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1. Introduction

The aim of this paper is to complete the classification of epimorphisms of irreducible 
spherical Moufang buildings of rank at least two. For projective planes and spaces defined 
over a skew field or octonion division algebra K such a classification is given by the work 
of André [1], Faulkner and Ferrar [3] and Skornjakov [5]. It is shown there that such 
epimorphisms essentially correspond with the total subrings of K, i.e. subrings R ⊂ K
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such that K = R ∪ (R \ {0})−1. In [6] the second author derives some of the structure 
theory of epimorphisms of irreducible spherical Moufang buildings of rank at least two 
and uses this to show that when such a building is defined over a field (for a suitable 
definition), then these epimorphisms are closely related with affine buildings (and their 
non-discrete generalizations).

In view of these results, the only untreated case is that of the buildings BCl(K, K0,

σ, L, q) (l ≥ 2) of pseudo-quadratic form type. We include the buildings Cl(K, K0, σ) of 
involutory type in this class, which corresponds to the case L = 0. The main difference 
with the cases handled in [6] is that a total subring of a field always corresponds to a 
valuation of this field, while this is not true for skew fields in general. As a consequence 
one can no longer apply the rich theory of affine buildings, meaning that we have to 
construct the epimorphisms in a different, more ad hoc manner.

The precise statement of our classification can be found in Section 3. We note that in 
this paper we only consider type-preserving epimorphisms between (thick) buildings.

The first author is supported by the German Research Foundation (DFG), the second 
author by the Fund for Scientific Research – Flanders (FWO – Vlaanderen).

2. Polar spaces of pseudo-quadratic form type

In this section we define the polar spaces of interest in this paper. Our approach is 
based on [7, (16.5)]. Let K be a skew field and σ an involution of K, meaning σ is an 
anti-automorphism (so (ab)σ = bσaσ) with σ2 = id. Let

Kσ = {a + aσ|a ∈ K},

Kσ = {a|a ∈ K, aσ = a}.

Choose a Kσ ⊂ K0 ⊂ Kσ containing the element 1, such that for all t ∈ K we have 
tσK0t = K0. Such a set is called an involutory set. If the characteristic of K is different 
from 2, then Kσ = K0 = Kσ. Let L be a right vector space over K. A map f : L ×L → K

is a skew-hermitian sesquilinear form on L with respect to σ, if f(a, b)σ = −f(b, a) and 
f(at, bu) = tσf(a, b)u for all a, b ∈ L and t, u ∈ K. A map q : L → K is a skew-hermitian 
pseudo-quadratic form on L with respect to σ if f on L is a skew-hermitian sesquilinear 
form with respect to σ, such that the following two conditions are satisfied for all a, b ∈ L

and t ∈ K:

• q(a + b) ≡ q(a) + q(b) + f(a, b) mod K0,
• q(at) ≡ tσq(a)t mod K0.

If one moreover has that q(a) ∈ K0 only if a = 0, then we say that q is anisotropic. 
If all of this is satisfied we say that the quintuple (K, K0, σ, L, q) is an anisotropic skew-
hermitian pseudo-quadratic space.
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Remark 2.1. We will often omit the adjective “skew-hermitian” as we will not take other 
pseudo-quadratic spaces into consideration.

We are now able to define the rank l polar space BCl(K, K0, σ, L, q) where l ≥ 2 is 
an integer, and (K, K0, σ, L, q) an anisotropic pseudo-quadratic space. Let X denote the 
right vector space L ⊕K2l. The function

qX : (v|a1, . . . , a2l) 	→ q(v) + aσ1a2 + · · · + aσ2l−1a2l

with (v|a1, . . . , a2l) ∈ X, is a pseudo-quadratic form on X. The associated skew-
hermitian fX is defined by fX((v|a1, . . . , a2l), (w|b1, . . . , b2l)) := f(v, w) + bσ1a2 − bσ2a1 +
· · · + bσ2l−1a2l − bσ2la2l−1, where f is the sesquilinear form associated to q.

A subspace S of the vector space X is singular if x ∈ S implies qX(x) ∈ K0. The 
polar space is now formed by the set of singular subspaces. The points will be the 
one-dimensional subspaces, the lines the two-dimensional subspaces, etc. The building 
of type Cl associated to this polar space is the flag complex of this incidence geometry.

3. Statement of the main result

We will see in the main theorem below that the total subrings essentially determine 
the type-preserving epimorphisms of buildings of pseudo-quadratic form type. Here a 
total subring of a skew field K is a subring R of K such that K = R ∪ (R \ {0})−1.

We denote the invertible elements of R by R×. Its complement m := R \ R× is the 
unique maximal (two-sided) ideal of R (see for example [3, §2]). A direct corollary is 
that the quotient R/m is a skew field. We call this the residue skew field and denote it 
by KR.

We will now state the main result.

Main result 1. Let (K, K0, σ, L, q) be an anisotropic skew-hermitian pseudo-quadratic 
space (where L is allowed to be 0). Every type-preserving epimorphism of the building 
BCl(K, K0, σ, L, q), l ≥ 2, is completely determined (up to isomorphisms) by a total 
subring R of the skew field K and a left coset of R× in the multiplicative group K∗

satisfying the following three conditions.

(C1) The anti-automorphism a 	→ aσs of K stabilizes R,
(C2) (u, t), (w, r) ∈ T : t, r ∈ sR ⇒ f(u, w) ∈ sR,
(C3) (u, t), (w, r) ∈ T : t ∈ sR, r ∈ sm ⇒ f(u, w) ∈ sm,

where s is an element of the left coset of R×, f the skew-hermitian form associated to 
q and m the unique maximal two-sided ideal of R. Conversely if R is a total subring of 
the skew field K and sR× a left coset of R× satisfying these three conditions, then there 
exists a type-preserving epimorphism of the polar space BCl(K, K0, σ, L, q) determined 
exactly by this total subring and left coset.
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The proof is split into two parts as described in Section 5.

Remark 3.1. We define a type-preserving epimorphism of a building as a surjective map 
on the set of chambers preserving s-equivalence for s ∈ W (see [6, §2.1]). Another 
way of defining epimorphisms of polar spaces would be to consider surjective maps on 
the set of points mapping lines into lines. This does not pose a problem as these two 
notions are equivalent. One direction follows from [6, Lem. 4.2], the other from Lem-
mas 5.21, 5.22, 5.24 and Proposition 5.25.

4. Auxiliary results

This section gathers helpful results on spherical buildings, epimorphisms and polar 
spaces.

We start by giving root group sequences which describe the rank two Moufang 
spherical buildings, which are also known as Moufang polygons, which appear in build-
ings of pseudo-quadratic form type. Root group labelings then describe these buildings 
BCl(K, K0, σ, L, q) (l ≥ 2). In Section 4.4 we show how the direct construction in Sec-
tion 2 relates to the root group labeling. In Section 4.5 we summarize the results from [6]
used in this paper. In particular we describe the interplay between epimorphisms and 
root group labelings.

4.1. The root group sequence of A2(K)

Let K be a skew field. Let Ui (i ∈ {1, 2, 3}) be groups parametrized by isomorphisms 
xi from the additive group of K to Ui. The only non-trivial commutator relation is given 
by

[x1(s), x3(t)] = x2(st)

for s, t ∈ K. This defines a root group sequence ΘA2(K) (see [7, (16.1)]).
We also list the following identity (from [7, (32.5)]) which one will need in order to 

apply Lemma 4.2.

x2(u)μ(x1(t)) = x3(t−1u) (1)

In what follows we will work with A2(Kop). The opposite skew field Kop is defined as 
the field with the same underlying set as K but with multiplication given by a ∗ b = ba

(with a, b ∈ K).

4.2. The root group sequence of BC2(K, K0, σ, L, q)

We use the notations from Section 2. Let (K, K0, σ, L, q) be an anisotropic pseudo-
quadratic space. Let T be the elements (w, t) in L × K such that q(w) − t ∈ K0. 



242 P. Schwer, K. Struyve / Journal of Algebra 430 (2015) 238–259
One derives that if (w, t) ∈ T then f(w, w) = t − tσ, where f is the sesquilin-
ear form associated to q. The set T can be made into a group with multiplication 
(w, t) · (v, r) = (w + v, t + r + f(v, w)) and inverse (w, t)−1 = (−w, −tσ). For proofs 
see [7, (11.24), (11.19)].

Let Ui (i ∈ {1, 2, 3, 4}) be groups parametrized by the group T in case i is odd and 
by the additive group of K in case i is even, both via isomorphisms xi. The non-trivial 
commutator relations are given by:

[x1(w, t), x3(v, r)−1] = x2(f(w, v)),

[x2(k), x4(a)−1] = x3(0, kσa + aσk),

[x1(w, t), x4(k)−1] = x2(tk)x3(wk, kσtk),

for (w, t), (v, r) ∈ T and k, a ∈ K. These relations define a root group sequence 
ΘBC2(K,K0,σ,L,q).

We end by giving the following equations from [7, (32.9)].

x1(w, t)μ(x4(k)) = x3(−wk, kσtk) (2)

x2(k)μ(x4(a)) = x2(−a−σkσa) (3)

x4(a)μ(x1(w,t)) = x2(ta) (4)

4.3. The root group labeling of BCl(K, K0, σ, L, q)

In this section we describe the root group labeling (u, Θ, θ) of the building 
BCl(K, K0, σ, L, q), following [8, (12.12), (12.16)]. We will not give every detail of it, 
only the parts relevant for our proof. Let Π be the following Coxeter diagram with 
numbered vertices.

1 2 l − 2 l − 1 l

For i ∈ {1, 2, . . . , l − 1}, let u(i) be isomorphic with the additive group of the skew 
field K. We set u(l) to be isomorphic with the group T . We parametrize the groups u(i)
(i ∈ {1, 2, . . . , l}) by isomorphisms yi from K or T (where applicable) to u(i).

Let Θi,i+1 = ΘA2(Kop) for i ∈ {1, 2, . . . , l − 2} and Θl,l−1 = ΘBC2(K,K0,σ,L,q). This 
defines the root group labeling (u, Θ, θ) of the building BCl(K, K0, σ, L, q).

4.4. Realization of the root group labeling

We will now show how the direct construction of BCl(K, K0, σ, L, q) given in Section 2
realizes the root group labeling given in Section 4.3 in the sense of [8, (12.10)–(12.11)]. 
We do this by showing how the groups u(i) from the root group labeling act on the 
vector space X.
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(v|a1, . . . , a2l)y1(k) = (v|a1, . . . , a2l−3 + ka2l−1, a2l−2, a2l−1, a2l − kσa2l−2),

· · ·
(v|a1, . . . , a2l)yl−1(k) = (v|a1 + ka3, a2, a3, a4 − kσa2, . . . , a2l),

(v|a1, . . . , a2l)yl(w,t) = (v + wa1|a1, a2 − ta1 − f(w, v), a3, . . . , a2l),

where k ∈ K and (w, t) ∈ T . The omitted coordinates are left invariant. These maps fix 
the chamber consisting of the subspaces

〈(0|0, . . . , 0, 1)〉,
〈(0|0, . . . , 0, 1), (0|0, . . . , 0, 1, 0, 0)〉,
〈(0|0, . . . , 0, 1), (0|0, . . . , 0, 1, 0, 0), (0|0, . . . , 0, 1, 0, 0, 0, 0)〉,

· · ·

Remark 4.1. Note that the maps of the form

ζi(m) : (v| . . . , a2i−2, a2i−1, a2i, a2i+1, . . .) 	→
(v| . . . , a2i−2,ma2i−1,m

−σa2i, a2i+1, . . .)

with m ∈ K∗ and i ∈ {1, . . . , l} induce automorphisms of the polar space. This map 
ζi normalizes each of the groups u(j) (j ∈ {1, . . . , l}) and acts on the groups u(j)
(j ∈ {1, . . . , l − 1}) as follows.

yj(k)ζi(m) =

⎧⎪⎨
⎪⎩

yj(mk) if j = l − i

yj(km−1) if j = l − i + 1
yj(k) otherwise.

By combining these automorphisms one can assume without loss of generality that 
yj(1) ∈ v(j) \ w(j) for all j ∈ {1, . . . , l − 1}, where v(j) and w(j) are subgroups of 
u(j) which will be introduced in Section 4.5.

4.5. A summary of results on epimorphisms of spherical Moufang buildings

In this section we summarize the results in [6] that we use in the current paper.
Let Δ, Δ′ be two irreducible spherical Moufang buildings of rank at least two and φ

a (type-preserving) epimorphism from Δ to Δ′.
We start by the rank two case. Let c be a chamber in some apartment Σ of Δ. 

With this choice of chamber and apartment there corresponds a root group sequence 
(U+, U1, . . . , Un). Section 6.1 of [6] states that the epimorphism φ induces subgroups 
Wi � Vi ≤ Ui for every i. The subgroup Vi consists of those automorphisms g ∈ Ui such 
that there exists an automorphism g′ of Δ′ making the following diagram commute. If 
this is the case then we say that g descends.
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Δ
g

φ

Δ

φ

Δ′
g′

Δ′

The subgroup Wi is then the subgroup of those elements in Vi such that the corre-
sponding g′ in the previous diagram is the identity automorphism.

The following three lemmas describe how these different subgroups are related.

Lemma 4.2. Let vi ∈ Vi \Wi, then

V
μ(vi)
j = V2i+n−j ,

W
μ(vi)
j = W2i+n−j

for each i, j ∈ {1, . . . , n} such that 2i + n − j ∈ {1, . . . , n}.

Proof. See [6, Cor. 6.7]. �
Lemma 4.3. Choose u1 ∈ U1 and un ∈ Vn\Wn. Let [u1, u−1

n ] = u2 . . . un−1 (with ui ∈ Ui), 
then

u1 ∈ V1 ⇔ u2 ∈ V2,

u1 ∈ W1 ⇔ u2 ∈ W2.

Proof. See [6, Lem. 6.8]. �
Lemma 4.4. Choose u1 ∈ V1 and u3 ∈ W3. If [u1, u3] = u2 then u2 ∈ W2.

Proof. This is a special case of [6, Cor. 6.5]. �
The arbitrary rank case can now be approached as follows. Choose a chamber c of 

the building Δ and let (u, Θ, θ) be a root group labeling associated with this choice of 
chamber (see [8, (12.10)–(12.11)]). The epimorphism φ again induces subgroups w(i) �
v(i) ≤ u(i) for every i as before. These subgroups determine the structure of φ, as shown 
by the following lemma.

Lemma 4.5. If the subgroups w(i) � v(i) ≤ u(i) are known for a root group labeling 
(u, Θ, θ) of a spherical Moufang building Δ, then the corresponding epimorphism of Δ is 
unique up to isomorphisms.

Proof. See [6, Cor. 6.12]. �
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For a root group sequence Θij of the root group labeling the u(i) and u(j) form the 
extremal root groups U1 and Un of this root group sequence. The subgroups w(i) �v(i) ≤
u(i) and w(j) � v(j) ≤ u(j) correspond respectively to the subgroups W1 �V1 ≤ U1 and 
Wn � Vn ≤ Un.

Lemma 4.6. If a certain label i corresponds with a rank one residue which is a projective 
line over a skew field K with u(i) indexed by K via an isomorphism yi, then there exists 
a total subring R of K with maximal ideal m and a constant a ∈ K such that

v(i) = {yi(k)|k ∈ Ra},

w(i) = {yi(k)|k ∈ ma}.

Proof. See [6, Lems. 7.2–7.3]. �
4.6. Some properties of polar spaces

In this section we state some properties of polar spaces of (pseudo-)quadratic form 
type needed later on.

Remark 4.7. In this section we will always suppose that our polar spaces are non-singular 
(i.e. there are no points collinear to all other points of the polar space) and not of 
hyperbolic type (i.e. those polar spaces corresponding to buildings of type Dn). These 
are exactly those polar spaces corresponding to a (thick) building of type Cl. Without 
this assumption Lemma 4.8 would fail.

Each set of mutually collinear points as well as each subspace of a rank l polar space 
is contained in a (maximal) subspace of (geometric) dimension l − 1. These maximal 
subspaces are called the generators.

Lemma 4.8. A subspace of dimension l − 2 is contained in at least three generators.

Proof. This follows from the thickness of the building associated with the polar 
space. �

The following two lemmas show how points and generators interact.

Lemma 4.9. Given a generator π and a point p not in π, there is a unique generator ξ
containing p and intersecting π in a subspace of co-dimension 1. This subspace consists 
exactly of the points of π collinear with p.

Proof. This property is part of the incidence geometric definition of polar spaces, see for 
example [2, p. 556]. �
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Lemma 4.10. Let π be a t-dimensional subspace and p a point not in this subspace. The 
set of points in π collinear with p either forms a (t − 1)-dimensional subspace, or every 
point of π is collinear with p. Moreover each (t − 1)-dimensional subspace of π arises in 
this way.

Proof. The first assertion follows directly from Lemma 4.9. In order to prove the second 
assertion let ζ be a (t − 1)-dimensional subspace of π and embed π in a generator ξ. 
We then can find a subspace χ of co-dimension 1 in ξ such that the intersection of ξ
and χ is exactly ζ. Lemma 4.8 allows us to find a generator ξ′ containing χ and different 
from ξ. If p is a point of ξ′ not in χ, then the points of ξ collinear with p have to be 
exactly the points of χ by Lemma 4.9. Restricting to the subspace π of ξ shows that ζ
consists exactly of those points of π collinear with p. �
4.7. Collinearity in BCl(K, K0, σ, L, q)

One checks that the points 〈(v|a1, a2, . . . , a2n)〉 and 〈(w|b1, b2, . . . , b2n)〉 of the space 
BCl(K, K0, σ, L, q) are collinear if and only if

f(v, w) + bσ1a2 − bσ2a1 + · · · + bσ2l−1a2l − bσ2la2l−1 = 0.

The left-hand side of this equation is the skew-hermitian sesquilinear form fX associated 
to the pseudo-quadratic form qX on X applied to the two vectors.

4.8. Polar spaces of quadratic form type

In this section we define the polar spaces Bl(K, L, q) of quadratic form type. We do 
this as these polar spaces will arise as images of epimorphisms in Section 5.2.

A quadratic space (K, L, q) is a triple consisting of a field K, a non-trivial vector space 
L over K, equipped with a quadratic form q. This is a map q : L → K such that there 
exists a (necessarily unique) bilinear form f on L satisfying the following two properties:

• q(u + v) = q(u) + q(v) + f(u, v),
• q(tu) = t2q(u),

for all u, v ∈ L. The quadratic form q is anisotropic (and (K, L, q) an anisotropic 
quadratic space) if q(u) = 0 if and only if u = 0 for u ∈ L.

We can now define the rank l polar space Bl(K, L, q) where l ≥ 2 is an integer and 
(K, L, q) an anisotropic quadratic space. Let X denote the vector space L ⊕ K2l. The 
map

qX : (v|a1, . . . , a2l) 	−→ q(v) + a1a2 + · · · + a2l−1a2l
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is a quadratic form on X. A subspace S is called singular if it is mapped to zero by qX . 
As in the pseudo-quadratic form case, the polar space is formed by the singular subspaces 
and the associated building is the flag complex of the polar space.

5. Proof of the main result

We split the proof of the main result in two parts. In Section 5.1 we will prove:

Theorem 5.1. A (type-preserving) epimorphism of a polar space BCl(K, K0, σ, L, q) is 
completely determined (up to isomorphisms) by a total subring R of the skew field K and 
a left coset of R× in the multiplicative group K∗ satisfying the following three conditions.

(C1) The anti-automorphism a 	→ aσs of K stabilizes R,
(C2) (u, t), (w, r) ∈ T : t, r ∈ sR ⇒ f(u, w) ∈ sR,
(C3) (u, t), (w, r) ∈ T : t ∈ sR, r ∈ sm ⇒ f(u, w) ∈ sm,

where s is an element of the left coset of R×, f the skew-hermitian form associated to q
and m the unique maximal two-sided ideal of R.

Section 5.2 is devoted to the proof of the following theorem.

Theorem 5.2. Consider the polar space BCl(K, K0, σ, L, q). If R is a total subring of the 
skew field K and sR× a left coset of R× in the multiplicative group K∗ satisfying the 
following three conditions.

(C1) The anti-automorphism a 	→ aσs of K stabilizes R,
(C2) (u, t), (w, r) ∈ T : t, r ∈ sR ⇒ f(u, w) ∈ sR,
(C3) (u, t), (w, r) ∈ T : t ∈ sR, r ∈ sm ⇒ f(u, w) ∈ sm,

where f is the skew-hermitian form associated to q and m the unique maximal two-
sided ideal of R, then there exists a (type-preserving) epimorphism of the polar space 
BCl(K, K0, σ, L, q) for which Theorem 5.1 gives rise to the same total subring and left 
coset.

The main result follows by combining Theorems 5.1 and 5.2.

5.1. Proof of Theorem 5.1

Let Δ be the building BCl(K, K0, σ, L, q), f the skew-hermitian form associated to q, 
the triple (u, Θ, θ) its root group labeling as given in Section 4.3 and φ a type-preserving 
epimorphism from Δ to another building Δ′ of type Cl.

By Section 4.5 we know that this epimorphism is essentially described by subgroups 
w(i) � v(i) ≤ u(i) for i ∈ {1, . . . , l}. Remark 4.1 allows us to assume without loss 
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of generality that yi(1) ∈ v(i) \ w(i) for i ∈ {1, . . . , l − 1}. We also fix an element 
yl(v, s) ∈ v(l) \ w(l).

By Lemma 4.6 we know that there exists a total subring R of K with maximal ideal 
m and a constant a ∈ K such that

v(1) = {y1(k)|k ∈ Ra},
w(1) = {y1(k)|k ∈ ma}.

The next lemma extends these expressions for other u(i), and shows that one can 
assume that a = 1.

Lemma 5.3. For every i ∈ {1, . . . , l − 1} one has

v(i) = {yi(k)|k ∈ R},
w(i) = {yi(k)|k ∈ m}.

Proof. We proof this by induction. We first consider the case i = 1. As y1(1) ∈ v(1) \w(1)
it follows that a−1 (and so also a) is a unit of R, and that the statement is true for i = 1.

Now suppose that the statement is true for some j ∈ {1, . . . , l− 2}. From Section 4.3
we know that Θj,j+1 = ΘA2(Kop). Hence we can identify the subgroups w(j) � v(j) ≤
u(j), w(j+1) �v(j+1) ≤ u(j+1) with groups W1�V1 ≤ U1, W3�V3 ≤ U3, respectively, 
as outlined in Section 4.5, and U1 and U3 as in Section 4.1. These identifications imply 
that

V1 = {x1(k)|k ∈ R},
W1 = {x1(k)|k ∈ m},

x3(1) ∈ V3 ⊂ W3.

Applying Lemma 4.3 and the commutator relation [x1(b), x3(1)−1] = x2(−b) for b in K
we see that

V2 = {x2(k)|k ∈ R},
W2 = {x2(k)|k ∈ m}.

From Eq. (1) in Section 4.1 we know that x2(u)μ(x1(1)) = x3(u), so Lemma 4.2 yields

V3 = {x3(k)|k ∈ R},
W3 = {x3(k)|k ∈ m},

which is, via the identifications, exactly what we need to prove. �
The next lemma determines the subgroups w(l) and v(l).
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Lemma 5.4. The subgroups v(l) and w(l) are described by

v(l) = {yl(w, t)|(w, t) ∈ T, t ∈ sR},

w(l) = {yl(w, t)|(w, t) ∈ T, t ∈ sm}.

Proof. As Θl,l−1 = ΘBC2(K,K0,σ,L,q) (see Section 4.3), one can identify the subgroups 
w(l − 1) � v(l − 1) ≤ u(l − 1) and w(l) � v(l) ≤ u(l) with groups W4 � V4 ≤ U4
and W1 � V1 ≤ U1, respectively, as outlined in Section 4.5, where U1 and U4 are as in 
Section 4.2.

Lemma 5.3 implies that V4 and W4 can be expressed as

V4 = {x4(k)|k ∈ R},

W4 = {x4(k)|k ∈ m}.

By Lemma 4.2, Eq. (4) (see Section 4.2) and yl(v, s) ∈ v(l) \ w(l) one obtains that

V2 = {x2(k)|k ∈ sR},

W2 = {x2(k)|k ∈ sm}.

It is now possible to describe the relevant subgroups of U1 using Lemma 4.3 and the 
commutator relation [x1(w, t), x4(1)−1] = x2(t)x3(w, t) found in Section 4.2. One derives 
that x1(w, t) ∈ V1 or W1 if and only if t ∈ sR or sm respectively, so

V1 = {x1(w, t)|(w, t) ∈ T, t ∈ sR},

W1 = {x1(w, t)|(w, t) ∈ T, t ∈ sm},

which is what we need to show. �
At this point we have determined all of the subgroups w(i) � v(i) ≤ u(i) for i ∈

{1, . . . , l}. These subgroups are completely encoded by the total subring R and an element 
s ∈ K∗ (or more exactly a left coset of R× in the multiplicative group K∗). These 
subgroups determine on their turn the epimorphism by Lemma 4.5.

In the remainder of this section we will derive the properties that these R and s satisfy.

Lemma 5.5. The map a 	→ s−1aσsσ of K stabilizes R×.

Proof. We use the same setting of Lemma 5.4. Let a be an invertible element of R. By 
Eq. (3) we have x2(s)μ(x4(a−1)) = x2(−aσsσa−1). Hence −aσsσa−1 ∈ sR× by Lemma 4.2. 
Therefore s−1aσsσ ∈ R×. �
Proposition 5.6. The anti-automorphism a 	→ aσs of K stabilizes R.
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Proof. As this map is the combination of an automorphism and anti-automorphism 
it is clear that it is an anti-automorphism. Let a ∈ R×. Then aσs = s−1aσs =
(s−1aσsσ)(s−σs). The first factor and the inverse of the second factor are of the form as 
in Lemma 5.5, so both of them and their product lie in R×. So the anti-automorphism 
a 	→ aσs maps R× into R×.

The non-invertible elements m of R form an ideal, so 1 + m ⊂ R×. This implies that 
R× generates R as a ring and that a 	→ aσs maps R into R.

The inverse of the map a 	→ aσs is given by the map a 	→ s−σaσsσ. One shows 
analogously, using the decomposition s−σaσsσ = (s−1sσ)s−σaσsσ, that this inverse maps 
R into R. Hence we conclude that the anti-automorphism a 	→ aσs of K stabilizes R. �
Proposition 5.7.

∀(u, t), (w, r) ∈ T : t, r ∈ sR ⇒ f(u,w) ∈ sR.

Proof. Let (u, t), (w, r) ∈ T such that t, r ∈ sR. Lemma 5.4 implies that yl(u, t),
yl(w, r) ∈ v(l). As v(l) is a subgroup it follows that the product yl(w, r) · yl(u, t) also lies 
in v(l), hence t + r + f(u, w) ∈ sR (see Section 4.2 and again Lemma 5.4). Because R is 
a ring this is equivalent to f(u, w) ∈ sR. �
Proposition 5.8.

∀(u, t), (w, r) ∈ T : t ∈ sR, r ∈ sm ⇒ f(u,w) ∈ sm.

Proof. We use the same setting of Lemma 5.4. Let (u, t), (w, r) ∈ T with t ∈ sR, 
r ∈ sm. Note that x1(u, t) ∈ V1 and x1(w, r) ∈ W1. We start by determining V3 us-
ing Lemma 4.2, Eq. (2) and x4(1) ∈ V4 \W4. Combining this yields that x3(w, r) ∈ W3. 
Lemma 4.4 now implies that [x1(u, t), x3(w, r)−1] = x2(f(u, w)) ∈ W2 which is equivalent 
to f(u,w) ∈ sm. �

As Propositions 5.6, 5.7 and 5.8 prove Conditions (C1)–(C3), this concludes the proof 
of Theorem 5.1.

5.2. Proof of Theorem 5.2

In this section we construct epimorphisms of the polar space BCl(K, K0, σ, L, q). We do 
this starting from a total subring R ⊂ K and a left coset sR× of R× in the multiplicative 
group K∗ satisfying the conditions outlined in Theorem 5.2.

As before we will let m denote the set of non-invertible elements of R and KR the 
corresponding residue skew field.
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5.2.1. Structure of KR

We start by showing that one can choose the representative s in the left coset in a 
special way.

Lemma 5.9. The left coset sR× contains an element r such that we are in exactly one of 
the following two cases:

Case I. r ∈ K0 and a 	→ aσr is an involution,
Case II. K0 ∩ rR× = ∅, r−1rσ + 1 ∈ m, KR is a field and a 	→ aσr induces the identity 

on KR.

Proof. Note that any element r in K0 ∩ sR× is fixed by σ, implying that a 	→ aσr

is an involution. So such an element directly satisfies Case I. Hence we may suppose 
that K0 ∩ sR× is empty. This implies that we have two possibilities for 1 + s−1sσ =
s−1(s +sσ) ∈ s−1Kσ ⊂ s−1K0. It can either be an element of m, or an element of K \R. 
Suppose the latter holds. Then s−1sσ also belongs to K \R, and the inverse s−σs belongs 
to m. But (s−1sσ)σs = s−σs which contradicts Condition (C1). So 1 + s−1sσ ∈ m and 
consequently s−1sσ ∈ R. Now for a given a ∈ R we have s−1(sσa + aσs) ∈ s−1K0 and 
hence s−1sσa +aσs /∈ R× since K0∩sR× = ∅. Since s−1sσ ∈ R and, by Condition (C1), 
also aσs ∈ R, it follows that s−1sσa + aσs ∈ m. Combined with 1 + s−1sσ ∈ m this 
implies that a ≡ aσs mod m, or that a 	→ aσs is the identity automorphism of KR. 
Because it is also an anti-automorphism this yields that KR is a field.

Finally we remark that r ∈ K0 and K0 ∩ rR× = ∅ are mutually exclusive, so exactly 
one of the two cases holds. �

From now on suppose that s is as in one of the two cases described by this lemma. 
We denote the anti-automorphism induced on KR by the anti-automorphism a 	→ aσs

by σR.

Lemma 5.10. Under the assumption of Case I, (KR,K0, σR) is an involutory set, where 
K0 := s−1K0 ∩R mod m.

Proof. The involution σR fixes all the elements of K0. Since s ∈ K0 (by hypothesis), 
the set K0 contains 1 and b + bσs = s−1(sb + (sb)σ) ∈ s−1K0 for all b ∈ K. Hence 
a + aσR ∈ K0 for all a ∈ KR.

If c ∈ s−1K0 ∩ R and d ∈ R× then dσscd ∈ R because dσs ∈ R by our assumptions. 
Also dσscd ∈ s−1K0 as K0 is an involutory set and hence contains dσscd. This implies 
that if t ∈ KR, then tσRK0t = K0. Hence (KR,K0, σR) is an involutory set. �
5.2.2. Structures on L

Consider the following two subsets of L.

L′ := {v ∈ L|(∃a ∈ R)(q(v) ≡ sa mod K0)} and

L′′ := {v ∈ L|(∃a ∈ m)(q(v) ≡ sa mod K0)}.
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Lemma 5.11. The sets L′ and L′′ are additive abelian subgroups of L.

Proof. We only proof that L′ is a subgroup of L as the proof for L′′ is completely 
analogous. Let v, w ∈ L′. As q(−v) ≡ q(v) mod K0 it is clear that that L′ is closed under 
taking inverses. By construction of L′ we can find a, b ∈ sR such that q(v) ≡ sa mod K0
and q(w) ≡ sb mod K0. By the definition of a skew-hermitian pseudo-quadratic form we 
have that

q(v + w) ≡ sa + sb + f(v, w) mod K0.

Condition (C2) asserts that f(v, w) ∈ sR. Hence sa + sb + f(v, w) ∈ sR and L′ is indeed 
a subgroup of L. �

The next lemma investigates how these subgroups behave under scalar products.

Lemma 5.12. The subgroups L′ and L′′ are R-modules, in particular we have that 
L′.R = L′ and L′′.R = L′′. Moreover we have that L′.m ⊂ L′′.

Proof. Let v ∈ L′ and t ∈ R. By construction of L′ there exists an element a ∈ R

such that q(v) ≡ sa mod K0. Then q(vt) ≡ tσsat mod K0 as q is a skew-hermitian 
pseudo-quadratic form. From Condition (C1) it follows that s−1tσs ∈ R, so s−1tσsat ∈ R

or equivalently tσsat ∈ sR. This implies that vt ∈ L′. Hence L′.R = L′. The proofs for 
L′′.R = L′′ and L′.m ⊂ L′′ are completely analogous. �

Let L be the quotient L′/L′′. If v ∈ L′ and k ∈ R then (v+L′′).(k+m) ⊂ vk+L′′ (by 
Lemma 5.12), so this group can be interpreted as a right vector space over the residue 
skew field KR.

We construct two functions on L. As first function we define

f : L× L → KR : (v + L′′, w + L′′) 	→ s−1f(v, w) + m.

Note that this is indeed a well-defined map into KR by Conditions (C2) and (C3). As 
second function we define q : L → KR mapping elements v + L′′ of L to t + m ∈ KR

(with t ∈ R) such that q(v) ≡ st mod K0. Note that such an element t +m always exists 
by definition of L′, but that q is not necessarily well-defined as there might be several 
t +m ∈ KR satisfying this condition, which may depend on the choice of representative 
of v + L′′. However the next four lemmas show that there is indeed a unique choice 
(albeit modulo K0 in the first case), and derive properties for f and q. We start with 
the following observation.

Lemma 5.13. Let v ∈ L′. If q(v) ≡ st ≡ st′ mod K0 with t, t′ ∈ R, then t ≡ t′ mod K0.

Proof. This follows directly from the definition of K0. �
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Lemma 5.14. Let v, w ∈ L′ such that w + L′′ = v + L′′. If t ∈ R is such that q(v) ≡
st mod K0, then there exists a t′ ∈ t + m such that q(w) ≡ st′ mod K0.

Proof. Let v, w, t be as in the statement of the lemma, note that w−v ∈ L′′. By definition 
of L′′ there exists an a ∈ m such that (w − v, sa) ∈ T , or equivalently q(w − v) ≡
sa mod K0. Note that f(v, w − v) ∈ sm by Condition (C3). As q is a pseudo-hermitian 
form we have

q(w) ≡ q(v + (w − v)) mod K0

≡ q(v) + q(w − v) + f(v, w − v) mod K0

≡ st + sa + f(v, w − v) mod K0.

As sa + f(v, w − v) is in sm, the element t′ := t + a + s−1f(v, w − v) is in t + m and 
satisfies q(w) ≡ st′ mod K0. �
Lemma 5.15. Under the assumption of Case I, the map f is a skew-hermitian sesquilinear 
function, and q is well-defined modulo K0 and an anisotropic skew-hermitian pseudo-
quadratic form on L with respect to the involution σR, the involutory set K0, and f .

Proof. From Lemmas 5.13 and 5.14 and the construction of q and K0, it follows that 
the function q is well-defined modulo K0.

The remainder of the statement of the lemma follows from straightforward calcu-
lations using the properties of skew-hermitian sesquilinear and pseudo-quadratic forms, 
Conditions (C1)–(C3) and the fact that s ∈ K0 (and hence fixed by σ) by Lemma 5.9. �
Lemma 5.16. Under the assumption of Case II, we have that f is a symmetric bilinear 
function, and that q is a well-defined quadratic form on L with f as associated bilinear 
function.

Proof. For an element v ∈ L′ let t, t′ ∈ R be two elements such that q(v) ≡ st ≡
st′ mod K0. Because K0 ∩ sR× = ∅ (see Lemma 5.9), the difference st − st′ ∈ K0 lies 
in sm, implying that t + m = t′ + m and that, in the light of Lemma 5.14, q(v + L′′) is 
well-defined.

Let v+L′′, w+L′′ be two elements of L. Making use of Lemma 5.9 and Condition (C1) 
we can derive the following.

f(v, w) = f(v, w)σR

= (s−1f(v, w) + m)σs

= s−1f(v, w)σs−σs + m

= s−1f(v, w)σ + m
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= s−1f(w, v) + m

= f(w, v)

We can conclude that f is symmetric. The other part of the statement follows easily. �
5.2.3. Constructing the epimorphism

We will now construct an epimorphism ρ from the polar space BCl(K, K0, σ, L, q)
to the polar space BCl(KR,K0, σR, L, q) when we are in Case I, and to Bl(KR, L, q) in 
Case II. We use the notations from Section 2.

We call a vector (v|a1, . . . , a2l) ∈ X normed if all coefficients ai (i ∈ {1, . . . , 2l}) lie 
in the subring R, and at least one is an invertible element of R. The next lemma deals 
with the existence of a normed scalar multiple of a given vector.

Lemma 5.17. If w := (v|a1, . . . , a2l) ∈ X is a vector such that (a1, . . . , a2l) �= (0, . . . , 0), 
then there exists an element t ∈ K such that the scalar product wt is normed.

Proof. Given such a non-zero vector w := (v|a1, . . . , a2l), one can assume without 
loss of generality (by taking an appropriate scalar product) that the set J := {i ∈
{1, . . . , 2l}|aj ∈ K \ R} is non-empty. Choose j ∈ J , and let w′ be the vector wa−1

j . As 
a−1
j ∈ m, this implies that if a coordinate of w was already in R, then this holds for the 

corresponding coordinate of w′ as well. Note that the coordinate of w′ corresponding 
with j is 1, so repeating this algorithm a finite number of times yields the desired scalar 
multiple. �

The following lemma shows how the different choices of normed scalar multiples are 
related.

Lemma 5.18. If w := (v|a1, . . . , a2l) ∈ X is a vector such that (a1, . . . , a2l) �= (0, . . . , 0)
and t, t′ ∈ K are elements such that the scalar products wt and wt′ are normed, then 
t−1t′ ∈ R×.

Proof. We will prove this by contradiction. Without loss of generality one may assume 
that t−1t′ ∈ K \ R. By the definition of being normed, there exists j ∈ {1, . . . , 2l} such 
that ajt ∈ R×. Then ajt′ = (ajt)(t−1t′) lies in K \R, which is impossible for a normed 
vector. �

Let the vector (v|a1, a2, . . . , a2l−1, a2l) represent a point of BCl(K, K0, σ, L, q). Note 
that as q is anisotropic we have that (a1, a2, . . . , a2l−1, a2l) �= (0, . . . , 0). By Lemma 5.17
we can choose this vector such that (v|a′1, a′2, . . . , a′2l−1, a

′
2l) is normed, with a′i equal to ai

when i is odd, and equal to s−1ai when i is even (i ∈ {1, . . . , 2l}). We now have that

aσ1a2 + · · · + aσ2n−1a2n = a′ σ1 sa′2 + · · · + a′ σ2n−1sa
′
2n

= s(a′ σs1 a′2 + · · · + a′ σs2n−1a
′
2n) ∈ sR.
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As the 1-dimensional space spanned by the vector is a point of the polar space, we 
have that q(v) + aσ1a2 + · · · + aσ2n−1a2l ∈ K0. This implies that v ∈ L′. In particular we 
have that q(v + L′′) = −(a′ σs1 a′2 + · · · + a′ σs2l−1a

′
2l) + m (in Case I this is modulo K0, see 

Lemma 5.15).
Note that (v + L′′|a′1 + m, a′2 + m, . . . , a′2l + m) is non-zero as we assumed that 

(v|a′1, a′2, . . . , a′2l−1, a
′
2l) is normed. Hence 〈(v + L′′|a′1 + m, a′2 + m, . . . , a′2l + m)〉 is a 

point of the polar space BCl(KR,K0, σR, L, q) in Case I, and a point of Bl(KR, L, q) in 
Case II. Lemma 5.18 shows that this point does not depend on the choice of the vector 
representing the point of BCl(K, K0, σ, L, q).

We denote the map we defined from the points of the space BCl(KR,K0, σR, L, q) to 
the points of BCl(KR,K0, σR, L, q) or Bl(KR, L, q) by ρ. We claim that ρ is the desired 
epimorphism.

Lemma 5.19. The map ρ is surjective.

Proof. Let (v + L′′
0 |a′1 + m, a′2 + m, . . . , a′2l + m) ∈ L × K2l

r represent a point of the 
polar space BCl(KR,K0, σR, L, q) or Bl(KR, L, q) depending on the case. By definition 
of these polar spaces and by the definition of q and K0 we have that s−1q(v) + a′ σs1 a′2 +
· · · + a′ σs2l−1a

′
2l ∈ s−1K0 + m. Without loss of generality we may assume that there is a 

j ∈ {1, . . . , 2l} such that a′j = 1, this because at least one of the a′i (i ∈ {1, . . . , 2l}) is 
non-zero modulo m as q is anisotropic.

Set a1 := a′1, a2 := sa′2 and so on. Then

qX(v|a1, . . . , a2l) = q(v) + aσ1a2 + · · · + aσ2l−1a2l

= s(s−1q(v) + a′ σs1 a′2 + · · · + a′ σs2l−1a
′
2l) ∈ K0 + sm.

Choose a t ∈ m such that qX(v|a1, . . . , a2l) ≡ st mod K0. Let bi := ai for all i ∈
{1, . . . , 2l} except for bj−1 = aj−1 − tσs

σ when j is even and bj+1 = aj+1 − st when j is 
odd. For each possibility one obtains:

qX(v|b1, . . . , b2l) = q(v) + bσ1 b2 + · · · + bσ2l−1b2l

= q(v) + aσ1a2 + · · · + aσ2l−1a2l − st

= qX(v|a1, . . . , a2l) − st ∈ K0,

by construction of t. Hence 〈(v|b1, . . . , b2l)〉 is a point of BCl(K, K0, σ, L, q), for which one 
easily verifies that its image under ρ is the point 〈(v+L′′|a′1+m, a′2+m, . . . , a′2l+m)〉. �
Lemma 5.20. The map ρ preserves collinearity.

Proof. From the construction, the definition of f , and Section 4.7. �
The next series of lemmas proves that a collinearity-preserving surjective map induces 

an epimorphism of the buildings associated to the polar spaces. In order to simplify 
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notations we denote the polar space BCl(KR,K0, σR, L, q) by Π and the polar space 
BCl(KR,K0, σR, L, q) or Bl(KR, L, q) (depending on the case) by Π′.

Lemma 5.21. Let π, π′ be subspaces of respectively Π and Π′ such that the points of π
are mapped into π′ by ρ. If ξ′ is a subspace of co-dimension n in π′, then there exists a 
subspace ξ of co-dimension at most n in π whose image under ρ is contained in ξ′.

Proof. We can assume that π′ is non-empty. We prove the claim for a subspace ξ′ of 
co-dimension 1 in π′, the general case then follows by induction. Embed π′ in a generator 
χ′ of Π′. By Lemma 4.10 there exists a point p′ of Π′ such that the intersection of π′

and the set of points collinear with p′ in χ′ is exactly ξ′. Let p be a point in Π mapped 
to p′. Let ξ be the subspace of π consisting of those points in π collinear with p, which is 
of co-dimension 0 or 1 in π (see Lemma 4.10). As ρ preserves collinearity it follows that 
ξ has the desired properties. �
Lemma 5.22. Let π, π′ be same-dimensional subspaces of respectively Π and Π′ such that 
the points of π are mapped into π′ by ρ. Then the set of points of π is mapped surjectively 
to the set of points of π′. In particular the set of points in π cannot be mapped into a 
lower-dimensional subspace of Π′.

Proof. Let p′ be a point of π′, so the set {p′} is 0-dimensional subspace of π′. By 
Lemma 5.21 there exists a subspace ξ of π such that ξ is of dimension at least zero and 
mapped into the set {p′} by ρ. As ξ is necessarily non-empty the same can be said about 
its image, so there exists a point of π mapped to p′.

The second assertion follows from embedding the lower-dimensional subspace in a 
subspace of the same dimension as π and then applying the first assertion. �
Lemma 5.23. The map ρ maps lines of Π to subsets of lines of Π′.

Proof. Let p1 and p2 be two collinear points of Π such that pρ1 �= pρ2. We need to prove 
that if p3 is a point on the line through p1 and p2, then this point is mapped to a point 
on the line through pρ1 and pρ2. We may assume that pρ1 �= pρ3 �= pρ2. Let w1, w2 and 
w3 be vectors satisfying the norming condition as in the definition of ρ, representing 
respectively p1, p2 and p3.

Because p1, p2 and p3 lie on a line, there exist non-zero constants t1 and t2 in K
such that w3 = w1t1 + w2t2. If we can show that t1 and t2 lie in the total subring R, 
we are done (by construction of ρ). One can assume without loss of generality that 
t2t

−1
1 ∈ R. As w3t

−1
1 = w1 + w2t2t

−1
1 , one has that t1 ∈ R since otherwise t−1

1 would be 
an element of m, implying that p1 and p2 are mapped to the same point by ρ. It follows 
that t2 ∈ Rt1 ⊂ R. �
Lemma 5.24. The map ρ maps subspaces of Π into subsets of same-dimensional subspaces 
of Π′.
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Proof. Let π be a subspace of Π, we prove the lemma by induction on the dimension 
t of π. The result is immediate for t = −1, 0, and is proven in Lemma 5.23 for t = 1. 
Now suppose the result holds for all subspaces of dimension at most t − 1. Let ξ be 
a (t − 1)-dimensional subspace of π. The image of the set of points of ξ is exactly the 
point set of a (t − 1)-dimensional subspace ξ′ of Π′ by the induction hypothesis and 
Lemma 5.22. This lemma also implies that there exists a point p in π mapped outside ξ′. 
As ρ preserves collinearity every point of ξ′ is collinear with pρ. Hence ξ′ and pρ span a 
t-dimensional subspace π′ of Π′. Each point of π lies on a line meeting both p and ξ, so 
Lemma 5.23 yields such a point is mapped to a point on a line meeting pρ and ξρ, which 
is hence contained in π′. This proves the lemma. �
Proposition 5.25. The map ρ induces an epimorphism between the buildings associated 
to the polar spaces Π and Π′.

Proof. The combination of Lemmas 5.22 and 5.24 states that for each subspace π of Π
there exists a unique, same-dimensional subspace π′ of Π′ such that the image under ρ
of the point set of π is exactly the point set of π′. Hence one can extend ρ to subspaces 
by setting πρ = π′. This extension to subspaces clearly preserves the incidence relation 
(which is containment) between the subspaces.

We now prove that ρ is surjective on generators. Pick a generator π in Π, and consider 
a generator χ in Π′ intersecting πρ in a subspace of co-dimension one. Let p′ be a point 
of χ not in the intersection. By surjectivity there exists a point p of Π such that pρ = p′. 
Note it is impossible that p lies in π. By Lemma 4.9 there exists a unique generator ξ
containing p and intersecting π in a subspace of dimension one less. The only possibility 
for the image of ξ is χ.

The dual polar space associated to Π′ is connected (see for instance [4, Thm. 8.1.5(1)]), 
hence repeating this argument yields that we obtain each generator as an image.

In order to have an epimorphism of buildings we only need to prove that this induces 
a surjective map between the sets of chambers of the buildings associated to Π and Π′, 
or equivalently that for each maximal flag F ′ of subspaces of the polar space Π′ there is 
a maximal flag F of subspaces of Π mapped to it by ρ. The previous paragraph assures 
that one can find a generator π of Π mapped to the generator in F ′. Subsequently one 
can use Lemmas 5.21 and 5.22 to find a subspace of co-dimension 1 in π which is mapped 
to the corresponding subspace in F ′. Repeating this argument yields that ρ is surjective 
on maximal flags of subspaces, as desired. �

In order to finish the proof of Theorem 5.2 we only need to check that the total 
subring and left coset one obtains from applying Theorem 5.1 to the epimorphism ρ are 
indeed R and sR×. In order to achieve this we need to check which portion of the groups 
u(i) (i ∈ {1, . . . , l}) descends in the sense of Section 4.5. Recall that these groups were 
explicitly described in Section 4.4.
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Let (v|a1, . . . , a2l) be a vector of X representing a point of BCl(K, K0, σ, L, q), sat-
isfying the norming condition appearing in the definition of the epimorphism ρ. So the 
vector (v|a′1, a′2, . . .), with a′j equal to aj when j is odd, and equal to s−1aj when j is 
even (j ∈ {1, . . . , 2l}), is normed. Notice, as before, that this implies that v ∈ L′.

We start with the groups u(i) with i ∈ {1, . . . , l− 1}. We perform the calculations for 
i = l− 1, the argument for the other possible values is completely analogous. For k ∈ K

one has

(v|a1, . . . , a2l)yl−1(k) = (v|a′1, sa′2, . . . , sa′2l)yl−1(k)

= (v|a′1 + ka′3, sa
′
2, a

′
3, sa

′
4 − kσsa′2, . . . , sa

′
2l)

= (v|a′1 + ka′3, sa
′
2, a

′
3, s(a′4 − kσsa′2), . . . , sa′2l).

We claim that if k ∈ R, then (v|a′1 + ka′3, a
′
2, a

′
3, a

′
4 − kσsa′2, . . . , a

′
2l) is again normed. To 

see this note that all the entries lie in R, as (v|a′1, a′2, . . .) is normed and Condition (C1). 
Secondly observe that if all the entries a′1 +ka′3, a

′
2, a

′
3, a

′
4 −kσsa′2, . . . , a

′
2l would lie in m

then the same holds for a′1, a′2, . . . , a′2l (as these can be obtained by linear combinations 
with coefficients in R from the first list of entries). Hence there is an invertible element 
among these.

So if k ∈ R we end up with a vector again satisfying the norming condition appearing 
in the definition of ρ. From this it follows that the automorphism yl−1(k) descends if 
k ∈ R. If k ∈ K\R the situation is as follows: now yl−1(k) maps both vectors (0|1, 0, 0, . . .)
and (0|0, 0, 1, 0, . . .), where the points they represent have different images under ρ, to 
vectors representing points which are mapped to the same point 〈(0|1, 0, 0, . . .)〉 by ρ. 
Hence yl−1(k) descends if and only if k ∈ R. In the light of Section 5.1 and Lemma 5.3
this implies that the total subring of K given by Theorem 5.1 is exactly the subring R.

For the group u(l) we do a similar calculation. For (w, t) ∈ T one has

(v|a1, . . . , a2l)yl(w,t) = (v|a′1, sa′2, . . . , sa′2l)yl(w,t)

= (v + wa′1|a′1, sa′2 − ta′1 − f(w, v), a′3, . . . , sa′2l).

By Condition (C2) we have that if t ∈ sR (and hence w ∈ L′) then this vector again 
satisfies the norming condition and yl(w, t) descends. If t ∈ K \ sR, then both points 
〈(0|1, 0, 0, . . .)yl(w,t)〉 and 〈(0|0, 1, 0, . . .)yl(w,t)〉 are mapped to 〈(0|0, 1, 0, . . .)〉 by ρ, while 
〈(0|1, 0, 0, . . .)〉ρ and 〈(0|1, 0, 0, . . .)〉ρ are different points. We obtain that yl(w, t) descends 
if and only if t ∈ sR. Comparing this with Lemma 5.4 we see that Theorem 5.1 yields 
the left coset sR×, as desired.

This concludes the proof of Theorem 5.2.
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