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1. Introduction

Let A be a (d + 1)-dimensional involutive algebra over C, whose involution ∗ is a ring 
antiautomorphism that restricts to complex conjugation on scalars. We say that the pair 
(A, B) is a reality-based algebra (or RBA) if there is a basis B = {b0, b1, . . . , bd} of A
such that

(i) the multiplicative identity of A is an element of B (we index the elements of B so 
that b0 is the multiplicative identity of A);

(ii) B2 ⊆ RB, in particular the structure constants λijk generated by the basis B in 

the expressions bibj =
d∑

k=0
λijkbk are all real numbers;

(iii) B∗ = B, so ∗ induces a product of disjoint transpositions on the set {0, 1, . . . , d}
given by bi∗ = (bi)∗ for all bi ∈ B;

(iv) λij0 �= 0 ⇐⇒ j = i∗; and
(v) λii∗0 = λi∗i0 > 0.

Remark. In earlier treatments of reality-based algebras in the literature, the involution 
of the definition is assumed to be C-linear. Since we have a ∗-fixed basis, this is consistent 
here with ∗̄, the composition of our involution with complex conjugation on scalars.

If B is a finite basis of an involutive algebra A satisfying these properties, we will say 
that B is an RBA-basis of A. If the structure constants relative to the RBA-basis B are 
integers (rational numbers), then we will say that the RBA-basis is integral (rational). 
We can similarly refer to the RBA-basis as being R-integral for any subring R of the 
real numbers.

An RBA (A, B) has a degree map if there is an algebra homomorphism δ : A → C

such that δ(bi) = δ(b∗i ) ∈ R× for all bi ∈ B. This degree map is said to be positive if 
δ(bi) > 0 for all bi ∈ B. When there is a positive degree map, it will be the unique algebra 
homomorphism A → C that is positive on elements of B. An RBA-basis for an RBA 
with positive degree map is said to be standard when δ(bi) = λii∗0 for all i = 0, 1, . . . , d.

For any algebra, a C-linear map τ : A → C is called a feasible trace when it satisfies 
τ(xy) = τ(yx) for all x, y ∈ A. An RBA with positive degree map has a standard feasible 
trace, given by τ(

∑
i xibi) = δ(B+)x0 for all 

∑
i xibi of A that are expressed in terms 

of the basis B = {b0, b1, . . . , bd}. This standard feasible trace satisfies τ(x∗x) > 0 for all 
nonzero x ∈ A, and so it induces a nondegenerate R-bilinear form on A.

For convenience we will say that the RBA-basis for an RBA with positive degree map 
is an RBAδ-basis. A table algebra is an RBA with a positive degree map for which the 
structure constants with respect to its RBA-basis are all nonnegative. We will say that 
the distinguished basis of a table algebra is a TA-basis. A commutative RBA with a 
degree map is a C-algebra.
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RBAs, C-algebras and table algebras have significant structural advantages that allow 
them to behave more like groups than rings. To get an impression of this phenomenon, 
we direct the reader’s attention to [2–4,7]. It is of fundamental importance, therefore, 
to be able to determine whether or not a semisimple algebra over C has an RBA-basis, 
and if so, to characterize its RBA, C-algebra, or table algebra structures. For commu-
tative semisimple algebras existence of the RBA-bases is not an issue because a finite 
abelian group will be a basis. But for noncommutative algebras it requires a nontrivial 
construction. For example, the algebra M2(C) with the conjugate-transpose involution 
is one example of an RBA, since

{[
1 0
0 1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
1 0
0 −1

]}

is an RBA-basis of M2(C). Of course, M2(C) has no chance to have a positive degree 
map because it has no one-dimensional algebra representation. (This observation was 
made by Blau in [4].)

Our main results give a full account of the existence of RBA- and RBAδ-bases for 
finite-dimensional semisimple algebras, and information as to whether these bases can 
be integral or rational. We start by giving examples of rational RBA-bases of Mn(C)
under the conjugate-transpose involution for all n > 1. By applying the circle product 
operation we show that any semisimple algebra over C has a rational RBA-basis. This is 
not true for semisimple algebras over R in general, since the real quaternion algebra with 
its usual involution does not have an RBA-basis. In the fourth section we use character 
theory to show that noncommutative algebras of the form C ⊕Mn(C) with n > 1 do 
NOT have integral RBAδ-bases. In the fifth section we characterize all of the RBAδ-bases 
of the noncommutative 5-dimensional algebra C ⊕M2(C) with the conjugate-transpose 
involution, and give an example of a rational table algebra basis of this algebra. In 
the last section we construct an RBAδ-basis for C ⊕Mm(C) for every m ≥ 2 that has 
structure constants in the field Q(

√
m).

2. Rational RBA-bases for Mn(C)

We begin by constructing examples of rational RBA-bases of the algebra Mn(C) with 
respect to the conjugate-transpose involution. Our preference is to find RBA-bases whose 
structure constants lie in as small a ring as possible. An integral RBA-basis is suitable for 
use with any coefficient ring, and a rational RBA-basis will produce an RBA structure 
over any field of characteristic zero.

The first lemma will reduce the problem to the commutative subalgebra consisting of 
diagonal matrices. We will write Ei,j for the elementary matrix whose (i, j)-entry is 1
and all of its other entries are 0.

Lemma 1. Suppose D is an RBA-basis of the commutative subalgebra of diagonal matrices 
in Mn(C) for n ≥ 2, with trivial involution. Let B be the union of D with the set of all 
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off-diagonal elementary matrices. Then B is an RBA-basis of Mn(C) with respect to the 
conjugate-transpose involution.

Proof. Since Ei,jEk,� = δj,kEi,� where δj,k is the Kroenecker delta, this product is either 
0 when j �= k, or an off-diagonal elementary matrix in B when j = k and i �= �, or a 
non-zero diagonal elementary matrix Eii in the span of D when j = k and i = �. In the 
latter case any diagonal elementary matrix Eii is one of the primitive idempotents of the 
RBA (CD, D). By [4, Lemma 2.11], the coefficient of the identity occurring in Eii will 
be a positive real number. Thus E∗

i,j = Ej,i.
Now let D be one of the diagonal elements of B. Since the involution is trivial on D

we have that D =
∑n

i=1 piEi,i with all pi real. Let Ej,k be an off-diagonal elementary 
matrix in B. Then we have that Ej,kD = pkEj,k and DEj,k = pjEj,k. This implies that 
the only element B of B for which the coefficient of I in Ej,kB or BEj,k will be nonzero is 
Ek,j . The RBA-basis properties required for diagonal elements of B are inherited directly 
from D. �

It remains to construct rational RBA-bases of the n-dimensional commutative algebra 
D of diagonal n ×n matrices for all n > 1. If D = {b0 = 1, b1, . . . , bn−1} is an RBA-basis 
of the n-dimensional commutative semisimple algebra Cn, and {e0, e1, . . . , en−1} is the 
basis of primitive idempotents of CD, then bi =

∑
j pi,jej where (pij)i,j is the first 

eigenmatrix. The map bi �→
∑

j pi,jEj,j identifies D with an RBA-basis of D. Note that 
the fact that the identity matrix is included in this basis is reflected by the fact that 
every entry of the first row of the first eigenmatrix is a 1.

It thus suffices to construct a table algebra of an arbitrary dimension n that has a 
rational character table. In dimensions up to 4 there are association schemes that have 
rational character tables, which we can use to produce the following RBA-bases (here 
Diag(v) is the diagonal matrix whose diagonal is the vector v):

Dimension 2: {I2, Diag(1,−1)},
Dimension 3: {I3, Diag(1,−1, 1), Diag(2, 0,−2)}, and
Dimension 4: {I4, Diag(1,−1,−1, 1), Diag(1,−1, 1,−1), Diag(1, 1,−1,−1)}.

For dimensions 5 or more we give a construction of a table algebra that has a rational 
character table for the given dimension. Let n ≥ 3 be an integer. (This construction
is also valid if n = 2 where it constructs a Klein 4-group.) Define a table algebra of 
dimension n + 2 with basis B = {b0 = 1, b1, ..., bn+1} and structure constants

b2i = (n− 1)b0 + (n− 2)bi, for i = 1, ..., n + 1, and
bibj = B+ − bi − bj − b0, for i �= j.

(Here we write B+ for b0 +b1 + ... +bn+1.) This table algebra is the Bose–Mesner algebra 
of the scheme corresponding to an affine plane of order n. So, if n is a prime power this 
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association scheme does exist, but for other values of n the table algebra construction is 
still valid.

Its characters are χ0, χ1, ..., χn+1 where χi(bj) = −1 if i �= j and χi(bi) = n − 1 (here 
i, j ≥ 1). Therefore, the character table is rational.

The combination of the lemma with these constructions produces our first main ob-
jective.

Theorem 2. For all n > 2, Mn(C) with the conjugate-transpose involution has a rational 
RBA-basis.

One can ask if the 4-dimensional quaternion algebra over R with respect to its usual 
involution has an RBA-basis. However, one of the nonidentity basis elements would have 
to be a non-real symmetric element with respect to the involution, and no such element 
exists.

3. Constructing an RBA-basis of a semisimple algebra

In this section we will show that the circle product operation introduced by Arad and 
Fisman [1] (see also [6]) can be used to show that any semisimple involutive algebra over 
C has an RBA-basis.

Let (A, B) be a RBA with RBA-basis B = {b0, b1, . . . , bd} and structure constants 
λijk. Suppose δ is a linear character of A that is real-valued on B, and let eδ be the 
corresponding centrally primitive idempotent of A. Let (A1, B1) be another RBA with 
RBA-basis B1 = {c0, c1, . . . , ch} and structure constants βijk. The circle product (A ◦δ
A1, B ◦δ B1) is defined by the following:

(i) A ◦δ A1 is an algebra whose basis B ◦δ B1 is the disjoint union of B and B1 \ {c0}.
(ii) Considered as a product in A ◦δ A1, bibj =

∑
k λijkbk for all i, j ∈ {0, 1, . . . , d}.

(iii) Considered as a product in A ◦δ A1, cicj =
∑

k βijkck for i ∈ {1, . . . , h} and j ∈
{1, . . . , h} \ {i∗}.

(iv) bicj = cjbi = δ(bi)cj for i ∈ {0, 1, . . . , d} and j ∈ {1, . . . , h}.
(v) cici∗ = βii∗0eδ +

∑
k>0 βii∗kck for i ∈ {1, . . . , h}.

It is a consequence of [6, Theorem 1.1] that the circle product of a C-algebra (A, B, δ)
having a rational-valued degree map δ with an RBA (A1, B1) becomes an RBA whose 
RBA-basis is B ◦δ B1. From the above definition, we can see that whenever F is a sub-
field of the real numbers for which the RBA-bases of B and B1 are both F -integral, 
then B ◦δ B1 will be F -integral. That the circle product of RBA-bases with nonnega-
tive structure constants will be an RBA-basis with nonnegative structure constants also 
follows immediately from the definition. Furthermore, if B and B1 both admit positive 
degree maps δ and δ1, then B ◦δ B1 admits the positive degree map
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δ̃(b) =
{
δ(b) if b ∈ B
δ1(b) if b ∈ B1

, for all b ∈ B ◦δ B1.

We will apply the circle product operation to construct an RBA-basis of C ⊕Mn(C). 
For our C-algebra (A, B) we use the 2-dimensional group algebra C[C2], with degree 
map given by the trivial character of C2. For the RBA (A1, B1) we use Mn(C) with a 
rational RBA-basis guaranteed by Theorem 2.

Theorem 3. Let CC2 be the complex group algebra of the group C2 = {1, x}, and let δ be 
the trivial character of the group C2. Let B = {b0, b1, . . . , bd} be a rational RBA-basis of 
Mn(C).

Then C2 ◦δ B is a rational RBA-basis of C ⊕Mn(C).

Proof. The definition of the structure constants for the circle product basis C2 ◦δ B =
C ∪ (B \{I}) requires the centrally primitive idempotent eδ = 1

2(1 +x) of CC2. The fact 
that this circle product basis is a rational RBA-basis is a consequence of [6, Theorem 1.1]. 
From the definition of the circle product in [6],

C[C2 ◦δ B] = C(1 − eδ) ⊕ C[(B \ {b0}) ∪ {eδ}],

which is isomorphic as an algebra to C ⊕Mn(C) since eδb = beδ = 1b = b1 = b, for all 
b ∈ B \ {b0}. �
Corollary 4. Every finite-dimensional semisimple algebra over C has a rational RBA-
basis.

Proof. Induct on the number of simple components of the semisimple finite-dimensional 
algebra A. If A is simple, then A � Mn(C) and so it has a rational RBA-basis as observed 
previously.

If A is not simple, let A = Mn(C) ⊕A1, where A1 is a semisimple algebra with fewer 
components. Then m = dim(A1) < dim(A). By our inductive hypothesis, A1 has a 
rational RBA-basis, call this B1. By the previous theorem Mn(C) ⊕ C is isomorphic to 
the circle product C[C2] ◦δ Mn(C). Let δ′ be the real linear character of CC2 ◦δ Mn(C) �
C ⊕ Mn(C) with δ′(Mn(C)) = 0. Then δ′(eδ) = 0. If B is a rational RBA-basis for 
Mn(C), then

C[(C2 ◦δ B) ◦δ′ B1] � Mn(C) ⊕A1,

since eδ′b1 = b1eδ′ = b1 and bb1 = b1b = δ′(b)b1 = 0, for all b ∈ B and b1 ∈ B1 \ {1}. �
4. Noncommutative algebras with |Irr(A)| = 2

We will require the following well-known facts concerning the character theory of 
RBAs. These have appeared in various forms in the literature over the years (see for 
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example [3,5], or [2]), but first appeared in this generality in work of Higman [8] describing 
the character theory of semisimple involutive algebras with a ∗-closed basis.

Proposition 5. Let (A, B) be an RBA with respect to the involution ∗, and suppose δ is 
a positive degree map on A. Let Irr(A) be the set of irreducible characters of A, and for 
each χ ∈ Irr(A), let mχ be the multiplicity of χ in the standard feasible trace τ of A, 
and let eχ be the centrally primitive idempotent of A for which χ(eχ) = χ(1) > 0. Then 
the following hold:

(i) (Positive multiplicities) For all χ ∈ Irr(A), mχ > 0.

(ii) (Idempotent character formula) For all χ ∈ Irr(A), eχ = mχ

δ(B+)
∑
i

χ(b∗i )
λii∗0

bi.

(iii) (Orthogonality relations) For all χ, ψ ∈ Irr(A), χ(eψ) = δχψχ(1).

The positive degree map δ is an irreducible character of A, and mδ = 1. For later 
use, we note that since our involution extends complex conjugation on scalars, we have 
e∗χ = eχ, for all χ ∈ Irr(A). When ψ, χ ∈ Irr(A) with ψ �= χ, the fact that ψ(xeχ) = 0, 
for all x ∈ A implies that τ(x∗xeχ) = τ((xeχ)∗xeχ) = mχχ(x∗x), for all x ∈ A. It then 
follows from Proposition 5(i) that χ(x∗x) ≥ 0 for all x ∈ A.

The referee has remarked that the next theorem is a corollary to [5, Theorem 1]. The 
proof provided here is independent of this result.

Theorem 6. Let (A, B) be a standard integral RBA with a positive degree map.
If |Irr(A)| = 2, then |B| = 2.

Proof. Let Irr(A) = {δ, χ}. Let eδ and eχ be the two centrally primitive idempotents 
of A. We can assume that the distinguished basis B is a standardized basis, so we have 
δ(bi) = λii∗0 for i = 0, 1, . . . , d. Let n = δ(B+) be the order of B. Since B is an integral 
RBA basis we have that δi ∈ Z+. By Proposition 5, we have that

eδ = 1
n

∑
i

bi, and eχ = mχ

n

∑
i

χ(b∗i )
δi

bi,

for some positive real number mχ.
Since |Irr(A)| = 2, e1 + eχ = b0. From this one can show that n = 1 + mχχ(b0), 

and for bi �= b0, χ(bi) = − δi∗
mχ

. In particular, χ(bi) is a negative rational number when 
bi �= b0. Since χ(bi) is an algebraic integer whenever the structure constants for the basis 
B are integers, all of the χ(bi)’s are in fact integers, and so χ(bi) ≤ −1 for i > 0.

By the orthogonality relations,

0 =
∑

χ(bi) = χ(b0) +
d∑

χ(bi) ≤ χ(b0) − (|B| − 1).

i i=1
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Since |B| = 1 + χ(b0)2, it follows that χ(b0) ≥ χ(b0)2. Since χ(b0) is a positive integer, 
this forces χ(b0) = 1, and hence |B| = 2, as required. �

One interpretation of the preceding result is that any noncommutative semisimple 
algebra that has an integral RBAδ-basis must have at least 3 simple components. In 
particular, the noncommutative 5-dimensional semisimple algebra over C does not have 
an integral RBAδ-basis.

5. The noncommutative 5-dimensional semisimple algebra

The results of Section 4 do not tell us if the algebras C ⊕Mn(C) for n ≥ 2 under the 
conjugate-transpose involution have non-integral RBA-structures that admit a positive 
degree map. In this section we will consider this question for the 5-dimensional algebra 
A = C ⊕M2(C).

Lemma 7. Let A = C ⊕ M2(C), and let δ be the algebra projection map onto its one-
dimensional component. Suppose B is an RBA-basis of A for which δ takes positive values 
on B; i.e. δ is a positive degree map. Then the algebra RB is isomorphic to R ⊕M2(R)
and, up to a change of basis, ∗ acts on M2(R) as matrix transposition. In particular, 
B has exactly three ∗-fixed elements.

Proof. By rescaling we can assume B = {b0 = 1, b1, b2, b3, b4} is a standardized 
RBAδ-basis of A. Set δ(bi) = δi, and let n be the order of B, so n = 1 + δ1 + δ2 + δ3 + δ4. 
Since A is non-commutative, the basis B contains at least one pair bi, b∗i of non-symmetric 
elements. Therefore the number of ∗-fixed elements of B is either 1 or 3. In the first case 
the dimension of ∗-fixed subspace of RB is 3 while in the second one it is equal to 4.

The algebra RB is a non-commutative semisimple algebra over the reals of dimen-
sion 5. Therefore either RB ∼= R ⊕H or RB ∼= R ⊕M2(R). If RB ∼= R ⊕H, then 1∗

H
= 1H, 

and the dimension of the ∗-fixed subspace of H is at least 2, so there exists a purely 
imaginary q ∈ H with q∗ = q = −q̄. Then q∗q = −q̄q = −r1H, for some r > 0. For the 
unique χ ∈ Irr(A) of degree 2, this would imply χ(q∗q) = −rχ(1H) < 0, a contradiction. 
This excludes the case of RB ∼= R ⊕H, so we must have that RB � R ⊕M2(R).

Let Δ : RB → M2(R) be the two-dimensional irreducible representation of RB given 
by projection to the component M2(R). Let χ be the character corresponding to this rep-
resentation. By Proposition 5, n = δ(1) + mχχ(1), so mχ = n−1

2 . We have that Δ(x∗)�

is a 2-dimensional irreducible representation equivalent to Δ. Thus there exists an 
S ∈ GL2(R) such that Δ(x∗)� = S−1Δ(x)S. Equivalently, Δ(x∗) = S�Δ(x)�(S−1)�. 
Substituting x∗ instead of x we obtain that Δ(x) = (S�S−1)Δ(x)(S�S−1)−1 holds 
for each x ∈ RB. Combining this together with Δ(RB) = M2(R) we obtain that 
S−1S� = αI2 for some α ∈ R. It follows from S� = αS and (S�)� = S that α = ±1, 
i.e. S is either symmetric or antisymmetric.
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Assume first that S is antisymmetric, that is S =
[

0 a
−a 0

]
. A direct check shows 

that in this case the map X �→ SX�S−1, X ∈ M2(R) has a one-dimensional space 
of fixed points. So, in this case the dimension of the ∗-fixed subspace of RB is two, a 
contradiction.

Assume now that S is symmetric. Then S = P�DP for some D ∈ {I2, Diag(1, −1),
−I2} and P ∈ GL2(R). Replacing Δ(x) by the equivalent representation Σ(x) :=
(P−1)�Δ(x)P� we obtain Σ(x∗) = DΣ(x)�D−1. If D = ±I2, then we are done. It 
remains to deny the case of D = Diag(1, −1).

We know that tr(Δ(x)Δ(x∗)) = χ(xx∗) ≥ 0 for all x ∈ RB. Since Σ : RB → M2(R)
is an epimorphism, we conclude that tr(XDX�D−1) ≥ 0 holds for all X ∈ M2(R). Now 

choosing X =
[
0 1
1 0

]
we get a contradiction. �

The above lemma tells us that, since RB � R ⊕ M2(R), we can replace A by an 
isomorphic image whose standardized RBAδ-basis is of the form

B = {b0 = (1, I2), b1 = (δ1, B1) = b∗1, b2 = (δ2, B2) = b∗2, b3 = (δ3, B3),

b4 = b∗3 = (δ3, B�
3 )},

and all entries of the matrices B1, B2, and B3 are real. Label the entries of the matrices 
B1, B2, and B3 so that

B1 =
[
a b
b d

]
, B2 =

[
v w
w x

]
, B3 =

[
r s
t u

]
, and B4 = B�

3 .

The centrally primitive idempotents of A are eδ = (1, 0) and eχ = (0, I). By Proposition 5
we have

(1,0) = 1
n

∑
i

(δi, Bi)

and

(0, I) = mχ

n

∑
i

tr(B�
i )(1, 1

δi
Bi).

These give us the conditions 
∑

i Bi = 0 and 
∑

i
tr(B�

i )
δi

Bi = n
mχ

I. Since (1, 0) + (0, I) =
b0, the coefficient of bi in (0, I) for i > 0 must be the negative of its coefficient in 

(1, 0). Therefore, −1
n = mχtr(B�

i )
nδi

for i > 0, and hence tr(B
�
i )

δi
= −2

n−1 for i > 0. So our 
character-theoretic identities are:

1 + a + v + 2r = 0,

1 + d + x + 2u = 0,
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b + w + s + t = 0,

2 + (a+d)
δ1

a + (v+x)
δ2

v + 2(r+u)
δ3

r = n
mχ

,

2 + (a+d)
δ1

d + (v+x)
δ2

x + 2(r+u)
δ3

u = n
mχ

, and

(a+d)
δ1

= (v+x)
δ2

= (r+u)
δ3

= −2
n−1 .

The conditions for linear independence of B and these equations imply that a �= d or 
v �= x, at least one of b or w is nonzero, and s �= t. By Lemma 7, we can apply a change 
of basis to diagonalize the symmetric matrix B1 and assume b = 0.

We are able to produce RBAδ-bases with real matrix entries that satisfy all of these 
conditions. The main result of this section describes all of these matrix entries in terms 
of the degrees of basis elements and some sign choices. Since RB � R ⊕ M2(R), this 
theorem characterizes all standardized RBAδ-bases of C ⊕M2(C) up to equivalence.

Theorem 8. Suppose

{
(1, I), (δ1,

[
a 0
0 d

]
), (δ2,

[
v w
w x

]
), (δ3,

[
r s
t u

]
, (δ3,

[
r t
s u

]
)
}

is a standardized RBAδ-basis of C ⊕ M2(C) with respect to the conjugate-transpose in-
volution, all of whose matrix entries are real. Let ε1, ε2, ε3 = ±1 be three sign choices. 
Then the matrix entries satisfy the identities

a = − δ1
n− 1 + ε1

√
nδ1(n− 1 − δ1)

n− 1 ,

d = − δ1
n− 1 − ε1

√
nδ1(n− 1 − δ1)

n− 1 ,

v = − δ2
n− 1 − ε1

nδ1δ2

(n− 1)
√
nδ1(n− 1 − δ1)

,

x = − δ2
n− 1 + ε1

nδ1δ2

(n− 1)
√
nδ1(n− 1 − δ1)

,

w = ε2

√
2δ2δ3

(n− 1)(n− 1 − δ1)
,

r = − δ3
n− 1 − ε1

nδ1δ3

(n− 1)
√
nδ1(n− 1 − δ1)

,

u = − δ3
n− 1 + ε1

nδ1δ3

(n− 1)
√
nδ1(n− 1 − δ1)

,

s = −w

2 + ε3

√
δ3n

2(n− 1) , and t = −w

2 − ε3

√
δ3n

2(n− 1) .
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Conversely, given positive real numbers n, δ1, δ2, and δ3 satisfying n = 1 +δ1+δ2+2δ3
and three choices of sign for ε1, ε2, and ε3, the above identities produce an RBAδ-basis 
of C ⊕M2(C) having real matrix entries.

Before beginning the proof of this theorem, we establish some preliminaries. Let 
τ(
∑

i xibi) = nx0, x =
∑

i xibi ∈ A be the standard feasible trace of A. Notice that 
τ(x) = δ(x) + n−1

2 χ(x). We denote by B(x) the 2-dimensional matrix corresponding 
to the character χ and by r(x), s(x) the eigenvalues of B(x), for all x ∈ A. Clearly 
χ(x) = r(x) + s(x).

Lemma 9. For each x ∈ A we have x2 ∈ spanC(b0, x, B+), where B+ = b0 + ... + b4.

Proof. The ideal (b0 − n−1B+)A is isomorphic to M2(C). Since any matrix B ∈ M2(C)
satisfies the identity B2 = tr(B)B − det(B)I2, we conclude that

((b0 − n−1B+)x)2 = χ(x)(b0 − n−1B+)x + 1
2((χ(x)2 − χ(x2))(b0 − n−1B+).

Since B+z = δ(z)B+ for z ∈ A, after opening the brackets and collecting coefficients we 
obtain the result. (Here we used the identity det(B) = 1

2 (tr(B)2 − tr(B2)).) �
As a corollary we obtain that for any x ∈ A such that b0, x, and B+ are linearly 

independent, there exist uniquely determined numbers κ(x), λ(x), μ(x) such that

x2 = κ(x)b0 + λ(x)x + μ(x)(B+ − b0 − x) (1)

Let us take x ∈ A with τ(x) = 0 (that is b0 does not appear in x). Then comparing the 
coefficient of b0 (= applying n−1τ) in both sides gives us κ(x) = n−1τ(x2) = 〈x, x∗〉. 
Applying the degree homomorphism we get δ(x)2 = κ(x) +λ(x)δ(x) +μ(x)(n −1 −δ(x)).

It follows from (1) that B(x)2 = (λ(x) − μ(x))B(x) + (κ(x) − μ(x))I2. Hence

r(x) + s(x) = λ(x) − μ(x);
r(x)s(x) = μ(x) − κ(x).

(2)

Also 0 = τ(x) = δ(x) + n−1
2 (r(x) +s(x)) and κ(x)n = τ(x2) = δ(x)2+ n−1

2 (r(x)2+s(x)2). 
This implies

r(x) + s(x) = −2δ(x)
n−1

r(x)2 + s(x)2 = 2κ(x)n−δ(x)2
n−1

. (3)

From here we conclude that

r(x)s(x) = (n + 1)δ(x)2 − κ(x)n(n− 1)
2 =⇒ μ(x) = (n + 1)δ(x)2 − κ(x)(n− 1)

2 .
(n− 1) (n− 1)
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Finally we obtain

λ(x) = (n + 1)δ(x)2 − 2(n− 1)δ(x) − κ(x)(n− 1)
(n− 1)2 , and

{r(x), s(x)} = − δ(x)
n− 1 ±

√
κ(x)n(n− 1) − δ(x)2n

n− 1 .

(4)

If x =
4∑

i=1
kibi, then κ(x) = 〈x, x∗〉 implies that

κ(x) = k2
1δ1 + k2

2δ2 + 2k3k4δ3.

If x = bi, i = 1, 2, then κ(bi) = δi,

λ(bi) = (n + 1)δ2
i − 3(n− 1)δi

(n− 1)2 , and μ(bi) = (n + 1)δ2
i − δi(n− 1)

(n− 1)2 . (5)

If x = bi, i = 3, 4, then κ(bi) = 0, and hence

λ(bi) = (n + 1)δ2
i − 2(n− 1)δi

(n− 1)2 , and μ(bi) = (n + 1)δ2
i

(n− 1)2 . (6)

Now it follows from the above that if x0 = 0 then

x2 = (r(x) + s(x))x− r(x)s(x)b0 + μ(x)B+ =⇒

B(x)2 = −2δ(x)
n− 1B(x) − (n + 1)δ(x)2 − κ(x)n(n− 1)

(n− 1)2 I2. (7)

Taking into account that κ(x) = 〈x, x∗〉 we conclude that

B(x1)B(x2) + B(x2)B(x1) = B(x1 + x2)2 −B(x1)2 −B(x2)2

= −2δ(x1)
n− 1 B(x2) −

2δ(x2)
n− 1 B(x1) −

2(n + 1)δ(x1)δ(x2) − 2n(n− 1)〈x1, x
∗
2〉

(n− 1)2 I2. (8)

Proof of Theorem 8. First, we substitute our RBA-basis elements into the above to es-
tablish our identities for the matrix entries.

Step 1. Substituting x = b1 into (4) (notice that κ(b1) = δ1) we obtain that

{r(b1), s(b1)} = − δ1
n− 1 ±

√
δ1n(n− 1) − δ2

1n

n− 1 =⇒

{a, d} = − δ1
n− 1 ±

√
δ1n(n− 1) − δ2

1n

n− 1 =⇒

a = − δ1
n− 1 + ε1

√
Δ1

n− 1 and d = − δ1
n− 1 − ε1

√
Δ1

n− 1 , (9)

where Δ1 := δ1n(n − 1) − δ2
1n = n(n − 1 − δ1)δ1 and ε1 = ±1.
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Step 2. Substituting x1 = b1, x2 = b2 into (8) we obtain
[

2av (a + d)w
(a + d)w 2dx

]
= − 2δ1

n− 1

[
v w
w x

]
− 2δ2

n− 1

[
a 0
0 d

]
− 2(n + 1)δ1δ2

(n− 1)2 I2.

From the above equation we can derive equations for v and x:
{

av = − δ1
n−1v −

δ2
n−1a− (n+1)δ1δ2

(n−1)2

dx = − δ1
n−1x− δ2

n−1d−
(n+1)δ1δ2

(n−1)2

Thus, substituting the values of a and d given in (9) into the above equations it is 
straightforward to check that

{
v = − δ2

n−1 − ε1
nδ2δ1

(n−1)
√

Δ1

x = − δ2
n−1 + ε1

nδ2δ1
(n−1)

√
Δ1

.

Step 3. Substituting b2 for x into (7) we obtain

w2 = −v2 − 2δ2v
n− 1 − (n + 1)δ2

2 − n(n− 1)δ2
(n− 1)2 .

Substituting the value of v obtained in Step 2 yields

w2 = 2nδ2δ3
(n− 1)(n− 1 − δ1)

.

So

w = ε2

√
2nδ2δ3

(n− 1)(n− 1 − δ1)
(10)

where ε2 = ±1.
Step 4. Substituting the values for a, v, d, and x obtained above into the equations 

1 + a + v + 2r = 0 and 1 + d + x + 2u = 0 gives the indicated values of r and u.
Step 5. Substituting x = b3 − b4 into (7) and taking into account that δ(b3 − b4) = 0, 

κ(b3 − b4) = 〈b3 − b4, b4 − b3〉 = −2δ3, we obtain

[
0 s− t

t− s 0

]2

= − 2δ3n
n− 1I2 =⇒ s− t = ε3

√
2δ3n
n− 1 ,

where ε3 = ±1.
Step 6. Using w + s + t = 0 we find that

s = −w

2 + ε3

√
δ3n

2(n− 1) , t = −w

2 − ε3

√
δ3n

2(n− 1) .
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This completes the proof in one direction. The other direction can be proved in a 
straightforward (although tedious) manner by simply calculating structure constants for 
the basis. Our formulas for these structure constants are (with ε := ε1ε2ε3, and not 
including those involving b0):

λ111 = (n+1)δ2
1−3(n−1)δ1

(n−1)2 ,

λ112 = λ113 = λ114 = (n+1)δ2
1−(n−1)δ1

(n−1)2 ,

λ121 = λ211 = (n+1)δ1δ2−(n−1)δ2
(n−1)2 ,

λ122 = λ212 = (n+1)δ1δ2−(n−1)δ1
(n−1)2 ,

λ123 = λ214 = (n+1)δ1δ2+ε(n−1)
√
nδ1δ2

(n−1)2 ,

λ124 = λ213 = (n+1)δ1δ2−ε(n−1)
√
nδ1δ2

(n−1)2 ,

λ131 = λ141 = λ311 = λ411 = (n+1)δ1δ3−(n−1)δ3
(n−1)2 ,

λ132 = λ412 = (n+1)δ1δ2δ3+ε(n−1)δ3
√
nδ1δ2

δ2(n−1)2 ,

λ133 = λ414 = (n+1)δ1δ3−(n−1)δ1−ε(n−1)
√
nδ1δ2

(n−1)2 ,

λ134 = λ143 = λ314 = λ413 = (n+1)δ1δ3
(n−1)2

λ142 = λ312 = (n+1)δ1δ2δ3−ε(n−1)δ3
√
nδ1δ2

δ2(n−1)2 ,

λ144 = λ313 = (n+1)δ1δ3−(n−1)δ1+ε(n−1)
√
nδ1δ2

(n−1)2 ,

λ221 = λ223 = λ224 = (n+1)δ2
2−(n−1)δ2

(n−1)2 ,

λ222 = (n+1)δ2
2−3(n−1)δ2

(n−1)2 ,

λ231 = λ421 = (n+1)δ1δ2δ3−ε(n−1)δ3
√
nδ1δ2

δ1(n−1)2 ,

λ232 = λ422 = λ242 = λ322 = (n+1)δ2δ3−(n−1)δ3
(n−1)2 ,

λ233 = λ424 = (n+1)δ2δ3−(n−1)δ2+ε(n−1)
√
nδ1δ2

(n−1)2 ,

λ234 = λ423 = λ243 = λ324 = (n+1)δ2δ3
(n−1)2

λ241 = λ321 = (n+1)δ1δ2δ3+ε(n−1)δ3
√
nδ1δ2

δ1(n−1)2 ,

λ244 = λ323 = (n+1)δ2δ3−(n−1)δ2−ε(n−1)
√
nδ1δ2

(n−1)2 ,

λ331 = λ332 = λ334 = (n+1)δ2
3

(n−1)2 ,

λ441 = λ442 = λ443 = (n+1)δ2
3

(n−1)2 ,

λ343 = λ344 = λ433 = λ434 = (n+1)δ2
3−2(n−1)δ3

(n−1)2

λ333 = λ444 = (n+1)δ2
3−2(n−1)δ3

(n−1)2 ,

λ341 = λ432 = (n+1)δ1δ2
3−(n−1)δ1δ3−ε(n−1)δ3

√
nδ1δ2

δ1(n−1)2 ,

λ342 = λ431 = (n+1)δ1δ2
3−(n−1)δ1δ3+ε(n−1)δ3

√
nδ1δ2

δ1(n−1)2 . �
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Any combination of the three sign choices in Theorem 8 is interchangeable by a change 

of basis. This is because conjugation by 
[
0 1
1 0

]
interchanges the sign choices for ε1 and 

ε3 and fixes the one for ε2, and conjugating by 
[
1 0
0 −1

]
switches the choices for ε2 and 

ε3 and fixes that of ε1. So any combination of the three sign choices can be achieved 
through a sequence of these operations.

We have used Theorem 8 to look for RBAδ-bases of C ⊕ M2(C) that have rational 
and/or nonnegative structure constants. Both situations occur, and can occur simulta-
neously.

Example 10. Choosing n = 25, δ1 = δ2 = δ3 = 6 with any choice of the three signs 
produces a rational TA-basis for C ⊕ M2(C). The basis elements (with positive sign 
choices) are: b0 = (1, I),

b1 = (6,
[

−1+5
√

3
4 0
0 −1−5

√
3

4

]
), b2 = (6,

[
−3−5

√
3

12
5√
6

5√
6

−3+5
√

3
12

]
),

b3 = (6,
[

−3−5
√

3
12

−5
√

6+3
√

2
12

−5
√

6−3
√

3
12

−3+5
√

3
12

]
),

and b∗3. All structure constants for this basis lie in Z[ 12 ], and the largest denominator 
that occurs among them is an 8.

Example 11. Here are the elements of another RBAδ-basis of C ⊕M2(C) whose entries 
and structure constants are all rational: b0 = (1, I),

b0 = (1, I2), b1 =
(3
2 ,

[
−3

2 0
0 1

2

] )
, b2 =

(1
6 ,

[ 2
9

4
94

9 −1
6

] )
,

b3 =
(2
3 ,

[ 2
9

4
9

−8
9 −2

3

] )
, and b∗3.

6. RBAδ bases for CCC ⊕ Mn(CCC), n ≥ 2

In light of Theorem 8 one is almost certain that C ⊕Mn(C) will have an RBAδ-basis 
for n > 2. In this section we give a general construction that applies for all n ≥ 2.

We begin with a general restriction on involutions admitting positive degree maps 
that applies to any semisimple algebra.

Theorem 12. Let A be a finite-dimensional semisimple algebra whose involution ∗ ex-
tends complex conjugation on scalars. Suppose χ ∈ Irr(A), and let Aeχ be the simple 
component of A corresponding to χ. Identify Aeχ with a full matrix algebra Mm(C)
where m = χ(1). If A has an RBA-basis that admits a positive degree map, then up to 
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a change of basis, the restriction of ∗ to Aeχ will be equal to the conjugate transpose map 
on Mm(C).

Proof. Suppose B = {1 = b0, b1, . . . , bd} is an RBA-basis of A that admits a positive 
degree map δ. Let τ be the standard feasible trace of A. By Proposition 5 and the 
subsequent remarks, τ =

∑
ψ∈Irr(A) mψψ with mδ = 1, all mψ > 0, and ψ(xx∗) ≥ 0, 

for all ψ ∈ Irr(A). Consider the restriction of the involution ∗ to Aeχ, which we iden-
tify with Mm(C). Since the projection of A into this simple component is surjective, 
the above implies that tr(XX∗) ≥ 0 for all X ∈ Mm(C). Since ∗ extends complex 

conjugation on scalars, the map X �→ (X∗)
�

is an algebra automorphism of Mm(C). 
Therefore, X∗ = S−1X

�
S, for some S ∈ GLm(C). Replacing X by X∗ we obtain 

X = (S−1S
�)X(S−1S

�)−1, for all X ∈ Mm(C), and so it follows that S−1S
� = αIn, 

for some nonzero α ∈ C.
From the equation S

� = αS we have that S commutes with its conjugate transpose, 

and so S∗ = S−1S
�
S = S

�. Furthermore, S = (S�)
�

= ᾱαS, so α = eiθ for some θ ∈ R. 
If we set H = e

iθ
2 S, then H

� = H = H∗, and X∗ = H−1X
�
H for all X ∈ Mm(C).

We need to find an invertible matrix P ∈ GLm(C) such that PX∗P−1 = (PXP−1)
�

for all X ∈ Mn(C). It is enough to find an invertible matrix P for which P
�
P = H.

Since H is a non-degenerate Hermitian matrix, H = U−1DU for some unitary matrix 
U (U−1 = U

�) and diagonal matrix D with nonzero real diagonal entries λ1, ..., λn. For 
each 1 ≤ s, t ≤ n, let Y = U−1EstU , where Est is the matrix unit with (s, t)-entry 1 and 
0 entries elsewhere. Then

Y ∗Y = H−1Y
�
HY = U−1D−1UY

�
U−1DUY = U−1D−1EtsDEstU.

Hence,

0 ≤ χ(Y ∗Y ) = tr(D−1EtsDEst) = λ−1
t λs.

Therefore, all of the eigenvalues of H have the same sign. Replacing H, if necessary, by 
−H we may assume that λi > 0 for all i = 1, ..., n. Let 

√
D be the diagonal matrix with 

diagonal entries 
√
λi, i = 1, . . . , n. Let P =

√
DU . Then H = P

�
P , as required. �

We will finish with a construction of an RBAδ-basis of A := C ⊕Mm(C) with respect 
to the involution that restricts to the conjugate transpose in the second component. As 
in the last section, it suffices to find an RBAδ-basis of Ã := R ⊕Mm(R), which is what 
we will do. In what follows we write (X, Y ) for tr(XY �). Notice that (
, 
) is a standard 
Euclidean form on the vector space Mm(R). Notice that (XY, Z) = (Y, X�Z) for all 
X, Y, Z ∈ Mm(R).

Proposition 13. Let δ1, ..., δm2 be positive real numbers. Set n := 1 +
∑m2

i=1 δi. Assume 
that there exist m2 matrices B1, ..., Bm2 ∈ Mm(R) such that
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(a)

(Bi, Bj) =
{

δi(n−δi)m
n−1 , i = j

− δiδjm
n−1 , i �= j

(b) there exists an involutive permutation i �→ i′, i = 1, ..., m2 with exactly m fixed points 
such that B�

i = Bi′ and δi = δi′ hold for all i;
(c)

∑m2

i=1 Bi = −I.

Then the vectors b0 := (1, I), bi := (δi, Bi) form an RBAδ-basis of Ã = R ⊕Mm(R).

Proof. Define a bilinear form 〈
, 
〉 on Ã as follows

〈(x,X), (y, Y )〉 := n−1(xy + n− 1
m

(X,Y )).

Also define an anti-automorphism ∗ of Ã by (x, X)∗ = (x, X�). A direct check shows 
that

(i) b∗i = bi′ ;
(ii) 〈bi, bj〉 = δijδi (here δij is the Kronecker’s delta);
(iii) 〈bibj , bk〉 = 〈bj , bi′bk〉.

Since b0, b1, ..., bm2 is a basis of the real algebra Ã, we obtain that bibj =
∑

k λijkbk, where 
λijk are real numbers. Since bi’s form an orthogonal basis of Ã, we get λijkδk = 〈bibj , bk〉.

Since b0 is the identity of A and δ0 = 1, we can write δijδi = 〈bi, bj〉 = 〈b0, bi′bj〉 =
λi′j0. Thus λab0 �= 0 ⇐⇒ a′ = b and in the latter case λaa′0 = δa > 0.

Thus the basis b0, ..., bm2 satisfies all the axioms of RBAδ basis. �
Proposition 14. Assume that there exist matrices Bi, i = 1, ..., m2 which satisfy condi-
tions (a)–(b) of Proposition 13. Denote B :=

∑m2

i=1 Bi. Then the matrices

B̃i := Bi − 2 (B + I,Bi)
(B + I,B + I) (B + I)

satisfy the conditions (a)–(c) of Proposition 13.

Proof. Notice that the linear map L : X �→ X̃ := X − 2 (B+I,X)
(B+I,B+I) (B + I) is a reflection 

with respect to the form (
, 
). Therefore (L(X), L(Y )) = (X, Y ), implying (B̃i, B̃j) =
(Bi, Bj) hereby proving (a).

It follows from part (a) of Proposition 13 that (B, B) = m. Together with (I, I) = m

this implies that B̃ = −I. Thus 
∑

i B̃i = B̃ = −I. Thus B̃i satisfy the properties (a) 
and (c). The property (b) follows from L(X�) = L(X)� (notice that B+I is a symmetric 
matrix). �
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Now we’d like to build a basis Bij of Mm(R) which satisfies conditions (a)–(b) of 
Proposition 14. To simplify calculations we take all δi to be the same, i.e. δk = δ > 0. In 
this case n = 1 + m2δ and the conditions in part (a) of Proposition 14 read as follows:

(Bij , Bk�) =
{

n−δ
m , (i, j) = (k, �)
− δ

m , (i, j) �= (k, �)
(11)

To build a basis which satisfies (a)–(b) we look for the matrices of the form Bij =
xEij +yJ where Eij are elementary matrices, J the m ×m matrix of all 1’s, and x, y are 
real parameters which will be found later. Clearly the matrices Bij satisfy part (b) of 
Proposition 14. To satisfy (a) we first compute the inner products (Bij, Bk�). We obtain 
that (Bij , Bij) = x2 + 2xy + y2m2 and (Bij , Bk�) = 2xy + y2m2 for (i, j) �= (k, �). Now 
(11) yields the following equations for x and y

x2 + 2xy + y2m2 = n− δ

m
, 2xy + y2m2 = − δ

m

Substracting the second equation from the first we obtain x = ±
√

n
m . Then from the 

second one we get y = 1
m2

(
−x± 1√

m

)
. Thus there exist matrices which satisfy conditions 

(a)–(b). Applying Proposition 14 we conclude that A has an RBAδ-basis. This proves 
the main result of this section.

Theorem 15. The noncommutative algebra C ⊕Mm(C) with the conjugate transpose in-
volution has an RBAδ-basis for all m ≥ 2.

Corollary 16. Every finite-dimensional semisimple algebra that has a one-dimensional 
simple component can be equipped with an RBAδ-basis.

Proof. Suppose A � C ⊕A0. If A0 is simple then it follows from Theorem 15 that A has an 
RBAδ-basis. Otherwise we can write A � A1 ⊕Mm(C) where A1 has a one-dimensional 
component. By induction on the dimension we can assume A1 has an RBAδ-basis B1. 
Let B′ be an RBAδ-basis of C ⊕Mm(C). By applying properties we have for the circle 
product and arguing as in the proof of Corollary 4, we find that B1 ◦B′ is an RBAδ-basis 
of

A1 ◦ (C⊕Mm(C)) � A1 ⊕Mm(C) � A. �
Example 17. We will illustrate the construction for Theorem 15 in the case where m = 3
and δ = 7. In this case the construction says to take x = − 8√

3 and y = 1√
3 , and set Bij

to be the 3 × 3 matrix 1√
3(−8Eij + J) for 1 ≤ i, j ≤ 3. Applying the reflection mapping 

of Proposition 14 to each Bij produces the following list of matrices B̃ij , for 1 ≤ i, j ≤ 3:
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B̃11 = 1
9

⎡
⎣−1 − 16

√
3 8 8

8 −1 + 8
√

3 8
8 8 −1 + 8

√
3

⎤
⎦ ,

B̃12 = 1
9

⎡
⎣ −1 −4 − 20

√
3 −4 + 4

√
3

−4 + 4
√

3 −1 −4 + 4
√

3
−4 + 4

√
3 −4 + 4

√
3 −1

⎤
⎦ ,

B̃13 = 1
9

⎡
⎣ −1 −4 + 4

√
3 −4 − 20

√
3

−4 + 4
√

3 −1 −4 + 4
√

3
−4 + 4

√
3 −4 + 4

√
3 −1

⎤
⎦ , B̃21 = B̃�

12,

B̃22 = 1
9

⎡
⎣−1 + 8

√
3 8 8

8 −1 − 16
√

3 8
8 8 −1 + 8

√
3

⎤
⎦ ,

B̃23 = 1
9

⎡
⎣ −1 −4 + 4

√
3 −4 + 4

√
3

−4 + 4
√

3 −1 −4 − 20
√

3
−4 + 4

√
3 −4 + 4

√
3 −1

⎤
⎦ ,

B̃31 = B̃�
13, B̃32 = B̃�

23, and B̃33 = 1
9

⎡
⎣−1 + 8

√
3 8 8

8 −1 + 8
√

3 8
8 8 −1 − 16

√
3

⎤
⎦ .

The set consisting of (1, I3) and the nine (7, B̃ij)’s for 1 ≤ i, j ≤ 3 is (indeed!) an 
RBAδ-basis of C ⊕M3(C) whose structure constants lie in the ring Z[ 13 , 

√
3]. The largest 

denominator that occurs among its structure constants is a 27.

The authors would like to express their gratitude to the anonymous referee that gave 
several insightful comments that significantly improved the final presentation of this 
article.

References

[1] Z. Arad, E. Fisman, On table algebras, C-algebras, and applications to finite group theory, Comm. 
Algebra 19 (1991) 2955–3009.

[2] Z. Arad, E. Fisman, M. Muzychuk, Generalized table algebras, Israel J. Math. 114 (1999) 29–60.
[3] H. Blau, Quotient structures in C-algebras, J. Algebra 175 (1995) 24–64, Erratum: J. Algebra 177 

(1995) 297–337.
[4] H. Blau, Table algebras, European J. Combin. 30 (2009) 1426–1455.
[5] H. Blau, Association schemes, fusion rings, C-algebras, and reality-based algebras where all nontrivial 

multiplicities are equal, J. Algebraic Combin. 31 (2010) 491–499.
[6] H. Blau, G. Chen, Reality-based algebras, generalized Camina-Frobenius pairs, and the nonexistence 

of degree maps, Comm. Algebra 40 (4) (2012) 1547–1562.
[7] H. Blau, B. Xu, Irreducible characters of wreath products in reality-based algebras and applications 

to association schemes, J. Algebra 412 (2014) 155–172.
[8] D.G. Higman, Coherent algebras, Linear Algebra Appl. 93 (1987) 209–239.

http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4146s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4146s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib41464Ds1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib423935s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib423935s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib423039s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib423130s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib423130s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4243s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4243s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4258s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4258s1
http://refhub.elsevier.com/S0021-8693(17)30056-X/bib4869673837s1

	The recognition problem for table algebras and reality-based algebras
	1 Introduction
	2 Rational RBA-bases for Mn(C)
	3 Constructing an RBA-basis of a semisimple algebra
	4 Noncommutative algebras with |Irr(A)|=2
	5 The noncommutative 5-dimensional semisimple algebra
	6 RBAδ bases for C ⊕Mn( C), n >=2
	References


