were introduced by Gelfand and Ponomarev [20] (and implicitly in the work
of Riedtmann [29]) to study the preprojective representations of finite quivers without oriented cycles,
and they occur naturally in very different contexts. The finite-dimensional preprojective algebras are
exactly the preprojective algebras P(A) associated to the Dynkin graphs A, (n > 1), D, (n > 4), Eg,
E7, Eg and the graphs of the form

L, C. ° ° e (n>1vertices).

Following [23] the graphs A,, D,, Eg, E7, Eg and L, are called generalized Dynkin graphs. These
are precisely the graphs associated to the indecomposable finite symmetric Cartan matrices which
have subadditive functions which are not additive [24]. We also mention that the preprojective
algebras P(A) of Dynkin types A € {A,, Dy, Eg, E7, Eg} are the stable Auslander algebras of the cate-
gories of maximal Cohen-Macaulay modules of the Kleinian 2-dimensional hypersurface singularities
K[[x,y,z]1/(fa) (see [4,5,13]). Moreover, for each n > 1, the preprojective algebra P(LL,) is the stable
Auslander algebra of the category of maximal Cohen-Macaulay modules over the simple plane curve
singularity K[[x, y11/(x% + y*"t1) (see [10,13]). The preprojective algebras of Dynkin types have been
recently exploited by Geiss, Leclerc and Schréer to study the structure of cluster algebras related to
semisimple and unipotent algebraic groups (see [19]). The Hochschild cohomology algebras of prepro-
jective algebras of Dynkin type has been studied by Erdmann and Snashall in [14-16], and recently
used by Etingof and Eu [17,18] to establish the calculus structure (Connes differential, Gerstenhaber
bracket, ...) of the Hochschild homology/cohomology of preprojective algebras of Dynkin type.

In this paper we study the deformations of preprojective algebras of generalized Dynkin type
which were introduced in [7]: Namely, to each generalized Dynkin graph A one associates a finite-
dimensional (non-commutative) local selfinjective K-algebra R(A). Then a deformed preprojective
algebra of type A is the deformation Pf(A) of P(A) given by an admissible element f of the rad-
ical square of R(A), and Pf(A) = P(A) for f =0 (see [7,13] for details). It has been proved in [7]
that the deformed preprojective algebras Pf(A) of generalized Dynkin type are (finite-dimensional)
periodic selfinjective algebras. These are precisely the indecomposable selfinjective algebras A, up to
Morita equivalence, for which the third syzygy Qi(S) of any non-projective simple A-module S is
isomorphic to its Nakayama shift M4 (S).

Therefore every indecomposable selfinjective algebra whose stable module category mod A is 2-
Calabi-Yau, is Morita equivalent to some deformed preprojective algebra Pf(A) of generalized Dynkin
type A, and it is an interesting open problem when the converse is true. Furthermore, by a result of
Amiot [1] an additively finite triangulated category 7 is 1-Calabi-Yau if and only if 7 is equivalent
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to the category projP/(A) of finite-dimensional projective modules over a deformed preprojective
algebra Pf(A) of a generalized Dynkin type A. We refer to the survey article by Keller [26] for basic
background on Calabi-Yau triangulated categories (introduced by Kontsevich in late nineties [28]). We
also note that the deformed preprojective algebras of generalized Dynkin type are, with a few small
exceptions, of wild representation type (see [12, Theorem 3.7]). Therefore, to classify the deformed
preprojective algebras of generalized Dynkin type up to isomorphism, is an important problem.

In this paper we address these problems for the deformed preprojective algebras P/ (L,) of the
types Ly, n>1.

For a positive integer n, consider the quiver

ap ai an-2
Qu,: ¢=¢ 0 1 2_— - “=n-2_—">n-1
do ai an—2

and the local K-algebra R(Ly) = K[x]/(x*"). Then, for an element f € rad? R(Ly), the deformed pre-

projective algebra P (L) is defined to be the bound quiver algebra K QLH/Ifn, where II{H is the ideal
of the path algebra KQp, of Qr, generated by the elements

2 +apap+ef(e), &,  @n_zan_p, and aa; +ajqdiyq forie{0,...,n—3}.

We distinguish also special deformed preprojective algebras of type L,
LV = pfr(L,) with fy =% + (x*), re{l,...,n}.

Then Lﬁl”) = Pfa(Ly,) is the ordinary preprojective algebra P(Ly) of type Ly.
For convenience of the reader we give in this paper a detailed proof of the following fact (which
is a special case of [7, Lemma 3.2]).

Theorem 1. Let A = Pf(LL,) be a deformed preprojective algebra of type L, over an algebraically closed
field K. Then A is a finite-dimensional selfinjective algebra with the same Cartan matrix as the preprojective
algebra P(ILy). In particular, we have dimg A = dimg P (L;).

The first main result of this paper is the classification of deformed preprojective algebras of
type L, up to isomorphism.

Theorem 2. Let A = P (IL,) be a deformed preprojective algebra of type Ly over an algebraically closed
field K. Then the following statements hold.

(1) If K is of characteristic different from 2, then A is isomorphic to the preprojective algebra P (LLy).

(2) If K is of characteristic 2, then A is isomorphic to an algebra L,(P,for somere{l,...,n}.

It has been proved in [7, Proposition 6.1] that, for K of characteristic 2, the algebras L,(ql), L,(lz), ey
L,(f) = P(IL,) are pairwise non-isomorphic.

The second main result of the paper shows that the classification of the isomorphisms classes of
deformed preprojective algebras of type L., corresponds nicely (via the stable Auslander algebras) to
the classification of equivalence classes of simple plane curve singularities of Dynkin type Ay, (in the
sense of [2,6,21]). It has been shown in [27] that, for K of characteristic different from 2, R = R,ﬂ”) =
K[[x, ¥11/(x* + y®"*1) is a unique such singularity, up to equivalence. For K of characteristic 2, the
simple plane curve singularities

RY = K[[x, yI/ (2 +y? T xy™), refl,...,n—1},
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together with R,g"), give representatives of the equivalence classes of all simple plane curve singular-
ities of type A,, (see [21, Section 1] and [27]). Moreover, it is known that, for any r € {1, ..., n}, the
category CM(R,(I)) of maximal Cohen-Macaulay modules over Rﬁlr) is a Frobenius (Krull-Schmidt) cat-
egory having exactly n + 1 pairwise non-isomorphic indecomposable objects, among them the unique
projective indecomposable object R,ﬁ” (see [9,10,27]). Consider the direct sum M,(f) of a complete set
of pairwise non-isomorphic indecomposable non-projective objects in CM(R,({)) and the associated
endomorphism algebra

A(R{”) =End M)

e (
of MY = M in the stable category CM(R\") of CM(R"), called the stable Auslander algebra of R'".

Theorem 3. Let K be of characteristic 2 and n a positive integer. Then, for any r € {1, ..., n}, the algebras L,([)
and A(R") are isomorphic.

We note that an isomorphism P(L;) = Lﬁ,") = A(R,g")), for K of arbitrary characteristic, follows
from [10].

As a consequence of Theorems 2 and 3 we obtain the following fact.

Corollary 4. Let A = PS (L) be a deformed preprojective algebra of type Ly. Then A is a symmetric algebra.

A minimal bimodule projective resolution of a preprojective algebra P(L;) of type L, has been
described in [7, Proposition 2.3] and one has Qg(Lﬂ)eP(Ln) = P(LLp) for K of characteristic 2 and

9133<Ln)eP(Ln) Z P(Ly) = Q,?(LH)EP(]LH) for K of characteristic different from 2. In fact, it has been

proved in [7, Proposition 2.3] that any deformed preprojective algebra P/ (L,) of type L, is a periodic
algebra but the proof presented there does not allow us to determine the period of Pf(Ly). In the
forthcoming paper [8], based on Theorem 2 and Corollary 4, we will determine the period of any
deformed preprojective algebra of type L.

We mention also the recent paper by Holm and Zimmermann [25] discussing derived and stable
equivalences of deformed preprojective algebras of type L.

For basic background on the representation theory applied here we refer to the book [3] and the
articles [13,30], and on the singularities and Cohen-Macaulay modules to the survey article [9] and
the books [6,22,31].

1. Proof of Theorem 1

For n =1 we have P(L;) = K[e]/(¢?), so this is the only deformed preprojective algebra of
type IL1. We assume from now that n > 2.

In R(Ly) = K[x]/(x2"), every element f of rad® R(Ly) is of the form f = (Aqx% + Apx3 + -+ +
Aan_2x2"=1y 4 (x2") for some A1, A2, ..., Aam—2 € K. Hence, the deformed preprojective algebra P/ (L)
is the bound quiver algebra given by the quiver

and the relations

apdo + e+ )u]83 + )\254 +---+ )\211—382“_1 + )LZn—Zszn =0,

(n_20p—2 =0, 82n =0, a,-ai+a,-+1ai+1 =0 forie{0,...,n—3}.
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Observe that we may omit the parameter Ay,_» in the above relations, because £2" = 0. Note that the
relation £2" = 0 is also satisfied in P(L,), because we have there

0+ Op—20p_20p_20n_2---Ag =0.

Therefore, a deformed preprojective algebra of type L, is an algebra L,(A1,X2,...,A2n—3), for
A, A2, ..., Ap—3 € K, given by the quiver Qr, and the relations

agdp + €2 + A& +ret + -+ A3 =0,

G20, =0, &=0,  @Ga;+a 1441 =0 forie{0,...,n—3}.

With this, we have L;(0,...,0) = P(L,).

We assume now that A = L,(A1, A2, ..., Aon—3) for fixed elements A1, Ao, ..., Azn—3 of K.

For the proof of Theorem 1 we will use the following lemma. For a path w in the quiver of A, we
denote by r(w) the number of arrows a; in w with even indices i, and similarly we denote by r(w)
the number of arrows a; with even indices i.

Lemma 1.1. For k=0, ...,n — 1, the following hold in A:

(Ax) All paths from 0 to k of length greater than 2n — k — 1 are zero paths.
(By) All paths from O to k of length 2n — k — 1 are equal to (—1)"W) g2n=2k=1q, ... q, ;.
(A,’c) All paths from k to 0 of length greater than 2n — k — 1 are zero paths.
(B},) All paths from k to 0 of length 2n — k — 1 are equal to (—1)"Way_ - - - Gge?" 21,

Proof. We will prove this lemma by induction on k.

We prove first statements (Ap) and (Bg) for all paths which only have arrows ¢, ag, ap. We proceed
by induction on the number of arrows different from €. If w is a path of length greater than 2n — 1
with source and target equal to 0 and has only arrows &, then the claim w =0 in (Ag) follows since
we have the relation 2" = 0. Moreover, if w = ¢2"~1, the claim for w in (Bp) is trivial. Assume the
claims from (Ag) and (Bg) are satisfied for all paths contammg at most s arrows dg. Let w be a path of
length [ > 2n — 1 with source and target equal 0, containing exactly s+ 1 arrows ag. Then noting that
¢ and agdy commute, we can write w = agdos’w’ for some path w’ of length | — i — 2 with source
and target equal 0, containing exactly s arrows dg.

By the inductive assumption we have the equality

Indeed, if | < 2n, then from (Bp) follows that ei*2w’ = ¢! if [ is even and &/ 2w’ = —8’ ifl is odd. On
the other hand if [ > 2n, then from (Ap) we have eit2w’ =0 and from the relation £2" =0 we have
gl = 0= —¢l. Further, using again the relation £2" =0 and (1) we obtain

8i+3W/ — (_1)581—(211—1)8211 —=0. (2)
Finally, using the relation

Qolip + 82 + 183 + et 4 Agp 3621 =0

for w, and equalities (1) and (2), we obtain the required claim
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w =agloe'w = — (62 + 218> + hae® + - + Aop_3e® )W

2n-3 2n-3
— _<1 + Z )\iEI)E'JrzW/ — _81+2w/ _ Z }\i817181+3w/ — (—1)5+181.
i=1 i=1

Hence the statements (Ag) and (Bg) hold for all paths consisting only of the arrows ¢, ag, ap with at
most s+ 1 arrows ag. This proves (by induction) that the statements (Ag) and (Bg) are satisfied for all
paths only with arrows &, ag, do.

In order to show the statements (Ag) and (Bg) for arbitrary paths, we may inductively prove these
statements for paths consisting only of the arrows ¢, a;, a;, i € {0,...,s} (induction on s). Indeed,
assume that the statements are satisfied for some s and let w be a path consisting only of the arrows
g, aj, aj, i €{0,...,s+ 1}, having exactly t; arrows a;, for i € {0, ..., s+ 1}. Then, applying t;+1 times
the equality as, 1051 = —dsas to w, we obtain that w = (—1)’+w’ for some path w’ consisting only
of the arrows ¢, a;, a;, i € {0, ..., s}, and having exactly t; arrows a;, for i € {0,...,s—1}, and ts + ts41
arrows ds.

This ends the proof of the statements (Ag) and (Bo).

Assume now that the statements (Ay) and (By) are satisfied for some k € {0, ...,n — 2}. We will
prove the statement (Ag1).

Let w be a path from O to k+ 1 of length [ > 2n — k — 1. Applying to w some relations a;;10;+1 =
—a;a; with i >k, if necessary, we obtain that w is equal up to sign to w’a; for some path w’ of
length [ — 1 > 2n — k — 1. Then, applying (By), we conclude that w’ is up to sign equal to the path
gl=*=1gy...a;_1. Hence, w is equal up to sign to the path e=%—lag---ay,_qa. Further, from (A;) we
know that, for | —1>2n—k — 1, e~%1ag...a,_; = 0 holds, and hence w = 0. So assume that | =
2n — k. Applying again (By) and the relations a;a; + aj+1G;+1 =0, i € {0,...,n—3}, and a;—2a,—» =0,
we obtain that

81—]{—1(10 g1 = 82()1—]{)—1(10 Q= (_1)11—/(—]8((10(—10)11—1{—1(10 "

— (—1)(n_k_1)(k+1)8(10 . ak(akak)n—k—]

= (=) k= DEAD+HO—k=DO=0)/2" oq .. qy 28p_2ay_28n_2 - - Ggy1 = 0.

Therefore w = 0.

Assume now that w is a path from O to k + 1 of length 2n — k — 1. Applying to w the relations
aja; + aj11ai41 =0, i € {0, ...,n — 3}, we conclude that w is equal up to a sign to w’ag- - -ay, where
w’ is a path from 0 to O consisting of s arrows ag, s arrows dg and 2(n —k —s — 1) arrows &, for some
se€{0,...,n—k}. We note that, by the above arguments, all paths from O to k + 1 of length greater
than 2n — k — 1 are zero paths. Hence, applying s times the relation

Aol + 2+ Ae3 + A28t + -+ A3 1 =0

to the path w’ag - - - ai, we obtain that

wag--a = (—1)°e2@*Dag ... qp = (=1)""* N (agap)**ag - - .
Applying again the relations a;a; +aj+1a;+1 =0, i € {0, ...,n—3}, and a,_za,_» =0, we conclude that

n—k—1 -1

(@0d0)" *lag---ap = (= 1)K Vkaq ... gy (@ar)"*

— (_1)(n—k—l)(k+l)+(n—k—l)(n—k)/2—1ao . an—Zan—Zan—Zan—Z . ak+1 —0.

Hence w is the zero path, and this shows the statement (Ag1).
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The statement (By,1) will be proved similarly. Let w be a path from 0 to k+1 of length 2n —k — 2.
As before, by applying to w the relations a;j;1d;+1 = —a;a;, i € {0,...,n — 3}, we obtain the path
w'ag - - -a, where w’ is a path from 0 to O consisting from s arrows ag, s arrows dg and 2(n — k —
s) — 3 arrows ¢, for some s € {0,...,n —k — 1}. Notice that each use of the relation changes the sign,
decreases by one the number of arrows a;;; and increases by one the number of arrows a;. Then it
follows from (A1) that applying s times the relation

aolp + €% + A3 + a6t + -+ A3 1 =0
to w'ag - - -a, we obtain the equality

W/ao - (_1)582(n—k)—3a0 .

- Q.
Therefore (By.1) holds.

The proofs of the statements (A,

riq) and (Bl,<+1) are dual. O

Proposition 1.2. In the algebra A the following hold:

(i) Fors,t €{0,...,n— 1}, all paths from s to t of length greater than 2n — |s —t| — 1 are zero.
(ii) Fors,t €{0,...,n— 1}, any w from s to t of length 2n — |s — t| — 1 is equal to

W= (_l)r(w)-&-r(agu-at,])as_] . .(—108211—2 max(s,t)—lao .

(iii) For k € {0, ...,n — 1}, all paths from k to k of length 2n — 1 are maximal non-zero paths (and they are
equal up to sign).

Proof. For the proof of (i), we assume first that t > s. Let w be a path from s to t of length greater
than 2n+s—t—1 with t > s. Then applying to w the relations a; 1011 = —a;a;, i € {0, ...,n—3}, we
obtain the path as_ ---dow’, where w’ is a path from 0 to t of length greater than 2n —t — 1. Hence
w is up to sign equal to Gs_1---Gow’. By Lemma 1.1(A;) we conclude that w’ =0, and so w = 0.
Dually, in the case t < s, by applying to a path w from s to t of length greater than 2n+t —s—1
the relations aj;1Gj+1 = —a;a;, i € {0, ...,n — 3}, we obtain a path w”aq - --a;_1, with the subpath w”
from s to O of length 2n — s — 1. It follows from Lemma 1.1(A}) that w” =0, and so w =0.

Similarly, one may prove that (ii) follows from Lemma 1.1(B}).

To prove (iii) observe first that each path of length 2n — 1 with the same source and target k is
non-zero. Indeed, such a path has to pass through the vertex 0, because it is of odd length and hence
contains an arrow &, so it has to either pass through the vertex n — 1 at most once, if k#n — 1, or
to have the source and target as the unique vertex k on the path in the case k =n — 1. In both cases
no such path has a subpath a,_»2a,_2, hence is non-zero. Uniqueness (up to sign) of the path in (iii)
follows from (ii), while its maximality follows from (i) since all paths of length 2n are zero in A. Its
existence is obvious. This proves (iii). O

Proposition 1.3. Let [ € {0, ..., 2n—1} and k, t be fixed vertices of the Gabriel quiver Qr,, of A with |k—t| <L
Consider the quotient algebra A = A/I; of A by the ideal I} generated by all paths of length | 4+ 1. Then in A;
the following hold:

({A) ifk+t+1<I<2n—1—|k—t|and k + t + | is odd, then all paths of length | from k to t are non-zero
and are equal up to sign to the path

= = (k+t .
Q—1 - -0o€ ( )aomﬂt—],
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(i) if k—t| <I<2(n—1) — (k+t) and k + t + L is even, then all paths of length | from k to t are non-zero
and are equal up to sign to the path

Ay - -- ak+t+17]ak+t+171 .. -Elt;
2 2

(iii) all paths of length I from k to t withl > 2(n — 1) — (k+t) and k 4+t + 1 even and all paths of length | from
ktotwithl>2n—1— |k —t|andk + t + [ odd (if exist) are zero paths.

Proof. The proof of (i) is similar to the proof of Proposition 1.2(ii). Let w be a path of length [ from k
tot with k+t+1<1<2n—1—|k—t| and k+t+! odd. Applying to w the relations a;1d;+1 = —a;aj,
ie{0,...,n— 3}, we obtain the path ay_q---@ow’ag - - -a;—1, where w’ is a path from 0 to 0 of length
I —k —t > 0 consisting of s arrows ag, s arrows dg, and [ —k — t — 2s arrows &, for some integer s.
Because in A/I; all paths of length greater than [ are zero paths, then it follows from the relation at
the vertex 0 that

_ _ , s= = I—k—t
Qg—1---AoW'ag---ar—1 = (=1)°ag_1 ---Ao& ap---Qar1.

Finally, the path dy_q - - - Ggs'**Dagq - - -a,_; is non-zero, because by Proposition 1.2(iii) it is a subpath
of a maximal non-zero path.

Now we will prove (ii). Let w be a path of length [ from k to t with |k —¢t| <I<2(n—1) —
(k+t) and k+t + 1 even. If w does not contain the arrow & then we may obtain from w the
path ak'“ﬂ%_ﬁ@q ---Gr by applying the relations a;1a;11 = —a;a;, i €{0,...,n =3} If w
contains the arrow & then, in general case, we may obtain from w (as in the proof of (i)) the path
g_1---doe"*tag---a,_1. Note that in A/I; we have

= = k-t bkt = o ket
Qg—1 -+ A0€ ag---ar—1 =(=1) 2 a1 ---ao(aodo) 2 ao---0ar—1-
Then, applying again the relations a;+1a;+1 = —aja;, i € {0,...,n — 3}, to the path
G- (@oag) 5 *'.-.a;_;, we obtain the path Q- @isgst sy -G Moreover, following
Proposition 1.2(iii), the path akma#7]d#4 ---d; is a subpath of a maximal path, and hence
it is non-zero.
We know from Proposition 1.2(i) that all paths of length [ from k to t with [ >2n —1 — |k — t|

and k +t + 1 odd (if they exist) are zero paths. Moreover, all paths of length | from k to t with
I>2n—1)— (k+t) and k +t 4+ even (if they exist) are (up to sign) equal to the path

_ N1 ket _ _
Q- - An—2(An—2an—2) 2 Qp2---0r =0,

because ap_a,— = 0. This ends the proof of (iii). O

We complete now our proof of Theorem 1.
Applying Proposition 1.3 and Proposition 1.2(i), we conclude that, for each pair s,t € {0,...,n — 1}
of vertices of Qr,, we have the equalities
dime;Aes =#{leN|s+t+1<I<2n—1—|s—t|As+t+lodd}
+#{leN||s—t]<I<2(m—1)—(s+t) As+t+]even}
=2(n — max(s, t)).

Hence, the Cartan matrix of the algebra A is of the form
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2n 21—2 ... 6 4 2
2n—2 2n—2 6 4 2
6 6 6 4 2
4 4 .4 4 2
2 2 2 22

and is equal to the Cartan matrix of the algebra P(LL,). In particular, A is finite-dimensional.
This completes the proof of Theorem 1.

2. Proof of Theorem 2

We divide the proof of Theorem 2 into several steps. The first lemma will help us to identify
isomorphisms.

Lemma2l1.letn>2and A1, ..., Aon—3, X], e )»/an3 € K. Assume that there exists a K -algebra homomor-
phism @ : Ly(A1, ..., Aoan—3) = La(X], ..., A}, _5) given by

2n—2
o)=Y ve",  ga)=a, @@=a, forl=0,...,n-2,
i=0

with Yo, ..., Yan—2 € K, Yo # 0. Then ¢ is an isomorphism of K-algebras.

Proof. We will construct a K-algebra homomorphism v : Ly (A}, ..., 15, 5) = Lp(Aq, ..., A2q—3) given
by

2n—2

vy = & y@=a  y@=a. forl=0...n-2
i=0

with 8o, ..., 8m—2 € K, 8o # 0, such that ¢ =idp,;;,....x_3)-
Let 1o =0, 8o = yo’l and

i+1

1
rl=ZVi< Z naaj) and 8l=_yoilrla
i=1

0<a1,az,...,0i11  j=1
a1+az+--+ajp=l-i

forle{l,...,2n—2}.
Note that we have

m-2 2n—2 ‘ -2 A -2 /wm-2 i+1
Voe) = 1//( > Vi81+l> =Y (e = nvEe =) Vi( > 318”1>
i=0 i=0 i=0 i=0 j=0

S s e

i=0 1=0 0<ay,az,...,ai4+1 t=1
ay+az+--+aip 1=l
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2n-2 j i+1

=2 | Lw 2. b )8”1

j:O i=0 O<a1 LA, ..., aj+1 t=1
a1+ax+--+aj 1 =j—i

) j i+1

S(wesa( T

j= i=1 0<ay,ay,..., [«F] t=1
ap+ax+---+ajp1=j—i

N
=

2n—-2 ] 2n—-2 '
=Y (s +rpeitt = yosos + > (vo(—vy 'rj) +rj)el ! =e.
=0 s

From the definition of ¢ and v we also have Y ¢(a) =q; and Y @(a) =a for all [=0,...,n — 2.
This shows that ¥¢ =idp,@.,,.... 10 5)- Since A is finite-dimensional it follows that ¢ is the 2-sided
inverse of ¢, and it also follows that v is an algebra homomorphism. Hence ¢ = ¢’ is a K-algebra
isomorphism. 0O

The following proposition proves part (1) of Theorem 2.

Proposition 2.2. Let K be of characteristic different from 2, and A = Ly,(A1,...,An—3) for n > 2 and
M, ..., A3 € K. Then A is isomorphic to P(Ly).

Proof. We will choose elements yp, 1, ..., Yan—3 € K such that, for each k € {0, ..., 2n—3}, the equal-
ity

k 2 k
(Z yi8i+l> + (8I<+3) — (82 + Zki&‘HZ) + (8I<+3)
i=0 i=1

holds, in the quotient algebra L,()q, ..., A2n_3)/(s"+3).
Observe that

2n—3 k
(82 + Z ki8i+2> + (") = (82 + Zki8i+2> T (654,
i=1

i=1

For k = 0, the required equality is of the form

(v0e)* + (%) = + (£°),

and hence yge? = €2, y¢ = 1. Hence, we may choose either yp =1 or yo=—1. Let yp = 1.
Assume now that, for some k > 1, elements g, 1, ..., Yk—1 € K satisfying the equalities

j 2 j
(Zyi€i+1) + (gj+3) — (82 + insi+2> + (5”3),
i=0 i=1

for j€{0,...,k— 1}, are defined. Observe that we have the equalities



160 J. Biatkowski et al. / Journal of Algebra 345 (2011) 150-170
k—1

k 2 2
(Z)’igi-H) + (8k+3) — ()/kSkH + Z )/18i+1) + (8k+3)
i=0

i=0

k—1 k—1 2
— <yk282k+2+2ykzyi8k+l+2+ (Zyigt-&-l) )+(8k+3)
i=0

i=0

k-1 2
— (2Vk)/08k+2 + (ZVi8i+]> >+ (8k+3)
i=0

and
k ) k—1 )
<82 + ZMEHFZ) + (8k+3) — <kk8k+2 + 82 + Z)hi51+2> + (gk+3)7
i=1 i=1
because 2k +2 >k + 3 for k > 1. Moreover, from the choice of yyp, ..., yk—1, we have

k—1

k—1 2
(Z%’giH) + (8k+2) — (82 + Z)‘igi+2> + (8k+2).
i=0 i=1

Hence, the required equality

k 2 k
(Z yi8i+1> + (443 = (52 I Zli8i+2> + (£443)
i=0 i=1
forces yj to satisfy the equality

27062+ 30y ekt
0<i, j<k—1
i+j=k
or equivalently
k—1
2vv0 =k — D ViV—i-

i=1

Therefore, we define

)/_1 k-1 1 k—1
Yk = OT ()»k - X]: Vin—i) =5 (M - X; Vin-i)-
1= 1=

Finally, for k = 2n — 3, we have gk*3 = 2" =0, and hence in L,(1, ..., A2n_3) the equality

2n-3 2 2n-3
(Z yi81+1) —e2 Z Aeit?
i=0 i=1
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holds. Therefore, the homomorphism ¢ : L, = L,(0,...,0) — Ly(A1, ..., A2p—3) given by

2n—3
@)=Y yet',  g@=a,  @@=a, forlef0,...,n—-2},

is well defined. By Lemma 2.1, we conclude that ¢ is an isomorphism of K-algebras. O

Proposition 2.3. Let K have characteristic2,n > 3, and A1, ..., Azp—3 € Kwith A1 =--- = sz 1=0and
Aok # 0 for some k € {1,...,n — 2}. Then there exist elements A}, ..., A, ;€ KwithA|=---=2), | =
Ay, =0and )‘2k+1 = Aokt Such that Ly(A1, ..., Aon—3) and Ly (M}, ..., M), ) are isomorphlc.
Proof. We will define elements A2k+1, ..., Ay, _5 € K so that there is an isomorphism of K-algebras
@ :Ly(A1, ..., A2n-3) = Ln(0,0,. 2k+],...,A’2n_3) given by

p@)=e+ye, @y =a. ¢@=a. forle{o,....n—2), (%)

where y2 = Ay.
For integers k > 1, i > 2k, denote

. . i+2 i
m(k,i) = mm({mJ, \j — 2J>

We note that m(k, i) is a nonnegative integer and m(k, i) < LFT]J, because L,% -2 < Li’T‘J.
Forie{2k+1,...,2n — 3} we define

m(k,i)
i— k 2 i
Z/\I ]< e )Vf,

forie{2k+1,...,2n—3}.
In order to prove that the map ¢ in (x) is a well-defined homomorphism of K-algebras, it is

enough to show that @(agdg + &2 + Ape®t2 + - + Aon_362""1) =0 in L, (0, ...,0, Mypers Moggs o
My,_3). Indeed, we have in Ly(0, ..., 0, A’2k+1, A’2k+2, ..., A _3) the equalities
2n—3 ) 2n—3 )
w(aoﬁo +e2+ ) Ais’”) = (a0)p(@o) +¢(e)* + Y hip(e)'*?
i=2k i=2k
) 2n—3 o
=aodo + (¢ +ye")* + Y hig(e +yet)T
i=2k
n-3 42 +2
=aolp + &> + y2e* 2+ Y iy ( i > ylekt DI (D=
i=2k  j=0
2n—3 i+2 )
= apdp + 8 + )»2k82k+2 + IXZ;{ ]ZO)”‘ ( ; > y 8k]+’+2

2n—3 /m(k,l) I— ikt 2 ]
= agiip + &% + k2k82k+2 + Z ( Z Ak ( Jj ) y1>8l+2
j=0

=2k
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2n—=3 /m(k,D) I(+2 )
=aoﬁo+82+2>»zk82k+2+ Z (Z Ak ( ) >y1>gl+2

1=2k+1
2n—3

=aplp + €% + Z ret2 =0,
I=2k+1

because for [ =2k we have L% — 2] =0, and hence
m(k,l)
k +2 i 2k +2
Z M jk ( J > )/]8’+2 = Ay ( 0 ) y082k+2 :)lezk“.

Hence ¢ is a homomorphism of K-algebras, and consequently, by Lemma 2.1, an isomorphism.

We note also that A2k+1 = Agk+1. Indeed, we have

/
21 = Z A2k+1—jk
j=0

m(k, 2k +1)=m Q(ZI‘;FJ:)]HJ, sz}:n —2J> = HJ

Hence for k > 1 we have

k,2k+1
mk,2k+1) <2k—|-1—]k+2)yj

J

and

2k +3
Moks1 = A2k+1 ( 0 ) Y% = Ak,

and for k=1 we obtain

24142 241—-1+2
)‘,3=k2+1< +0+ >V0+)»2( + 1 + ))/12)»3—1-4)»2)/:)»3.

This completes our proof. O
We will now prove the crucial step for part (2) of Theorem 2.

Proposition 2.4. Let K be of characteristic2,n > 2,k € {0, ...,n — 2} and Aygy1, ..., Aan—3 € K, Aggy1 #0.

Then Ly (0, ..., 0, Aags1, - .., Aan_3) is isomorphic to L**D.

Proof. Recall that LD =1,(0,...,0,1,0,...,0), for ke {0, ...,n —2}.
N——
2k
We will construct a homomorphism of K-algebras

@ :Ln(0,...,0,1,...,0) > Ln(0, ..., 0, Aok41. - - -, A2n—3),
——
2k

given by
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2n—2
pe)=) re". e@=a.  e@=a, forle{o.....n-2}.

Such a map is an algebra homomorphism provided ¢(agdg + &2 + €2¢t3) = 0 in Ly(0, ..., Aos1,
., A2n—3). So we will choose elements yp, y1, ..., Yan—3 € K which will satisfy the equalities

<<§Vi8f+1>2+(ggmfﬁ)z"”) +(em) (e +Z“ ) (em),

for j=0,...,2n—2, m(j) =min(2j + 3, j + 2k +4), in Ly(r1, ..., Aan_3)/ (™).
Let yo_l and y; =0 for 0 < j <k. Then, for 0 < j <k, we have

i 2 i 2k+3
((Z%EiH) +<Zyi8i+1) )+(82j+3) (V e +)/2k+3 2k+3)+(82j+3)
i=0 i=0
:y()282+(82j+3)=82+(82j+3)

j
= (82 + Zm”“) + (e2713).

i=1

From now on assume that we have chosen yp,...,yj_1, for some j > 0, satisfying the above
equalities. For [ =0, ..., j, we denote
2k+3
n= > [l
0<a1,[12 ..... a2k+3<l i=1

a1+az+--+ag 3=l
Then we have, for each [ € {0, ..., j — 1}, the equalities

I 2k+3 ! 2k+3
(Zyi 8i+1) +( l+2k+4 Z( Z 1—[ Va ) gi+2kt3 | P l+2k+4)
i=0

i=0 \ 0<aq,ap,...,ax4+3<i t=1
a1 +ay+- -+ 3=i

((2k+3)1/)/2k+2 ) i+2k+3 + (8l+2k+4)

Il
.M“

~
=)

(yi +ri)€i+2k+3 + (81+2k+4)

Il
o

and

I 2
(ZMS:H) _ Zyi282(1+1).
i=0

i=0

We will now consider four cases.
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If k < j < 2k, then the required y; should satisfy the equality
(P27 + (agimto—1 + r2(j—ig-1)E2 D) 4 (82777) = dgje2UHD 4 (2747,
which is equivalent to the equality

)’]'2 + Va(j—k)—1 F T2(j—k)—1 = A2j-

Hence, we define y; as the square root of Ya(j_k)—1 + T2(j—ky—1 + A2j-
Assume j =2k + 1. Note that in this case j=2(j — k) — 1. Then the required y; should satisfy

()/]-282(j+1) + v+ rj)82(j+1)) + (82j+3) — )\2182(1‘-&-1) + (82j+3),
and this is equivalent to
Vi +vi+ri=1hj.

Hence, we define y; as a root of the polynomial X2 +x +rj + Aj € K[x].

Let j > 2k+1 and assume j is odd. Observe that in this case 2(k + % +1) = j+ 2k + 3. Then the
required y; should satisfy the equality

2 2(k+ 1 41 j+2k+3 j+2k-+4 j+2k+3 j+2k-+4
(VHJ,#E k+5-+ )+(yj+rj)81+ + )+(8]+ k+ )=)\j+2k+18]+ k+ +(8]+ k+ )
which is equivalent to the equality
2
yk_,_j%l +Vi+Ti=Ajr2k41-

Therefore, we define y; = yk2+ s T+ Ajroktt.
=

Finally, assume that j > 2k +1 and j is even. Then the required y; should satisfy
(Vj + rj)ej+2k+3 + (8j+2k+4) — )¥j+2k+1 8j+2k+3 + (8j+2k+4),
which is clearly equivalent to the equality

Vi+tTi=2Xjioks1-

Hence, we define y; =r; 4+ Aj k1.
It follows from the above construction of ¥y, ..., yan_2 that in Ly(r1,..., Aon_3)/(€™2"=2) the
following equality holds

2n—2 ' 2 i ' 2k+3 -2 .
(( Z yigl-H) + (Zyi81+l> ) + (gm(Zn—Z)) — (82 + Z )»,‘EHZ) + (Sm(Zn—Z)).
i=0 i=0 i=1

We note that in L,(0,...,0, Aok41, ..., An_3) we have ¢™?"=2) — 0, because m(2n — 2) > 2n and
£2" = 0. So the equalities
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-2 2 j _ 2k+3 m-2
( Z y,-e'“) i (nygl+]> —e2 Z Me T2 = agi
i=0 i=0 i=1

hold in L,(0,...,0, A2k+1, ..., A2n—3). Hence ¢ is a homomorphism of K-algebras, and consequently,
by Lemma 2.1, an isomorphism. This completes our proof. O

Proof of part (2) of Theorem 2. Assume K has characteristic 2. Observe first that

LV = pfrLy) =1,00,...,0,1,...,0), forre{l,...,n—1},
——
2(r—1)

and
L = pfr(Ly) = Ly(0, ..., 0).

Let Aq,...,Azn—3€ K and A =Lp(A1,...,A2n—3). We claim that A = Lﬁ,r) for some r € {1,...,n}.

Clearly, if Ay =--- = X3 =0, then A = L,ﬂ”). Assume A; # 0 for some i € {1,...,2n — 3}. Take
the minimal index m € {1,...,2n — 3} with A, # 0. If m is odd, say m = 2r — 1 for some r €
{1,...,n — 1}, then it follows from Proposition 2.4 that A = L,(f). On the other hand, if m is even,
then, by Proposition 2.3, there exist elements A,..., 1, . € K such that 2} =-.-=A;, =0 and
AZ=Ly(A], ..., My, ). Applying Propositions 2.3 and 2.4, we conclude, by induction on m, that A is
isomorphic to an algebra Lﬁ,r) for some re{1,...,n}. O

We end this section with the following complementary result.

Proposition 2.5. Let K be of characteristic 2, n > 2, and A1, ..., A;q-3 € K with Xj41 =0 for all i €
{0,...,n—2}. Then Ly(Aq, ..., Aan—3) is isomorphic to P(LLy).

Proof. We show that there exists a homomorphism of K-algebras
@ :P(Ln) =Ly(0,...,0) > Ln(0,22,0,24,0,...,0,A2n-4,0) = Ln (A1, ..., A2n—3)

such that
n—2 )
p@E)=> v, p@=a, e@=a, forle{o,...,n-2),
i=0

where yo, ..., ¥n—2 € K satisfy the conditions yp =1 and yiz = Ayj, fori €{0,...,n—2}. Then ¢ will
be an isomorphism, by Lemma 2.1.
Indeed, we have

¢ (aodo + £2) = p(apdo) + ¢(£?) = @(ao)¢ (@) + ¢(&)?

n—2 2 n—2
= dgdg + (Z yie'™ ]> =aodo + Yyt
i=0 i=0
n—2 n-2

=aodo + yZe* + Z y2e 2 = apdg + €2 + Z Agiedit2 =0,

i=1 i=1
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@(an—2ap—3) = Gy_2ap_— =0,

and

®(@ia; + A +10i+1) = 4ia@; + A +1di+1 =0
for i € {0,...,n—3}, and hence ¢ is a well-defined homomorphism of K-algebras. O
3. Proofs of Theorem 3 and Corollary 4

For an integer n > 2 and r € {1,...,n — 1}, we denote by A,(,r) the bound quiver algebra K QH_H/If[),
where I,(lr) is the ideal in the path algebra K Qy, generated by the elements

e+ apdo + &(apdp)’, Gn—20n—3, and a;a; +a;y1a;4+1 forie{0,...,n—3}.

Proposition 3.1. Let K be of characteristic 2, n > 2 an integer, and r € {1, ...,n — 1}. Then the algebras L,({)
and A" are isomorphic.

Proof. Fix r € {1,...,n — 1}. First, we prove by induction on i that in A,(f) the equalities
€2 (agdg)" I =0, for i € {0, ..., n}, hold. Indeed, we have in A" the equalities

= \n - \n—1- = = - =
(apap)” =ap(a1ay)~ ag=---=4aop0q - --An—20p—20n—20an_3 - --a1ag = 0.

Assume now that &2 (apdp)"~* = 0 for some i € {0,...,n — 1}. Then, from the equality &2 + apdg +
&(apdp)” = 0, we conclude that

82(i+1)(aoao)ﬂ*(l'+1) — 82i82 (aoao)ﬂ*(i+1) — 82i (aoao + 8((10(_10)r) (aoao)nf(i+])
— 821(a06—10)1+n7(1+1) + 8218(a06—10)r(a06—10)n7171

= &% (aofi0)" " + &(£% (aodi0)" ") (aodo) ! = 0.

In particular, for i =n, we obtain £2" =0.

We claim now that there exist elements Ayr,...,Ax—3 € K such that the identity endomor-
phism of KQp, induces an epimorphism of K-algebras L,(0,...,0,1, Az, ..., A2n—3) = A,(,r). Ob-
serve that it is sufficient to find elements Ay, ..., Ax—3 in K such that the equality &2 + agdo +
g2+ 4 Y213 5,612 — 0 holds in A{. Since K is of characteristic 2, we have in A{’ the equality
aodo = €2 + £(aodo)’. Then we obtain the sequence of equalities in A{”

&(aodo)” = & (&2 + £(aofo)) (aodo) ™' = &3 (aodo) ™" + &2 (apdo)* "

)T—2 )27‘-2 +84(aoao)2r—2 +83(ao(_10)3r_2

3r=2 _ ..

=g (apag + 84(0()(—10
=¢”(aodo)"~* + &> (aodo)

2n—-3
:82r+1 + Z ki8'+2

i=2r

for some elements Ay, ..., Aan—3 € {0, 1} C K, because £2" = 0. Obviously then
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2n-3
aodp + &% + 2+ Y ™ = agdp + &% + £(aodo)” =0
i=2r
in A",

Conversely, we show that there exist elements )‘/l""’)‘/Zn—3 € K such that the identity endo-
morphism of KQp, induces an epimorphism of K-algebras A,(f) — Ln(A], ..., A}, _3). Therefore, we
have to find elements )»/1,...,)»/2”73 in K such that the equality €2 + agdp + £(aodp)” = 0 holds in
Ly, A _9).

Now we will construct elements )Jl, e, A’2n_3 € K such that the equality

n-3 -3 \T
D aelt2 =gt (1 +y. A§8’> (%)
i=1 i=1

holds in the quotient algebra K Q]Ln/(szn).
We note that, if we calculate the right side of equality (), we will obtain a sum of elements of
the form (][] j A;]_)gl with all indices i; less than i — 2. Hence, we may inductively calculate 1, for

k=1,...,2n — 3 from the following equalities

2n—3 rok-1
)»,/(8k+2 + (€k+3) — <82r+1 (1 + Z )»,/-Si) + ZMEI') + (8k+3)
i=1 i=1

(obtained from (%)) in the quotient algebras KQr, /(ekt3). Observe that this procedure uniquely

determines the elements 1),...,A} , € K satisfying the equality (x) in the quotient algebra
KQ]LH/(azn). We note also that such the chosen elements )J,A..,A’zn_3 € K satisfy the condi-
tions A} =--- =2, 5, =0, Ay, =1and 2},...,A5, 5 €{0,1}, and hence L,(A),...,2}, 3) =
Ln(0,...,0, 1,15, ..., A, _3).

Consider now the algebra L,(0,...,0, 1,A’2r,...,k/2n_3). Observe that it is a quotient algebra of
KQ]LH/(EZ"). Hence, the equality () holds also in the algebra L,(0,...,0,1,1},,..., 1}, ). Moreover,
we have in Ln(0,...,0,1,1,,.,..., 15, 3) the equality agdo = &2 + Y3 Ae'™2. Then we obtain the
equalities

2n—3 2n—3 r
&% + agdo + £(apdp)” = &2 + (82 + Z k§8i+2> +e (82 + Z Me”’z)

i=1 i=1
n-3 -3 \T
=) At 4 e (1 +> A;s'> =0
i=1 i=1

in Lp(0, ..., 0,1, Ay ooy Ay o).

Summing up, we have epimorphisms of K-algebras
Ln(0,.... 0,1, Az, ..., hon-3) — A’
AP = Ln(0,...,0,1, 2y, o Ay 3)-

Moreover, by Proposition 2.4, the algebras L;(0,...,0,1,A3,...,A2p—3) and Ly(0,...,0,1,},
..., Aby,_5) are isomorphic to L,(f). Therefore, the algebras L,([) and A,([) are isomorphic. O

The following proposition and its proof has been indicated by the referee.
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Proposition 3.2. Let K be of characteristic 2, n > 2 an integer, and r € {1, ...,n — 1}. Then the algebras A,([)
and A(R") are isomorphic.

Proof. Fix r € {1,...,n— 1}. It follows from [27, (3.1)] that the fractional ideals

X
Mi=R"Y +RV—=_, ic{0,1,....,n—1},
yn—l

form a complete set of pairwise non-isomorphic indecomposable non-projective objects in CM(R#,”).
Then there is an isomorphism of algebras ¢ : A,(.,r) S A(R,(P) which assigns to the trivial paths
at the vertices i of Qp, the identity maps on M;, to the arrows a; the multiplication maps
-y :M; — Mj41, to the arrows a; the inclusion maps Mj;1 < M;, and to the loop ¢ the multiplication
map % : My — Mp. We note first that the stable Auslander-Reiten quiver of CM(R,(P) is isomorphic to
Qr, and that the representative irreducible morphisms are given by the inclusion maps M1 — M;,
the multiplication maps -y : M; — M;y1 and the multiplication map % : Mg — Mo. This shows that
the described above homomorphism ¢ : A,(.,r) — f_l(R,(f)) is an epimorphism. In order to prove that ¢
is @ monomorphism, it is enough to show that the non-zero elements of the socle of A,(f) are sent by
@ to non-zero elements ofA(R,(f)). It follows from Propositions 1.3(iii) and 3.1 that the socle of A,ﬁ” is
the K-linear subspace of A" generated by the maximal non-zero paths @_g - --doe2™ 9 =1ag - - - ap_;
from k to k, for k €{0,1,...,n — 1}. Further, for k€ {0,1,...,n— 1}, (@1 ---Goe>™ P aqy ... a_1)
is the stable class of the multiplication map -y¥t2@=0=1. pp — M, with t = s+ Moreover, if
.yke2m=0=1 factors through a projective module in CM(R{”), then ykt2@—5-1 ¢ R" 0On the other
hand, using the identity t* = y + y"t (which is obtained by dividing x* = y2"*t1 4+ xy™*" by y2"), we
deduce by induction on j € {1, ..., n}, that simultaneously we have

@)yt ¢ Ry
— i r

(b) y"It*T e Ry; N

(C) yn7]+1t2171 e Rnr .

In particular, for j =n —k, we conclude from (a) that ykt2@=0-1¢ R Therefore, ¢ : AL — AR)
is a monomorphism, and hence an isomorphism. 0O

Theorem 3 is a direct consequence of Propositions 3.1 and 3.2.

We note (as pointed out by the referee) that in the stable category CM(R) of the category CM(R)
of maximal Cohen-Macaulay modules over a simple plane curve singularity R there are bifunctorial
isomorphisms

Homgwmry (M, N) = D Homgmr) (N, M)

for any modules M, N in CM(R) (see [9, (9.7)]). In particular, for the direct sum Ug of a complete set
of pairwise non-isomorphic indecomposable non-projective objects in CM(R) we obtain that

.A(R) = EI‘ldw(R) (%) and D Ench(R)(%) = DA(R)

are isomorphic as A(R)-bimodules, and consequently the stable Auslander algebra A(R) of R is a
symmetric algebra. This, together with Theorems 2 and 3, provides the proof of Corollary 4.
In the forthcoming paper [8] we will provide a direct proof of Corollary 4.
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