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presented in Ref. [24]. The technique in this paper is to 
compute triangular decompositions of polynomial systems 
into regular chains.
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1. Introduction

In the computational real algebraic geometry, the decision of semi-definite polynomials 
is an important topic, which is closely related to many areas, e.g. polynomial optimiza-
tion, automated theorem proving in ordered geometry, control theory and the study of 
inequalities.

Let (K, ≤) be a computable ordered field with real closure R, and K[x1, . . . , xn] the 
ring of polynomials in n variables over K. For a non-zero f(x1, . . . , xn) ∈ K[x1, . . . , xn], 
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we say that f is positive (respectively negative) semi-definite on R if f(a1, . . . , an) ≥ 0
(respectively f(a1, . . . , an) ≤ 0) for any a1, . . . , an ∈ R. The decision of semi-definite 
polynomials is just to devise an algorithm for deciding whether or not a given polynomial 
is positive semi-definite.

The decision of semi-definite polynomials has been studied extensively by many 
researchers (for example, see [3,6,7,14]). In Ref. [24], based on the well-known Wu’s 
Algorithm of computing the triangular decompositions of polynomial systems, an effec-
tive method was presented for deciding the semi-definiteness of multivariate polynomials 
with coefficients in a computable ordered field, if this field admits an effective method 
of finding isolating points for every non-zero univariate polynomial. By this method, the 
decision of the semi-definiteness of a multivariate polynomial may be reduced to testing 
some resulted polynomials in fewer variables, of which the total degrees and the term 
numbers do not exceed those of the given polynomial.

For an input polynomial f(x1, . . . , xn) in n variables, the key of the algorithm in [24] is 
to compute the triangular decompositions of such polynomial sets {f + t, ∂f

∂xj1
, . . . , ∂f

∂xjk
}

into irreducible ascending chains, where t is a new variable and {j1, . . . , jk} is taken 
over all the nonempty subsets of {1, . . . , n}, see the description of the algorithm in §4 of 
[24]. The efficiency of this algorithm is thereby dependent on computing the irreducible 
ascending chains from these polynomial sets. In order to raise the efficiency, one attempt 
is to remove the polynomial f + t from the involved polynomial sets.

In this paper, we present a new algorithm for deciding the semi-definiteness of mul-
tivariate polynomials with coefficients in a computable ordered field, which admits an 
effective method of finding an isolating set for every univariate polynomial. In this new al-
gorithm, it is enough to compute the weaker triangular sets, the so-called regular chains, 
instead of irreducible ascending chains, and the involved polynomial sets don’t contain 
the polynomial f + t.

Throughout this paper, the symbol K stands for a computable ordered field with real 
closed extension R. Hence, K and its extensions are fields of characteristic 0. For α, 
β ∈ R with α < β, write ]α, β[R (or [α, β[R) for the open interval {z ∈ R | α < z < β}
(or the closed interval {z ∈ R | α ≤ z ≤ β}). For a subset P of the polynomial ring 
F [x1, . . . , xn] over any field F in n variables, denote by (P ) the ideal generated by P in 
F [x1, . . . , xn]. Moreover, for a finite set (or sequence) S, #S stands for the number of 
members in S.

2. Triangular decompositions of polynomial systems into regular chains

In this section, as some preliminaries, we recall some basic concepts and results on the 
triangular decompositions of polynomial systems, especially on the triangular decompo-
sitions of polynomial systems into regular chains.

The triangular decomposition of a polynomial system was introduced by Ritt in [18]. 
Ritt’s decomposition relies on computing the so-called characteristic sets, which are 
some triangular sets of polynomials, of prime ideals, see [19]. So Ritt’s decomposition 
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involves the factorization of polynomials in algebraic extensions. In order to avoid the 
factorization of polynomials, Wu provided an algorithm for solving polynomial systems 
by means of characteristic sets of not necessarily prime ideals in [20]. For the details of 
Wu’s algorithm and its applications, we refer to [21].

Let F be an arbitrary field, let F [x1, . . . , xn] be the ring of polynomials over F in 
variables x1, . . . , xn, and xj1 , . . . , xjn an arrangement of the variables x1, . . . , xn. For a 
non-constant polynomial f ∈ F [x1, . . . , xn], a variable xji (1 ≤ i ≤ n) is called the main 
variable of f with respect to the lexicographic order xj1 ≺ · · · ≺ xjn , if f ∈ F [xj1 , . . . , xji ]
but f /∈ F [xj1 , . . . , xji−1 ]. So f can be represented in the form

f := �xd
ji + u1x

d−1
ji

+ · · · + ud,

where d is a positive integer, �, u1, . . . , ud ∈ F [xj1 , . . . , xji−1 ], and � �= 0. The main 
variable xji of f is denoted by mv(f), and the leading coefficient � of f , as a polynomial 
over F [xj1 , . . . , xji−1 ] in one variable xji , is called the initial of f . A sequence C :=
[f1, . . . , fs] of non-constant polynomials in F [x1, . . . , xn] is called a chain (ascending 
chain or triangular set) with respect to the lexicographic order xj1 ≺ · · · ≺ xjn , if 
mv(f1) ≺ · · · ≺ mv(fs).

Now let P and Q be two finite subsets of F [x1, . . . , xn], and E an arbitrary extension 
of F . Then we may obtain a subset of En as follows:

ZeroE(P/Q) =
{
ᾱ ∈ En

∣∣ p(ᾱ) = 0 for all p ∈ P, but q(ᾱ) �= 0 for all q ∈ Q
}
.

According to the so-called Zero-Decomposition Theorem (see Theorem 5.1 in [21]), 
for a finite subset P of F [x1, . . . , xn], a sequence C1, . . . , Cr of chains in F [x1, . . . , xn]
can be obtained by Wu’s algorithm such that for an arbitrary extension E of F , the 
following equality holds:

ZeroE(P ) =
⋃

1≤i≤r

ZeroE(Ci/Ii),

where Ii is the set of the initials of members in Ci, i = 1, . . . , r.
However, such a sequence of chains obtained by Wu’s algorithm may include an in-

consistent chain, i.e. there exists possibly a j ∈ {1, . . . , r} such that ZeroE(Cj/Ij) = ∅
for all extension E of F . In order to solve the consistency problem, Kalkbrener [9,10]
and Yang and Zhang [23] introduced independently particular triangular sets, named 
regular chains. The good properties of characteristic sets of prime ideals can be gener-
alized to regular chains, see Theorem 6.1 in [1]. For a regular chain C in F [x1, . . . , xn], 
ZeroE(Cj/Ij) �= ∅ if E is an algebraically closed extension of F .

Definition 1. Let C := [f1, . . . , fs] be a chain in F [x1, . . . , xn] with respect to the lexico-
graphic order xj1 ≺ · · · ≺ xjn , and put Tv(C) := {x1, . . . , xn} \ {mv(fi) | i = 1, . . . , s}. 
Write ΩC for the algebraic closure of F (Tv(C)), the fraction field of the polynomial ring 
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F [Tv(C)]. For i = 1, . . . , n, define by induction the finite sequence RZi(C) of points in 
Ωi

C as follows:

(1) If F [xj1 ] ∩C = ∅, RZ1(C) := [xj1 ]. If F [xj1 ] ∩C = {f1(xj1)}, RZ1(C) := [α1, . . . , αd1 ]
where d1 is the degree of the univariate polynomial f1(xj1) and α1, . . . , αd1 are all 
the roots of f1(xj1) in ΩC .

(2) Assume i ∈ {2, . . . , n}. If RZi−1(C) = ∅, RZi(C) := ∅. Else, RZi(C) is defined as the 
union of the sequences Δᾱi−1 , where ᾱi−1 runs over RZi−1(C), and Δᾱi−1 is defined 
as follows:
• If (F [xj1 , . . . , xji ] \ F [xj1 , . . . , xji−1 ]) ∩ C = ∅ (i.e. xji ∈ Tv(C)), Δᾱi−1 :=

[(ᾱi−1, xji)].
• If (F [xj1 , . . . , xji ] \ F [xj1 , . . . , xji−1 ]) ∩ C = {fi(xj1 , . . . , xji)} and fi(ᾱi−1, xji)

is a polynomial of positive degree over ΩC in one variable xji , Δᾱi−1 :=
[(ᾱi−1, α′

1), . . . , (ᾱi−1, α′
di

)], where di is the degree of the univariate polynomial 
fi(ᾱi−1, xji), and α′

1, . . . , α
′
di

are all the roots of fi(ᾱi−1, xji) in ΩC .
• Else, Δᾱi−1 := ∅.

In what follows, RZn(C) is simply denoted by RZ(C), and Tv(C) is called the set of 
transcendental variables for C.

The above definition of RZn(C) is slightly different from the set of regular zeros 
in §2.2 of [10], but both are algebraically equivalent. In a word, there is a one-to-one 
correspondence between RZn(C) and the set of regular zeros in §2.2 of [10] such that, for 
(α1, . . . , αn) ∈ RZ(C) with corresponding zero (α′

1, . . . , α
′
n), there exists an isomorphism 

of the field F (α1, . . . , αn) into F (α′
1, . . . , α

′
n) such that αi 	→ α′

i for i = 1, . . . , n. As 
a sequence, it is possible that such an RZ(C) contains the same points in Ωn

C , i.e. a 
point in RZ(C) might appear multiple times. Our definition is helpful for formulating 
the forthcoming propositions.

Remark. Let the notation be as in Definition 1, and assume RZ(C) �= ∅. It is easy to see 
that xji ∈ Tv(C) if and only if αi = xji for all (α1, . . . , αn) ∈ RZ(C). So, f(ᾱ) = f for 
any polynomial f ∈ F [Tv(C)] and any ᾱ ∈ RZ(C).

Example. Let Q be the rational numbers, and let

C1 :=
{
x2

1 − x2
2, (x2 − x1)x3

}
, C2 :=

{(
x2

1 − x2
2
)2
, (x2 − x1)x3

}
,

C3 :=
{
x2

1 − 2, (x2 − x1)(x1 − x3)
}
, C4 :=

{
x1 − x2, (x2 − x1)x3

}
,

C5 :=
{(

x2
1 − x2

2
)2
, x2(x3 − x1)

}
.

Obviously, these sequences are chains with respect to the lexicographic order x1 ≺
x2 ≺ x3. According to Definition 1, we have Tv(C1) = {x1}, RZ(C1) = [x1] and 
RZ2(C1) = [(x1, x1), (x1, −x1)]. When (x1, x2) = (x1, −x1), (x2 − x1)x3 has the 
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only root 0 in the algebraic closure of the field Q(x1). But (x2 − x1)x3 = 0 when 
(x1, x2) = (x1, x1). Hence RZ3(C1) = [(x1, −x1, 0)], i.e. RZ(C1) = [(x1, −x1, 0)].

Likewise, according to Definition 1, we have

RZ(C2) :=
[
(x1,−x1, 0), (x1,−x1, 0)

]
, RZ(C3) =

[
(
√

2, x2,
√

2 ), (−
√

2, x2,−
√

2 )
]
,

RZ(C4) = ∅, RZ(C5) =
[
(x1, x1, x1), (x1, x1, x1), (x1,−x1, x1), (x1,−x1, x1)

]
.

According to the inductive definition of regular chains in §2.2 of [10], we give the 
following

Definition 2. Let C := [f1, . . . , fs] be a chain in F [x1, . . . , xn] with respect to the lexico-
graphic order xj1 ≺ · · · ≺ xjn , and let �i and xjmi

be the initial and main variable of fi
respectively, i = 1, . . . , s. C is called regular if the following condition is satisfied:

• For i = 2, . . . , s, �i(ᾱmi−1) �= 0 for all ᾱmi−1 ∈ RZmi−1(C).

In the above example, both C3 and C5 are regular, but C1, C2 and C4 are not regular. 
It is easy to see that a chain C := [f1, . . . , fs] in F [x1, . . . , xn] is regular if and only if

# RZ(C) = d1d2 · · · ds,

where di is the degree of fi relative to the variable mv(fi), i = 1, . . . , s.
Let C := [f1, . . . , fs] be a regular chain in F [x1, . . . , xn] with respect to some lexico-

graphic order, and g another polynomial over an extension E of F in variables x1, . . . , xn. 
Following [23], we get successively the resultants as follows:

rs−1 := resultant
(
g, fs,mv(fs)

)
,

rs−2 := resultant
(
rs−1, fs−1,mv(fs−1)

)
,

· · · · · · · · ·
r1 := resultant

(
r2, f2,mv(f2)

)
,

r0 := resultant
(
r1, f1,mv(f1)

)
.

Obviously, r0 ∈ E[xjs+1 , . . . , xjn ], where xjs+1 , . . . , xjn are all the variables in Tv(C). In 
what follows, r0 is called the resultant of C with respect to g, and is denoted by Res(C; g)
or Res(f1, . . . , fs; g).

As an important result on regular chains, Lemma 3 in [23] may be stated in the 
following version:

Proposition 2.1. Let C := [f1, . . . , fs] be a regular chain in F [x1, . . . , xn] with respect to 
the lexicographic order xj1 ≺ · · · ≺ xjn , and g another polynomial over an extension of 
F in variables x1, . . . , xn. If xjm is the main variable of fi, i = 1, . . . , s, then
i
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Res(C; g) = �ν1
1

( ∏
ᾱ1∈RZm1 (C)

�ν2
2 (ᾱ1)

)
· · ·

( ∏
ᾱs−1∈RZms−1 (C)

�νs
s (ᾱs−1)

)( ∏
ᾱ∈RZ(C)

g(ᾱ)
)
,

where �i is the initial of fi for i = 1, . . . , s, νj is the degree of Res(fj+1, . . . , fs; g) relative 
to the variable mv(fj) for j = 1, . . . , s −1, and νs is the degree of g relative to the variable 
mv(fs).

As an immediate consequence of Proposition 2.1, we can establish the following

Proposition 2.2. Let C := [f1, . . . , fs] be a regular chain in F [x1, . . . , xn] with respect 
to the lexicographic order xj1 ≺ · · · ≺ xjn , and t a new variable. If xjmi

is the main 
variable of fi, i = 1, . . . , s, then, for any g ∈ F [x1, . . . , xn], Res(C; g+ t) is a polynomial 
of positive degree in one variable t over F [xjms+1

, . . . , xjmn
] where {ms+1, . . . , mn} is the 

complement of {m1, . . . , ms} in {1, . . . , n}, and

Res(C; g + t)

= �ν1
1

( ∏
ᾱ1∈RZm1 (C)

�ν2
2 (ᾱ1)

)
· · ·

( ∏
ᾱs−1∈RZms−1 (C)

�νs
s (ᾱs−1)

)( ∏
ᾱ∈RZ(C)

(
t + g(ᾱ)

))
,

where the symbols are as in Proposition 2.1.

For ᾱ ∈ Ωn
C , we obtain the ideal of F [x1, . . . , xn] as follows:

Pᾱ :=
{
g ∈ F [x1, . . . , xn]

∣∣ g(ᾱ) = 0
}
.

Obviously, Pᾱ is a prime ideal of F [x1, . . . , xn] with generic point ᾱ for ᾱ ∈ Ωn
C .

By a familiar fact about polynomial ideals and algebraic varieties (see Propositions 3.7 
and 3.11 in [12]), there exists a one-to-one correspondence between prime ideals in 
F [x1, . . . , xn] and irreducible F -varieties in Ωn

C .
In [10], Kalkbrener presented an algorithm named solven. For a regular (possibly 

empty) chain D in F [x1, . . . , xn−1] and a (nonempty) finite subset P of F [x1, . . . , xn], 
Algorithm solven returns a sequence C1, . . . , Cr of regular chains in F [x1, . . . , xn] such 
that

( ⋂
β̄∈RZn−1(D)

P(̄β,xn)

)
∪
√

(P ) ⊇
⋂
ᾱ∈Ξ

Pᾱ ⊇
√

(P ),

where 
√

(P ) is the radical of the ideal (P ) generated by P in F [x1, . . . , xn], and 
Ξ := RZ(C1) ∪ · · · ∪ RZ(Cr). Observe that RZn−1(D) = {(x1, . . . , xn−1)} and 
P(̄x1,...,xn−1,xn) = {0} if D is the empty chain [ ]. So we have 

√
(P ) =

⋂
ᾱ∈Ξ Pᾱ in 

the case when D = [ ].
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According to Algorithm solven and the above argument, we give the following

Definition 3. Let P be a finite subset of F [x1, . . . , xn]. A sequence C1, . . . , Cr of regular 
chains in F [x1, . . . , xn] is called a regular decomposition of P , if the following equality 
holds:

√
(P ) =

⋂
ᾱ∈Ξ

Pᾱ,

where 
√

(P ) is the radical of the ideal (P ) generated by P in F [x1, . . . , xn], and Ξ :=
RZ(C1) ∪ · · · ∪ RZ(Cr).

In [15], Moreno Maza introduced another kind of triangular decompositions of regular 
chains, which is said to be in the sense of Lazard. Such a regular decomposition as in 
Definition 3 is hence said to be in the sense of Kalkbrener. For a finite subset P of 
F [x1, . . . , xn], a sequence C1, . . . , Cr of regular chains in F [x1, . . . , xn] is called a regular 
decomposition of P in the sense of Lazard, if it is a regular decompositions in the sense 
of Definition 3, and for an arbitrary extension E of F , ZeroE(P ) =

⋃
1≤i≤r ZeroE(Ci/Ii), 

where Ii is the set of the initials of members in Ci, i = 1, . . . , r. The decompositions 
in the sense of Kalkbrener are weaker but less expensive to compute. In this paper, 
we only consider the regular decompositions in the sense of Kalkbrener, i.e. the regular 
decompositions in the sense of Definition 3. In the computer algebraic system Maple 
15 (or 14), the command Triangularize returns a regular decomposition (in the sense of 
Definition 3) for a given finite subset of polynomials.

Proposition 2.3. Let P be a finite subset of F [x1, . . . , xn], let C1, . . . , Cr be a regular 
decomposition of P with respect to the lexicographic order xi1 ≺ · · · ≺ xin , and t a new 
variable. Then, for any f ∈ F [x1, . . . , xn], C1 ∪ {f + t}, . . . , Cr ∪ {f + t} is a regular 
decomposition of P ∪{f + t} with respect to the lexicographic order xi1 ≺ · · · ≺ xin ≺ t.

Proof. Put Di := Ci∪{f + t}, i = 1, . . . , r. By Definitions 1 and 2, it is easy to see that, 
for i = 1, . . . , r, ΩDi

= ΩCi
, RZ(Di) = [(ᾱ, −f(ᾱ)) | ᾱ ∈ RZ(Ci)], and Di is a regular 

chain with respect to the lexicographic order xi1 ≺ · · · ≺ xin ≺ t. Since C1, . . . , Cr is a 
regular decomposition of P , we have

√
(P ) =

⋂
ᾱ∈Ξ

Pᾱ,

where Ξ := RZ(C1) ∪ · · · ∪ RZ(Cr).
Obviously, P ∪ {f + t} ⊂ P(ᾱ,−f(ᾱ)) for all ᾱ ∈ Ξ. So we have 

√
(P ∪ {f + t}) ⊆⋂

ᾱ∈Ξ P(ᾱ,−f(ᾱ)).
Now assume that g ∈

⋂
ᾱ∈Ξ P(ᾱ,−f(ᾱ)). Then g(ᾱ, −f(ᾱ)) = 0 for all ᾱ ∈ Ξ. Denote by 

g∗ the polynomial g(x1, . . . , xn, −f) in F [x1, . . . , xn]. Then g∗(ᾱ) = g(ᾱ, −f(ᾱ)) = 0 for 
all ᾱ ∈ Ξ. It follows that g∗ ∈

⋂
ᾱ∈Ξ Pᾱ =

√
(P ) ⊂

√
(P ∪ {f + t}). It is easy to see that 
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g− g∗ = w(f + t) for some w ∈ F [x1, . . . , xn, t]. It follows that g− g∗ ∈
√

(P ∪ {f + t}). 
Hence g = (g − g∗) + g∗ ∈

√
(P ∪ {f + t}). So we further have

√(
P ∪ {f + t}

)
=

⋂
ᾱ∈Ξ

P(ᾱ,−f(ᾱ)).

It is obvious that RZ(D1) ∪ · · · ∪RZ(Dr) = [(ᾱ, −f(ᾱ)) | ᾱ ∈ Ξ]. By Definition 3, the 
proposition is proved. �
3. Some theoretical results

In this section, we establish some theoretical results, which are useful for establishing 
our algorithms, see Proposition 3.3 and Theorem 3.4 below.

As usual, for a polynomial f ∈ F [x1, x2, . . . , xn] where F is a field, write ∂f
∂xi

for the 
partial derivative of f relative to xi for i = 1, . . . , n. The following proposition can be 
found as the corollary of Proposition 1 in [24].

Proposition 3.1. Let f(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn] where F is a field of character-
istic 0, and I the ideal of F [x1, x2, . . . , xn, z] generated by z − f and ∂f

∂xi
, i = 1, . . . , n. 

Then I ∩ F [z] �= {0}.

In the sequel, denote by (K, ≤) a computable ordered field with real closure R. Now 
let f be a non-zero polynomial in K[x1, x2, . . . , xn], and put

NR(f, xn) :=
{
an ∈ R

∣∣ there are a1, . . . , an−1 ∈ R such that f(a1, a2, . . . , an) < 0
}
.

It is easy to see that NR(f, xn) is an open semi-algebraic subset of R. By Proposition 2.1.7 
in [5], NR(f, xn) consists of finitely many disjoint open intervals in R, if the polynomial 
f is not positive semi-definite on R. An endpoint a of an interval of NR(f, xn) is called 
finite, if a �= −∞ and a �= +∞. Obviously, NR(f, xn) possesses at least one finite 
endpoint if f is not positive semi-definite on R and NR(f, xn) �= R.

The purpose of this section is to seek an effective method to find a finite subset U of 
K[xn] such that every finite endpoint of NR(f, xn) is a root of some polynomial in U for 
an indefinite polynomial f ∈ K[x1, x2, . . . , xn]. For this purpose, we shall extend the real 
closed field R to an ordered field containing infinitely large elements and infinitesimal 
elements over R.

Let η1, . . . , ηn be n indeterminates over R, and write R(η1, . . . , ηi) for the fraction 
field of the polynomial ring R[η1, . . . , ηi] for i = 1, . . . , n. Then the ordering ≤ of R may 
be extended to an ordering of R(η1, . . . , ηn), still denoted by ≤, in the following manner:

For non-zero g, h ∈ R[η1, . . . , ηn], g

h
< 0, if and only if lc(gh; η1, . . . , ηn) < 0,

where lc(u; η1, . . . , ηn) stands for the leading coefficient of u with respect to the lexico-
graphic order η1 ≺ · · · ≺ ηn for non-zero u ∈ R[η1, . . . , ηn].
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It is easy to see that ηi is a positive and infinitely large element over the subfield 
R(η1, . . . , ηi−1) in the sense that w < ηi for all w ∈ R(η1, . . . , ηi−1), i = 1, . . . , n.

According to Theorem 3.10 in [17], denote by R the real closure of the ordered field 
(R(η1, . . . , ηn), ≤). Now let ε be an indeterminate over R, and write R(ε) for the fraction 
field of the polynomial ring R[ε]. Then the ordering ≤ of R may be further extended to 
an ordering of R(ε), still denoted by ≤, in the following manner:

For non-zero g, h ∈ R[ε], g

h
< 0, if and only if tc(gh; ε) < 0,

where tc(u; ε) stands for the trailing coefficient (the coefficient of lowest term) of u as a 
polynomial over R in one variable ε for non-zero u ∈ R[ε].

It is easy to see that ε is a positive and infinitesimal element over R in the sense that 
0 < ε < α for all positive α ∈ R.

Denote by R the real closure of the ordered field (R(ε), ≤). Now, we construct the 
four subsets of R as follows:

A := {z ∈ R | For some positive element d ∈ R, −d ≤ z ≤ d},
M := {z ∈ R1 | For every positive element d ∈ R,−d ≤ z ≤ d}.
A1 := {z ∈ R1 | For some positive element δ ∈ R,−δ ≤ z ≤ δ},
M1 := {z ∈ R2 | For every positive element δ ∈ R,−δ ≤ z ≤ δ}.

Hence, M (or M1) consists of all elements in R1 which are “infinitesimal” over R
(or R). Obviously, R ⊂ A ⊂ A1, R ⊂ A1, but M1 ⊂ M. By the definition of ≤, we 
further have η−1

i ∈ M for i = 1, . . . , n, and ε ∈ M1.
By a familiar result on real valuations (see Proposition 1.3 in [11] or the relevant 

theorems in §5 of [13]), A is a valuation ring of R1 with maximal ideal M, and A1
is another valuation ring of R1 with maximal ideal M1. Moreover, both (A, M) and 
(A1, M1) are compatible with the ordering ≤, in other words, A, M, A1 and M1 are 
convex in R1 with respect to the ordering ≤. Observe that the residue field A/M of 
A is isomorphic to R and the residue field A1/M1 of A1 is isomorphic to R. Thereby, 
there is a homomorphism π of A onto R such that π(a) = a for all a ∈ R, π(ε) = 0 and 
π(η−1

i ) = 0 for i = 1, . . . , n, and there is a homomorphism π1 of A1 onto R such that 
π1(α) = α for all α ∈ R and π(ε) = 0.

Denote by K〈n+1〉 the subfield K(ε, η1, . . . , ηn) of R1. Obviously, K〈n+1〉 is also a 
computable ordered field with respect to its inherited ordering.

Let S be any nonempty semi-algebraic subset of R1. By Proposition 2.1.7 in [5], 
S consists of finitely many disjoint (open or closed or half open-closed) intervals and 
points in R1. For α ∈ R1, write [α, α]R1 := {α}. Thereby, a singleton may be considered 
as a closed interval with the same endpoints. Moreover, we may assume that a closed 
endpoint of an interval is not the same as an open endpoint of another interval for any 
two intervals of S; otherwise, they can be combined into a larger interval. So, every 
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semi-algebraic subset of R1 consists of finitely many disjoint (open or closed or half 
open-closed) intervals in R1.

For g1, . . . , gr ∈ K〈n+1〉[xj1 , . . . , xjk , xn] where {j1, . . . , jk} is a nonempty subset of 
{1, . . . , n − 1}, denote by VR1(g1, . . . , gr; xn) the subset of R1 as follows:

{
an ∈ R1 | there are aj1 , . . . , ajk ∈ R1 such that gi(aj1 , . . . , ajk , an) = 0, i = 1, . . . , r

}
.

Obviously, VR1(g1, . . . , gr; xn) is a semi-algebraic subset of R1.
The following proposition may be considered as a combination version of Lemmas 1, 

2 and 3 in [24]. Here, a simpler proof is given.

Proposition 3.2. Let the notation be as above, and f ∈ K[x1, . . . , xn]. If a is a finite open 
endpoint of NR(f, xn), then one of the following statements is true:

(1) e(a) = 0 where e(xn) ∈ K[xn] be the leading coefficient of f as a polynomial over 
K[xn] in variables x1, . . . , xn−1 with respect to the lexicographic order x1 ≺ · · · ≺
xn−1.

(2) For some nonempty subset {j1, . . . , jk} of {1, . . . , n −1} with complement {jk+1, . . . ,
jn−1} and certain �k+1, . . . , �n−1 ∈ {1, −1}, the set

VR1

(
g + ε,

∂g

∂xj1

, . . . ,
∂g

∂xjk

;xn

)
,

where g is the polynomial over K〈n+1〉 obtained from f by substituting xji = �iηji
for i = k + 1, . . . , n − 1, contains a point β such that the following conditions are 
satisfied:
(i) β − a ∈ M.
(ii) β /∈ R, i.e. β is transcendental over R.

Proof. Without loss of generality, we may assume that a is a left finite endpoint of 
NR(f, xn). In this case, there is a c ∈ R with a < c such that ]a, c[R ⊆ NR(f, xn), where 
]a, c[R is the open interval in R with endpoints a, c.

Consider the semi-algebraic subset T of Rn
1 as follows:

T :=
{
(α1, . . . , αn) ∈ Rn

1 | f(α1, . . . , αn) + ε = 0, and −ηi ≤ αi ≤ ηi, i = 1, . . . , n
}
.

Obviously, T is closed and bounded in Rn
1 . By Proposition 2.5.7 in [5], Txn

is closed 
and bounded in R1 where

Txn
:=

{
α ∈ R1 | there exist α1, . . . , αn−1 ∈ R1 such that (α1, . . . , αn−1, α) ∈ T

}
.

By the above argument, Txn
consists of a finite number of disjoint closed intervals. 

Suppose that a ∈ Txn
. Then f(ζ1, . . . , ζn−1, a) + ε = 0 for some ζ1, . . . , ζn−1 ∈ R1. Hence 
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f(ζ1, . . . , ζn−1, a) = −ε < 0, and the following sentence is valid in the real closed field R1:

∃(x1, . . . , xn−1)
(
f(x1, . . . , xn−1, a) < 0

)
.

Observe that all the constants in the above sentence belong to R. By the familiar 
Transfer principle for real closed fields (see Theorem 2.78 in [2] or Proposition 5.2.3 
in [5]), the sentence also is valid in the real closed field R. This yield a contradiction that 
a ∈ NR(f, xn). Thus a /∈ Txn

.
Let δ be any positive element in R such that δ < c − a. Then a + δ ∈ ]a, c[R ⊆

NR(f, xn). Hence there exist b1, . . . , bn−1 in R such that f(b1, . . . , bn−1, a + δ) < 0. Since 
a /∈ NR(f, xn), we have f(b1, . . . , bn−1, a) ≥ 0. By the definition of the ordering ≤ of R1, 
we have f(b1, . . . , bn−1, a +δ) + ε < 0, but f(b1, . . . , bn−1, a) + ε > 0. By the intermediate 
value theorem for polynomials over real closed fields, there exists a ξ in R1 such that 
a < ξ < a + δ and f(b1, . . . , bn−1, ξ) + ε = 0. It follows that (b1, . . . , bn−1, ξ) ∈ T and 
ξ ∈ Txn

. So, there is a closed interval [ω, γ]R1 of Txn
such that ξ ∈ [ω, γ]R1 . Obviously, 

ω − a ≤ ξ − a < (a + δ) − a = δ. Since a < ξ but a /∈ [ω, γ]R1 , we have a < ω. This 
implies that ω is a closed endpoint of Txn

such that ω − a > 0.
Let β be the closed endpoint of Txn

such that β − a > 0 and β − a is minimal. Then 
0 < β−a ≤ ω−a < δ. By the arbitrariness of δ, we get β−a ∈ M, and π(β) = π(a) = a.

Since β ∈ Txn
, there exist α1, . . . , αn−1 ∈ R1 such that f(α1, . . . , αn−1, β) + ε = 0. 

Put

Γ := {j | 1 ≤ j ≤ n− 1, and −ηj < αj < ηj},

and denote by k the number of subscripts in Γ . Then 0 ≤ k ≤ n − 1.
Assume that k = 0. Then Γ = ∅, and αi = �iηi for some �i ∈ {1, −1}, i = 1, . . . , n −1. 

It follows that f(�1η1, . . . , �n−1ηn−1, β) + ε = 0. Observe that β = a +(β−a) ∈ A ⊂ A1. 
By the homomorphism π1, we have

f
(
�1η1, . . . , �n−1ηn−1, π1(β)

)
= π1

(
f(�1η1, . . . , �n−1ηn−1, β) + ε

)
= 0.

Represent f in the form as follows:

f = e(xn)xd1
1 · · ·xdn−1

n−1 + e1(xn)xd11
1 · · ·xd1,n−1

n−1 + · · · + em(xn)xdm1
1 · · ·xdm,n−1

n−1 ,

where ei(xn) ∈ K[xn], i = 1, . . . , m, and e(xn) is the leading coefficient of f as a 
polynomial over K[xn] in variables x1, . . . , xn−1 with respect to the lexicographic order 
x1 ≺ · · · ≺ xn−1.

By the above representation, we have

e
(
π1(β)

)
+ μ1 + · · · + μm = f(�1η1, . . . , �n−1ηn−1, π1(β))

(�1η1)d1 · · · (�n−1ηn−1)dn−1
= 0,

where μi := ei(π1(β)) · (�1η1)di1 ···(�n−1ηn−1)di,n−1

d d , i = 1, . . . , m.
(�1η1) 1 ···(�n−1ηn−1) n−1
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Since π1(β) − a = (π1(β) − β) + (β − a) ∈ M1 + M ⊆ M, we have π(π1(β)) = a. 
Moreover, it is easy to prove that μi ∈ M for i = 1, . . . , m. By the homomorphism π, we 
further have

e(a) = π
(
e
(
π1(β)

)
+ μ1 + · · · + μm

)
= π(0) = 0.

Now assume that 1 ≤ k ≤ n − 1, Γ = {j1, . . . , jk}, and {jk+1, . . . , jn} is the comple-
ment of Γ in {1, . . . , n}. Then, −ηji < αji < ηji for i = 1, . . . , k, but αji = �iηji for some 
�i ∈ {1, −1}, i = k+ 1, . . . , n − 1. Write g for the polynomial over K〈n+1〉 obtained from 
f by substituting xji = �iηji for i = k + 1, . . . , n − 1. Then g ∈ K〈n+1〉[xj1 , . . . , xjk , xn]
and g(αj1 , . . . , αjk , β) + ε = 0.

Suppose that ∂g
∂xj1

(αj1 , . . . , αjk , β) �= 0. Observe that ∂(g+ε)
∂xj1

= ∂g
∂xj1

. By the im-
plicit function theorem for real closed fields (see Corollary 2.9.8 in [5]), there exist an 
open neighborhood Δ of (αj2 , . . . , αjk , β) in the topological space Rk

1 , an open neighbor-
hood Δ1 of αj1 in R1 and a continuous function (mapping) ψ of Δ into Δ1 such that 
ψ(αj2 , . . . , αjk , β) = αj1 and for every (y1, . . . , yk, yn) ∈ Δ1 ×Δ, g(y1, . . . , yk, yn) + ε = 0
if and only if y1 = ψ(y2, . . . , yk, yn).

Since Δ1∩ ]−ηj1 , ηj1 [ R1 is an open neighborhood of αj1 , ψ−1(Δ1 ∩ ]−ηj1 , ηj1 [ R1)
is an open neighborhood of (αj2 , . . . , αjk , β). By the topological structure of Rk

1 , 
there is a positive element λ ∈ R1 such that {(αj2 , . . . , αjk)} × ]β − λ, β + λ[R1

⊆
ψ−1(Δ1 ∩ ]−ηj1 , ηj1 [R1

). This implies that ψ(αj2 , . . . , αjk , z) ∈ ]−ηj1 , ηj1 [R1
for all 

z ∈ ]β−λ, β +λ[R1
. Put γz := ψ(αj2 , . . . , αjk , z). Then g(γz, αj2 , . . . , αjk , z) + ε = 0, i.e. 

f(α′
1, . . . , α

′
n−1, z) + ε = 0 where α′

j1
:= γz, α′

ji
:= αji for i = 2, . . . , k, and α′

ji
:= �iηji

for i = k + 1, . . . , n − 1. It follows that z ∈ Txn
for all z ∈ ]β − λ, β + λ[R1

. This is a 
contradiction, because β is a closed endpoint of Txn

. Hence, ∂g
∂xj1

(αj1 , . . . , αjk , β) = 0. It 
is similar to prove ∂g

∂xji
(αj1 , . . . , αjk , β) = 0 for i = 2, . . . , k.

It remains to prove β /∈ R. From the equality g(αj1 , . . . , αjk , β) +ε = 0, it follows that 
g(αj1 , . . . , αjk , β) < 0. So the following sentence is valid in the real closed field R1:

∃(xj1 , . . . , xjk)
(
g(xj1 , . . . , xjk , β) < 0 ∧ −ηj1 < xj1 < ηj1 ∧ · · · ∧ −ηjk < xjk < ηjk

)
.

Suppose that β ∈ R. Then all the constants in the above sentence belong to R. By the 
Transfer principle for real closed fields, this sentence also is valid in the real closed field R. 
Hence there exist βj1 , . . . , βjk ∈ R such that g(βj1 , . . . , βjk , β) < 0 and −ηji < βji < ηji
for i = 1, . . . , k. By the continuity of the polynomial function g(βj1 , . . . , βjk , x), there 
exists a positive element θ ∈ R such that θ < β − a and g(βj1 , . . . , βjk , β − θ) < 0. 
By the definition of the ordering ≤ of R1, we have g(βj1 , . . . , βjk , β − θ) + ε < 0, i.e. 
f(β′

1, . . . , β
′
n−1, β − θ) + ε < 0 where β′

ji
:= βji for i = 1, . . . , k, and β′

ji
:= �iηji for 

i = k + 1, . . . , n − 1. Observe that a /∈ NR(f ; xn). By the Transfer principle for real 
closed fields, we may get f(β′

1, . . . , β
′
n−1, a) ≥ 0, and f(β′

1, . . . , β
′
n−1, a) + ε > 0. Observe 

that a < β − θ. By the intermediate value theorem for univariate polynomials, there 
exists a ζ ∈ R1 such that a < ζ < β − θ and f(β′

1, . . . , β
′
n−1, ζ) + ε = 0. This yields 
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ζ ∈ Txn
. Hence there is a closed interval [ω′, γ′]R1 of Txn

such that ζ ∈ [ω′, γ′]R1 . 
Likewise, ω′ − a > 0. Moreover, ω′ − a ≤ ζ − a < (β − θ) − a < β − a; this contradicts 
the minimality of β − a. Thus β /∈ R. This completes the proof. �

Let D is a unique factorization domain with fraction field F , and h(x) a non-zero 
polynomial in F [x]. According to Lemma 1 on page 152 in [8], h(x) may be represented 
in the form h(x) = ah0(x) where a ∈ F and h0(x) ∈ D[x] is a primitive polynomial. 
Moreover, such a primitive polynomial h0(x) is determined by h up to unit multipliers 
in D. For sake of convenience, in what follows, such a primitive polynomial h0(x) is 
called a primitive part of h over D.

Proposition 3.3. Let f ∈ K[x1, . . . , xn], let {j1, . . . , jk} be a nonempty subset of 
{1, . . . , n − 1} with complement {jk+1, . . . , jn−1}, and �k+1, . . . , �n−1 ∈ {−1, 1}. If 
C1, . . . , Cs, Cs+1, . . . , Cr is a regular decomposition of { ∂f

∂xj1
, . . . , ∂f

∂xjk
} with respect to 

the lexicographic order xn ≺ xjn−1 ≺ · · · ≺ xj1 such that Ci ∩K[xjk+1 , . . . , xjn−1 , xn] = ∅
for i = 1, . . . , s, but Ci∩K[xjk+1 , . . . , xjn−1 , xn] �= ∅ for i = s +1, . . . , r, then the following 
statements are true:

(1) For i = 1, . . . , s, Res(Ci;f+t)
Li

∈ K(xjk+1 , . . . , xjn−1 , xn)[t] where Li is the leading 
coefficient of Res(Ci; f + t) as a polynomial over K[Tv(Ci)] in one variable t.

(2) If β is an element, transcendental over R, in the set

VR1

(
g + ε,

∂g

∂xj1

, . . . ,
∂g

∂xjk

;xn

)

where g is the polynomial over K〈n+1〉 obtained from f by substituting xji = �iηji
for i = k + 1, . . . , n − 1, then

Φ
(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) = 0 for some � ∈ {1, . . . , s},

where Φ
 ∈ K[xjk+1 , . . . , xjn−1 , xn, t] is a primitive part of Res(C�;f+t)
L�

over 
K[xjk+1 , . . . , xjn−1 , xn].

Proof. Put Gi := Res(Ci;f+t)
Li

for i = 1, . . . , r, and write J for the ideal generated by 

P ∪ {f + t} in K[x1, . . . , xn, t] where P := { ∂f
∂xj1

, . . . , ∂f
∂xjk

}. Denote by Je the ex-
tended ideal of J in K(xjk+1 , . . . , xjn−1 , xn)[xj1 , . . . , xjk , t]. By Proposition 3.1, Je ∩
K(xjk+1 , . . . , xjn−1 , xn)[t] �= {0}. Since K(xjk+1 , . . . , xjn−1 , xn)[t] is a principal ideal ring, 
Je ∩ K(xjk+1 , . . . , xjn−1 , xn)[t] = (u) for some non-zero u ∈ K(xjk+1 , . . . , xjn−1 , xn)[t]. 
Then there exists a non-zero polynomial v ∈ K[xjk+1 , . . . , xjn−1 , xn] such that uv ∈ J . 
Put h := uv. Then h ∈ J ∩K[xjk+1 , . . . , xjn−1 , xn, t], and Je ∩K(xjk+1 , . . . , xjn−1 , xn)[t]
= (h).

By Proposition 2.2, we have
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Gi =
∏

ᾱ∈RZ(Ci)

(
t + f(ᾱ)

)
, i = 1, . . . , r. (1)

Since C1, . . . , Cs, Cs+1, . . . , Cr be a regular decomposition of P with respect to the 
lexicographic order xn ≺ xjn−1 ≺ · · · ≺ xj1 , by Proposition 2.3 and its proof, we have

√
J =

⋂
ᾱ∈Ξ

P(ᾱ,−f(ᾱ)), (2)

where Ξ := RZ(C1) ∪ · · · ∪ RZ(Cr).
(1) Let i ∈ {1, . . . , s} and ᾱ ∈ RZ(Ci). By the hypothesis, Ci ∩ K[xjk+1 , . . . ,

xjn−1 , xn] = ∅, and {xjk+1 , . . . , xjn−1 , xn} ⊆ Tv(Ci) ⊂ ΩCi
. This implies that

ᾱ = (xn, xjn−1 , . . . , xjk+1 , α1, . . . , αk) where α1, . . . , αk ∈ ΩCi
.

By equality (2), h ∈ J ⊆ P(ᾱ,−f(ᾱ)). So we have h(ᾱ, −f(ᾱ)) = 0, i.e.

h
(
xjk+1 , . . . , xjn−1 , xn,−f(ᾱ)

)
= 0.

Hence f(ᾱ) is algebraic over the field K(xjk+1 , . . . , xjn−1 , xn). By equality (1), all the coef-
ficients of Gi, as a polynomial in one variable t, are algebraic over K(xjk+1 , . . . , xjn−1 , xn). 
Observe that Gi ∈ K(x1, . . . , xn)[t] and K(xjk+1 , . . . , xjn−1 , xn) is algebraically closed in 
K(x1, . . . , xn). So we get Gi ∈ K(xjk+1 , . . . , xjn−1 , xn)[t].

(2) Observe that xj1 , . . . , xjk , ηjk+1 , . . . , ηjn−1 , xn, ε are algebraically independent 
over K. There is a K-isomorphism σ of the ring K(xj1 , . . . , xjk , xjk+1 , . . . , xjn−1 , xn)[t]
onto K(xj1 , . . . , xjk , ηjk+1 , . . . , ηjn−1 , xn)[ε] such that

(xj1 , . . . , xjk , xjk+1 , . . . , xjn−1 , xn, t) 	→ (xj1 , . . . , xjk , �k+1ηjk+1 , . . . , �n−1ηjn−1 , xn, ε).

Obviously, σ(J) is just the ideal generated by {g+ε, ∂g
∂xj1

, . . . , ∂g
∂xjk

} in K[ηjk+1 , . . . , ηjn−1 ,

xn, xj1 , . . . , xjk , ε], and σ(h) ∈ σ(J) ∩K[ηjk+1 , . . . , ηjn−1 , xn, ε].
Since β ∈ VR1(g + ε, ∂g

∂xj1
, . . . , ∂g

∂xjk
; xn), there exists a (βj1 , . . . , βjk) ∈ Rk

1 such 

that (βj1 , . . . , βjk , β) is a zero of σ(J). This implies that (βj1 , . . . , βjk , �k+1ηjk+1 , . . . ,
�n−1ηjn−1 , β, ε) is a zero of J and is hence a zero of 

√
J . By equality (2), (βj1 , . . . , βjk ,

�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) is a zero of P(ᾱ1,−f(ᾱ1)) for some ᾱ1 ∈ Ξ. Since Ξ =
RZ(C1) ∪ · · · ∪ RZ(Cr), there exists an � ∈ {1, . . . , r} such that ᾱ1 ∈ RZ(C
). 
Suppose that C
 ∩ K[xjk+1 , . . . , xjn−1 , xn] �= ∅. Then, there is a polynomial w in 
C
∩K[xjk+1 , . . . , xjn−1 , xn]. Obviously, w ∈ P(ᾱ1,−f(ᾱ1)). Hence (βj1 , . . . , βjk , �k+1ηjk+1 ,

. . . , �n−1ηjn−1 , β, ε) is a zero of w, and w(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β) = 0. This con-
tradicts the hypothesis that β is transcendental over R. Thus C
 ∩ K[xjk+1 , . . . , xjn−1 ,

xn] = ∅, and � ∈ {1, . . . , s}.
Moreover, h ∈ J ⊆ P(ᾱ1,−f(ᾱ1)), and (βj1 , . . . , βjk , �k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) is 

a zero of h. It follows that h(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) = 0. This implies that 
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h is a non-constant polynomial in K[xjk+1 , . . . , xjn−1 , xn, t]. Let h = h1h2 · · ·hm, 
where h1, . . . , hm are irreducible polynomials in K[xjk+1 , . . . , xjn−1 , xn, t]. Then, hi0 ∈
P(ᾱ1,−f(ᾱ1)) for some i0 ∈ {1, . . . , m}. Without loss of generality, we assume that 
h1 ∈ P(ᾱ1,−f(ᾱ1)). So we have

h1(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) = 0.

Observe that xjk+1 , . . . , xjn−1 , xn ∈ Tv(C
) ⊂ ΩC�
. Hence, ᾱ1 = (xn, xjn−1 , . . . , xjk+1 ,

α′
1, . . . , α

′
k) where α′

1, . . . , α
′
k ∈ ΩCi

. So we get

h1
(
xjk+1 , . . . , xjn−1 , xn,−f(ᾱ1)

)
= h1

(
ᾱ1,−f(ᾱ1)

)
= 0.

Since G
 =
∏

ᾱ∈RZ(C�)(t + f(ᾱ)) and G
 ∈ K(xjk+1 , . . . , xjn−1 , xn)[t], G
 and 
h1(xjk+1 , . . . , xjn−1 , xn, t) have the same root −f(ᾱ1), and Φ
 and h1 have the same 
root −f(ᾱ1). Since h1 is irreducible in K(xjk+1 , . . . , xjn−1 , xn)[t], h1 divides Φ
 in 
K(xjk+1 , . . . , xjn−1 , xn)[t]. This implies that h1 divides Φ
 in K[xjk+1 , . . . , xjn−1 , xn, t], 
because h1 is primitive as a polynomial over K[xjk+1 , . . . , xjn−1 , xn] in one vari-
able t. Observe that (�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) is a zero of h1. It follows that 
Φ
(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) = 0. This completes the proof. �

For the sake of convenience, we need the following

Definition 4. Let D be a commutative ring, and let {jk+1, . . . , jn−1} be a subset of 
{1, . . . , n − 1} where 1 ≤ k < n − 1. The lexicographic order xjk+1 ≺ · · · ≺ xjn−1 in 
D[xjk+1 , . . . , xjn−1 ] is called the natural order of the set {xjk+1 , . . . , xjn−1} of variables 
if jk+1 < · · · < jn−1. In the case when k = n − 1, we adopt the convention that 
the leading coefficient of a is itself with respect to the natural order of the empty set 
{xjk+1 , . . . , xjn−1} for every non-zero a ∈ D.

Based on Propositions 3.2 and 3.3, the following result may be established.

Theorem 3.4. Let f ∈ K[x1, . . . , xn], and let a be a finite open endpoint of N(f ; xn). 
Then, one of the following statements is true:

(1) e(a) = 0 where e(xn) ∈ K[xn] is the leading coefficient of f as a polynomial over 
K[xn] in variables x1, . . . , xn−1 with respect to the lexicographic order x1 ≺ · · · ≺
xn−1.

(2) There is a nonempty subset {j1, . . . , jk} of {1, . . . , n −1} with complement {jk+1, . . . ,
jn−1} such that the following condition is satisfied:

If C1, . . . , Cr is a regular decomposition of { ∂f
∂xj1

, . . . , ∂f
∂xjk

} with respect to the lex-
icographic order xn ≺ xjn−1 ≺ · · · ≺ xjk+1 ≺ xjk ≺ · · · ≺ xj1 , then, for some 
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C ∈ {C1, . . . , Cr} with C ∩ K[xjk+1 , . . . , xjn−1 , xn] = ∅, eC(a) = 0 where eC(xn) is 
the univariate polynomial obtained by the following computations:

• Compute a primitive part ΦC of Res(C;f+t)
L over K[xjk+1 , . . . , xjn−1 , xn], where L

is the leading coefficient of Res(C; f + t) as a polynomial over K[Tv(C)] in one 
variable t.

• Extract the trailing coefficient ρC of ΦC as a polynomial over K[xjk+1 , . . . , xjn−1 , xn]
in one variable t.

• Extract the leading coefficient eC(xn) of ρC as a polynomial over K[xn] in variables 
xjk+1 , . . . , xjn−1 with respect to the natural order of {xjk+1 , . . . , xjn−1}.

Proof. By Proposition 3.2, one of the following statements is true:

(i) e(a) = 0 where e(xn) ∈ K[xn] be the leading coefficient of f as a polynomial over 
K[xn] in variables x1, . . . , xn−1 with respect to the lexicographic order x1 ≺ · · · ≺
xn−1.

(ii) For some nonempty subset {j1, . . . , jk} of {1, . . . , n −1} with complement {jk+1, . . . ,
jn−1} and certain �k+1, . . . , �n−1 ∈ {1, −1}, the set

VR1

(
g + ε,

∂g

∂xj1

, . . . ,
∂g

∂xjk

;xn

)
,

where g is the polynomial over K〈n+1〉 obtained from f by substituting xji = �iηji
for i = k + 1, . . . , n − 1, contains a point β such that the following conditions are 
satisfied:
(ii-1) β − a ∈ M.
(ii-2) β /∈ R, i.e. β is transcendental over R.

Now assume that statement (ii) is true, and adopt the symbols in Proposition 3.3. 
By Proposition 3.3, ΦC(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) = 0 for some C ∈ {C1, . . . , Cr}
with C ∩ K[xjk+1 , . . . , xjn−1 , xn] = ∅. Write ΦC in the form ΦC = tmΨC where m ≥ 0
and ΨC ∈ K[xjk+1 , . . . , xjn−1 , xn, t] with ΨC(xjk+1 , . . . , xjn−1 , xn, 0) �= 0. Then ρC =
ΨC(xjk+1 , . . . , xjn−1 , xn, 0), and ΨC(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β, ε) = 0. It is easy to see 
that β ∈ A1 and ε ∈ M1. Using the homomorphism π1 and putting β′ := π1(β), we have

ρC
(
�k+1ηjk+1 , . . . , �n−1ηjn−1 , β

′) = ΨC

(
�k+1ηjk+1 , . . . , �n−1ηjn−1 , β

′, 0
)

= ΨC

(
�k+1ηjk+1 , . . . , �n−1ηjn−1 , π1(β), π1(ε)

)
= π1

(
ΨC(�k+1ηjk+1 , . . . , �jn−1ηn−1, β, ε)

)
= π1(0) = 0.

As in the proof of Proposition 3.2, represent ρ in the following form
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ρC = eC(xn)xdk+1
jk+1

· · ·xdn−1
jn−1

+ e1(xn)xd1,k+1
jk+1

· · ·xd1,n−1
jn−1

+ · · · + em(xn)xdm,k+1
jk+1

· · ·xdm,n−1
jn−1

,

where ei(xn) ∈ K[xn], i = 1, . . . , m, and eC(xn) is the leading coefficient of ρC as a 
polynomial over K[xn] in variables xjk+1 , . . . , xjn−1 with respect to the natural order of 
{xjk+1 , . . . , xjn−1}.

By the above representation, we have

eC
(
β′) + μ1 + · · · + μm =

ρC(�k+1ηjk+1 , . . . , �n−1ηjn−1 , β
′)

(�1jk+1)dk+1 · · · (�n−1ηjn−1)dn−1
= 0,

where μi := ei(β′) · (�1ηjk+1 )di,k+1 ···(�n−1ηjn−1 )di,n−1

(�1jk+1)dk+1 ···(�n−1ηjn−1 )dn−1 , i = 1, . . . , m.
Since β′ − a = (π1(β) − β) + (β − a) ∈ M1 + M ⊆ M, we have π(β′) = a. It is easy 

to prove that μi ∈ M for i = 1, . . . , m. By the homomorphism π, we further have

eC(a) = π
(
eC

(
β′) + μ1 + · · · + μm

)
= π(0) = 0.

This completes the proof. �
4. Algorithms and examples

In the final section, we establish two algorithms based on Theorem 3.4. In order to 
compare with the original algorithm in [24], we use the new algorithm to treat several 
examples with the aid of the computer algebraic system Maple 15. Our new algorithms 
have been embedded into a general program, named DecidePsd, to decide the semi-
definiteness of a polynomial with rational coefficients. The software named DecidePsd
can be found in [22].

In our new algorithms, the involved ordered fields are assumed to admit an effective 
method of finding an isolating set for every non-zero univariate polynomial. For a finite 
set U of non-zero univariate polynomials in K[x], a finite subset Γ of K is called an 
isolating set for U , if the following conditions are satisfied: (1) For every a ∈ Γ and any 
f ∈ U , f(a) �= 0; (2) If α is a zero of a polynomial f(x) ∈ U in R, there are a, b ∈ Γ

with a < b such that ]a, b[R ∩ RootR(U) = {α} where RootR(U) := {z ∈ R | u(z) = 0
for some u ∈ U}. For the sake of convenience, we define {0} to be the only isolating set 
of U if RootR(U) = ∅. So, every isolating set is nonempty for any finite set of non-zero 
univariate polynomials. According to Theorem 8.115 in [4] or Theorem 8.5.7 in [16], the 
field Q of rational numbers admits an effective method of finding an isolating set for 
every finite set of non-zero univariate polynomials.

Algorithm 4.1 (The elimination method for semi-definiteness).
Structure: a computable ordered field (K, ≤) admitting an effective method of finding 
isolating sets for univariate polynomials.
Input: a polynomial f ∈ K[x1, . . . , xn] containing really the variable xn where n ≥ 2.
Output: a finite subset Γ of K such that
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• f is positive semi-definite if and only if so is f(x1, . . . , xn−1, γ) for all γ ∈ Γ .

Procedure:

Step 1. For every nonempty subset {j1, . . . , jk} of {1, . . . , n − 1} with complement 
{jk+1, . . . , jn−1}, create a finite subset Sj1...jk of K[xn] by the following computations:

Step 1.1. Compute a regular decomposition Cj1...jk,1, . . . , Cj1...jk,rj1...jk
of { ∂f

∂xji
| 1 ≤

i ≤ k} with respect to the lexicographic order xn ≺ xjn−1 ≺ · · · ≺ xj1 , pick out all the 
chains Cj1...jk,1, . . . , Cj1...jk,sj1...jk

that are disjoint with K[xj1 , . . . , xjk , xn], and compute 
Res(Cj1...jk,i; f + t) for i = 1, . . . , sj1...jk .

Step 1.2. For i = 1, . . . , sj1...jk , extract the leading coefficient Lj1...jk,i of Res(Cj1...jk,i;
f + t) as a polynomial in one variable t. (Note: By Proposition 3.3, Res(Cj1...jk,i;f+t)

Lj1...jk,i
∈

K(xj1 , . . . , xjk , xn)[t], i = 1, . . . , sj1...jk .)

Step 1.3. For i = 1, . . . , sj1...jk , compute a primitive part Φj1...jk,i of Res(Cj1...jk,i;f+t)
Lj1...jk,i

over K[xj1 , . . . , xjk , xn], extract the trailing coefficient ρj1...jk,i of Φj1...jk,i as a poly-
nomial in one variable t, and extract the leading coefficient ej1...jk,i(xn) of ρj1...jk,i as 
a polynomial over K[xn] with respect to the natural order of {xjk+1 , . . . , xjn−1}. Set 
Sj1...jk := {ej1...jk,i(xn) | i = 1, . . . , sj1...jk}.

Step 2. Find an isolating set Γ for the set {e(xn)} ∪
⋃

λ Sλ where e(xn) is the leading 
coefficient of f as a polynomial over K[xn] with respect to the lexicographic order x1 ≺
· · · ≺ xn−1, and λ runs over all the nonempty subsets of {1, . . . , n − 1}.

Step 3. RETURN(Γ ).

Proof of correctness. Assume that f(x1, . . . , xn−1, γ) is not positive semi-definite for 
some γ ∈ Γ . Then it is obvious that f(x1, . . . , xn−1, xn) is not positive semi-definite.

Conversely, assume that f(x1, . . . , xn) is not positive semi-definite. Then
NR(f ; xn) �= ∅. In the case when NR(f ; xn) = R, f(x1, . . . , xn−1, γ) is not positive 
semi-definite for any γ ∈ Γ . In the case when NR(f ; xn) �= R, NR(f ; xn) possesses at 
least one finite open endpoint a. Denote by U the set of univariate polynomials indi-
cated in Step 2, i.e. U := {e(xn)} ∪

⋃
λ Sλ where e(xn) is the leading coefficient of f

as a polynomial over K[xn] with respect to the lexicographic order x1 ≺ · · · ≺ xn−1, 
and λ runs over all the nonempty subsets of {1, . . . , n − 1}. According to Theorem 3.4
and the commutations in Step 1, all the finite endpoints of NR(f ; xn) are contained in 
RootR(U). Of course, a ∈ RootR(U). Since Γ is an isolating set for U , there are b, c ∈ Γ

with b < c such that ]b, c[R ∩ RootR(U) = {a}. Thus the open interval ]b, c[R contains 
only the endpoint a of NR(f ; xn). Thereby either b ∈ NR(f ; xn) or c ∈ NR(f ; xn). This 
implies that either f(x1, . . . , xn−1, b) or f(x1, . . . , xn−1, c) is not positive semi-definite. 
The correctness of Algorithm 4.1 is verified. �
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Based on Algorithm 4.1, the following algorithm is easily established. For the sake of 
convenience, we adopt the convention that D0 := {( )} for any set D.

Algorithm 4.2 (Deciding the semi-definiteness of multivariate polynomials).
Structure: a computable ordered field (K, ≤) admitting an effective method of finding 
isolating sets for univariate polynomials
Input: a polynomial f ∈ K[x1, . . . , xn] where n ≥ 2.
Output: the word “true” if f is positive semi-definite, or a point (a1, . . . , an) ∈ Kn such 
that f(a1, . . . , an) < 0.

Procedure:

Step 1. Compute inductively a finite subset Δi of K[x1, . . . , xn−i] ×Ki for i = 0, 1, n −1
as follows:

• Δ0 := {(f, ( ))}.
• Assume that Δi−1 has been obtained, where 1 ≤ i < n − 1. For every (g, ̄b) ∈ Δi−1, 

compute by Algorithm 4.1 a finite subset Γ(g,b̄) such that g is positive semi-definite if 
and only if g(x1, . . . , xn−i, a) is positive semi-definite for all a ∈ Γ(g,b̄). Put Δ(g,b̄) :=
{(g(x1, . . . , xn−i, a), (a, ̄b)) | a ∈ Γ(g,b̄)}, and put

Δi :=
⋃

(g,b̄)∈Δi−1

Δ(g,b̄).

Step 2. Assume that Δn−1 = {(h1(x1), ̄b1), . . . , (hm(x1), ̄bm)}. For i from 1 to m, find an 
isolating set Γi for hi(x1). If hi(a) < 0 for some i and some a ∈ Γi, RETURN ((a, ̄bi)). 
Else, RETURN (true).

Proof of correctness. It follows from Algorithm 4.1 and the following obvious fact:

• If Γ is an isolating set of a univariate polynomial h(x), then h(x) is positive semi-
definite if and only if h(a) > 0 for all a ∈ Γ . �

As an illustration of Algorithm 4.2, we proceed to investigate the following example.

Example 1. Let f(x, y, z) = 4x2z2y2 +8z2xy+4z2 +4x2zy2 +8xzy+4z+2x2y2 +4xy+
x4y2 + 2x3y + x2 + 2x3y2 + 4x2y + 2x + 1. Decide whether or not f(x, y, z) is positive 
semi-definite.

Process of Computing. All the partial derivatives of f(x, y, z) are computed as follows:

∂f

∂x
= 8xz2y2 + 8z2y + 8xzy2 + 8zy + 4xy2 + 4y + 4x3y2 + 6x2y + 2x + 6x2y2

+ 8xy + 2,
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∂y

∂y
= 8x2z2y + 8z2x + 8x2zy + 8xz + 4x2y + 4x + 2x4y + 2x3 + 4x3y + 4x2,

∂f

∂z
= 8x2zy2 + 16xzy + 8z + 4x2y2 + 8xy + 4.

According to Algorithm 4.2, we proceed to perform the following computations:
(1) (Eliminate the variable z) Observe that all the nonempty subsets of {x, y} are 

{x, y}, {x} and {y}.
(1.1) With respect to the lexicographic order z ≺ y ≺ x, compute a regular decompo-

sition of {∂f
∂x , 

∂f
∂y } as follows:

C1 := [xy + 1], C2 :=
[(

4z2 + 4z + 2
)
y + 1, x

]
, [2z + 1, x + 1].

Observing that [2z + 1, x + 1] ∩Q[z] �= ∅, we only consider C1 and C2, and get

Res(C1; f + t) = −y4 + ty4, Res(C2; f + t) = 1 + 4z2 + 4z + t.

Observe that the leading coefficient of −y4 + ty4, as a polynomial in one variable t, is 
y4, and −y4+ty4

y4 = t − 1. Extracting the trailing coefficients of t − 1 and 1 + 4z2 + 4z + t

as polynomials in one variable t, we get −1 and 1 + 4z2 + 4z respectively.
(1.2) With respect to the lexicographic order z ≺ y ≺ x, compute a regular decompo-

sition of {∂f
∂x} as follows:

C3 := [xy + 1], C4 :=
[
2x2y + (3y + 1)x +

(
4z2 + 4z + 2

)
y + 1

]
.

So we get

Res(C3; f + t) = −y4 + ty4, and Res(C4; f + t) = Φ4(y, z, t),

where Φ4 is a polynomial of 52 terms in Q[y, z, t].
Extracting the trailing coefficients of −y4 + ty4 and Φ4(y, z, t) as polynomials in one 

variable t, we get −y4 and ψ4(y, z) respectively, where ψ4(y, z) is a polynomial of 38 terms 
in Q[y, z]. By extracting the leading coefficients of −y4 and ψ4(y, z) as polynomials in 
one variable y, we get −1 and 8 + 80z + 368z2 + 1024z3 + 1888z4 + 2368z5 + 1984z6 +
1024z7 + 256z8 respectively.

(1.3) With respect to the lexicographic order z ≺ x ≺ y, compute a regular decompo-
sition of {∂f

∂y } as follows:

C5 := [xy + 1], [x],
[
2x + x2 + 4z + 4z2 + 2

]
.

Since both [x] and [2x + x2 + 4z + 4z2 + 2] meet Q[x, z], we only consider C5, and get

Res(C5; f + t) = −x2 + x2t.
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Extract the trailing coefficients −x2 of −x2 + x2t as a polynomial in one variable t, and 
extract the leading coefficients −1 of −x2.

(1.4) Extract the leading coefficient 1 of f as a polynomial over Q[z] respect to the 
lexicographic order y ≺ x, and find such an isolating set Γ1 of {1, −1, 1 + 4z2 + 4z, 8 +
80z + 368z2 + 1024z3 + 1888z4 + 2368z5 + 1984z6 + 1024z7 + 256z8} as follows:

Γ1 =
{
−3

2 ,
1
2

}
.

So we get

Δ1 :=
{(

g(x, y),
(
−3

2

))
,

(
g(x, y),

(
1
2

))}

where g := f(x, y, −3
2 )(= f(x, y, 12 )) = 5x2y2 + 10xy + 4 + x4y2 + 2x3y + x2 + 2x3y2 +

4x2y + 2x.
(2) (Eliminate the variable y) Observe that {x} is the only nonempty subset of {x}.
(2.1) With respect to the lexicographic order y ≺ x, compute a regular decomposition 

of { ∂g
∂x} as follows:

C6 := [xy + 1], C7 :=
[
2x2y + (3y + 1)x + 5y + 1

]
.

So we get Res(C6; g + t) = −y4 + y4t, and Res(C7; g + t) = Φ7(y, t), where Φ7(y, t) =
y2(3 −20y−4yt +38y2−108y3−164y3t +587y4−600y5+t +54y2t −47y4t +500y6+16y2t2).

Extracting the trailing coefficients of −y4 + ty4 and Φ7(y, t) as polynomials in one 
variable t, we get −y4 and y2(3 −108y3−20y+587y4+38y2−600y5+500y6) respectively.

(2.2) Extract the leading coefficient y2 of g as a polynomial over Q[y] in one variable 
x, and find such an isolating set Γ2 of {y2, −y4, y2(3 − 108y3 − 20y + 587y4 + 38y2 −
600y5 + 500y6)} as follows:

Γ2 = {−1, 1}.

So we get

Δ2 :=
{(

h1(x),
(
−1,−3

2

))
,

(
h1(x),

(
−1, 1

2

))
,

(
h2(x),

(
1,−3

2

))
,

(
h2(x),

(
1, 1

2

))}

where h1(x) := g(x, −1) = 2x2 − 8x + 4 + x4 and h2(x) := g(x, 1) = 10x2 + 12x + 4 +
x4 + 4x3.

(3) Finding an isolating set of h1(x), we get Γ3 = {−1
2 , 1, 

5
2}. Computing the values 

of h1(x) at x = −1
2 , 1, 5

2 , we get h1(−1
2 ) = 137

16 > 0 but h1(1) = −1 < 0.
According to Algorithm 4.2, f(x, y, z) is not positive semi-definite, and f(1, −1, −3

2 )
< 0.
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Now we use the software DecidePsd to treat several examples. The following examples 
were done on an Intel(R) Core(TM)2 Quad CPU computer with 2 GB RAM.

Example 2. Decide the positive semi-definiteness of the following polynomials.
(1) f1 = x4 + 2x2z + x2 − 2xyz + 2y2z2 − 2yz2 + 2z2 − 2x + 2yz + 1/2;
(2) f2 = x4 + 2x2z + x2 − 2xyz + 2y2z2 − 2yz2 + 2z2 − 2x + 2yz + 1;
(3) f3 = x4y4 −2x5y3z2 +x6y2z4 +2x2y3z−4x3y2z3 +2x4yz5 + y2z2 −2xyz4 +x2z6;
(4) f4 = x4y4−2x5y3z2+x6y2z4+2x2y3z−4x3y2z3+2x4yz5+y2z2−2xyz4+ 99

100x
2z6;

(5) f5 = x4 +y4 +z4 +w6 +2z2w3 +2x2w+2x2z+3x2 +w2 +2zw+z2 +2z+2w+1;
(6) f6 = x4 + 4x2y2 + 2xyz2 + 2xyw2 + y4 + z4 +w4 + 2z2w2 + 2x2w + 2y2w + 2xy +

3w2 + 2z2 + 1;
(7) f7 = x4 + 4x2y2 + 2xyz2 + 2xyw2 + y4 + z4 +w4 + 2z2w2 + 2x2w + 2y2w + 2xy +

3w2 − 2z2 + 1;
(8) f8 = x6 + y6 + z6 +w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z + 3x2 +w2 + 2zw +

z2 + 2z + 2w + 1;
(9) f9 = 2x4

1 +2x2
1 +2x2

1x4 − 2x2
1x2 +2x4 − 2x2 +x2

4 − 2x4x2 +x2
2 +x2

3x
2
4 +2x3x4x5 +

2x2
5 − 2x2

1x
2
2 + 2x2

1x5 + x4
2 − 2x2

2x5 + 1;
(10) f10 = 2x4

1 +2x2
1 +2x2

1x4−2x2
1x2 +2x4−2x2 +x2

4−2x4x2 +x2
2 +x2

3x
2
4 +2x3x4x5 +

2x2
5 − 2x2

1x
2
2 + 2x2

1x5 + x4
2 − 2x2

2x5 + 9999
10 000 .

Let [·]1, . . . , [·]10 stand for the lexicographic orders [x, y, z], [x, y, z], [x, y, z], [x, y, z], 
[x, y, z, w], [x, y, z, w], [x, y, z, w], [x, y, z, w], [x1, x2, x3, x4, x5] and [x1, x2, x3, x4, x5] re-
spectively. By Calling DecidePsd(fi, [·]i) for i = 1, . . . , 10, the respective outputs 
are

[
−13

8 , 1,−41
16

]
, “true”, “true”, [−1, 1,−1], “true”, “true”,

[
3
4 ,−

3
4 ,−

49
32 ,−

1
8

]
, “true”, “true” and

[
0,−1, 1

2 ,−2, 1
]
.

Table 1 gives a comparison with the original algorithm in [24] in respect of the 
CPU times. It shows that the efficiency of the new algorithm is higher for polyno-
mials in more than two variables. In the table, the CPU times are given in sec-
onds.

Table 1
Table of CPU times.

Example 1 2 3 4 5 6 7 8 9 10
Original 1.015 0.937 1.156 2.046 139.2 > 500 > 500 > 500 > 500 > 500
New 0.968 0.718 0.921 0.968 0.937 1.359 2.375 2.515 4.062 17.71

� “> 500” means that there is no result in 500 seconds.
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