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We present a constructive recognition algorithm to decide whether
a given black-box group is isomorphic to an alternating or a
symmetric group without prior knowledge of the degree. This
eliminates the major gap in known algorithms, as they require the
degree as additional input.
Our methods are probabilistic and rely on results about proportions
of elements with certain properties in alternating and symmetric
groups. These results are of independent interest; for instance, we
establish a lower bound for the proportion of involutions with
small support.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The computational recognition of finite simple groups is a fundamental task in the finite matrix
group recognition project (see [8,9,11]). Generally not much is known about the way in which a group
might be given as input and therefore algorithms which take black-box groups (see [1]) as input
are the most versatile. For the important infinite family of alternating groups, the present black-box
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algorithms [3,4] can only test whether a given black-box group is isomorphic to an alternating or
a symmetric group of a particular degree, provided as additional input to the algorithm. Therefore
deciding whether a given black-box group is isomorphic to an alternating group may require to run
the algorithm once for each possible degree. The present paper describes a one-sided Monte-Carlo
(see e.g. [12, p. 14]) black-box algorithm which avoids this bottleneck. Our algorithm takes as input a
black-box group given by a set of generators together with a natural number N and decides whether
the given group is isomorphic to an alternating group of any degree at most N . If the algorithm proves
this to be the case, it computes the degree of the group and recognises it constructively. Otherwise the
algorithm reports failure. Our algorithm runs in time nearly linear in N whereas the older algorithms
have a runtime complexity of Õ(N2) to solve the same task in the worst case.

Given a black-box group G , we let μ denote an upper bound for the cost of multiplying two
elements in G and let ρ denote an upper bound for the cost of computing a uniformly distributed,
independent random element of G . Throughout this paper, log denotes the natural logarithm.

Theorem 1.1. Algorithm 4.29, RecogniseSnAn, is a one-sided Monte-Carlo algorithm with the following
properties. It takes as input a black-box group G = 〈X〉, a natural number N and a real number ε with
0 < ε < 1. If G ∼= An or G ∼= Sn for some 9 � n � N, it returns with probability at least 1 − ε the de-
gree n and an isomorphism λ : G → An or λ : G → Sn. Otherwise it reports failure. The algorithm runs in
time O(N log(N)2 log(ε−1)(|X |μ + ρ)) and stores at most O(log(N)) group elements at any moment.

The black-box construction of a 3-cycle – one of the key ingredients of the algorithm – is a sur-
prisingly hard problem. The solution lies in the combination of the following theoretical results, which
are also of independent interest. The first allows us to find involutions with small support; the second
uses these to construct a 3-cycle.

Theorem 1.2. Let 9 � n ∈ N and G ∈ {An,Sn}. The proportion of elements x ∈ G of even order satisfying
|supp x|x|/2| � 4

√
n/3 is at least (13 log(n))−1 .

Theorem 1.3. Let 7 � n ∈N, G ∈ {An,Sn} and 1 � k � 2
√

n/3. Let s ∈ G be an involution moving 2k points.

1. The proportion of elements r in the conjugacy class sG such that r and s move exactly one common point
is at least 10/(3n).

2. Let M be the set of elements in sG not commuting with s. The proportion of elements r in M such that
(sr)2 is a 3-cycle is at least 1/3.

The constructive recognition algorithm for alternating and symmetric groups described in [3] con-
sists of two parts: the construction of standard generators assuming the degree is known, and the
algorithmic construction of the inverse of the isomorphism λ : G → An . The contribution of this paper
is to replace the first part by an algorithm determining the degree and finding the standard genera-
tors simultaneously. Together with the second part of [3], this establishes the algorithm for the main
theorem above. If one is interested in recognising the symmetric group rather than the alternating
group, the remarks of [3] apply and the same complexity is achieved.

Our algorithm has been implemented in the computer algebra system GAP [7]. Comparisons of
our implementation with the GAP implementation of the first part of [3] show that our algorithm is
a significant improvement. Given as input a black-box group isomorphic to a symmetric or alternating
group, the new algorithm establishes this fact and determines the degree of the group in about the
same time that the old algorithm requires to decide whether the input group is isomorphic to an
alternating or symmetric group of the specific degree given as part of the input. In general, the old
algorithm has to be run several times to find the degree of the input group. Therefore, the new
algorithm wins out by a factor determined by the number of putative degrees the old algorithm has
to test. The scope of our implementation depends on many factors, in particular the way the group
is represented. To give a very rough indication, in the natural permutation representation the present
implementation can deal with degrees of around 10 000.
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In applications in the matrix group recognition project it is imperative that the algorithm reports
failure quickly when the input group is not isomorphic to an alternating nor a symmetric group. We
tested the performance of our algorithm when handed some examples of almost simple groups which
are not alternating or symmetric. In all these examples our algorithm reported failure extremely fast.
This is mainly due to finding an element of order not existing in the symmetric group of degree N ,
thus even proving that the group cannot be of the specified isomorphism types (cf. remark after
Algorithm 4.1).

The practical performance of our algorithm exceeds its predicted performance as the constants
in our estimates of proportions of elements are too conservative, notably in the proportion proved
in Theorem 1.2. Further improvements of the performance could be achieved in situations where an
order oracle is available by lowering the a priori upper bound N .

As E. O’Brien pointed out, our algorithm can also be applied to decide whether the input group
G is a central extension of some (not necessarily finite) abelian group by An or Sn by working with
G/Z(G) as black-box group.

Here is a short overview of this paper. We fix some notation in Section 2 and give an outline of the
algorithm in Section 3. In Section 4 we describe the setup in detail and prove Theorem 1.1. Finally, in
Section 5 we give proofs of Theorems 1.2 and 1.3, along with proofs of some technical results which
are used in the proof of Theorem 1.1.

2. Preliminaries

This paper describes a constructive recognition algorithm which decides whether a given black-box
group is isomorphic to an alternating or a symmetric group. The notion of when a black-box group is
constructively recognisable is defined in [3, Definition 1.1]. In particular, we note that if our algorithm
concludes that a given black-box group G is indeed isomorphic to an alternating group An or a sym-
metric group Sn of some degree n, then it also determines an isomorphism λ : G → An or λ : G → Sn
and a pair {s, t} of generators for G , called the standard generators of G . We call λ together with the
standard generators {s, t} a constructive isomorphism.

The standard generators for An chosen by the algorithm satisfy the following presentations given
by Carmichael [5]:{

s, t
∣∣∣ sn−2 = t3 = (st)n−1 = (

t(−1)k
s−ktsk)2 = 1 for 1 � k � n − 2

2

}
(1)

for even n > 3 and {
s, t

∣∣∣ sn−2 = t3 = (st)n = (
ts−ktsk)2 = 1 for 1 � k � n − 3

2

}
(2)

for odd n > 3.
Examples of standard generators for An are s = (1,2)(3,4, . . . ,n) and t = (1,2,3) for n even, and

s = (3,4, . . . ,n) and t = (1,2,3) for n odd.
Our algorithm exploits information gained by considering the cycle types of permutations in sym-

metric groups. Recall that the cycle type of an element g ∈ Sn is defined as 1a1 · · ·nan if g contains
ai cycles of length i for 1 � i � n. Note that for n � 7 we have Aut(An) = Sn , so the cycle type is
preserved by all automorphisms of An . Thus, if G is isomorphic to An or Sn , the cycle type of λ(g)

is independent of the choice of isomorphism λ from G to An or Sn . This allows us to generalise the
notion of cycle type to elements of a black-box group G isomorphic to An or Sn .

During the course of the algorithm, we may encounter subgroups Ak of An . For k � 7 and k odd,
given a 3-cycle c ∈ An we say that a k-cycle g matches c if {gc2, c} are standard generators for Ak .
Note that in this case g must be of the form (u, v, w, . . .), where c = (u, v, w) for u, v, w ∈ {1, . . . ,n}.

Let π ∈ Sn . Call a point i with 1 � i � n a moved point of π if iπ 	= i. Call the set of moved points
of π the support of π , denoted by suppπ . Similarly, denote by fixπ the set of fixed points of π , that
is {1, . . . ,n} − suppπ .
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3. Brief outline of the algorithm

We describe a one-sided Monte-Carlo algorithm which takes as input a black-box group G , a real
number ε with 0 < ε < 1 and a positive integer N . The aim of the algorithm is to determine whether
there is an integer n with 9 � n � N such that G is isomorphic to An or Sn . In the following we
describe the main steps of our algorithm. We present this description under the assumption that the
algorithm is given a black-box group G which is indeed isomorphic via the unknown isomorphism λ

to An or Sn for some n � N and describe the types of elements in G we seek to establish this fact. If
the algorithm is handed a black-box group not isomorphic to an alternating or symmetric group, then
one of the subsequent steps will fail to find the required elements and the algorithm reports failure.

The algorithm consists of three main steps. In the first step we compute a subset R ⊆ G which
contains a 3-cycle with high probability. The details are presented in Algorithm ThreeCycleCandi-

dates in Section 4.1. If no such set R was found, then we conclude that G is not isomorphic to An or
Sn for any n with 9 � n � N and terminate.

The second step repeats the following basic step for each element c ∈ R . We may assume without
loss of generality that λ(c) = (1,2,3) and we seek a k-cycle g matching c such that k � 3n/4. The
construction of g is described in Algorithm ConstructLongCycle in Section 4.2. If no such element g
was found, then we discard c as a putative 3-cycle and continue with the next candidate for c in R .
Otherwise, without loss of generality, we may assume that λ(g) = (1,2, . . . ,k).

The third step, described in Algorithm StandardGenerators in Section 4.4, determines the de-
gree n. This step repeats a basic step which computes random conjugates r = gx of g for x ∈ G .
Note that by now we have derived some partial information about λ, namely λ(c) = (1,2,3) and
λ(g) = (1,2, . . . ,k). This allows us to decide whether suppλ(gx) contains hereto unseen points in
which case the basic step replaces g by an element g′ such that λ(g′) = (1,2, . . . , �) for some � > k.
The third step repeats this basic step until it obtains an n- or an (n − 1)-cycle and constructs the
standard generators for G from these.

Finally, we use methods from [3] to check whether we have found standard generators and com-
pute a constructive isomorphism.

4. Details of the algorithm

In this section, the steps of the algorithm are described in detail. Each step in turn is broken down
into one or more procedures. Each procedure is designed to accept an arbitrary black-box group as
input, which forces the output to be fairly generic. Therefore each procedure has an accompanying
lemma which gives an interpretation of the output if the input is in fact a symmetric or alternating
group. A second lemma determines the complexity, which is valid for arbitrary black-box groups as
input.

4.1. Construction of possible 3-cycles

The following algorithm constructs a set of putative 3-cycles. It is based on the simple observation
that the product of two involutions t1, t2 with |supp(t1) ∩ supp(t2)| = 1 squares to a 3-cycle.

Algorithm 4.1 (ThreeCycleCandidates).

Input: A group G , a real number 0 < ε < 1 and N ∈ N.
Output: A set R ⊂ G or fail.
Algorithm:

1. Let M := ∏
p p�logp(N)� , where the product is over all odd primes p with p � N . Let B :=

�13 log(N) log(3/ε)�, T := �3 log(3/ε)� and C := �3NT /5�.
2. Choose B random elements r1, . . . , rB ∈ G and set ti := rM

i for 1 � i � B .

3. For each ti , if there is a smallest a ∈ N such that t(2a)
i = 1G and a − 1 � log2(N), then replace ti

by t(2a−1)
i . Otherwise return fail.
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4. For each ti set Γi := ∅. Repeat the following step at most C times: Choose a random conjugate c
of ti . If tic 	= cti and |Γi| < T , then add c to Γi .

5. Return
⋃B

i=1{(tic)2: c ∈ Γi}.

Note that if the algorithm returns fail, then Step 3 has found an element g ∈ G such that |g|
cannot be the order of any element in any group Sn for n � N . Hence G is proven not to be isomorphic
to An or Sn for any n � N .

Lemma 4.2. Let 9 � N ∈ N, 0 < ε < 1 and G ∈ {Sn,An} for some 9 � n � N. A call to Algorithm
ThreeCycleCandidates(G, ε, N) returns a subset R of G and, with probability at least 1 − ε, R contains
a 3-cycle in G. Moreover, |R| � �13 log(N) log(3/ε)� · �3 log(3/ε)�.

Proof. Note that M is an odd integer and that for every g ∈ G the element gM has even order or is
trivial. Therefore, by Corollary 5.6, with probability at least 1 −ε/3 one of the ti constructed in Step 2
has even order such that t := t|ti |/2

i is a product of k disjoint transpositions with k � �max{2
√

n/3,2}�.
Let X be a list of C random conjugates of t . Then, with probability at least 1 − ε/3, X contains at
least T elements which do not commute with t by Corollary 5.9. Now let Γ be a list of T random
conjugates of t not commuting with t . By Corollary 5.10 there is, with probability at least 1 − ε/3, an
element c ∈ Γ such that (tc)2 is a 3-cycle. Thus, with probability at least (1 − ε/3)3 � 1 − ε, the set
R contains a 3-cycle. Since after Step 4 we have |Γi| � T , clearly |R| � T · B holds. This implies the
claimed bound for |R|. �
Lemma 4.3. Let G be a finite group, 0 < ε < 1 and N ∈ N. Then ThreeCycleCandidates with input G, ε, N
runs in O(N log(N)2 log(ε−1)2(μ + ρ)) time and requires storage of O(log(N) log(ε−1)2) group elements.

Proof. Since M <
∏

2<p�N N � N N , computing the M-th power of a group element with a square-
and-multiply algorithm requires O(N log(N)) group operations. In Step 2 we construct B random
elements and compute their M-th power. We compute t(2a)

i by repeated squaring, ensuring that
a − 1 � log2(N), thus Step 3 can be performed in B · log2(N) group operations. Step 4 requires B · C
random elements and O(B · C) group operations; likewise, Step 5 requires O(B · T ) group operations.
Thus, the total runtime of the algorithm is O(N log(N)2 log(ε−1)2(μ + ρ)).

Clearly, we only need to store O(log(N) log(ε−1)2) elements overall, concluding the proof. �
4.2. Construction of a matching cycle

The aim of this section is, given a 3-cycle c in a black-box group G isomorphic to an alternating
or symmetric group of degree n, to construct a k-cycle g matching c with k � 3n/4. The proportion
of cycles with this property is too small for our purposes, so we consider other types of elements in
G which occur more frequently and allow the construction of a k-cycle g with the desired properties.
As a first step, we describe what we call bolstering elements. These allow us to construct the desired
cycle g easily. Since bolstering elements are still too rare, we consider pre-bolstering elements from
which we obtain bolstering elements in turn.

4.2.1. Bolstering elements
Let c be a 3-cycle with supp c = {u, v, w}. Call an element x ∈ Sn bolstering with respect to c if

it is of the form x = (v,a1, . . . ,aα)(w,b1, . . . ,bβ)(. . .) or x = (v,a1, . . . ,aα, w,b1, . . . ,bβ)(. . .) with
u ∈ fix x and α,β � 2.

Remark 4.4. Given a bolstering element x with respect to the 3-cycle c = (u, v, w), we can find a
cycle g matching c. Let m := min{α,β} and m′ := �|α − β|/2�.
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1. c · cx · c(x2) · · · c(xm) =: y is a single cycle of length 2m + 3.
2. If α � β − 2, we can compute z = (u,bα+2,bα+1). Then m′ is the least positive integer such

that z(x2(m′+1))c does not have order 5 and y · z · z(x2) · z(x4) · · · z(x2(m′−1)) =: g is a cycle of length
2m′ + 2m + 3.

3. If β � α − 2, we compute z := (u,aβ+1,aβ+2) to obtain a (2m′ + 2m + 3)-cycle in similar fashion.

The details of how to compute z will be described in Algorithm BuildCycle.

Since the proportion of bolstering elements with respect to a given 3-cycle in An and Sn is too
small, we instead try to find pre-bolstering elements and use these to construct bolstering elements.

An element r is called pre-bolstering with respect to c if it is of the form

r = (w, u,a1, . . . ,aα)(v,b1, . . . ,bβ)(. . .)

or

r = (w, u,a1, . . . ,aα, v,b1, . . . ,bβ)(. . .)

with supp c = {u, v, w} and α,β � 2. Note that if r is pre-bolstering, then either x = cr or x = c2r is
bolstering with respect to c.

The next lemma gives a criterion when an element r ∈ Sn is pre-bolstering with respect to a
3-cycle c.

Lemma 4.5. Let c ∈ Sn be a 3-cycle. Then r is pre-bolstering with respect to c if and only if [cr, c] 	= 1G ,

c(r2) /∈ {c, c2} and [c, c(r2)] = 1G .

Proof. Clearly, if r is pre-bolstering, then the conditions hold. Conversely, suppose that r is not pre-
bolstering. Then either supp cr ∩ supp c = ∅ or fix r ∩ supp c 	= ∅ or min{α,β} < 2. In the first case
we find [cr, c] = 1G . In both the second and the third cases, clearly supp c ∩ supp c(r2) 	= ∅, thus ei-
ther [c, c(r2)] 	= 1G or supp c = supp c(r2) holds. (Note that if the supports of c and c(r2) coincide, then
c(r2) = c or c(r2) = c2.) �

For a group G isomorphic to an alternating or a symmetric group and a 3-cycle c ∈ G , the following
algorithm constructs a list of bolstering elements with respect to c. It achieves this by selecting a
number of random elements from G and using the criteria in Lemma 4.5 to recognise pre-bolstering
elements among these. From these it then constructs bolstering elements with respect to c.

Algorithm 4.6 (BolsteringElements).
Input: A group G , an element c ∈ G , a real number ε with 0 < ε < 1 and N ∈N.
Output: A list B with B ⊂ G .
Algorithm:

1. Let S := 7N� 7
4 logε−1� and R := � 7

4 logε−1�.
2. Set C := ∅. Repeat the following step at most S times: choose a random element r ∈ G; if

[cr, c] 	= 1G , c(r2) /∈ {c, c2}, [c, c(r2)] = 1G and |C | < R , then add r to C .

3. For each r ∈ C , compute zr := crcrcrc(r2)c . If (zr)
3 = 1G , then add c2r to B . Otherwise add cr to B .

Return B .

Lemma 4.7. Let 7 � n � N, G ∈ {Sn,An}, c ∈ G be a 3-cycle and 0 < ε < 1. Let B := BolsteringElements(G,

c, ε, N). Then B is a list of random bolstering elements and, with probability at least 1 − ε, we have |B| �
� 7

4 logε−1�.
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Proof. Let supp c = {u, v, w}. Clearly, using Lemma 4.5 the elements r constructed in Step 1 of
Algorithm 4.6 are pre-bolstering with respect to c. Step 3 has to decide whether c = (u, v, w)

or c = (u, w, v). In the first case zr is a 3-cycle, while in the second case zr is a 5-cycle.
Thus, (zr)

3 = 1G if and only if c = (u, v, w) and B is a list of bolstering elements. By Proposi-
tion 5.12, we find less than R elements with probability at most ε, since S = 7N� 7

4 logε−1� �
5N · max((5/4)4 logε−1, 25

18 � 1
2 log3/4 ε�). �

Lemma 4.8. Let G be a black-box group, c ∈ G an arbitrary element, 0 < ε < 1 and N ∈ N. Then Algo-
rithm BolsteringElements with input G, c, ε, N runs in O(N logε−1(μ + ρ)) time and requires storage
of O(logε−1) group elements.

Proof. This is immediate. �
4.2.2. Exploiting bolstering elements

Given a bolstering element x with respect to a 3-cycle c, we can construct a cycle gx matching c,
using Remark 4.4. But depending on the type of the bolstering element, this may require differ-
ent steps to obtain the longest possible matching cycle. The type of a given bolstering element can
be determined using only black-box operations as described in Remark 4.9. We first describe Algo-
rithm BuildCycle which applies this remark to obtain a cycle gx matching c from a given bolstering
element x. This is used by Algorithm ConstructLongCycle, which computes gx for every x returned
by Algorithm BolsteringElements, and returns the longest gx .

Remark 4.9. Several properties of bolstering elements can be checked algorithmically using only black-
box operations. Let supp c = {u, v, w}. Let x be bolstering with respect to c and u ∈ fix x.

1. Let m := min{α,β}. Then m is the least natural number such that c(xm+1)c does not have order 5.
Note that necessarily m < n/2.

2. α = β if and only if c(xm+1) ∈ {c, c2}.
3. |α − β| = 1 if and only if c(xm+2)c does not have order 5.
4. If α 	= β , then w /∈ v〈x〉 , i.e. x is of the first form, if and only if c(xm+1)c has order 2.
5. Assume |α−β| > 1. If w ∈ v〈x〉 , then α > β if and only if c(xm+2) and c(xm+1c) commute. If w /∈ v〈x〉 ,

then α < β if and only if c(xm+2) and c(xm+1c) commute.

When called with input a black-box group G isomorphic to an alternating group An or a symmetric
group Sn and elements c, x ∈ G such that c is a 3-cycle and x is a bolstering element with respect to c,
the following algorithm determines a cycle gx of length k matching c. It returns gx and its length k.

Algorithm 4.10 (BuildCycle).

Input: Elements c, x of a group G and N ∈N.
Output: A number k ∈N and an element g ∈ G , or fail.
Algorithm: Determine m := min{α,β} and check whether |α − β| � 2 as described in Remark 4.9. If
m � N/2, return fail. Compute y := c · cx · c(x2) · · · c(xm) . If |α − β| � 1, return 2m + 1, y. Otherwise set
d := c(xm+1) and

e :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dxc, if w ∈ v〈x〉 and α > β,

(d(xc2))2, if w ∈ v〈x〉 and α < β,

d(xc2), if w /∈ v〈x〉 and α > β,

(xc) 2 〈x〉
(d ) , if w /∈ v and α < β,
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where we can decide whether w ∈ v〈x〉 and α > β using Remark 4.9. Set z := de and determine m′

as described in Remark 4.4. If m′ � N/2, return fail. Otherwise compute g := y · z · z(x2) · · · z(x2(m′−1)) .
Return 2m′ + 2m + 1, g .

Lemma 4.11. Let 7 � n � N ∈ N, c ∈ Sn be a 3-cycle and x a bolstering element with respect to c. Then
BuildCycle with input c, x, N returns k and g such that g is a k-cycle matching c.

Proof. This is an application of Remarks 4.4 and 4.9, where it is easy to check that z has the form
given in Remark 4.4, e.g., if w ∈ v〈x〉 and α > β we have d = (u,aβ+1, v) and e = (v,aβ+2,a1), hence
z = (u,aβ+1,aβ+2). �
Lemma 4.12. Let G be a finite group, c, x ∈ G arbitrary elements, and N ∈ N. Then BuildCycle with input
c, x, N runs in O(Nμ) time and requires storage of a constant number of group elements.

Proof. By storing c(xi−1) , the next element c(xi) can be computed in constant time. Since m and m′
are bounded by N/2, the lemma follows. �
Algorithm 4.13 (ConstructLongCycle).
Input: A group G , an element c ∈ G , 0 < ε < 1 and N ∈N.
Output: A number k ∈ N and an element g ∈ G or fail.
Algorithm:

1. Let L := ∅ and B := BolsteringElements(G, c, ε/2, N). If B contains less than � 7
4 log(2/ε)� ele-

ments, return fail.
2. Call BuildCycle for each bolstering element x ∈ B . If this fails for some x, return fail. Otherwise

return k and g computed by BuildCycle with maximal k.

Lemma 4.14. Let 9 � N ∈ N, 0 < ε < 1, G ∈ {Sn,An} for some 9 � n � N and c ∈ G be a 3-cycle. Then,
with probability at least 1 − ε, ConstructLongCycle with input G, c, ε, N returns k and g such that k �
max(3n/4,9) and g is a k-cycle matching c.

Proof. Step 1 succeeds with probability at least 1 − ε/2, cf. Lemma 4.7. Since 7/4 log(2/ε) �
1/2 log3/4(ε/2), Proposition 5.13 yields that, with probability at least 1 − ε/2, BuildCycle constructs
at least one k-cycle with k � max(3n/4,9). �
Lemma 4.15. Let G be a finite group, c ∈ G an arbitrary element, 0 < ε < 1 and N ∈ N. Then Construct-

LongCycle with input G, c, ε, N runs in O(N logε−1(μ+ρ)) time and requires storage of O(logε−1) group
elements.

Proof. This follows from Lemmas 4.8 and 4.12. �
4.3. Auxiliary algorithms

In this section we describe short algorithms which are called by Algorithm StandardGenerators.
For our discussion, we assume we are given a group G isomorphic to An or Sn and that c is a 3-cycle
and g a k-cycle matching c. We perform computations mainly in 〈g, c〉 ∼= Ak .

The first algorithm decides whether a point i ∈ supp g is fixed by a given element r ∈ G .

Remark 4.16. Let a1, . . . ,a7 ∈N be pairwise distinct and

A := {{1,2, i}: 3 � i � 6
}
.

If the sets {a1,a2,a3}, {a1,a4,a5}, {a1,a6,a7} intersect each set in A non-trivially, then a1 ∈ {1,2}.
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This observation allows us to recognise a fixed point of an arbitrary element r ∈ G by examining
the intersection of the supports of some aptly chosen elements. If c is a 3-cycle and g a matching
cycle, the following algorithm decides whether the single point in the intersection of the supports of
c and c(g2) is fixed by r.

Algorithm 4.17 (IsFixedPoint).
Input: Elements g, c, r of a group G .
Output: true or false.
Algorithm: Define

X := {
cr, cg2r, cg2c(g3)c(g4)r}

and

H1 := {
c2, ccg

, ccg c(g3)

, ccg(c(g3))2
, ccg(c(g3))2c(g4)}

.

If there is an element x ∈ X such that [x,h] = 1G for at least two different h ∈ H1, then return false.
Otherwise define

H2 := {
c, cg, cgc(g3)

, cg(c(g3))2
, cg(c(g3))2c(g4)}

.

If there is an element x ∈ X such that [x,h] = 1G for at least two different h ∈ H2, then return false.
Otherwise return true.

Lemma 4.18. Let 7 � k � n, c ∈ Sn be a 3-cycle, g ∈ Sn a k-cycle matching c and r ∈ Sn an arbitrary element.
IsFixedPoint(g, c, r) returns true if and only if the unique point contained in both supp c and supp c(g2) is
fixed by r.

Proof. Without loss of generality, let c = (1,2,3) and g = (1,2, . . . ,k). We find supp c ∩ supp c(g2) =
{3}, H1 = {(1,3, j): j ∈ {2,4,5,6,7}}, H2 = {(2,3, j): j ∈ {1,4,5,6,7}} and X = {(1,2,3)r, (3,4,5)r,

(3,6,7)r}.
Assume that IsFixedPoint returns false. Then there are elements x ∈ X and h1,h2 ∈ H1 (or in H2)

commuting with x. Suppose 3 ∈ fix r. Since then 3 ∈ supp x ∩ supp h1 ∩ supp h2 and h1,h2 commute
with x, we obtain supp h1 = supp x = supp h2, a contradiction. Thus 3 /∈ fix r.

Conversely assume that IsFixedPoint returns true. Then, for each x ∈ X , there exist h1, . . . ,h4 ∈ H1
with supp hi ∩ supp x 	= ∅, and similarly for H2. The result now follows by Remark 4.16. �
Lemma 4.19. Let G be a finite group and g, c, r ∈ G arbitrary elements. Then IsFixedPoint with input g, c, r
uses a constant number of group operations and requires storage of a constant number of group elements.

Proof. This is immediate. �
Let G be a black-box group isomorphic to an alternating or symmetric group, c ∈ G a 3-cycle,

g ∈ G a k-cycle matching c, and r another element of G . Assume without loss of generality that
g = (1,2, . . . ,k) and c = (1,2,3). If r satisfies |supp r ∩ supp g| � 1 and |fix r ∩ supp g| � 2, the next
algorithm computes a conjugate r̃ = rx such that r̃ fixes the points 1 and 2, but not the point 3. Here
we identify the point j ∈ {1, . . . ,k} with the 3-cycle cg( j−3)

.

Algorithm 4.20 (AdjustCycle).
Input: Elements g, c, r of a group G and k ∈ N.
Output: An element r̃ ∈ G conjugate to r or fail.
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Algorithm: Compute the set

F := {
1 � j � k: IsFixedPoint

(
g, c(g j−3), r

) = true

}
.

If |F | < 2 or |F | = k, then return fail. Otherwise, define f1 as the smallest and f2 as the second
smallest number in F . Define m as the smallest natural number not in F . Define the element x ∈ G
according to the following table:

F ∩ {1,2,3,4} x

{1,2,3,4} or {1,2,3} c(gc2)m−3cc
{1,2,4} or {1,2} 1G

{1,3,4} cg

{1,3} (c2)g

{1,4} or {1} c(gc2) f2−3c

{2,3,4} or {2,4} ccg

{2,3} (c2)cg

{2} c(gc2) f2−3cg

{3,4} or {3} (c2)(gc2) f2−3
c2

{4} or ∅ c(gc2) f2−3
c(gc2) f1−3

Return r̃ := rx .

Lemma 4.21. Let 7 � k0 � k � n ∈ N, c = (1,2,3), g = (1,2, . . . ,k) and r ∈ Sn be a k0-cycle. If r has in
supp g at least two fixed points and one moved point, then r̃ := AdjustCycle(g, c, r,k) is a k0-cycle fixing the
points 1 and 2 and moving 3. Moreover, the difference supp r − supp g lies in supp r̃ .

Proof. If r has two fixed points and a moved point in supp g , the algorithm returns a k0-cycle r̃.
We want to show that r̃ fixes the points 1 and 2 but moves the point 3. By Lemma 4.18, we have
F = fix r ∩ supp g . Then the table defining x looks as follows:

F ∩ {1,2,3,4} x

{1,2,3,4} or {1,2,3} (1,2)(3,m)

{1,2,4} or {1,2} 1G

{1,3,4} (2,3,4)

{1,3} (2,4,3)

{1,4} or {1} (2,3, f2)

{2,3,4} or {2,4} (1,3,4)

{2,3} (1,4,3)

{2} (1,3, f2)

{3,4} or {3} (1, f2)(2,3)

{4} or ∅ (1, f1)(2, f2)

Thus, in each case r̃ = rx fixes 1 and 2 but not 3. Since x ∈ 〈g, c〉, it fixes every element in {1, . . . ,n}−
supp g , so (supp r − supp g) ⊂ supp r̃ holds. �
Lemma 4.22. Let G be a finite group, g, c, r ∈ G arbitrary elements and k ∈ N. AdjustCycle with input
g, c, r,k runs in O(kμ) time and requires storage of a constant number of group elements.

Proof. This follows by standard arguments. �
Using elements provided by AdjustCycle, the next algorithm appends new points to the cycle g .

Since g will always be a cycle of odd length, new points can only be appended in pairs. Because of
this we need an element s, a ‘storage cycle’, storing the first new point until we encounter a second
one. The output s̃ assumes the role of s the next time AppendPoints is called.
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Algorithm 4.23 (AppendPoints).

Input: Elements g, c, r, s of a group G and k,k0 ∈ N.
Output: Two elements g̃, s̃ ∈ G and k̃ ∈ N.
Algorithm:

1. Set g̃ := g , s̃ := s and k̃ := k.
2. For each 1 � j < k0, set x j := c(r j) . If [x j, g̃c2] = 1G , then perform Step 3.

3. If s̃ = 1G , then set s̃ := x j . If s̃ 	= 1G and s̃ 	= x j , then set k̃ := k̃ + 2, g̃ := g̃̃s(x2
j ) and s̃ := 1G .

4. Return g̃ , s̃ and k̃.

Lemma 4.24. Let 7 � k0 � k � n ∈ N, c = (1,2,3), g = (1,2, . . . ,k) and r ∈ Sn be a k0-cycle fixing the points
1 and 2 and moving 3. Let s ∈ Sn be either the identity element or s = (1,2,b) for some b ∈ {1, . . . ,n}−supp g.
Let g̃, s̃, k̃ := AppendPoints(g, c, r, s,k,k0). Then g̃ is a k̃-cycle matching c, and supp r ∪ supp g ∪ supp s =
supp g̃ ∪ supp s̃.

Proof. Let r = (3,a1, . . . ,ak0−1) with 4 � a j � n. Then x j = (1,2,a j), so x j and g̃c2 commute if and
only if a j /∈ supp g̃ . If, in this case, s̃ is the identity, the new point is stored in s̃. If s̃ = x j , the point
is already stored in s. Otherwise we find s̃ = (1,2,b) for some b /∈ (supp g̃ ∪ {a j}). Now, g̃ is set
to (1,2, . . . ,k,b,a j), becoming a k̃-cycle matching c. Since all a j are treated in this manner, clearly
supp r ⊂ (supp g̃ ∪ supp s̃) holds. �
Lemma 4.25. Let G be a finite group, g, c, r, s ∈ G arbitrary elements and k,k0 ∈ N. Then AppendPoints with
input g, c, r, s,k,k0 runs in O(k0μ) time and requires storage of a constant number of group elements.

Proof. This is immediate. �
4.4. Construction of standard generators

Let G be a black-box group isomorphic to an alternating or symmetric group, c ∈ G a 3-cycle
and g ∈ G a k-cycle matching c. The first algorithm in this section uses these elements to construct
standard generators of the alternating group of the same degree as G .

The main algorithm RecogniseSnAn ties up all algorithms in this chapter and results of [3] to
either constructively recognise the group or decide that it is not isomorphic to an alternating or
symmetric group with high probability.

Algorithm 4.26 (StandardGenerators).

Input: A group G , elements g, c ∈ G , 0 < ε < 1 and k, N ∈ N.
Output: Elements g̃, c̃ ∈ G and k̃ ∈ N or fail.
Algorithm:

1. Set s := 1G , k0 := k − 2, r := gc2, k̃ := k and g̃ := g .
2. Choose a list R of �log(10/3)−1(log N + logε−1)� random conjugates of r. For each x ∈ R , perform

Step 3.
3. Set m := AdjustCycle(̃g, c, x, k̃). If m = fail, then return fail.

Set g̃, s, k̃ := AppendPoints(̃g, c,m, s, k̃,k0). If k̃ > N , then return fail.
4. If s = 1G , set g̃ := c2 g̃ and c̃ := c. Otherwise set k̃ := k̃ + 1, g̃ := g̃s and c̃ := s.
5. Check whether (̃g, c̃) satisfies the presentation (1) or (2) for Ak . If that is not the case, then

return fail. Otherwise return g̃, c̃, k̃.

Lemma 4.27. Let 9 � k � n � N ∈ N, k � 3n/4, G ∈ {Sn,An}, c ∈ G be a 3-cycle, g ∈ G a k-cycle matching c
and 0 < ε < 1. Then, with probability at least 1 − ε, we find g̃, c̃, k̃ := StandardGenerators(G, g, c, ε,

k, N) 	= fail such that k̃ = n and g̃, c̃ are standard generators for An.
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Proof. First note that k0 � �(7/10)n� and r is a k0-cycle, so the supports of g̃ and a random conjugate
x of r always have a common moved point. Furthermore, x has at least two fixed points in supp g̃
since k = k0 + 2, so the algorithm cannot fail in Step 3. Lemmas 4.21 and 4.24 ensure that after Step 2
the set supp g̃ ∪ supp s contains the supports of all x ∈ R . Thus, by Theorem 5.14, we find that with
probability at least 1 − ε the elements g̃ and s have no common fixed point on {1, . . . ,n}. It is easy
to check that we return the correct degree and standard generators. �
Lemma 4.28. Let G be a group, g, c ∈ G arbitrary elements, 0 < ε < 1 and k, N ∈N. Then StandardGenera-

tors with input G, g, c, ε,k, N runs in O(N(log N + logε−1)(μ+ρ)) time and requires storage of a constant
number of group elements.

Proof. The cost to check whether a presentation for Ak is satisfied requires O(N) group operations
by [3, Lemma 4.4]. At any call of AdjustCycle and AppendPoints we have k � N . Thus, Lemmas 4.22
and 4.25 yield the claimed runtime. �

We can now present the main algorithm and prove the main Theorem 1.1.

Algorithm 4.29 (RecogniseSnAn).

Input: A group G = 〈X〉, 0 < ε < 1 and N ∈N.
Output: A constructive isomorphism or fail.
Algorithm:

1. Set T := �log2 ε−1�.
2. If T = 0, then return fail. Otherwise set T := T − 1 and compute R := ThreeCycleCandidates(G,

1/4, N). If R = fail, then return fail.
3. If R = ∅, go to Step 2. Otherwise choose c ∈ R and set R := R − {c}.
4. Set � := ConstructLongCycle(G, c,1/8, N). If � = fail, go to Step 3. Otherwise set k, g := � ∈

N× G .
5. Set � := StandardGenerators(G, g, c,1/8,k, N). If � = fail, go to Step 3. Otherwise set g, c,n :=

� ∈ G × G ×N.
6. Using methods described in [3], check whether G is isomorphic to An or Sn . If that is the case,

then return the constructive isomorphism computed during the check. Otherwise go to Step 3.

Proof of Theorem 1.1. For the first part of the statement, consider Steps 2–6. Note that Three-

CycleCandidates cannot fail if G is an alternating or symmetric group of degree at most N , so by
Lemma 4.2 we obtain a set R containing a 3-cycle with probability at least 3/4. Thus, without loss
of generality, let c ∈ R be a 3-cycle. Using Lemma 4.14, we find, with probability at least 7/8, that
Step 4 constructs a k-cycle matching c with k � max(3n/4,9). Now, by Lemma 4.27, Step 5 returns
the correct degree and standard generators with probability at least 7/8. Step 6 always returns a cor-
rect answer, cf. [3, Lemma 5.5 and proof of Theorem 1.2(b)]. Thus, the probability to succeed in one
pass is at least (3/4) · (7/8)2 > 1/2. We repeat this procedure �log2 ε−1� times to obtain the claimed
overall probability.

We now prove the second claim. Steps 2–6 are repeated up to �log2 ε−1� times. During one such
pass we execute Step 2 only once and Steps 4–6 up to |R| times. By Lemma 4.2 we have |R| �
c log N for some constant c ∈ R. In Step 5, note that k,n � N must hold. Then the claim follows by
Lemmas 4.3, 4.15, 4.28 and [3, Section 5]. �
5. Probability estimates

This section contains theoretical results which are used to establish lower bounds for the success
probability of the algorithm. Several results are of independent interest. We already mentioned the
probability estimates for small support involutions in the introduction. Another noteworthy result is
a lower bound on the proportion on k-cycles in Sn having a common fixed point, cf. Theorem 5.14.
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Note that if f is a continuous and decreasing function on the interval [a,b + 1], then

b+1∫
a

f (x)dx �
b∑

k=a

f (k). (3)

We will also use the following useful result several times.

Lemma 5.1 (Chernoff’s bound). (See [12, Lemma 2.3.3].) Let X1, X2, . . . be a sequence of 0–1 valued random
variables such that P(Xi = 1) � p for any values of the previous X j (but Xi may depend on these X j ). Then,
for all integers T and 0 < δ < 1,

P

(
T∑

i=1

Xi � (1 − δ)pT

)
� e−δ2 pT /2.

5.1. Small support involutions

The aim of this section is to compute the proportion of even-order elements in An and Sn which
power to an involution with small support. These involutions are used in the algorithm to construct
3-cycles (cf. Algorithm 4.1 and Corollary 5.10). To achieve this, we compute lower bounds for the
proportion ub(n) of elements in Sn and the proportion ũb(n) of elements in An which contain jb
points in cycles of lengths divisible by b but not by 2b and the remaining (n − jb) points in cycles
of length not divisible by b for some integer j satisfying 1 � j � 4

√
n/(3b). To obtain involutions, we

choose b to be a certain power of two.
Let tb(bn) denote the proportion of all permutations in Sbn such that all cycle lengths are a multi-

ple of b but no cycle length is a multiple of 2b. Define tb(0) := 1. Observe that tb(b) = 1/b, since the
only allowable permutations are the b-cycles and the proportion of b-cycles in Sb is 1/b. The proof of
the following lemma refines the ideas in [10] to obtain the explicit lower bound given below.

Lemma 5.2. Let n,b ∈N. Then tb(bn) � (b231/(2b)n1−1/(2b))−1 .

Proof. The proof is by induction on n. For n = 1 we have tb(b) = 1/b and the claim holds. Consider
tb((n + 1)b). If 1 lies in a cycle of length jb, then j has to be odd. Choosing jb − 1 out of (n + 1)b − 1
points and arranging them yields ((n+1)b−1)!

((n− j+1)b)! such cycles. On the remaining (n + 1 − j)b points we
may choose any permutation whose cycles have lengths divisible by b but not by 2b. We obtain the
recursion

(
(n + 1)b

)! · tb
(
(n + 1)b

) =
n+1∑
j=1

j odd

(
(n + 1)b − 1

)! · tb
(
(n + 1 − j)b

)
,

and thus

(n + 1)b · tb
(
(n + 1)b

) =
n+1∑
j=1

j odd

tb
(
(n + 1 − j)b

)
.

Let us first assume that n is even. The induction hypothesis yields
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(n + 1)b · tb
(
(n + 1)b

)
� 1 +

n−1∑
j=1

j odd

1

b231/(2b)(n + 1 − j)1−1/(2b)

= 1 +
n/2∑
k=1

1

b231/(2b)(2k)1−1/(2b)

� 1 +
(

2

3

)1/(2b)
n/2+1∫

1

1

b22x1−1/(2b)
dx

= 1 +
(

2

3

)1/(2b) 1

b

(
x1/(2b)

∣∣n/2+1
x=1

)
� 1

b31/(2b)

(
(n + 2)1/(2b) − 21/(2b) + b31/(2b)

)
� 1

b31/(2b)
(n + 1)1/(2b).

A similar estimation holds for odd n, using tb(b) = 1/b; in either case we see

tb
(
(n + 1)b

)
� 1

b231/(2b)
(n + 1)1/(2b)−1,

so the result follows by induction. �
Lemma 5.3. Let f (x) := ((n/b − x)1/bx1−1/(2b))−1 , where n � 404 and 1 � b � 4

√
n/3. Then f is positive

and decreasing for 0 < x � 4
√

n/(3b) + 1.

Proof. Clearly f is positive on the given interval. Moreover,

d

dx
f (x) = bx + n − 2bn + 2b2x

2(n − bx)bx
f (x)

and bx + n − 2bn + 2b2x < 0 for x � 4
√

n/(3b) + 1, which proves the claim. �
Let s¬b(n) denote the proportion of elements in Sn with no cycle of length a multiple of b. Applying

the inequality from [2, Theorem 2.3(b)] we get

s¬b(n) � b1/b

�(1 − 1/b)n1/b

(
1 − 1

n

)
, (4)

where � denotes the �-function. Now we are in a position to prove the following lemma which is
essential for the proof of Theorem 1.2.

Lemma 5.4. Let 404 � n ∈ N. Define b := 2�log2( 1
3 log(n))� . Then ub(n) � 1/(16 log(n)) and u2b(n) �

1/(21 log(n)).
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Proof. Clearly

ub(n) =
� 4

√
n

3b �∑
j=1

s¬b(n − jb) · tb( jb).

Set c(b) := �(1 − 1/b)−1(1 − (404 − 4
3

√
404)−1); then s¬b(n − jb) � c(b) · (b/(n − jb))1/b . Together

with Lemmas 5.2 and 5.3 we obtain

ub(n) � c(b)

31/(2b)b2

� 4
√

n
3b �∑

j=1

1

(n/b − j)1/b

1

j1−1/(2b)

� c(b)

31/(2b)b2

� 4
√

n
3b �+1∫
1

1

(n/b)1/b

1

j1−1/(2b)
d j

� c(b)

31/(2b)b2−1/bn1/b

4
√

n
3b∫

1

j1/(2b)−1 d j

= 2c(b)

31/(2b)b1−1/bn1/b
j1/(2b)

∣∣∣∣
4
√

n
3b

j=1

>
2c(b)

bn1/b

((
4
√

n

3b

)1/(2b)

− 1

)
.

By definition, b = 2�log2( 1
3 log(n))� , thus 1

3 log(n) � b < 2
3 log(n). Note that 1

3 log(n) > 2 for n � 404 im-
plies b � 4. Moreover, 1/(bn1/b) is increasing in b for 0 < b < log(n), and � is decreasing on the
interval (0,1), so c(b) is increasing for b > 1. Lastly (4

√
n/(3b))1/(2b) − 1 is decreasing in b for

0 < b � 4
√

n/3. Altogether we obtain

ub(n) � 2c(4)

bn1/b

((
4
√

n

3b

)1/(2b)

− 1

)

� 6c(4)

log(n)n3/ log(n)

((
2
√

n

log(n)

)3/(4 log(n))

− 1

)
.

Since (2
√

n/ log(n))3/(4 log(n)) − 1 is increasing on the interval [404,∞) and n(3/ log(n)) = e3, this yields

ub(n) � 6c(4)

e3 log(n)

((
2
√

404

log(404)

)3/(4 log(404))

− 1

)
� 1

16 log(n)
.

A similar argument establishes the bound for u2b(n). �
Lemma 5.5. For all b,n ∈ N,

ũb(n) �
(

1 − 1

b − 1

)
ub(n).
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Proof. Denote by a¬b(n) the proportion of elements in An with no cycle of length a multiple of b,
and by c¬b(n) = 2s¬b(n) − a¬b(n) the proportion of such elements in Sn − An . Every element in S jb
can be supplemented with an element of An− jb or Sn− jb − An− jb to get an element of An , hence

ũb(n) �
� 4

√
n

3b �∑
j=1

min
{

a¬b(n − jb), c¬b(n − jb)
} · tb( jb).

Using the bounds (1 − 1/(b − 1))s¬b(n) � a¬b(n) � (1 + 1/(b − 1))s¬b(n) from [2, Theorem 3.3(b)] we
get c¬b(n) � (1 − 1/(b − 1))s¬b(n), which yields the result. �

Before proving Theorem 1.2, we state the following immediate corollary.

Corollary 5.6. Let 9 � n ∈N, G ∈ {An,Sn} and T := �13 log n logε−1�. The probability that among T random
elements of G there is an element x of even order satisfying |supp x(|x|/2)| � �4

√
n/3� is at least 1 − ε.

Proof of Theorem 1.2. The proportion in Sn equals
∑

b∈Bn
ub(n) and in An it equals

∑
b∈Bn

ũb(n),

where Bn := {2t : 1 � t � �log2(�4
√

n/3�)�}. First, let n � 404 and b0 := 2�log2( 1
3 log(n))� . Then Lem-

mas 5.4 and 5.5 yield

∑
b∈Bn

ub(n) �
∑
b∈Bn

ũb(n) � ũb0(n) + ũ2b0(n) � 1

13 log(n)
.

For 36 � n � 403 we can check

∑
b∈Bn

ũb(n) �
∑
b∈Bn

(
1 − 1

b − 1

) � 4
√

n
3b �∑

j=1

s¬b(n − jb) · tb( jb) � 1

13 log(n)

case by case, using the bounds in Lemma 5.2 and (4). Lastly, note that the desired property depends
only on the cycle type. For 9 � n � 35, we confirm the claim by investigating each conjugacy class of
Sn and An and thus directly computing the exact proportion. �
5.2. Products of k-involutions

We call a product of k disjoint transpositions a k-involution. Our method to construct a 3-cycle
uses the product of two random k-involutions r and s such that supp(r) ∩ supp(s) contains a single
element. Since we are in a black-box setting, given an involution r we know neither k nor supp(r)
explicitly. However, if k is small enough, then a random conjugate of r which does not commute
with r satisfies our hypothesis with high probability, cf. Theorem 1.3. Furthermore, there are enough
non-commuting conjugates of r. Note that we can find involutions with small k by Theorem 1.2.

First, we need some auxiliary lemmas.

Lemma 5.7. Let f (k) := (1 − 2k/(9k2/4 − 2k + 1))2k. Then f (k) is increasing for k � 2.

Proof. Let g(k) := 9
4 k2 − 2k + 1. The derivative of f (k) is

(
2 log

(
1 − 2k

g(k)

)
+ 2k

g(k)2

g(k)

9 k2 − 4k + 1

(
−2g(k) + 2k

(
9

2
k − 2

)))
f (k).
4
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Thus, using log(1 + x) � x/(1 + x), we find

d

dk
f (k) �

( −4k
9
4 k2 − 4k + 1

+ 2k

( 9
4 k2 − 2k + 1)( 9

4 k2 − 4k + 1)

(
9

2
k2 − 2

))
f (k)

and for k � 2 it is easy to check that both factors are positive. �
Let s ∈ Sn be a fixed k-involution. Denote by inv(n,k) the number of k-involutions in Sn . Then

inv(n,k) = |Sn|
|CSn(s)| = n!

2kk!(n − 2k)! .

Let trip(n,k) denote the proportion of k-involutions r ∈ Sn such that r and s move a single common
point.

Note that if k is even, then inv(n,k) is also the number of k-involutions in An , and trip(n,k) equals
the proportion of k-involutions r ∈ An such that |supp(r) ∩ supp(s)| = 1. Thus for the results in this
section it does not matter whether we consider the alternating or the symmetric group.

Lemma 5.8. Let 9 � n ∈N and 1 � k � 2
√

n/3. Then trip(n,k) � min{trip(n,1), trip(n, �2
√

n/3�)}.

Proof. We have

trip(n,k) = 2k(n − 2k) inv(n − 2k − 1,k − 1)

inv(n,k)
= 4k2(n − 2k)!2

n!(n − 4k + 1)! .

It suffices to show that trip(n,k + 1)/ trip(n,k) is decreasing in k. To see this, consider the derivative
of the quotient. We find

d

dk

trip(n,k + 1)

trip(n,k)
= α(n,k)

−2(k + 1)

((n − 2k − 1)(n − 2k)k)3

for some polynomial α(n,k) ∈ Z[n,k]. Since (n − 2k − 1) > 0 holds for n � 9 and k � 2
√

n/3, we
only need to show that α(n,k) � 0. Write α = α+ + α− such that α+(n,k) ∈ Z>0[n,k] and α−(n,k) ∈
Z<0[n,k]. Since 1 � k � 2

√
n/3, we obtain

α(n,k) � α+(n,1) + α−(n,2
√

n/3) =: β(
√

n) ∈Q[√n].
Using Sturm sequences (cf. [6, Theorem 4.1.10]), it is easy to see that β has no roots for

√
n � 28, so

α(n,k) � β(
√

n) � 0. Thus, the claim holds for n � 282. For 9 � n � 282 − 1 and 1 � k � �2
√

n/3�, we
check the claim case by case. �

Using this result we can now prove the first claim of Theorem 1.3.

Proof of Theorem 1.3(1). By Lemma 5.8 it suffices to check the inequality for k = 1 and k = �2
√

n/3�.
The first case is easy to verify, so consider the second case. Note that

trip(n,k)

trip(n + 1,k)
= (n + 1)(n − 4k + 2)

(n − 2k + 1)2
= 1 + n − (4k2 − 1)

(n − 2k + 1)2
,

so trip(n,k) increases in n for n � 4k2 − 1, which holds for n � 39. We consider this case first. Since
n � �9k2/4�, we see
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trip(n,k) � trip

(⌈
9

4
k2

⌉
,k

)

= 4k2

(� 9
4 k2� − 4k + 1)

2k∏
i=1

� 9
4 k2� − 4k + i

� 9
4 k2� − 2k + i

� 4k2

( 9
4 k2)

2k∏
i=1

(
1 − 2k

9
4 k2 − 2k + 1

)
= 16

9

(
1 − 2k

9
4 k2 − 2k + 1

)2k

.

The claim follows by Lemma 5.7, since k � 4. For 10 � n � 38 we check trip(n, �2
√

n/3�) � 10/(3n)

case by case. Finally, for n � 9 we compute the proportion explicitly. �
Theorem 1.3(1) shows that we can construct a 3-cycle by looking at O(n) conjugates of an in-

volution with small support. Unfortunately, considering that many conjugates would result in a final
algorithm with complexity Õ(n2). Thus we do not use this result to construct the 3-cycles directly,
but instead use it as a lower bound for the proportion of non-commuting conjugates.

Corollary 5.9. Let 9 � n ∈ N, 1 � k � 2
√

n/3, 0 < ε < 1, G ∈ {An,Sn} and s ∈ G be a k-involution. Let
Z := � 3n

5 �3 logε−1��. Then, with probability at least 1 − ε, a set of Z random conjugates of s contains at least
�3 logε−1� elements not commuting with s.

Proof. Use the proportion established in Theorem 1.3(1) and Chernoff’s bound (Lemma 5.1) with
δ := 1/2. �

Next we prove the second part of Theorem 1.3 by establishing a bound for the conditional prob-
ability that two k-involutions s and r satisfy |supp r ∩ supp s| = 1, given that they do not commute.
Note that in this case (sr)2 is a 3-cycle, so we immediately obtain the following corollary.

Corollary 5.10. Let 9 � n ∈ N, 1 � k � 2
√

n/3, 0 < ε < 1, G ∈ {An,Sn} and s ∈ G be a k-involution. Let
Z := �3 logε−1�. Then, with probability at least 1 − ε, a set of Z random conjugates of s not commuting with
s contains an element r such that (sr)2 is a 3-cycle.

Proof of Theorem 1.3(2). Let s be a fixed k-involution and denote by Σ the proportion of
k-involutions r such that (sr)2 is a 3-cycle among all k-involutions not commuting with s. The
proportion Σ can be computed explicitly for n � 9, so assume in the following that n � 10. Let
T := {t ∈ sSn : |supp t ∩ supp s| = 1} and C := {c ∈ sSn : |supp c ∩ supp s| = 0}. Then (st)2 is a 3-cycle
for every t ∈ T and [s, c] = 1G for every c ∈ C . We find |T | = 2k(n − 2k) inv(n − 2k − 1,k − 1) and
|C | = inv(n − 2k,k), so the conditional probability Σ is bounded below by

|T |
inv(n,k) − |C | = 4k2(n − 2k)!2

(n − 4k + 1)(n!(n − 4k)! − (n − 2k)!2) .

This term is greater or equal to 1/3 if and only if

(
1 + 12k2

n − 4k + 1

) 2k∏ n − 4k + i

n − 2k + i
� 1. (5)
i=1
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Define g(n,k) := (1 + 12k2/(n − 4k + 1))(1 − 2k/(n − 2k + 1))2k; the claim follows if g(n,k) � 1. For
this purpose, consider the derivative

d

dn
g(n,k) = 8k2(−n + 6k2 + k − 1)

(n − 2k + 1)(n − 4k + 1)2

(
1 − 2k

n − 2k + 1

)2k

.

Note that k � 2
√

n/3 by assumption and hence n � 9k2/4.
Assume first n � 6k2 + k − 1. Then d

dn g(n,k) � 0, and limn→∞ g(n,k) = 1 implies g(n,k) � 1. Now

assume 9k2/4 � n < 6k2 + k − 1 and k � 36. Then d
dn g(n,k) > 0, hence

g(n,k) � g
(
9k2/4,k

)
=

(
1 + 12k2

9k2/4 − 4k + 1

)(
1 − 2k

9k2/4 − 2k + 1

)2k

=: h(k) f (k).

Since h(k) � 57/9 and f (k) increases for k � 2 by Lemma 5.7, we get g(n,k) � 57/9 · f (36) > 1.
Finally, for 9k2/4 � n < 6k2 + k − 1 and 1 � k � 35 we verify inequality (5) case by case. �

5.3. Pre-bolstering elements

Let G = Sn or G = An , and let c ∈ G be a 3-cycle. In the algorithm, we use pre-bolstering elements
to construct a long cycle matching c. Recall that an element r is pre-bolstering with respect to c if

r = (w, u,a1, . . . ,aα)(v,b1, . . . ,bβ)(. . .)

or

r = (w, u,a1, . . . ,aα, v,b1, . . . ,bβ)(. . .)

with supp c = {u, v, w} and α,β � 2. If k = α + β + 3, we call the element k-pre-bolstering. Note that
k � 7. Denote by Lc,G(k) the number of k-pre-bolstering elements of G with respect to c.

Lemma 5.11. Let 7 � k � n ∈ N and G ∈ {An,Sn}. Then we have Lc,Sn (k) = 12(n − 3)!(k − 6) and Lc,An (k) =
6(n − 3)!(k − 6). Moreover,

1

|G|
n∑

k=7

Lc,G(k) � 2

5n
.

Proof. A standard counting argument yields the formulae for Lc,G(k). Thus, for G ∈ {An,Sn}, we obtain

1

|G|
n∑

k=7

Lc,G(k) = 6

n

(
1 − 8n − 28

(n − 1)(n − 2)

)

� 6

n

(
1 − 8 · 7 − 28

(7 − 1)(7 − 2)

)
= 2

5n
. �

Using Chernoff’s bound, we obtain a terminating condition for Algorithm BolsteringElements.
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Proposition 5.12. Let 7 � n ∈ N, G ∈ {An,Sn}, c ∈ G be a 3-cycle, 0 < ε < 1 and 1/2 < α � 4/5. Let S =
�5n max( 25

18 � 1
2 logα ε�, (5/4)4 logε−1)�. The probability that among S random elements at least � 1

2 logα ε�
are k-pre-bolstering with respect to c for some 7 � k � n is at least 1 − ε.

Proof. Use Lemma 5.11 and Chernoff’s bound with δ := 16/25. �
The next proposition establishes the second bound: a lower bound on the proportion of k-pre-

bolstering elements in G with αn � k � n among the k-pre-bolstering elements with 7 � k � n. This
ensures that ConstructLongCycle constructs long cycles with high probability.

Proposition 5.13. Let 9 � n ∈ N, G ∈ {An,Sn}, c = (c1, c2, c3) ∈ G be a 3-cycle, 0 < ε < 1 and 3/4 � α �
4/5. Let R = � 1

2 logα ε� and r1, . . . , rR ∈ G random elements such that ri is ki -pre-bolstering with respect to c.
The probability that there is at least one k j with k j � max(9, �αn� + 1) is at least 1 − ε.

Proof. We want to show that the proportion of ki -pre-bolstering elements with ki � �αn� + 1 among
all pre-bolstering elements is at least 1 − α2. For n = 9 we verify the claim directly, so assume in the
following n � 10. Then �αn� + 1 � 9, and we find∑n

k=max(�αn�+1,9) Lc,G(k)∑n
k=7 Lc,G(k)

= (n − 6)(n − 5) − 2
∑�αn�−6

k=1 k

(n − 6)(n − 5)

= 1 − (�αn� − 6)(�αn� − 5)

(n − 6)(n − 5)

> 1 − α2(n − 6)(n − 5)

(n − 6)(n − 5)
.

The claim now follows by a standard argument. �
5.4. Common fixed points of k-cycles

The final result ensures that we construct an n- or an (n − 1)-cycle in StandardGenerators and
thus find the correct degree of the group with high probability.

Theorem 5.14. Let 0 < ε < 1, 0 < α < 1 and n,k, t ∈N with αn � k < n and

t � 1

log((1 − α)−1)

(
log n + logε−1).

The probability that t random k-cycles in Sn have a common fixed point is at most ε.

Proof. Denote by Pfix(n,k, t) the probability that t random k-cycles in Sn have a common fixed point.
Let r ∈ Sn be a k-cycle and 1 � m1, . . . ,m j � n pairwise different points. If r fixes each of the mi , then
the probability that another random point m j+1 is fixed by r equals (n −k − j)/(n − j) = 1−k/(n − j).
Thus, the probability that m1, . . . ,m j+1 are common fixed points of t random k-cycles equals

j∏
i=0

(
1 − k

n − i

)t

.

Define c j := (−1) j
( n

j+1

)∏ j
i=0(1 − k/(n − i))t (note that c j = 0 for j � n − k); a standard inclusion–

exclusion principle shows Pfix(n,k, t) = ∑n−k−1
j=0 c j . We will prove
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∣∣∣∣ c j

c j+1

∣∣∣∣ = j + 2

n − j − 1
·
(

1 − k

n − j − 1

)−t

� 1

for j + 1 < n − k. To this end, note that

t � 1

log((1 − α)−1)
log

(
n − 2

2

)
� 1

log((1 − α)−1)
log

(
n − j − 1

j + 2

)

= log(
j+2

n− j−1 )

log(
(n− j−1)(1−α)

n− j−1 )
�

log(
j+2

n− j−1 )

log(
n− j−1−k

n− j−1 )
,

thus t · log(1 − k/(n − j − 1)) � log(( j + 2)/(n − j − 1)). This implies(
1 − k

n − j − 1

)t

� j + 2

n − j − 1

and hence |c j| � |c j+1|.
Since c j has alternating sign and c0 is positive, this yields

∑n−k−1
j=0 c j � c0. Moreover,

t � 1

log((1 − α)−1)

(
log n + logε−1) = log( ε

n )

log(1 − α)
�

log( ε
n )

log(1 − k
n )

,

hence log(ε/n) � t · log(1 − k/n). We obtain c0 = n(1 − k/n)t � ε, thus proving the claim. �
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