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Let K be a field and A be a commutative associative
K-algebra which is an integral domain. The Lie algebra
DerK A of all K-derivations of A is an A-module in a natural
way, and if R is the quotient field of A then RDerK A is
a vector space over R. It is proved that if L is a nilpotent
subalgebra of RDerK A of rank k over R (i.e. such that
dimR RL = k), then the derived length of L is at most k
and L is finite dimensional over its field of constants. In case
of solvable Lie algebras over a field of characteristic zero their
derived length does not exceed 2k. Nilpotent and solvable
Lie algebras of rank 1 and 2 (over R) from the Lie algebra
RDerK A are characterized. As a consequence we obtain the
same estimations for nilpotent and solvable Lie algebras of
vector fields with polynomial, rational, or formal coefficients.
Analogously, if X is an irreducible affine variety of dimension
n over an algebraically closed field K of characteristic zero
and AX is its coordinate ring, then all nilpotent (solvable)
subalgebras of DerK AX have derived length at most n (2n
respectively).
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Introduction

Let K be a field and A be an associative commutative K-algebra with unity, without
zero divisors, i.e. an integral domain. The set DerK A of all K-derivations of A, i.e.
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K-linear operators D on A satisfying the Leibniz rule: D(ab) = D(a)b + aD(b) for all
a, b ∈ A is a Lie algebra over K and an A-module in a natural way: given a ∈ A,
D ∈ DerK A, the derivation aD sends any element x ∈ A to a ·D(x). The structure of
the Lie algebra DerK A is of great interest because, in geometric terms, derivations can
be considered as vector fields on geometric objects. For example, in case K = C and
A = C[x1, . . . , xn], the polynomial ring, any D ∈ DerK A is of the form

D = f1
∂

∂x1
+ · · · + fn

∂

∂xn
, fi ∈ C[x1, . . . , xn],

i.e. D is a vector field on C
n with polynomial coefficients. Lie algebras of vector fields

with polynomial, formal power series, or analytical coefficients were studied intensively
by many authors (see, for example, [7,1–4,11,12]).

In general case, when A is an integral domain, subalgebras L of DerK A such that L are
submodules of the A-module DerK A were studied in [6] (see also [10,13]), and sufficient
conditions were given for L to be simple. In this paper, we study subalgebras of the
Lie algebra DerK A at the other extreme: nilpotent and solvable, under the condition
that they are of finite rank over A. Recall that if R is the quotient field of A, then the
rank rkR L is defined as rkR L = dimR RL. Any subalgebra L of the Lie algebra DerK A

determines uniquely the field F = F (L) of constants consisting of all r ∈ R such that
D(r) = 0 for all D ∈ L. The vector space FL over the field F is actually a Lie algebra
over F (note that RL being a Lie algebra over K is not in general a Lie algebra over R).
The main results of the paper: if L is a nilpotent subalgebra of the Lie algebra RDerK A

with rkR L = k, then the derived length of L is at most k and the Lie algebra FL

is finite dimensional over F (Theorem 1). In case when L is solvable, rkR L = k and
charK = 0, the derived length does not exceed 2k (Theorem 2). If dimK L < ∞, then
the last estimation can be improved to k + 1.

If we consider the important case K = C and A = C[[x1, . . . , xn]], the ring of formal
power series, we get that nilpotent (solvable) subalgebras of the Lie algebra DerK A of
rank k over R have derived length � k (� 2k, respectively). Note that in this particular
case it was proved in [9] that all nilpotent subalgebras have derived length at most n

and solvable at most 2n (see Corollary 3).
One can apply obtained results for vector fields on an affine variety X and obtain

analogous bounds for the derived length of nilpotent and solvable subalgebras of the Lie
algebra DerK AX where AX is the coordinate ring of X (see Corollary 4).

We also give a rough characterization of nilpotent and solvable subalgebras of rank 1
and 2 over R from the Lie algebra RDerK A (over their fields of constants). Such a
characterization can be applied to study finite dimensional Lie algebras of smooth vector
fields in three variables (the case of one and two variables was studied in [7,3,4]). Using
the same approach we gave in [8] a description of finite dimensional subalgebras of W (A)
in case A = K(x, y), the field of rational functions.

We use standard notations, the ground field K is arbitrary unless otherwise stated.
The quotient field of the integral domain A under consideration will be denoted by R.
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Any derivation D of A can be uniquely extended to a derivation of R by the rule:
D(a/b) = (D(a)b − aD(b))/b2. It is obvious that RDerK A is a subalgebra of the Lie
algebra DerK R and DerK A is embedded in a natural way into RDerK A. We will denote
RDerK A by W (A), it is a vector space over R of dimension rkR DerK A, and a Lie algebra
over K but not in general case over R. All subspaces and subalgebras of W (A) will be
considered over the field K unless otherwise stated. If L is a subalgebra of the Lie algebra
W (A), then the field F = {r ∈ R | D(r) = 0 for all D ∈ L} will be called the field of
constants of L. We denote by s(L) the derived length of a (solvable) Lie algebra L. If a
Lie algebra L contains an ideal N and a subalgebra B such that L = N +B, N ∩B = 0,
then we write L = B�N for the semidirect sum of B and N . Let V be a vector space of
dimension n over K and gl(V ) the general linear Lie algebra of V . The external semidirect
sum gl(V ) � V (with the natural action of gl(V ) on V ) will be called the general affine
Lie algebra and denoted by gan(K) (in case K = R it is the Lie algebra of the general
affine group GAn(R)).

1. Nilpotent subalgebras of finite rank of the Lie algebra W (A)

We will use the next statement which can be immediately checked.

Lemma 1. Let D1, D2 ∈ W (A) and a, b ∈ R. Then:

1. [aD1, bD2] = ab[D1, D2] + aD1(b)D2 − bD2(a)D1;
2. If a, b ∈ kerD1 ∩ kerD2, then [aD1, bD2] = ab[D1, D2].

Let L be a nonzero subalgebra of rank k over R of the Lie algebra W (A) and let
{D1, . . . , Dk} be a basis of L over R. Recall that the set RL of W (A) consists of all
linear combinations of elements aD, where a ∈ R, D ∈ L; analogously one can define
the set FL (F = F (L) is the field of constants of L).

Lemma 2. Let L be a nonzero subalgebra of W (A) and FL, RL be K-spaces defined as
above. Then:

1. FL and RL are K-subalgebras of the Lie algebra W (A). Moreover, FL is a Lie
algebra over the field F .

2. If the algebra L is abelian, nilpotent, or solvable then the Lie algebra FL has the
same property, respectively.

Proof. Immediate check. �
Lemma 3. Let L be a subalgebra of finite rank over R of the Lie algebra W (A), Z = Z(L)
be the center of L and F be the field of constants of L. Then rkR Z = dimF FZ and FZ
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is a subalgebra of the center Z(FL). In particular, if L is abelian, then FL is an abelian
subalgebra of W (A) and rkR L = dimF FL.

Proof. Let {D1, . . . , Dk} be a basis of Z over R. Take any element D ∈ Z and write
D = a1D1 + · · · + akDk, where ai ∈ R. Then for any element S ∈ L we have:

0 = [S,D] = [S, a1D1 + · · · + akDk] = S(a1)D1 + · · · + S(ak)Dk.

Since the elements D1, . . . , Dk are linearly independent over R it follows from the last
relation that S(ai) = 0, i = 1, . . . , k. Hence ai ∈ F , i = 1, . . . , k and {D1, . . . , Dk} is a
basis of FZ over F . The latter means that rkR Z = dimF FZ. �
Lemma 4. Let L be a subalgebra of the Lie algebra W (A) and I be an ideal of L. Then
the vector space RI ∩ L (over K) is also an ideal of L.

Proof. Take any element
∑m

k=1 rkik ∈ RI ∩ L with rk ∈ R, ik ∈ I, k = 1, . . . ,m. Then
for an arbitrary element D ∈ L we obtain:

[
D,

m∑
k=1

rkik

]
=

m∑
k=1

(
D(rk)ik + rk[D, ik]

)
∈ RI ∩ L.

This completes the proof of the lemma. �
Lemma 5. Let L be a nilpotent subalgebra of rank k > 0 over R of the Lie algebra W (A).
Then:

1. L contains a series of ideals

0 = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik = L (1)

such that rkR Is = s, s = 0, . . . , k.
2. L possesses an R-basis {D1, . . . , Dk} such that Is = L ∩ (RD1 + · · · + RDs), s =

1, . . . , k and [L,Ds] ⊂ Is−1.
3. dimF FL/FIk−1 = 1.
4. [Ij , Ij ] ⊂ Ij−1, j = 1, . . . , k.

Proof. 1–2. Take a nonzero element D1 ∈ Z(L) and put I1 = RD1 ∩ L. Then I1 is
an ideal of L by Lemma 4. Assume that we have built the set of elements D1, . . . , Dj

such that the K-spaces Is = L ∩ (RD1 + · · · + RDs), s = 1, . . . , j are ideals of the Lie
algebra L and [L,Ds] ⊂ Is−1 for s = 1, . . . , j with rkR Is = s. Take a one-dimensional
ideal 〈Dj+1〉 + Ij of the (nilpotent) quotient algebra L/Ij . Then [L,Dj+1] ⊂ Ij and the
elements D1, . . . , Dj+1 are linearly independent over R. Put Ij+1 = L ∩ (RD1 + · · · +
RDj+1). Then Ij+1 is an ideal of L by Lemma 4 and rkR Ij+1 = j + 1. Therefore we
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obtain by induction the chain (1) of ideals and a basis {D1, . . . , Dk} of L. This basis
satisfies obviously condition 2 of the lemma.

3. Take an arbitrary element D = a1D1 + · · · + akDk ∈ L and any element Di from
the basis {D1, . . . , Dk}. Then using Lemma 1 we get:

[
Di,

k∑
j=1

ajDj

]
=

k∑
j=1

Di(aj)Dj +
k∑

j=1
aj [Di, Dj ].

Since [Di, Is] ⊆ Is−1 we see from the last relation that Di(ak) = 0, i = 1, . . . , k. The
latter means ak ∈ F and therefore dimF FL/FIk−1 = 1. Part 3 of the lemma is proved.

4. This part of the lemma is a consequence of its parts 2 and 3. �
Corollary 1. Let L be a nilpotent subalgebra of rank k over R of the Lie algebra W (A).
Then the derived length of L is at most k.

Proof. See part 4 of Lemma 5. �
Remark 1. We will use the next almost obvious statement: If V is a vector space over
the field K and U , W are subspaces of V of finite codimension, then the subspace U ∩W

is also of finite codimension in V .

Lemma 6. Let V be a vector space over the field K and L be a finite dimensional
K-subspace of End(V ). Suppose that L acts nilpotently on V (i.e. Ln(V ) = 0 for some
n � 1). If the vector space V0 = {v ∈ V | Lv = 0} is finite dimensional over K, then
dimV < ∞.

Proof. Induction on the smallest number n such that Ln(V ) = 0. If n = 1 then
LV = 0, V = V0, hence dim(V ) < ∞ by the conditions of the lemma. Consider the
K-subspace U = L(V ) of V . The vector space U0 = {u ∈ U | Lu = 0} has obviously fi-
nite dimension over K and Ln−1(U) = 0. By the inductive assumption dimU < ∞.
Choose a basis {g1, g2, . . . , gk} of L over K. It follows from the proven above that
dimV/ ker gi < ∞ because the linear operator gi maps V into U and dimU < ∞.
But then dimV/

⋂k
i=1 ker gi < ∞ by Remark 1 and therefore V0 is of finite codimension

in V . Since dimV0 < ∞ by the conditions of the lemma, we obtain dimV < ∞. �
Theorem 1. Let L be a nilpotent subalgebra of finite rank over R from the Lie algebra
W (A) and F = F (L) be the field of constants of L. Then the Lie algebra FL is finite
dimensional over F .

Proof. Let k = rkR L and 0 = I0 ⊆ I1 ⊆ · · · ⊆ Ik = L be the series of ideals of L,
constructed in Lemma 5. Take a basis {D1, . . . , Dk} of L over R obtained in such a way
as in Lemma 5. We prove by induction on i that dimF FL/FIk−i < ∞. It is true for
i = 1 by Lemma 5, part 3. Assume that dimF FL/FIj < ∞ for j = k − i and consider
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the natural action (by multiplication) of FL on the F -space V = FIj/FIj−1. It holds
[FIj , F Ij ] ⊂ FIj−1 by Lemma 5 and therefore FIjV = 0. Hence V is a module over the
finite dimensional (over F ) Lie algebra FL/FIj . The Lie algebra FL/FIj acts nilpotently
on V because the algebra FL is nilpotent. Let V0 = {v ∈ V | (FL/FIj)v = 0} and D =
a1D1 + · · · + ajDj a representative of an arbitrary element from V0 ⊆ V = FIj/FIj−1.
Then for any i = 1, . . . , k we have

[Di, D] = [Di, a1D1 + · · · + ajDj ]

= [Di, a1D1 + · · · + aj−1Dj−1] + aj [Di, Dj ] + Di(aj)Dj ∈ Ij−1.

The first and second summands in the right side of the last equality lie in Ij−1, so
Di(aj)Dj ∈ Ij−1. The latter means that Di(aj) = 0, i = 1, . . . , k and therefore aj ∈ F by
definition of the field F . Thus dimF V0 = 1 and Lemma 6 yields dimF FIj/FIj−1 < ∞.
But then dimF FL/FIj−1 = dimF FL/FIk−(i+1) < ∞. When i = k we obtain the
inequality dimF FL < ∞. �
Proposition 1. Let L be a nilpotent subalgebra of W (A) and F = F (L) be its field of
constants. Then:

1. If rkR L = 1, then L is abelian and dimF FL = 1.
2. If rkR L = 2, then there exist elements D1, D2 ∈ FL and a ∈ R such that

FL = F

〈
D1, aD1, . . . ,

ak

k! D1, D2

〉
, k � 0

(
if k = 0, then put FL = F 〈D1, D2〉

)
,

where [D1, D2] = 0, D1(a) = 0, D2(a) = 1.

Proof. 1. It follows from Lemma 5, part 3.
2. Let rkR L = 2. Suppose that rkR Z(L) = 2 and let {D1, D2} be a basis of Z(L)

over R. Put Ik = RDk ∩L, k = 1, 2. Since I1∩ I2 = 0 and dimF FL/FIk = 1, k = 1, 2 by
Lemma 5 we see that dimF FL = 2 and FL = F 〈D1, D2 | [D1, D2] = 0〉 is of type 2 of
the lemma. Let now rkR Z(L) = 1, D1 ∈ Z(L) be a nonzero element and I1 = RD1 ∩L.
Then I1 is an ideal of L and dimF FL/FI1 = 1 by Lemma 5. Choose any nonzero element
D2 ∈ L \ I1. The elements D1, D2 form a basis of L over R and [D1, D2] = 0. Since the
Lie algebra L is nilpotent the operator adD2 acts nilpotently on the abelian ideal FI1
of the algebra FL over the field F .

Let us show that adD2 has in some basis of FI1 (over F ) the matrix which is a single
Jordan block. Really, any Jordan chain for adD2 on FI1 contains an element of the
form aD1 such that [D2, aD1] = 0. But then D2(a) = 0 and taking into account the
equality D1(a) = 0 we get a ∈ F . The latter means that adD2 has the only Jordan chain
{D1, a1D1, . . . , akD1} on I1 with ai ∈ R and its matrix in this basis is a single Jordan
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block. Since [D2, D1] = 0, [D2, a1D1] = D1, . . . , [D2, akD1] = ak−1D1 we have

D2(a1) = 1, D2(a2) = a1, . . . , D2(ak) = ak−1.

Denoting a = a1 we obtain D2(a2 − a2/2!) = 0. Since also D1(a2 − a2/2!) = 0 we get
a2 − a2/2! ∈ F . But then without loss of generality we can take a2 = a2/2!. Repeating
these considerations we obtain a basis {D1, aD1, . . . , (an/n!)D1} of the ideal FI1. �
Remark 2. Let A = K[x1, . . . , xn] be the polynomial algebra in n variables over K. Then
DerK A = Wn(K) is the Lie algebra of all vector fields on K

n with polynomial coefficients.
Take the elements D1 = ∂

∂x1
, D2 = ∂

∂x2
from the Lie algebra Wn(K) and put a = x2 ∈ A.

It is obvious that the Lie algebra

Ln = F

〈
∂

∂x1
, x2

∂

∂x1
, . . . ,

(
xn

2/n!
) ∂

∂x1
,

∂

∂x2

〉
,

where F = K(x3, . . . , xn) is the field of constants for L, is nilpotent of nilpotency class
n − 2. If we consider the union L =

⋃∞
i=1 Li of the ascending chain of Lie algebras

L1 ⊂ L2 ⊂ L3 ⊂ · · · ⊂ Ln ⊂ · · · , then the algebra L is solvable of derived length 2 and
infinite dimensional over F (one can show that L is locally nilpotent but not nilpotent).

2. Solvable subalgebras of W (A)

Lemma 7. Let L be a solvable subalgebra of rank 1 over R from the Lie algebra W (A)
and F = F (L) be its field of constants. Then:

1. If L is abelian, then FL is one dimensional over F .
2. If L is nonabelian, then dimF FL = 2. In particular, s(L) = 2.

Proof. 1. Let L be abelian. Since L is nilpotent of rank 1 over R, it follows from Propo-
sition 1 that dimF FL = 1.

2. Suppose that L is nonabelian and take a maximal (by inclusion) abelian ideal I ⊂ L

and a nonzero element D1 ∈ I. Then FI = FD1 is of dimension 1 over F by the proven
above. Choose any two elements b1D1, b2D1 ∈ L \ I (recall that all elements of L are of
the form aD1 for some a ∈ R). Since I is a maximal abelian ideal we have CL(I) = I

and therefore [D1, biD1] = D1(bi)D1 	= 0, i = 1, 2. Denoting D1(bi) = ai, i = 1, 2 we
obtain from the last relations that a1, a2 are nonzero elements of the field F = kerD1.
But then D1(a−1

1 b1 − a−1
2 b2) = 0 and therefore a−1

1 b1 − a−1
2 b2 ∈ F . The latter means

that the elements b1D1, b2D1 are linearly dependent over F and FL is nonabelian of
dimension 2 over F . �
Remark 3. How to construct solvable subalgebras of rank 1 from W (A)? The answer is
as following: to build an abelian Lie algebra one should take any K-subspace V from the
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subfield kerD1 and set L = V D1. Then L is abelian and every abelian Lie algebra of
rank 1 over R can be obtained in such a way. To construct a nonabelian Lie algebra one
should take a derivation D1 possessing an element b ∈ R such that D1(b) = 1. Then L

is a subalgebra of the Lie algebra (kerD1)D1 + (b kerD1)D1. The latter Lie algebra is
isomorphic to the general affine Lie algebra ga1(kerD1).

Lemma 8. Let L be a solvable subalgebra of rank k over R from the Lie algebra W (A),
F = F (L) be its field of constants and I an ideal of L such that I = RI ∩ L. If rkR I =
k − 1, then dimF FL/FI � 2, in particular, s(L/I) � 2. Besides, if dimF FL/FI = 2,
then s(L/I) = 2.

Proof. Take an R-basis {D1, . . . , Dk} of L such that the elements D1, . . . , Dk−1 form an
R-basis of I. Consider the following K-subspace M ⊂ RL:

M = {akDk | ∃a1, . . . , ak−1 with a1D1 + · · · + ak−1Dk−1 + akDk ∈ L}.

It is easy to see that M is a subalgebra of rank 1 over R from the Lie algebra RL.
Since the subalgebra M has derived length � 2 by Lemma 7 and L/I � M we get that
s(L/I) � 2.

Take any nonzero abelian ideal J/I of L/I. Any element D ∈ J \ I can be written in
the form D = a1D1 + · · · + akDk with ai ∈ R and ak 	= 0. Then

[Di, D] =
[
Di,

(
k−1∑
i=1

aiDi

)
+ akDk

]
=

[
Di,

(
k−1∑
i=1

aiDi

)]
+ [Di, akDk]

= i1 + Di(ak)Dk + ak[Di, Dk], i = 1, . . . , k − 1,

where i1 = [Di,
∑k−1

i=1 Di] ∈ I by the choice of the basis {D1, . . . , Dk}. Since [Di, D] ∈ I,
i = 1, . . . , k − 1 we get Di(ak) = 0, i = 1, . . . , k − 1. Further, we can assume with-
out loss of generality that Dk ∈ J . As J/I is abelian we see that [Dk, akDk] ∈ I

and therefore Dk(ak) = 0. Then ak ∈ F and dimF FJ/FI = 1. In particular, if
dimF FL/FI = 2, then s(L/I) = 2. If the quotient algebra L/I is abelian, then
it holds dimF FL/FI = 1. Let FL/FI be nonabelian. Then its derived subalgebra is
abelian and therefore is one-dimensional over F by Lemma 7. We may assume that
FDk + FI/FI is the derived subalgebra of FL/FI. If dimF FL/FI > 2, then there
exists an element i1 + aDk ∈ FL \ (FDk + FI) with i1 ∈ RI and a ∈ R such that
[Dk, i1 +akDk] ∈ I. The latter means that Dk(a) = 0 and taking into account the equal-
ities D1(ak) = 0, i = 1, . . . , k − 1 obtained analogously, we see that ak ∈ F . But then
i1 + akDk ∈ FDk + FI. The latter is impossible by the choice of this element and the
obtained contradiction shows that dimF FL/FI = 2. �

The next statement can be easily deduced from the Lie Theorem for solvable Lie
algebras over fields of characteristic zero and its modification over fields of positive
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characteristic (see, for example, [5], Theorem 4.1 and Exercise 2 on p. 20). We do not
require the ground field to be algebraically closed because one can always consider all
the objects over the algebraic closure K.

Lemma 9. Let K be a field, V be a vector space of dimension n over K and L a solvable
subalgebra of gln(K). If charK = 0 or charK > n, then s(L) � n.

Theorem 2. Let L be a solvable subalgebra of rank k over R of the Lie algebra W (A). If
the ground field K is of characteristic zero, then the derived length s(L) of L does not
exceed 2k. Moreover, if L is finite dimensional over its field of constants, then s(L) �
k + 1.

Proof. Since s(L) = s(FL) we can assume L = FL. Let J1 be an abelian ideal of L of
maximal rank over R, let rkR J1 = k1. Take a basis D1, . . . , Dk1 of J1 over R and denote
I1 = RJ1∩L. Then I1 is also an ideal of L by Lemma 4 and rkR I1 = k1. Let J2/I1 be an
abelian ideal of L/I1 such that J2 has maximal rank over R. Denote I2 = RJ2 ∩L. Then
I2 is an ideal of L of rank k2 over R. As above take a basis Dk1+1, . . . , Dk2 of J2/I1.
Continuing this consideration we can construct the series of ideals:

0 ⊂ J1 ⊆ I1 ⊂ · · · ⊂ Js ⊆ Is = L,

with rkR Ij = rkR Jj = kj , Jj/Ij−1 is abelian, Ij = RJj ∩L, j = 1, . . . , s. Simultaneously
we obtain an R-basis {D1, . . . , Dks

} of L such that Dkj−1+1, . . . , Dkj
is a basis of Jj/Ij−1,

j = 1, . . . , s.
Let us prove the statement of the theorem by induction on s. If s = 0 then L = {0}

and the proof is completed. Let s � 1. By the inductive assumption s(Is−1) � 2ks−1.
Let us show that the abelian ideal Js/Is−1 is of dimension ks − ks−1 over F . Really, for
any element

D = c1D1 + · · · + cks−1Dks−1 + cks−1+1Dks−1+1 + · · · + cks
Dks

∈ Js

we have [Dj , D] ∈ Is−1, j = 1, . . . , ks. One can write:

[Dj , D] =
ks∑

i=ks−1+1

(
Dj(ci)Di + ci[Dj , Di]

)
+
[
Dj ,

ks−1∑
i=1

ciDi

]
.

Since [Dj , Di] ∈ Is−1, i = ks−1 + 1, . . . , ks and the second sum in the right side lies
in Is−1 we obtain that Dj(ci) = 0, j = 1, . . . , ks, i = ks−1 + 1, . . . , ks. Hence ci ∈ F ,
i = ks−1 + 1, . . . , ks by definition of F . Thus dimF Js/Is−1 = ks − ks−1.

Note that we have also proved that the centralizer of Js/Is−1 in the Lie algebra L/Is−1
coincides with Js/Is−1. Therefore L/Js acts exactly on the F -vector space Js/Is−1 of di-
mension ks−ks−1 over F . Since CL/Js

(Js/Is−1) = Js/Is−1, then the solvable Lie algebra
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L/Js can be embedded isomorphically into the general linear Lie algebra glks−ks−1
(F ).

As solvable subalgebras of this Lie algebra have derived length � ks−ks−1 (by Lemma 9),
we see that s(L/Js) � ks − ks−1. But then s(L) � 2ks−1 + ks − ks−1 � 2ks = 2k.

If L is finite dimensional over F , then [L,L] is nilpotent of derived length � k by
Corollary 1. Therefore s(L) � k + 1. This completes the proof of the theorem. �
Remark 4. The first part of Theorem 2 remains valid also in the case of positive char-
acteristic of the ground field K provided that charK > k (because its proof uses only
Lemma 9 with this restriction on the rank k).

Corollary 2. Let K be a field and A be one of the following algebras over K:

(1) K[x1, . . . , xn] the polynomial algebra;
(2) K[[x1, . . . , xn]] the algebra of formal power series;
(3) K(x1, . . . , xn) the field of rational functions;
(4) K((x1, . . . , xn)) the fraction field of the algebra K[[x1, . . . , xn]].

Let D(A) be the Lie algebra of all K-derivations D of A of the form D = f1
∂

∂x1
+ · · · +

fn
∂

∂xn
with fi ∈ A (in cases (1) and (2) D(A) obviously coincides with DerK A). If L

is a nilpotent subalgebra of D(A), then L is finite dimensional over its field of constants
and s(L) � n. If L is solvable and the ground field K is of characteristic zero, then
s(L) � 2n.

Let K = C, A = C[[x1, . . . , xn]], and Wn(K) = DerK A be the Lie algebra of all vector
fields with formal power series coefficients.

Corollary 3. Let L be a nilpotent (solvable) subalgebra of Wn(K). Then the derived length
of L does not exceed n (2n respectively).

The last statement was proved recently in [9], where it was used to study groups of
automorphisms of formal power series rings. As the next example shows, the bound in
Theorem 2 cannot be improved (see also [9]).

Example 1. Let L = {
∑n

i=1 ai
∂

∂xi
∈ Wn(K) | aj ∈ K[[x1, . . . , xj−1]]+xjK[[x1, . . . , xj−1]]}.

Then the derived length of L equals 2n.

Corollary 4. Let X be an irreducible affine variety of dimension n over an algebraically
closed field K of characteristic zero and AX be its coordinate ring. If L is a nilpotent
(solvable) subalgebra of DerK AX , then the derived length of L is at most n (2n respec-
tively).

If L is a solvable subalgebra of rank 2 over R of the Lie algebra W (A), then L is
contained in a maximal (by inclusion) solvable subalgebra of rank 2 over R. Really, let
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S2 be the set of all solvable subalgebras of rank 2 over R from W (A). Using Theorem 2
one can easily show that the set S2 is inductively ordered (by inclusion), so there exists
by Zorn’s Lemma at least one maximal element of S2. The next statement shows the
possible types of such maximal solvable subalgebras of rank 2 over R. Since any solvable
subalgebra L of rank 2 over R from W (A) is contained in a maximal subalgebra of the
same type we get a rough characterization of such Lie algebras.

Proposition 2. Let L be a solvable subalgebra of W (A) which is maximal (by inclusion)
among all solvable subalgebras of rank 2 over R from W (A) and let F = F (L) be its field
of constants. If the ground field K is of characteristic zero, then L is a Lie algebra over F ,
the algebra L contains elements D1, D2 with [D2, D1] = aD1 for some a ∈ F1 = kerD1
and L is one of the following algebras over the field F :

1. L = 〈D2〉 � F1D1.
2. L = 〈D2〉 � (F1D1 + bF1D1), where b ∈ R, D1(b) = 1, D2(b) = ab + a1 for some

a1 ∈ F1.
3. L = (〈D2〉 � 〈cD1 + dD2〉) � F1D1, where c ∈ R, d ∈ F1 such that D1(c) ∈ F1,

D2(d) = 1, D2(c) = −ac + r for some r ∈ F1.
4. L = (〈D2〉 � 〈cD1 + dD2〉) � (F1D1 + F1bD1), where D1(b) = 1, D2(d) = 1, d ∈ F1,

D1(c) ∈ F1, D2(c) = ac + r, D2(b) = ab + a1 for some r, a1 ∈ F1.
5. L is isomorphic to a solvable subalgebra of the affine Lie algebra ga2(F ) contain-

ing F 2, in particular 2 � dimF L � 5.

Proof. Let L be a subalgebra of the Lie algebra W (A) satisfying all the conditions of this
proposition. Then FL as a Lie algebra over the field K also satisfies these conditions and
L ⊆ FL. Therefore FL = L because of maximality of L and L is a Lie algebra over the
field F . We consider two cases dependent on properties of maximal abelian ideals of L:

Case 1. Every maximal abelian ideal of L is of rank 1 over R. Take any two such ideals
I and J of L and let D1 ∈ I, D2 ∈ J be nonzero elements. If D1 and D2 are linearly
independent over R, then I∩J = 0 and I+J is an abelian ideal of rank 2 over R from L.
But then I + J is contained in a maximal abelian ideal of rank 2 over R from L which
contradicts to our assumption. Therefore D1 and D2 are linearly dependent over R and
I+J is of rank 1 over R. Since I+J is a nilpotent ideal of L it follows from Proposition 1
that I + J is abelian. But then I = J and I is the only maximal abelian ideal of rank 1
from L. Denote I1 = RI ∩ L. The ideal I1 has rank 1 over R and dimF L/I1 � 2 by
Lemma 8. Take any nonzero element D1 from I1 provided that I1 is abelian, or from
the abelian ideal [I1, I1] in other case (recall that I1 has derived length at most 2). It
can be easily shown that [D2, D1] = aD1 for some element a ∈ F1 = kerD1 and F1I1 is
a subalgebra of W (A) of rank 1 over R. It is easy to prove that [D2, F1I1] ⊆ F1I1 and
therefore L+F1I1 is a solvable subalgebra of rank 2 from W (A). But then L = L+F1I1
because of maximality of L and hence F1I1 ⊆ L. The latter means that F1I1 = I1 and
I1 is a Lie algebra over the field F1.
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Subcase 1. The ideal I1 is abelian. If dimF L/I1 = 1, then choosing any element D2 ∈
L \ I1 we see that L = 〈D2〉�F1D1 is a Lie algebra of type 1. Let dimF L/I1 = 2. Then
L/I1 is nonabelian by Lemma 8. Take the one-dimensional ideal 〈D2〉 + I1/I1 from the
quotient algebra L/I1. Take also any element cD1+dD2 ∈ L such that [D2, cD1+dD2] =
D2+rD1 for some element rD1 ∈ I1. This gives the equality D2(c)D1+caD1+D2(d)D2 =
D2 + rD1 which implies D2(d) = 1, and D2(c) = −ac + r. Besides, from the inclusion
[D1, cD1 + dD2] ∈ I1 we get that D1(d) = 0, i.e. d ∈ F1. The same relation also gives
D1(c) ∈ F1. We see that L is a Lie algebra of type 3 of the proposition.

Subcase 2. The ideal I1 is nonabelian. Suppose first that dimF L/I1 = 1 and take any
element D2 ∈ L \ I1. In view of Lemma 7, I1 = F1D1 + F1bD1 for some b ∈ R such that
D1(b) = 1. Since [D2, D1] = aD1 for some a ∈ F1, it holds [D1, D2](b) = aD1(b) = a. On
the other hand (D1D2−D2D1)(b) = D1(D2(b)) = a. But then D1(ba−D2(b)) = a−a = 0
and hence ba−D2(b) ∈ F1. Then D2(b) = ba+a1 for some element a1 ∈ F1 and L is a Lie
algebra of type 2. Let now dimF L/I1 = 2. The quotient algebra FL/FI1 is nonabelian
by Lemma 8. Take the one-dimensional ideal 〈D2 + I1〉 from the quotient algebra L/I1
(over F ) and let cD1 + dD2 be such an element that [D2, cD1 + dD2] = D2 + rD1 for
some element rD1 ∈ I1. It follows from this relation that D2(d) = 1 and D2(d) = −ac+r

for r ∈ F1. Further we have from the inclusion [D1, cD1 + dD2] ∈ I1 that D1(d) = 0.
This means that d ∈ F1. Using the same inclusion we get D1(c) ∈ F1. Further, as above
one can show that D2(b) = ab + a1 for some element a1 ∈ F1 and L is a Lie algebra of
type 4.

Case 2. L contains at least one maximal abelian ideal of rank 2 over R. Denote it
by J and choose any two elements D1 and D2 from J linearly independent over R. If
D = u1D1 + u2D2 ∈ J , then from the equality

0 = [Di, D] = [Di, u1D1 + u2D2] = Di(u1)D1 + Di(u2)D2, i = 1, 2

we obtain Di(uj) = 0. The latter means that ui ∈ F , i.e. dimF J = 2. Since J is a
maximal abelian ideal of L it holds CL(J) = J . Therefore dimF L/J � 3 because of
solvability of L/J and equality dim J = 2. Let us consider the case dimL/J = 1 and
take any element D3 ∈ L \ J . Then D3 = u1D1 + u2D2 for some u1, u2 ∈ R. As

[Di, D3] = Di(u1)D1 + Di(u2)D2 ∈ J

we obtain Di(uj) ∈ F , i, j = 1, 2. If the matrix

(
D1(u1) D2(u1)
D1(u2) D2(u2)

)
(2)

is nonsingular, then applying an appropriate linear transformation we can write

u1 = α11v1 + α12v2, u2 = α21v1 + α22v2
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for some αij ∈ F and Di(vj) = δij , where δij is the Kronecker symbol. It is obvious that
L1 = F 〈D1, D2, viDj | i, j = 1, 2〉 is a Lie algebra of dimension 6 over F isomorphic to
the general affine Lie algebra ga2(F ). But then

D3 = u1D1 + u2D2 = (α11v1 + α12v2)D1 + (α21v1 + α22v2)D2

is an element of L1 and L is a subalgebra of L1.
Let now the matrix (2) be degenerated. Since D3 ∈ L \ J , at least one of the rows

of the matrix (2) is nonzero, let the first. Without loss of generality we can assume
that D1(u1) = 1, D2(u1) = γ for some γ ∈ F . The second row of the matrix (2) is
proportional to the first one and therefore u2 = αu1 + β for some α, β ∈ F . Then we
have D3 = u1D1 + (αu1 + β)D2. Replacing the element D3 by the element D3 − βD2
we can assume that D3 = u1D1 + αu1D2. If γ = 0, then D1(u1) = 1, D2(u1) = 0 and
L is isomorphic to a subalgebra of ga2(F ). In case γ 	= 0 we choose the basis D′

1 = D1,
D′

2 = D1 − γ−1D2 of the abelian ideal J . Then we obtain D′
1(u1) = 1, D′

2(u1) = 0 and
all is done. Analogously one can consider the cases dimL/J = 2 and dimL/J = 3 and
show that L is isomorphic to a subalgebra of ga2(F ). �
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