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1. Introduction

Let Q[G] be the group algebra of a finite group G over the field Q of rational numbers. A classical
theorem tells us that for every α in Q[G], α has a unique additive Jordan decomposition α = αs +αn ,
where αs is a semisimple element, αn is nilpotent and αsαn = αnαs . If α is a unit, then αs is also
invertible and α = αs(1 + α−1

s αn) is the product of a semisimple unit αs and a commuting unipotent
unit αu = 1 +α−1

s αn . This is the unique multiplicative Jordan decomposition of α. Note that if α is in
the integral group ring Z[G], then αs and αu may not be in Z[G]. Following [AHP98] and [HPW07],
we say that Z[G] has the multiplicative Jordan decomposition property (MJD) if for every unit α
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of Z[G], its semisimple part αs and unipotent part αu are both contained in Z[G]. For simplicity, we
say that G satisfies MJD if Z[G] has the MJD property.

Significant progress on MJD problem has been made recently by Hales, Passi and Wilson in the pa-
per [HPW07]. They showed that only a few families of finite groups can have MJD and in particular,
they classified finite 2-groups with the MJD property. To do this, they used the classification list of
groups of order 32 and 64 and checked every group in the list to see if it has MJD. After establishing
this, they used mathematical induction to prove that for nonabelian 2-groups of order bigger than 64,
only Hamiltonian 2-groups satisfy MJD. Note that there are 44 nonabelian groups of order 32 and
more than two hundred nonabelian groups of order 64. Tremendous effort was required to check all
these groups. The authors produced a great paper with lots of interesting ideas hidden in the com-
putations. On the other hand, since the length of the paper is rather limited, not all the details were
presented and hence it is difficult for the reader to check all nonabelian groups of order 32 and 64.
But checking these groups is important for the proof since it is the base case of the mathematical
induction. In this paper we take a different approach which does not need this kind of induction.
Since it is less complicated, we can include more of the details.

If we look at the results in [HPW07], there are only a few groups with the MJD property. So we
should use this MJD condition as early as possible to rule out certain groups. In this way, we do not
have to get involved with the classifications of groups of order 32 and 64.

Our approach is based on the following important lemma established in [LP09].

Lemma 1.1. Let G be a finite group such that Z[G] has MJD. If Y is a subgroup of G and N is a normal subgroup
of G, then either Y ⊇ N or Y N is normal in G.

This gives us a group theoretic condition about subgroups and normal subgroups of G . For conve-
nience, we say that a finite group G has SN if for any subgroup Y of G and normal subgroup N of G ,
we have either Y ⊇ N or Y N is normal in G . We say that a finite group G has SSN if every subgroup
of G has SN.

Since the MJD property is inherited by subgroups, the above lemma gives us

Lemma 1.2. If G has MJD, then G has SSN.

We will study groups with SSN and find out that they have interesting properties. The following
result will be proved in Section 2 as Proposition 2.2.

Proposition 1.3. If G is a finite 2-group and G has SSN, then every noncyclic subgroup of G is normal.

2-groups with every noncyclic subgroup normal were classified in [Lim68]. Passman studied fi-
nite p-groups with this condition in [Pas70, Proposition 2.9] for any prime p. Recently, Božikov and
Janko [BJ09] refined Passman’s work and gave a complete classification of p-groups having all non-
cyclic subgroups normal. In their classification (Theorem 2.3), there are only a few classes of p-groups
with this property. Together with Lemma 1.2 and Proposition 1.3, we are then able to simplify the
work of [HPW07] on the MJD problem for 2-groups. Indeed, we reprove the following theorem in
Section 2 by checking those classes of groups.

Theorem 1.4. Let G be a nonabelian finite 2-group such that Z[G] has MJD.

(1) If |G| � 64, then G is Hamiltonian.
(2) If |G| = 32, then G is one of the following.

(a) Q 8 × C2 × C2 .
(b) Q 8 × C4 .
(c) 〈a,b, c | a8 = 1, a2 = b2 = c2, ab = a5, ac = ca, bc = cb〉 ∼= Q 8 ∗ C8 .
(d) The central product D8 ∗ Q 8 .

(3) If |G| = 16, then G is one of the following.
(a) Q 8 × C2 .
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(b) Q 16 = 〈a,b | a8 = 1, b2 = a4, b−1ab = a7〉.
(c) P = 〈a,b | a4 = b4 = 1, b−1ab = a−1〉.
(d) D = 〈a,b, c | a2 = b2 = c4 = 1, ac = ca, bc = cb, b−1ab = ac2〉 ∼= Q 8 ∗ C4 .
(e) D+

16 = 〈a,b | a8 = 1, b2 = 1, b−1ab = a5〉.
(4) If |G| = 8, then G is one of the following.

(a) Q 8 .
(b) D8 .

Note that all the groups listed in Theorem 1.4 have MJD by [AHP98,Par02,HPW07].
After [HPW07] solved the MJD problem for finite 2-groups, [LP09] and [LP10] studied the analo-

gous problem for finite 3-groups. It is therefore natural to ask if Proposition 1.3 can be extended to
3-groups. Indeed, we show that the same result actually holds for finite p-groups for all odd primes p.
This is done in Section 3.

2. MJD for 2-groups

The following lemma has been used extensively in [HPW07,LP09,LP10]. Note that part (1) follows
from the uniqueness of Jordan decomposition and part (2) is from [HPW07, Corollary 9].

Lemma 2.1. Let G have the MJD property.

(1) If H is a subgroup of G, then H has MJD.
(2) If α is a nilpotent element of Z[G] and e is a central idempotent of Q[G], then αe ∈ Z[G].

In fact, part (2) above is the key ingredient in the proof of Lemma 1.1.

Proposition 2.2. Let G be a finite 2-group with SSN. Then every noncyclic subgroup of G is normal.

Proof. Suppose by way of contradiction that G has a noncyclic subgroup which is not normal. Then
this subgroup must be contained in a maximal nonnormal subgroup Q of G . In particular, all sub-
groups of G properly larger than Q are normal. Choose a subgroup M of G containing Q such that
|M : Q | = 2. Since M � Q and Q is maximal nonnormal, we have Q � M � G . Let N = NG(Q ), the
normalizer of Q in G . Then M ⊆ N � G since Q is not normal in G . Thus we can choose a sub-
group T of G containing N such that |T : N| = 2. Note that both N and T are normal in G since
T � N � Q .

Take t ∈ T \ N . Since |T : N| = 2, we have t2 ∈ N = NG(Q ) and hence Q t2 = Q . Since Q � M � G ,
we have Q t ⊆ Mt = M . Furthermore, Q � N implies that Q t � Nt = N . Note that t /∈ N = NG(Q ) and
hence Q 	= Q t . Thus Q Q t = M since |M : Q | = 2. Let H = Q ∩ Q t . Since |M : Q t | = |M : Q | = 2, we
see that |Q : H| = |Q t : H| = 2. Since Q � N and Q t � N , we have H � N . Moreover, Ht = Q t ∩ Q t2 =
Q t ∩ Q = H . Thus H � T since T = 〈N, t〉.

Finally, choose b ∈ Q \ H . Then |Q : H| = 2 implies that Q = 〈b〉H . Since G has SSN, it follows
that T has SN. Thus, since H � T , we get either 〈b〉 ⊇ H or 〈b〉H � T . Now, we cannot have 〈b〉H � T
since T is properly larger than the normalizer N of Q = 〈b〉H . Thus, we must have 〈b〉 ⊇ H and hence
Q = 〈b〉H = 〈b〉 is cyclic. But then Q cannot contain a noncyclic subgroup, so this is the required
contradiction. �

Recall that a group G is called Dedekind if all subgroups of G are normal. A group G is called
Hamiltonian if G is nonabelian and Dedekind.

Let p be a prime. In [BJ09], Božikov and Janko gave the following classification of finite p-groups
with all noncyclic subgroups normal. For convenience, we label those classes of groups as BJ1 to BJ9.

Theorem 2.3. Let G be a finite p-group which is not Dedekind. If all noncyclic subgroups of G are normal, then
G is one of the following groups.



C.-H. Liu / Journal of Algebra 371 (2012) 300–313 303
BJ1. G is metacyclic minimal nonabelian and G is not isomorphic to Q 8 . Namely,

G = 〈
a,b

∣∣ apm = bpn = 1, ab = a1+pm−1 〉

where m � 2, n � 1 and |G| = pm+n.
BJ2. G = G0 ∗ Z , the central product of a nonabelian group G0 of order p3 with a cyclic group Z , where

G0 ∩ Z = Z(G0), the center of G0 , and if p = 2, then |Z | > 2.
BJ3. p = 2 and G = Q × Z where Q ∼= Q 8 and Z is cyclic of order > 2.
BJ4. G is a group of order 34 and maximal class with Ω1(G) = G ′ ∼= C3 × C3 .
BJ5. G = 〈a,b | a8 = b8 = 1, ab = a−1, a4 = b4〉, where |G| = 25 .
BJ6. G ∼= Q 16 , the generalized quaternion group of order 24 .
BJ7. G = D8 ∗ Q 8 , an extraspecial 2-group of order 25 .
BJ8. G = 〈a,b, c | a4 = b4 = [a,b] = 1, c2 = a2, ac = ab2, bc = ba2〉, where G is the minimal non-

metacyclic group of order 25 . Note that H = 〈a,b〉 ∼= C4 × C4 is an abelian normal subgroup of G with
G/H ∼= C2 .

BJ9. G = 〈a,b, c,d | a4 = b4 = [a,b] = 1, c2 = a2b2, ac = a−1, bc = a2b−1, d2 = a2, ad = a−1b2,

bd = b−1, [c,d] = 1〉, where G is a special 2-group of order 26 in which every maximal subgroup is
isomorphic to the minimal non-metacyclic group of order 25 in BJ8. Note that H = 〈a,b〉 ∼= C4 × C4 is an
abelian normal subgroup of G with G/H ∼= C2 × C2 .

Let G be a finite 2-group with MJD. Combining Lemma 1.2, Proposition 2.2 and Theorem 2.3, we
see that if G is not Dedekind, then G must be a group listed in Theorem 2.3. It remains to determine
which groups in this list have MJD.

Note that BJ4 is not a 2-group. Furthermore, BJ6 and BJ7 have MJD as shown in [Par02, Theorem 6]
and [HPW07, p. 123]. We will consider the remaining groups in the rest of this section.

Now BJ1 was checked in [HPW07, pp. 126–128]. Here we take a different approach using the
method developed in [LP09, Proposition 2.4]. We first require a few technical facts.

Lemma 2.4. Let α, β be elements of the commutative ring R. Then for all integers k � 0, we have

(1 + 4α + 8β)2k = 1 + 4 · 2kα + 8 · 2kβk

for some βk ∈ R.

Proof. Proceed by induction on k. The case k = 0 is obvious with β0 = β . Now suppose that the result
holds for k. Then

(1 + 4α + 8β)2k+1 = (
1 + 4 · 2kα + 8 · 2kβk

)2

= (
1 + 4 · 2kα

)2 + 2
(
1 + 4 · 2kα

)(
8 · 2kβk

) + (
8 · 2kβk

)2

= 1 + 4 · 2k+1α + 16 · 2k2kα2 + (
1 + 4 · 2kα

)(
8 · 2k+1βk

) + 64 · 2k2kβ2
k

= 1 + 4 · 2k+1α + 8 · 2k+1βk+1

for some βk+1 ∈ R , as required. �
If X is a subset of G , write X̂ for the sum of the elements of X in Z[G]. Furthermore, if H is a

subgroup of G , write eH = Ĥ/|H| for the principal idempotent in Q[H] determined by H . Note that if
h ∈ H , then Ĥ(1 − h) = 0 and hence eH (1 − h) = 0.

Lemma 2.5. Let G be a finite group. Suppose that G has a normal subgroup A and an element g ∈ G such that
G/A = 〈Ag〉 is cyclic of order 8. If e A = Â/|A| and e = e A(1 − g4)/2, then e is a central idempotent in Q[G]
with eQ[G] isomorphic to the cyclotomic field Q[ε], where ε = eg is a primitive 8th root of unity.
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Proof. Since e AQ[G] is naturally isomorphic to Q[G/A], we may assume that A = 1. Then G = 〈g〉
is cyclic of order 8 and Q[G] ∼= Q[ζ ]/(ζ 8 − 1). Since ζ 8 − 1 = (ζ − 1)(ζ + 1)(ζ 2 + 1)(ζ 4 + 1),
we have the algebra direct sum Q[G] = e1Q[G] + e2Q[G] + e3Q[G] + e4Q[G] where e1Q[G] ∼= Q,
e2Q[G] ∼= Q, e3Q[G] ∼= Q[i] with i a primitive 4th root of 1 and e4Q[G] ∼= Q[ε]. Next we note that
Q[G] = eBQ[G] + (1 − eB)Q[G] where B = 〈g4〉. Since eBQ[G] ∼= Q[G/B] ∼= Q ⊕ Q ⊕ Q[i], it follows
that (1 − eB)Q[G] ∼=Q[ε]. Finally, 1 − eB = 1 − (1 + g4)/2 = (1 − g4)/2, as desired. �

The following is the p = 2 analog of [LP09, Proposition 2.4]. Instead of assuming that A is abelian,
we only assume that C is normal in A.

Proposition 2.6. Let G be a finite 2-group such that Z = G ′ is central of order 2. Suppose that G has a normal
subgroup A such that G/A is cyclic of order 8. If A has a normal subgroup C such that C is not normal in G,
then Z[G] does not have MJD.

Proof. By assumption, G/A = 〈Ag〉 for some g ∈ G , and Ag has order 8 in G/A. Since G ′ is central
of order 2, G/Z(G) has period 2 where Z(G) is the center of G . It follows that g2 is central in G .
By Lemma 2.5, e = e A(1 − g4)/2 is a central idempotent in Q[G] with eQ[G] equal to the cyclotomic
field Q[ε], where ε = eg is a primitive 8th root of unity. Using the algebra direct sum Q[G] = eQ[G]+
(1−e)Q[G], we will construct a unit u = u1 +u2 in Z[G] with semisimple unit u1 in eQ[G], unipotent
unit u2 in (1 − e)Q[G] such that both the semisimple part s = u1 + (1 − e) of u and the unipotent
part t = e + u2 of u are not in Z[G].

Since G/A is abelian, we have Z = G ′ ⊆ A. Since C is not normal in G and |Z | = 2, we see that
C does not contain G ′ = Z and C ∩ Z = 1. So A contains Z C ∼= Z × C and we have |A| � 4. For
convenience, write |A| = 4n where n = 2k for some integer k � 0. Now define α = g + g−1 ∈ Z[G] and
set

u1 = e(1 − α)4n ∈ eQ[G].
Since g8 ∈ A, we have Â(1 − g8) = 0 and hence e(1 + g4) = 0. Thus e(ε2 + ε−2) = e(g2 + g−2) = 0,
so eα2 = 2e, e(1 − α2) = −e and e(1 − α2)2 = e. It follows that u1 is a unit in eQ[G] with inverse
v1 = e(1 + α)4n ∈ eQ[G]. Of course, all units in eQ[G] ∼= Q[ε] are semisimple.

Next, we study (1 − e)Q[G]. Note that Z C is a normal subgroup of A and let T be a set of right
coset representatives for Z C in A. Then C T is a full set of right coset representatives for Z in A.
Moreover Â = Ẑ C T̂ = T̂ Ẑ C = T̂ Ẑ Ĉ . Define

γ = (
1 − g4)Ĉ T̂α

and let

u2 = (1 − e)(1 − γ ) ∈ (1 − e)Q[G].
Note that 1 − g4 is central in Q[G] since g2 is central in G . We will show that (1 − e)γ has square 0,
so u2 is a unipotent unit in (1 − e)Q[G] with inverse v2 = (1 − e)(1 + γ ).

For convenience, set β = (1 − g4)̂C T̂ , and let h = g or g−1. Since G = 〈A,h〉, C � A and C is not
normal in G , we have Ch 	= C . Since Z = G ′ has order 2, we see that Ch ⊆ Z C and hence CCh = Z C .
It follows that Ĉ Ĉh = mẐ Ĉ where m = |C |/2. Since C � A, we have Ĉ T̂ = T̂ Ĉ , and thus (Ĉ T̂ )(Ĉ T̂ )h =
T̂ Ĉ Ĉh T̂ h = mT̂ Ẑ Ĉ T̂ h = mÂ T̂ h . It follows that ββh is divisible by (1 − g4) Â, a scalar multiple of the
idempotent e.

Therefore, (1−e)ββh = 0 and hence (1−e)βh−1β = 0. Since α = g + g−1, we have (1−e)βαβ = 0
and consequently (1−e)γ = (1−e)βα has square 0. With this, it is easy to see that u2 = (1−e)(1−γ )

is a unipotent unit in (1 − e)Q[G] with inverse v2 = (1 − e)(1 + γ ).
Now let u = u1 + u2. By above paragraphs, u has inverse v = v1 + v2 in Q[G]. We want to show

that both u and v are in Z[G] and hence that u is a unit in Z[G]. For elements σ ,τ ∈ Q[G], let us use
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σ ≡ τ to indicate the additive equivalence relation given by σ − τ ∈ Z[G]. Since eα2 = 2e, we have
e(1 −α)4 = e(1 − 4α + 8(2 −α)) so Lemma 2.4 implies that u1 = e(1 −α)4n = e(1 − 4α + 8(2 −α))n =
e(1−4nα+8nδ) for suitable δ ∈ Z[G]. But e = e A(1− g4)/2 and |A| = 4n, so we see that e(8nδ) ∈ Z[G]
and hence u1 ≡ e(1 − 4nα). Similarly, v1 ≡ e(1 + 4nα).

Next, since γ ∈ Z[G], we have u2 = (1 − e)(1 − γ ) ≡ −e(1 − γ ). Since Â Ĉ T̂ = (|A|/2) Â = 2nÂ and
g8 ∈ A implies Â(1 − g4)2 = Â(1 + g8 − 2g4) = Â(2 − 2g4) = 2 Â(1 − g4), we see that eγ = 4neα and
u2 ≡ −e(1 − 4nα). Similarly, v2 ≡ −e(1 + 4nα). Thus

u = u1 + u2 ≡ e(1 − 4nα) − e(1 − 4nα) ≡ 0

and

v = v1 + v2 ≡ e(1 + 4nα) − e(1 + 4nα) ≡ 0.

So u, v ∈ Z[G] and hence u is a unit in Z[G]. Now consider s = u1 + (1 − e) and t = e + u2. Then
we have u = st = ts. Since u1 is a semisimple unit in eQ[G] and u2 is a unipotent unit in (1 − e)Q[G],
we see that s = u1 + (1 − e) is the semisimple part of u and t = e + u2 is the unipotent part of u
by [LP09, Lemma 1.2]. In particular, u = st is the multiplication Jordan decomposition of u.

Finally, we show that the semisimple part s is not in Z[G]. Indeed, since g has order 8 modulo A,

s = u1 + (1 − e) ≡ e(1 − 4nα) + (1 − e) = 1 − 4nαe ≡ −4nαe

= (
g + g−1) Â

(
g4 − 1

)
/2 = 1

2

(
g5 + g3 − g − g7) Â

and the latter element is not in Z[G] since every group element in g A has coefficient −1/2.
Thus u is a unit in Z[G] with semisimple part not in Z[G] and we conclude that G does not satisfy

MJD. �
Proposition 2.6 can be used to show that most of the groups in BJ1 do not have MJD. In particular,

it covers the result of [HPW07, Proposition 22]. Indeed, we have the following corollary.

Corollary 2.7. Let G = 〈a,b | a2m = 1, b2n = 1, b−1ab = a1+2m−1 〉 be a group in BJ1. If m � 4 and n � 1, then
Z[G] does not have MJD.

Proof. Note that G ′ = 〈a2m−1 〉 is central of order 2. Let A = 〈a8,b〉 and C = 〈b〉. Since m � 4, we have
A ⊇ G ′ . Thus A is normal in G and G/A is cyclic of order 8. Since a2 is central in G , we see that
A is abelian and hence C is normal in A. But C is not normal in G since a−1ba = ba2m−1

/∈ C . By
Proposition 2.6, Z[G] does not have MJD. �

Before we proceed further, we state some simple facts we need. If H is a subgroup of G , we
have the natural projection πH : Q[G] → Q[H] given by πH (

∑
g∈G αg g) = ∑

g∈H αg g . Obviously, if
γ ∈ Q[H] and α,β ∈ Q[G], then πH (α + β) = πH (α) + πH (β), πH (γ α) = γπH (α) and πH (αγ ) =
πH (α)γ . Moreover, if πH (α) /∈ Z[H], then α /∈ Z[G].

Now we consider the m = 2 and m = 3 cases. The following lemma is actually covered by [HPW07,
Lemmas 23, 24]. We include a proof since similar techniques will be used later when we prove
Lemma 2.13.

Lemma 2.8. Let G = 〈a,b | a2m = 1, b2n = 1, b−1ab = a1+2m−1 〉 be a group in BJ1.

(1) If m = 2 and n � 4, then Z[G] does not have MJD.
(2) If m = 3 and n � 2, then Z[G] does not have MJD.
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Proof. First of all, note that a2 and b2 are central in G .
For the case m = 2 and n � 4, let w = b2n−3

and observe that w is central of order 8. Let

r = (
a + w2)b

(
1 − a2)(1 − w4) and

s = (a + w)b
(
1 − a2)(1 − w2)(1 + w4).

Since (1 − w4)(1 + w4) = 1 − w8 = 0, we have rs = sr = 0. Next we want to show r2 = s2 = 0.
Since ab = a3 = a−1, we get

(
a + w2)b

(
a + w2)b = (

a + w2)b2(a−1 + w2) = b2((1 + w4) + (
a + a−1)w2).

But 1 + w4 is annihilated by 1 − w4, and a + a−1 = a−1(a2 + 1) is annihilated by 1 − a2, so we see
that r2 = 0. Similarly, we have

(a + w)b(a + w)b = b2((1 + w2) + (
a + a−1)w

)

and hence s2 = 0 since 1 + w2 is annihilated by (1 − w2)(1 + w4).
Now let α = 1

2 (r(1 + w)3 + s(1 + w)). It follows that α2 = 0 and we want to show that α ∈ Z[G].
For convenience, write σ ≡ τ for the additive and multiplicative equivalence relation defined on Z[G]
by σ − τ ∈ 2Z[G]. Since (1 + w) ≡ (1 − w) and (1 + w)2k ≡ 1 + w2k ≡ 1 − w2k

for any positive
integer k, we have

2α ≡ r(1 + w)3 + s(1 + w)

≡ (
a + w2)b

(
1 − a2)(1 + w)4(1 + w)3 + (a + w)b

(
1 − a2)(1 + w)2(1 + w)4(1 + w)

≡ (
2a + w2 + w

)
b
(
1 − a2)(1 + w)7

≡ wb
(
1 − a2)(1 + w)8 ≡ wb

(
1 − a2)(1 + w8) ≡ 0

and hence α ∈ Z[G].
Let e = (1 − w4)/2. Then e is a central idempotent in Q[G] such that er = r and es = 0. It follows

that eα = r(1 + w)3/2. To prove that Z[G] does not have MJD, by Lemma 2.1(2), it suffices to show
that eα /∈ Z[G]. For this, let B = 〈b〉. Then

πB(eα) = πB
(
r(1 + w)3)/2

= πB
((

a + w2)(1 − a2)b
(
1 − w4)(1 + w)3)/2

= πB
(
a + w2 − a3 − a2 w2)b

(
1 − w4)(1 + w)3/2

= w2b
(
1 − w4)(1 + w)3/2 /∈ Z[B]

and we have eα /∈ Z[G]. This completes the case m = 2 and n � 4.
The case m = 3 and n � 2, is similar, so we only sketch the proof. Let u = a2 and note that u is

central of order 4. Moreover, let

r = a
(
u2 + b

)(
1 − u2)(1 + b2)T̂ and

s = a(u + b)
(
1 − u2)(1 − b2)T̂

where T = 〈b4〉 has order 2n−2. Then rs = sr = 0 since b4 ∈ T . Furthermore, aba−1 = u2b implies that
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a
(
u2 + b

)
a
(
u2 + b

) = (
u2 + aba−1)a2(u2 + b

) = a2((1 − b2) + (
1 + u2)(b2 + b

))

and

a(u + b)a(u + b) = (
u + aba−1)a2(u + b) = a2(u2(1 + b2) + u

(
u2 + 1

)
b
)
.

It follows that r2 = s2 = 0.
Now let α = 1

2 (r(1 + u)+ s(1 + u)). Then α2 = 0 and as above, we can show that α ∈ Z[G]. Finally,

let e = (1 + b2)T̂ /2n−1. Then e is a central idempotent in Q[G] such that er = r and es = 0. Moreover,
eα = r(1 + u)/2 /∈ Z[G] and we conclude that Z[G] does not have MJD by Lemma 2.1(2). �

We still need to verify one more special case, namely m = 2 and n = 3. This group is actually the
group 32.21 discussed in [HPW07, p. 121]. We use the units given in the forthcoming errata to the
above paper and we thank Professor Hales for sending us a preliminary version of this work.

Lemma 2.9. If G = 〈a,b | a4 = 1, b8 = 1, b−1ab = a3〉, then G does not have MJD.

Proof. Note that a2 and b2 are central. Let

α = 1 + 2
(
1 − b4)T̂

where T = 〈a〉 and let

β = (
2 + a2)(1 − b4)δ

where δ = (1 + a)(1 − ab2). Clearly α is central in Z[G] and we want to show that u = α + bβ has
inverse v = α − bβ in Z[G].

Since (1 − b4)2 = 2(1 − b4) and T̂ 2 = 4T̂ , it is easy to see that α2 = 1 + 36(1 − b4)T̂ . To compute
bβbβ = b2βbβ , we first compute δbδ. Note that δ = (1 − a2b2) + a(1 − b2), so

δbδ = [(
1 − a2b2) + a3(1 − b2)] · [(1 − a2b2) + a

(
1 − b2)]

= (
1 − a2b2)2 + (

1 − b2)2 + (
1 − a2b2)(a + a3)(1 − b2)

= (
1 + b4 − 2a2b2) + (

1 + b4 − 2b2) + (
a + a3)(1 − b2)2

= (
1 + b4)(2 + a + a3) − 2b2 T̂

and hence (1 − b4)δbδ = −2b2(1 − b4)T̂ . Since aT̂ = T̂ and b4(1 − b4) = −(1 − b4), it follows that

bβbβ = b2βbβ = b2(2 + a2)2(
1 − b4)2

δbδ

= −2
(
2 + a2)2(

1 − b4)2
b4 T̂ = 36

(
1 − b4)T̂

and we get uv = vu = α2 − bβbβ = 1.
Next, let e = (1 − a2)/2 and f = 1 − e = (1 + a2)/2. Then e and f are orthogonal central idempo-

tents in Q[G]. Since f Q[G] ∼= Q[G/G ′] and G/G ′ is commutative, it follows that f u is a semisimple
unit in f Q[G]. Furthermore, since eT̂ = 0, we have eα = e and (ebβ)2 = ebβbβ = 0. So eu = e + (ebβ)

is a unipotent unit in eQ[G]. Let s = e + f u and t = eu + f . Then u = st = ts and by [LP09, Lemma 1.2],
we see that s is the semisimple part of u and t is the unipotent part of u. Since ea2 = −e, we see
that
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t = eu + f = 1 + ebβ = 1 + 1

2

(
1 − a2)b

(
2 + a2)(1 − b4)((1 − a2b2) + a

(
1 − b2))

= 1 + 1

2

(
1 − a2)b

(
1 − b4)((1 + b2) + a

(
1 − b2)) /∈ Z[G]

and hence G does not have MJD. �
Now we are ready to check BJ1.

Lemma 2.10. If G is a 2-group with MJD in BJ1, then G is one of the following groups.

(1) G = 〈a,b | a8 = 1, b2 = 1, ab = a5〉 of order 16.
(2) G = 〈a,b | a4 = 1, b2 = 1, ab = a3〉 of order 8.
(3) G = 〈a,b | a4 = 1, b4 = 1, ab = a3〉 of order 16.

Proof. Let G = 〈a,b | a2m = 1, b2n = 1, b−1ab = a1+2m−1 〉 where m � 2 and n � 1. Suppose that G has
MJD. By Corollary 2.7, we see that m = 2 or m = 3. By Lemma 2.8, we see that if m = 3, then n = 1.
This gives us (1). Moreover, if m = 2, then n = 1,2 or 3. But Lemma 2.9 eliminates the case m = 2
and n = 3. The remaining cases are (2) and (3). �

To check groups in BJ2, we first consider the following special case.

Lemma 2.11. Let G = Q 8 ∗ C16 with Q 8 ∩ C16 = Z(Q 8). Then G does not have MJD.

Proof. Write Q 8 = 〈a,b | a4 = 1 = b4, a2 = b2, ab = a−1〉 and C16 = 〈t | t16 = 1〉 so that in G we
have at = ta, bt = tb, a2 = t8. Let x = at . Then x2 = a2t2, x4 = a4t4 = t4, x8 = t8 = a2 = b2 and x has
order 16. Since both t and a2 are central, we see that x2 is central. Let y = bx4 = bt4 so we have
y2 = b2x8 = b4 = 1. Moreover, xy = xb = abt = a−1t = a−2x = x8x = x9. Thus H = 〈x, y〉 is a group of
order 32 with relations x16 = 1, y2 = 1 and xy = x9. We see that H is a group in BJ1 and hence Z[H]
does not have MJD by Lemma 2.10. Therefore, Z[G] does not have MJD by Lemma 2.1(1). �
Lemma 2.12. If G is a 2-group with MJD in BJ2, then G is one of the following.

(1) G = Q 8 ∗ C8 , a group of order 32.
(2) G = Q 8 ∗ C4 , a group of order 16.

Proof. Let G be a 2-group in BJ2, so that G = G0 ∗ Z where G0 is nonabelian of order 8 and Z is cyclic
with |Z | � 4. The groups Q 8 ∗ Z and D8 ∗ Z are easily seen to be isomorphic, so we can assume that
G = Q 8 ∗ Z . If |G| � 64, then G has a subgroup H isomorphic to Q 8 ∗ C16. By Lemma 2.11, H does not
have MJD and therefore Lemma 2.1(1) implies that G does not have MJD. In particular, if G has MJD,
then |G| � 32 and the result follows. �

Next we consider a special case in BJ3.

Lemma 2.13. Let G = Q 8 × C8 . Then Z[G] does not have MJD.

Proof. Let Q 8 = 〈a,b | a4 = 1, b2 = a2, b−1ab = a−1〉 and C8 = 〈t | t8 = 1〉. For convenience, write
z = a2 = b2. Note that t and z are central in G and ba = abz.

Let r = (a + bt)(1 − t2)(1 + t4)(1 − z) and s = (a + bt2)(1 − t4)(1 − z). We want to show that
r2 = s2 = rs = sr = 0. To this end, observe that (a +bt)2 = a2 +b2t2 +abt +bat = z(1+ t2)+abt(1+ z).
Since (1 + t2) is annihilated by (1 − t2)(1 + t4) and (1 + z) is annihilated by (1 − z), we see that
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r2 = 0. Similarly, since (a + bt2)2 = z(1 + t4) + abt2(1 + z), we can get s2 = 0. Moreover, rs = 0 = sr
since (1 − t4)(1 + t4) = 0.

Now let α = 1
2 (r(1 − t) + s(1 − t)3). It follows that α2 = 0 and we want to show that α ∈ Z[G].

For convenience, let σ ≡ τ be the additive and multiplicative equivalence relation defined on Z[G] by
σ − τ ∈ 2Z[G]. Since (1 + t) ≡ (1 − t) and (1 + t)2n ≡ 1 + t2n

for any positive integer n, we have

2α ≡ r(1 + t) + s(1 + t)3

≡ (a + bt)(1 + t)2(1 + t)4(1 − z)(1 + t) + (
a + bt2)(1 + t)4(1 − z)(1 + t)3

≡ (a + bt)(1 + t)7(1 − z) + (
a + bt2)(1 + t)7(1 − z)

≡ (
2a + bt + bt2)(1 + t)7(1 − z)

≡ bt(1 + t)8(1 − z) ≡ bt
(
1 + t8)(1 − z) ≡ 0

and therefore α ∈ Z[G].
Let e = (1 + t4)/2. Then e is a central idempotent and we have er = r and es = 0. It follows that

eα = r(1 − t)/2. To prove that Z[G] does not have MJD, by Lemma 2.1(2), it suffices to show that
eα /∈ Z[G]. For this, let T = 〈t〉. Then

πT
(
a−1eα

) = πT
(
a−1r(1 − t)/2

)

= πT
((

1 + a−1bt
)(

1 − t2)(1 + t4)(1 − z)
) · (1 − t)/2

= πT
((

1 + a−1bt
)(

1 − a2)) · (1 − t2)(1 + t4)(1 − t)/2

= (
1 − t2)(1 + t4)(1 − t)/2 /∈ Z[T ]

and we have a−1eα /∈ Z[G]. Therefore, eα /∈ Z[G], as required. �
Lemma 2.14. If G is a group with MJD in BJ3, then G ∼= Q 8 × C4 .

Proof. Since G is a group with MJD in BJ3, G = Q × Z where Q ∼= Q 8 and Z is a cyclic 2-group of
order > 2. If |G| � 64, then G has a subgroup H ∼= Q 8 × C8. By Lemma 2.1(1), H has MJD and this
contradicts Lemma 2.13. It follows that |G| = 32 and G ∼= Q 8 × C4. �

Next we consider the group in BJ5.

Lemma 2.15. Let G = 〈a,b | a8 = b8 = 1, a4 = b4, ab = a−1〉 be the group in BJ5. Then Z[G] does not have
MJD.

Proof. Clearly b2 is central in G . Since b has order 8 and a4 = b4, we see that a4(1−b4) = b4(1−b4) =
−(1 − b4). Furthermore, e = (1 − a4)/2 = e(1 − b4)/2 is a central idempotent in Q[G] with ea4 =
eb4 = −e and ea2 = −ea−2.

Now, let γ = a2b(1 − b2) + (1 − a2) and β = γ (1 + b2) = a2b(1 − b4) + (1 − a2)(1 + b2). Then
βb = a−2b(1 − b4) + (1 − a−2)(1 + b2) and ba = a−1b imply that

aβba = aa−2ba
(
1 − b4) + a2(1 − a−2)(1 + b2)

= a−2b
(
1 − b4) + (

a2 − 1
)(

1 + b2)

= a2a4b
(
1 − b4) − (

1 − a2)(1 + b2)

= −a2b
(
1 − b4) − (

1 − a2)(1 + b2) = −β
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and hence b−1βba = −a−1β . It follows that βbab = −ba−1βb = −abβb and we have βb(1 − ab) =
(1 + ab)βb.

For convenience, write γ = 1 + a2(δ − 1) where δ = b(1 − b2). Then γ b = 1 + a−2(δ − 1) and
eγ b = e(1 − a2(δ − 1)). Note that eδ2 = eb2(1 + b4 − 2b2) = e(−2b4) = 2e. Thus, using ba2 = a−2b, we
have a2δa2 = δ and hence

eγ bγ = e
(
1 − a2(δ − 1)

)(
1 + a2(δ − 1)

) = e
(
1 − a2(δ − 1)a2(δ − 1)

)

= e
(
1 − (

δ − a4)(δ − 1)
) = e

(
1 − (δ + 1)(δ − 1)

) = e
(
2 − δ2) = 0.

Next, let α = b(1 − ab)β . Then we have

α2 = b(1 − ab)βb(1 − ab)β = b(1 − ab)(1 + ab)βbβ

= b
(
1 − (ab)2)γ bγ

(
1 + b2)2 = b

(
1 − b2)(1 + b2)(1 + b2)bγ bγ

= 2b2(1 + b2)eγ bγ = 0

since (ab)2 = abab = aa−1b2 = b2.
Finally, we have shown that the element α = b(1 − ab)(a2b(1 − b2) + (1 − a2))(1 + b2) is

a nilpotent element in Z[G]. Furthermore, e = (1 − a4)/2 is a central idempotent in Q[G]. By
Lemma 2.1(2), it follows that Z[G] does not have MJD if we can show that αe /∈ Z[G]. Of course,
it is enough to show that b−1αe /∈ Z[G]. To this end, let A = 〈a〉. Since b2 is central and b4 = a4, we
have

πA
(
b−1αe

) = πA
(
(1 − ab)

(
a2b

(
1 − b2) + (

1 − a2))(1 + b2)e
)

= πA
(
(1 − ab)

(
a2b

(
1 − a4) + (

1 + b2)(1 − a2))) · e

= πA
(
(1 − ab)a2b

) · (1 − a4)e + πA
(
(1 − ab)

(
1 + b2)) · (1 − a2)e

= (
1 − a2)e = (

1 − a2)(1 − a4)/2 /∈ Z[A]

and it follows that b−1αe /∈ Z[G], as required. �
The group in BJ8 is actually the group 32.40 in the list used by [HPW07, p. 120]. In the latter

paper a nilpotent element is offered without proof. Here we choose a different nilpotent element and
give a detailed argument.

Lemma 2.16. Let G = 〈a,b, c | a4 = b4 = [a,b] = 1, c2 = a2, ac = ab2, bc = ba2〉 be the group in BJ8. Then
Z[G] does not have MJD.

Proof. Let f = (1 − a2b2)/2, β = 2 f (1 + a)(1 + b) and α = βc. Since both a2 and b2 are central of
order 2, we see that f is a central idempotent in Q[G] and f (1 + a2b2) = 0. Note that α,β ∈ Z[G]
and we want to show that α2 = 0. Since α2 = cβcβc, it is enough to show that βcβ = 0.

Let H = 〈a,b〉. Then H is an abelian normal subgroup of G and the map N : Q[H] → Q[H] given
by N(γ ) = γ cγ is a multiplicative homomorphism. Note that

f · N(1 + a) = f
(
1 + ac)(1 + a) = f

(
1 + ab2 + a + a2b2) = f

(
a + ab2) = f a

(
1 + b2)

and similarly, f · N(1 + b) = f b(1 + a2). Then we have
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βcβ = N(β) = 4 · N( f ) · N(1 + a) · N(1 + b) = 4 f · N(1 + a) · f · N(1 + b)

= f a
(
1 + b2) f b

(
1 + a2) = abf

(
1 + a2 + b2 + a2b2)

= abf
(
1 + a2b2)(1 + a2) = 0

and hence α2 = 0.
Now let e = (1 + a2)/2 and observe that e is a central idempotent in Q[G]. We want to show that

αe /∈ Z[G]. If this is the case, then G does not have MJD by Lemma 2.1(2). Since αe ∈ Z[G] if and only
if βe = eαc−1 ∈ Z[G], we only have to show that βe /∈ Z[G]. For the latter, let A = 〈a〉. Then

πA(βe) = πA
((

1 − a2b2)(1 + b)
) · (1 + a)

(
1 + a2)/2 = (1 + a)

(
1 + a2)/2 /∈ Z[A]

and it follows that βe /∈ Z[G]. �
Lemma 2.17. Let G be the group in BJ9. Then Z[G] does not have MJD.

Proof. Let G be the group in BJ9. Since G has a subgroup isomorphic to the group in BJ8, we see that
Z[G] does not have MJD by Lemma 2.16 and Lemma 2.1(1). �

Finally, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let G be a nonabelian finite group with MJD. We see that (1), (2)(a), (3)(a)
and (4)(a) are Hamiltonian 2-groups. So assume now that G is not Dedekind. Then G has SSN by
Lemma 1.2 and hence every noncyclic subgroup of G is normal by Proposition 2.2. It follows from
Theorem 2.3 that G must be in one of BJ1 through BJ9. If G is in BJ1, Lemma 2.10 shows that G
can be (3)(e), (3)(c) or (4)(b). If G is in BJ2, Lemma 2.12 shows that G can be (2)(c) or (3)(d). If G
is in BJ3, Lemma 2.14 shows that G is (2)(b). BJ4 is not a 2-group. By Lemma 2.15, Lemma 2.16 and
Lemma 2.17, G cannot be BJ5, BJ8, BJ9. Since the cases BJ6 and BJ7 give us (3)(b) and (2)(d), the proof
is complete. �
3. Groups with all noncyclic subgroups normal

Proposition 2.2 shows that in any finite 2-group with SSN, every noncyclic subgroup is normal. It
is natural to ask if the same result holds for p-groups with p an odd prime. This is done in Proposi-
tion 3.3. To start with, we quote the following easy observation from the proof in [LP09, Lemma 2.6].

Lemma 3.1. Let G have SN and let N be a noncyclic normal subgroup of G. Then G/N is a Dedekind group. In
particular, if G/N has odd order, then this factor group is abelian.

We first consider nonnormal subgroups in finite p-groups with SN.

Lemma 3.2. Let G be a finite p-group with p an odd prime and suppose that G has SN. Let Q be a nonnormal
subgroup of G.

(1) If W is a normal subgroup of G with W ⊆ Q , then either W = 1 or Q is cyclic.
(2) Q is either cyclic or elementary abelian.

Proof. (1) We first show that any normal subgroup C of G contained in Q is cyclic. Indeed, if C is
not cyclic, then by Lemma 3.1, G/C is abelian and hence Q /C is a normal subgroup of G/C . It follows
that Q is normal in G , a contradiction. Thus C is cyclic and, in particular, W is cyclic.

Now, if W 	= 1, we want to show that Q is cyclic. To this end, let W p be the unique subgroup of
order p in W , so that W p is normal and hence central in G . Now let V be any subgroup of order p
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in Q . If V 	= W p , then V cannot contain W p , and SN implies that V W p ∼= V × W p is a noncyclic
normal subgroup of G contained in Q , a contradiction. Hence V = W p , and Q contains a unique
subgroup of order p. Since p is odd, we see that Q is cyclic.

(2) Let K be a subgroup of G containing Q and maximal with the property that K is not normal
in G . If Q is not cyclic, then K is not cyclic and we show that K is elementary abelian. Since K is not
normal in G , we can find a subgroup M of G containing K such that |M : K | = p. Since K is maximal
nonnormal in G , we see that M � G and hence Φ(M)� G , where Φ(M) is the Frattini subgroup of M .
Now K is a maximal subgroup of M , so K ⊇ Φ(M), and since K is not cyclic, part (1) implies that
Φ(M) = 1. Thus M is an elementary abelian p-group and hence so are K and Q . �

We can now prove the main result of this section.

Proposition 3.3. Let G be a finite p-group with p an odd prime. If G has SSN, then every nonnormal subgroup
of G is cyclic.

Proof. Suppose by way of contradiction that there exists a nonnormal subgroup Q of G such that Q
is not cyclic. Since G has SSN, Lemma 3.2(2) implies that Q is elementary abelian. Let Z be a central
subgroup of G of order p. Then Z ∩ Q is a normal subgroup of G contained in Q . Since Q is not
cyclic, we have Z ∩ Q = 1 by Lemma 3.2(1). Thus A = Q Z ∼= Q × Z is elementary abelian.

Since Q is not normal in G , there exists some element g ∈ G such that Q g 	= Q . We now show
that for any x ∈ A, we have xg x−1 ∈ Z . Indeed, if x ∈ Z , then obviously 1 = xg x−1 ∈ Z . If x ∈ A is not
in Z , then X = 〈x〉 cannot contain Z because x has order p. Since G has SN and Z � G , it follows that
X Z � G and hence the group X Z/Z of order p is a normal subgroup of the finite p-group G/Z . It
follows that X Z/Z is central in G/Z and we conclude that Z xg = Z x and xg x−1 ∈ Z .

We can now define φ : A → Z by φ(a) = aga−1. Since the maps a �→ ag and a �→ a−1 are both
endomorphisms of the abelian group A, it follows that their product a �→ aga−1 is also an en-
domorphism of A, and hence φ is a homomorphism from A to Z . Thus, if C = ker(φ) = {a ∈ A |
aga−1 = 1} = CA(g), we see that |A/C | divides |Z | = p. But Q 	= Q g , so C 	= A and hence |A : C | = p.
Furthermore, Z ⊆ C so A = Q Z ⊆ Q C ⊆ A and Q C = A.

Finally, let L = 〈A, g〉 be the subgroup of G generated by A and g . Since A is abelian and C ⊆ A,
we see that C centralizes both A and g , and hence C is central in L. Now G has SSN, so L has SN.
Furthermore, Q ∩ C is central and hence normal in L. Thus since Q is not normal in L and Q is not
cyclic, Lemma 3.2(1) implies that Q ∩ C = 1. It follows that A = Q C = Q × C , so |Q | = |A : C | = p,
clearly a contradiction. �

We remark that there exist groups which have SN but do not have SSN. For example, let V = 〈a,b |
ap2 = 1, bp = 1, ab = ap+1〉 and W = 〈u, v | up2 = 1, v p = 1, uv = up+1〉 be nonabelian groups of
order p3, and let G = V ∗ W be the central product of V and W with center Z = Z(V ) = Z(W ). Since
Z has order p, every nonidentity normal subgroup N of G contains Z = G ′ . Thus for any subgroup Y
of G , we have Y N ⊇ G ′ , so Y N � G and G has SN. On the other hand, let H = 〈a,b, v〉. Then 〈v〉 � H
and 〈b〉 does not contain 〈v〉. Since 〈b〉〈v〉 is not normal in H , we see that H does not have SN and
hence G does not have SSN. In fact, 〈b, v〉 is a noncyclic nonnormal abelian subgroup of G , so G does
not satisfy the conclusion of either Proposition 2.2 or Proposition 3.3.
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