
Journal of Algebra 480 (2017) 59–78
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Mesoprimary decomposition of binomial 
submodules

Christopher O’Neill
Mathematics Department, Texas A&M University, College Station, TX 77840, 
United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 January 2016
Available online 20 February 2017
Communicated by Luchezar L. 
Avramov

Keywords:
Binomial ideals
Monoid congruences
Combinatorial commutative algebra

Recent results of Kahle and Miller give a method of con-
structing primary decompositions of binomial ideals by first 
constructing “mesoprimary decompositions” determined by 
their underlying monoid congruences. Mesoprimary decompo-
sitions are highly combinatorial in nature, and are designed 
to parallel standard primary decomposition over Noetherean 
rings. In this paper, we generalize mesoprimary decomposi-
tion from binomial ideals to “binomial submodules” of certain 
graded modules over a monoid algebra, analogous to the way 
primary decomposition of ideals over a Noetherean ring R gen-
eralizes to R-modules. The result is a combinatorial method 
of constructing primary decompositions that, when restrict-
ing to the special case of binomial ideals, coincides with the 
method introduced by Kahle and Miller.
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1. Introduction

Fix a field k and a commutative monoid Q. A binomial ideal in the monoid algebra 
k[Q] is an ideal I whose generators have at most two terms. The quotient k[Q]/I by a 
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binomial ideal identifies, up to scalar multiple, any monomials appearing in the same 
binomial in I. This induces a congruence ∼I on the monoid Q (an equivalence relation 
perserving additivity), and the quotient module k[Q]/I is naturally graded with a decom-
position into 1-dimensional k-vector spaces, at most one per ∼I -class. In [4], Kahle and 
Miller introduce mesoprimary decompositions, which are combinatorial approximations 
of primary decompositions of I constructed from the congruence ∼I .

Mesoprimary decomposition of binomial ideals is motivated by combinatorially con-
structed primary decompositions of monomial ideals. Any monomial ideal I in the 
monoid algebra k[Q] is uniquely determined by the monomials it contains. Taking the 
quotient k[Q]/I amounts to setting these monomials to 0, and the monomials that lie 
outside of I naturally grade the quotient k[Q]/I with a decomposition into 1-dimensional 
k-vector spaces.

An irreducible decomposition for a monomial ideal I whose components are themselves 
monomial ideals can be constructed by locating witness monomials xw whose annihilator 
modulo I is prime, and then constructing for each witness monomial xw the primary 
monomial ideal that contains all monomials not lying below xw. The intersection of these 
ideals (one per witness monomial) equals I, and the witnesses are readily identified from 
the grading on k[Q]/I. See [8, Chapter 5] for a full treatment of monomial irreducible 
decomposition.

Combinatorially constructed irreducible decompositions of monomial ideals have also 
been shown to live within a larger categorical setting. Much in the way primary de-
composition of ideals over a Noetherean ring R generalizes to R-modules, combina-
torial methods for constructing primary decompositions of monomial ideals can be 
generalized to certain modules whose gradings resemble the fine gradings of mono-
mial quotients. See [7] for an overview of these constructions and [3,6] for conse-
quences.

Kahle and Miller use congruences to extend the above construction from mono-
mial ideals to binomial ideals [4]. Given a binomial ideal I, they pinpoint a collec-
tion of monomials in k[Q]/I that behave like witnesses. For each witness xw, they 
construct the coprincipal component at xw, a binomial ideal containing I whose quo-
tient has xw as the unique greatest nonzero monomial. The resulting collection of 
ideals, one for each witness, decomposes I, and each component admits a canonical 
primary decomposition. In this way, mesoprimary decompositions act as a bridge to 
primary components of a binomial ideal from the combinatorics of its induced congru-
ence.

Mesoprimary decompositions are constructed in two settings: first for monoid con-
gruences, and then for binomial ideals; both are designed to parallel standard pri-
mary decomposition in a Noetherian ring R. This motivated Kahle and Miller to 
pose Problems 1.1 and 1.2 below, which appeared as [4, Problem 17.11] and [4, Prob-
lem 17.13], respectively. These problems, in turn, serve to motivate the results in this 
paper.
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Problem 1.1. Generalize mesoprimary decomposition of monoid congruences to congru-
ences on monoid modules.

Problem 1.2. Develop a notion of binomial module over a commutative monoid algebra, 
and generalize mesoprimary decomposition of binomial ideals to this setting.

One of the largest tasks in generalizing the results of [4] to monoid modules is to 
separate which constructions should happen in the monoid and which should happen in 
the module, since these coincide for monoid congruences. See Remarks 3.2 and 3.11 for 
specific instances of this distinction.

In the first part of this paper (Sections 2–4), we introduce the category Q-Mod of 
modules over a monoid Q (Definition 2.1) and generalize nearly every result from [4] on 
monoid congruences to congruences on monoid modules. We define primary and meso-
primary monoid module congruences (Definition 3.3) and give equivalent conditions for 
these congruences in terms of associated objects and witnesses (Theorems 3.8 and 3.12). 
We then construct a mesoprimary decomposition, with one component per key witnesses, 
for any monoid module congruence (Theorem 4.6). The resulting theory completely an-
swers Problem 1.1.

The second part of this paper (Sections 5–7) answers Problem 1.2. We introduce the 
category BQ (Definition 5.6), whose objects are tightly graded modules (Definition 5.1) 
over the monoid algebra k[Q] graded by monoid modules in Q-Mod. It is in this setting 
that we define binomial submodules (Definition 6.1). We define mesoprimary submodules 
(Definition 6.3) and associated mesoprime ideals (Definition 6.5), developing a theory 
of mesoprimary decomposition (Theorem 7.4) that parallels results in [4]. In particular, 
the binomial submodules of the free module k[Q] are precisely the binomial ideals; see 
Example 6.4.

To conclude the paper, we demonstrate in Section 8 how a binomial primary decom-
position may be recovered from a mesoprimary decomposition when the underlying field 
is algebraically closed.

1.1. Notation

Throughout this paper, assume Q is a finitely generated commutative monoid and 
k is a field. Denote by k[Q] the monoid algebra over Q with coefficients in k. Unless 
otherwise stated, all k[Q]-modules are assumed to be finitely generated.

2. The category of monoid modules

In this section, we define the category Q-Mod of modules over a commutative 
monoid Q and extend some of the fundamental concepts and results from monoid ideals 
and congruences to the objects of this category. The content of this section (as well as 
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Section 5) is motivated by Example 2.14. First, we record some preliminary definitions 
(see [2] for more detail).

Definition 2.1. Fix a commutative monoid Q.

(1) A Q-module (T, ·) is a set T together with a left action by Q that satisfies 0 · t = t

and (q + q′) · t = q · (q′ · t) for all t ∈ T , q, q′ ∈ Q. A subset T ′ ⊂ T is a submodule
of T if it is closed under the Q-action, that is, Q · T ′ ⊂ T ′. The submodule of T
generated by elements t1, . . . , tr ∈ T is 〈t1, . . . , tr〉 =

⋃r
i=1 Q · ti.

(2) A map ψ : T → U between Q-modules T and U is a Q-module homomorphism if 
ψ(q · t) = q · ψ(t) for all t ∈ T, q ∈ Q. The set of Q-module homomorphisms from T
to U is denoted by HomQ(T, U), and is naturally a Q-module with action q ·ψ given 
by (q · ψ)(t) = ψ(q · t).

(3) The category of Q-modules, denoted Q-Mod, is the category whose objects are 
Q-modules and whose morphisms are Q-module homomorphisms.

Direct sums, direct products, and tensor products exist in the category Q-Mod. We 
now state their constructions explicitly.

Definition 2.2. Fix two Q-modules T and U .

(1) The direct sum T ⊕U is the disjoint union T
∐

U as sets, with the natural Q-action 
on each component.

(2) The direct product T ×U is the cartesian product of T and U as a set, with compo-
nentwise Q-action.

(3) The tensor product T ⊗Q U is the collection of formal elements t ⊗ u for t ∈ T and 
u ∈ U modulo the equivalence relation generated by

t⊗ (q · u) ∼ (q · t) ⊗ u for t ∈ T and u ∈ U

The action of Q is given by q · (t ⊗ u) = (q · t) ⊗ u for q ∈ Q, t ∈ T and u ∈ U .

Definition 2.3. Fix a Q-module T . A congruence on T is an equivalence relation ∼ on T
that satisfies t ∼ t′ ⇒ q · t ∼ q · t′ for all q ∈ Q and t, t′ ∈ T . The quotient module T/ ∼
is the set of equivalence classes of T under ∼. The congruence condition on ∼ ensures 
that T/ ∼ has a well defined action by Q.

Definition 2.4. A subset T ⊂ Q is an ideal if it is a Q-submodule of Q, that is, Q +T ⊂ T . 
An ideal P ⊂ Q is prime if its complement in Q is a submonoid of Q.

Definition 2.5. Fix a Q-module T , a prime ideal P ⊂ Q, and set F = Q \ P . The 
localization of T at P , denoted TP , is the set T × F modulo the equivalence relation ∼
that sets (t, f) ∼ (t′, f ′) whenever w · f ′ · t = w · f · t′ for some w ∈ Q. The localization 
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QP is naturally a monoid, and TP is naturally a QP -module. Write t − f to denote the 
class of the element (t, f) ∈ T × F in TP .

Remark 2.6. Any congruence ∼ on a Q-module T induces a congruence on TP .

Definition 2.7. Fix a Q-module T . Green’s preorder on T sets t � t′ whenever 〈t〉 ⊇ 〈t′〉. 
Green’s relation on T sets t ∼ t′ whenever 〈t〉 = 〈t′〉.

Green’s preorder on a monoid orders its elements by divisibility, and this notion 
extends to Q-modules.

Lemma 2.8. Green’s relation ∼ on a Q-module T is a congruence on T , and the quotient 
T/ ∼ is partially ordered by divisibility.

Proof. For t, t′ ∈ T and q ∈ Q, we can see 〈t〉 = 〈t′〉 implies 〈q · t〉 = 〈q · t′〉. Each element 
of the quotient T/ ∼ generates a distinct submodule, so the divisibility preorder is 
antisymmetric, and thus a partial order. �

We now generalize the notion of a nil element of a monoid.

Definition 2.9. An element ∞ ∈ T in a Q-module T is called a nil if it is absorbing, that 
is, Q · ∞ = {∞}. The basin of a nil ∞ ∈ T is the set

B(∞) = {t ∈ T : qt = ∞ for some q ∈ Q}

of elements of T that can be sent to ∞ under the action of Q. The nil set of T , denoted 
N(T ), is the collection of all nil elements in T .

Definition 2.10. Fix a subset U ⊂ T of a Q-module T . A Q-orbit of U is a connected 
component of the undirected graph whose vertices are elements of U and whose edges 
connect two vertices s, t ∈ U whenever q · s = t for some q ∈ Q. T is connected if it has 
at most one Q-orbit, and T is properly connected if T \N(T ) has at most one Q-orbit.

Example 2.11. Let T and U be connected Q-modules with nils ∞T and ∞U , respectively. 
If T \ {∞T } and U \ {∞U} are both nonempty, the module (T

∐
U)/〈∞T ∼ ∞U 〉 is 

connected and has a single nil, but it is not properly connected, since removing the nil 
produces two distinct Q-orbits.

Remark 2.12. Unlike a monoid, a Q-module may have more than one nil element. How-
ever, by Lemma 2.13, each Q-orbit can have at most one nil element.

Lemma 2.13. The basin of a nil element ∞ ∈ T in a Q-module T is the Q-orbit of T
containing ∞.
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Fig. 1. The monoid module that grades M in Example 2.14.

Proof. The basin of ∞ is clearly contained in its Q-orbit, and whenever qt = s for q ∈ Q

and s, t ∈ T , we have t ∈ B(∞) if and only if s ∈ B(∞). �
Example 2.14. Let Q = N

2, I = 〈x2, y2〉 ⊂ k[Q], R = k[Q]/I, and

M = (R⊕R)/〈xye1 − xye2〉,

where e1 and e2 generate the free k[Q]-module R⊕R. R is graded by the quotient monoid 
Q/ ∼I , and M is graded by two disjoint copies of Q/ ∼I with both copies of xy and the 
nil elements identified. Unlike the monoid that grades R, this grading does not have a 
natural monoid structure. It does, however, have a natural action by Q, corresponding
to the action on M by monomials in k[Q]. See Fig. 1 for an illustration.

There is also a notion of decomposition of Q-modules into indecomposables.

Lemma 2.15. Every Q-module T has a unique decomposition T =
⊕

i Ti as a direct sum 
of connected modules.

Proof. Any Q-module is the disjoint union of its Q-orbits. �
Remark 2.16. Kernels, in the categorical sense, do not exist in the category Q-Mod. 
However, there is still a notion of kernel of a Q-module homomorphism as a congruence; 
see Definition 2.17. This definition is justified by Theorem 2.18, a Q-module analogue of 
the first isomorphism theorem for groups.

Definition 2.17. Fix a homomorphism φ : T → U . The kernel of φ, denoted ker(φ), is the 
congruence ∼ on T that sets t ∼ t′ whenever φ(t) = φ(t′) for t, t′ ∈ T .

Theorem 2.18. If φ : T → U is a Q-module homomorphism, then T/ ker(φ) ∼= Im(φ).

Proof. The homomorphism φ is surjective onto its image, and the quotient of T by 
ker(φ) identifies elements with the same image under φ. This ensures that the map 
T/ ker(φ) −→ Im(φ) is both injective and surjective. �
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Corollary 2.19. Any finitely generated Q-module T is isomorphic to a quotient of a direct 
sum of finitely many copies of Q.

Proof. Fix a finitely generated Q-module T = 〈t1, . . . , tr〉. Let φ :
⊕r

i=1 Q −→ T , 
where the map on the i-th summand is given by Q → 〈ti〉. This map is surjective, so 
Theorem 2.18 implies T ∼= (

⊕r
i=1 Q)/ ker(φ). �

3. Primary and mesoprimary monoid modules

Mesoprimary decomposition of monoid congruences models primary decomposition 
of ideals in a Noetherian ring R, with mesoprimary congruences playing the role of 
primary ideals and prime congruences playing the role of prime ideals. In this section, 
we generalize the notion of mesoprimary monoid congruences to congruences on monoid 
modules (Definition 3.3), analogous to the way primary decomposition of ideals in R
generalizes to finitely generated R-modules. The main result is Theorem 3.12, which 
generalizes [4, Theorem 6.1] and characterizes mesoprimary monoid module congruences 
in terms of their associated prime congruences (Definition 3.10).

Definition 3.1. Fix a Q-module T . For each q ∈ Q, let φq denote the map T
·q−→ T given 

by action by q.

• An element q ∈ Q acts cancellatively on T if φq is injective.
• An element q ∈ Q acts nilpotently on T if for each t ∈ T , (nq) · t ∈ N(T ) for some 

nonnegative integer n.
• An element t ∈ T is partly cancellative if whenever a · t = b · t /∈ N(T ) for a, b ∈ Q

that act cancellatively on T , the morphisms φa and φb coincide.

Remark 3.2. Each term in Definition 3.1 is also defined in [4, Definition 2.9] for monoid 
elements. However, we are forced to make a distinction between monoid elements and 
monoid module elements (these objects coincide in the setting of [4]). In particular, “can-
cellative” and “nilpotent” (Definition 3.1) are properties of monoid elements, whereas 
“partly cancellative” is a property of monoid module elements. Roughly speaking, “can-
cellative” and “nilpotent” describe how a particular q ∈ Q acts on different module 
elements, whereas “partly cancellative” describes how different monoid elements act on 
a particular t ∈ T .

Definition 3.3. A Q-module T is

• primary if each q ∈ Q is either cancellative or nilpotent on T .
• mesoprimary if it is primary and each t ∈ T is partly cancellative.

A congruence ∼ on T is primary (respectively, mesoprimary) if T/ ∼ is a primary 
(respectively, mesoprimary) Q-module.
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Lemma 3.4. Fix a congruence ∼ on Q. The Q-module T = Q/ ∼ is (meso)primary in 
the sense of Definition 3.3 if and only if ∼ is a (meso)primary monoid congruence in 
the sense of [4, Definition 2.12].

Proof. For q ∈ Q let q denote the image of q modulo ∼. An element q ∈ Q acts can-
cellatively on T if and only if its image modulo ∼ is cancellative, and q acts nilpotently 
on T if and only if it has nilpotent image modulo ∼. This proves that T is a primary 
Q-module if and only if ∼ is primary as a monoid congruence. Lastly, assuming ∼ is 
P -primary, notice that for a, b /∈ P , φa = φb if and only if a = b ∈ T , so each q ∈ T

is partly cancellative as a monoid element if and only if it is partly cancellative as an 
element of a Q-module. This completes the proof. �
Remark 3.5. We now generalize witnesses and key witnesses from [4] to the setting of 
monoid module congruences. Definition 3.6, while complex, closely resembles [4, Defini-
tion 4.7]; see the original text for several motivating examples. We use key witnesses to 
construct the mesoprimary components (Definition 4.3) appearing in the monoid module 
congruence decomposition in Theorem 4.6.

Definition 3.6. Let T be a Q-module, P ⊂ Q a prime ideal, and ∼ a congruence on T . 
For t ∈ T , let t denote the image of t in TP , and for p ∈ P , let φp : TP → TP denote 
the morphism given by the action of p.

(1) An element w ∈ T is exclusively maximal in a set A ⊂ TP if w is the unique maximal 
element of A under Green’s preorder.

(2) An element w ∈ T with non-nil image in TP is a ∼-witness for P if for each generator 
p ∈ P , the class of w is non-singleton under ker(φp) and w is not exclusively maximal 
in that class.

(3) An element w′ ∈ T is an aide for a ∼-witness w for P and a generator p ∈ P if w
and w′ have distinct images in TP but are not distinct under ker(φp).

(4) An element w with non-nil image in TP is a key ∼-witness for P if w is non-singleton 
under 

⋂
p∈P ker(φp) and w is not exclusively maximal in this non-singleton class.

(5) The prime P is associated to T if T has a witness for P , or if P = ∅ and T has a 
Q-orbit with no nil.

Remark 3.7. Prior to [4], primary decomposition of monoid congruences was developed 
by Grillet [1], but these decompositions are too course to effectively recover primary 
components at the level of binomial ideals [4, Example 2.22]. Nevertheless, in an effort 
to create a more complete picture, we also generalize primary congruences to our current 
setting of monoid module congruences.

Theorem 3.8. A finitely generated Q-module T is primary if and only if it has exactly 
one associated prime ideal.



C. O’Neill / Journal of Algebra 480 (2017) 59–78 67
Proof. Suppose T is primary. The set of elements with nilpotent action on T is a prime 
ideal P ⊂ Q. Since P is finitely generated, some non-nil element w ∈ T satisfies P ·w ⊂
N(T ). This means w is a witness for P , so P is associated to T . Since Q \ P acts 
cancellatively on T , any prime associated to T is contained in P . Moreover, localizing T
at any prime P ′ contained in P identifies any element w ∈ T with the nil in its orbit, 
since some p ∈ P \ P ′ gives p ·w ∈ N(T ). Thus, any associated prime must also contain 
P , which implies P is the only associated prime.

Now suppose T has only one associated prime P ⊂ Q. If P = ∅, then every element of 
Q acts cancellatively on T . Now suppose P is nonempty, and fix t ∈ T . The submodule 〈t〉
is isomorphic to Q modulo some congruence. Since each witness in 〈t〉 is a witness for P , 
〈t〉 is P -primary by [4, Corollary 4.21]. This means each p ∈ P acts nilpotently on 〈t〉 and 
each f ∈ Q \P acts cancellatively on 〈t〉. Since t is arbitrary, each p ∈ P acts nilpotently 
on T and each f ∈ Q \ P acts cancellatively on T , meaning T is P -primary. �

Lemma 3.9 generalizes [4, Lemma 2.19] and is central to several proofs, including 
Theorems 3.12 and 4.6.

Lemma 3.9. Fix a connected, P -primary Q-module T , and set F = Q \ P . Let T/F
denote the quotient of T by the congruence

t ∼ t′ whenever f · t = g · t′ for f, g ∈ F

Then Green’s preorder on T/F is a partial order, and T/F is finite.

Proof. Since T is P -primary, the morphisms T ·f−→ T are injective for all f ∈ F , so ∼
is a well-defined congruence. If 〈t〉 = 〈t′〉, then f · t = t′ and g · t′ = t for some f, g ∈ Q. 
This means f · g · t = t, so f and g are not nilpotent and lie in F , meaning t and t′ are 
identified in T/F . This proves Green’s preorder is antisymmetric.

Now, the remaining statement is trivial if P = ∅, so suppose P is nonempty. T must 
have a nil ∞ since Q contains elements with nilpotent action on T . The image of ∞ in 
T/F remains nil as well. Thus, since Q and T are both finitely generated, T/F must be 
finite. �
Definition 3.10. Fix a Q-module T , a monoid prime P ⊂ Q, and a non-nil w ∈ T .

(1) Let GP ⊂ QP denote the unit group of QP , and let KP
w ⊂ GP denote the stabilizer 

of w ∈ TP under the action of GP .
(2) Let ≈ denote the congruence on QP that sets a ≈ b whenever

(a) a and b lie in PP , or
(b) a and b lie in GP and a − b ∈ KP

w .
(3) The P -prime congruence of T at w is given by ker(Q → QP / ≈).
(4) The P -prime congruence at w is associated to T if w is a key witness for T .
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Remark 3.11. In Definition 3.10, we are forced to make another distinction between T
and Q: should an associated prime congruence of T be a congruence on T or on Q? The 
condition for a monoid congruence ∼ to be P -mesoprimary can be characterized in terms 
of the congruence on Q \P induced by its action on Q/ ∼ [4, Corollary 6.7]. The partly 
cancellative condition is what ensures that each t ∈ T induces the same congruence, 
which in our setting is a condition on elements of T .

Next, we characterize mesoprimary Q-modules in terms of their associated prime 
congruences, generalizing [4, Theorem 6.7] and [4, Corollary 6.7].

Theorem 3.12. For a Q-module T , the following are equivalent.

(1) T is mesoprimary.
(2) T has exactly one associated prime congruence.
(3) T is P -primary, and for F = Q \ P ,

ker(F → 〈t〉) = ker(F → 〈t′〉)

for each non-nil t, t′ ∈ T .

Proof. From any of these conditions, we conclude that T is primary, say with associated 
prime P . Notice that ker(F → 〈t〉) is the prime congruence at t restricted to F . If these 
congruences coincide for all t ∈ T , then in particular they coincide for all witnesses, so 
T has exactly one associated prime congruence. This proves (3) ⇒ (2).

Now suppose T is mesoprimary, and fix t, t′ /∈ N(T ). Then since t and t′ are both 
partly cancellative, a · t = b · t if and only if a · t′ = b · t′ for a, b /∈ P . This means the 
kernels ker(F → 〈t〉) and ker(F → 〈t′〉) coincide. This proves (1) ⇒ (3).

Lastly, suppose T has exactly one associated prime congruence, and fix t ∈ N(T ). Fix 
a, b /∈ P and let φa, φb : T → T denote the actions of a and b on T , respectively. By 
Theorem 2.18, 〈t〉 ∼= Q/ ∼ for some congruence ∼. Since T has only one associated prime 
congruence, so does ∼, so by [4, Theorem 6.1], ∼ is mesoprimary. This means a · t = b · t
if and only a · w = b · w for any witness w ∈ 〈t〉. Since T has only one associated prime 
congruence, these actions also coincide for all witnesses in T , meaning φa = φb. This 
proves (2) ⇒ (1), thus completing the proof. �

We conclude this section with Theorem 3.13, which ensures that the mesoprimary 
decomposition constructed in Theorem 4.6 has finitely many components.

Theorem 3.13. Any finitely generated Q-module T has only finitely many Green’s classes 
of key witnesses.

Proof. Fix a generating set g1, . . . , gk for T . For each gi, consider the map φi : Q → 〈gi〉
and let ∼i= kerφi. The induced isomorphism Q/ ∼i→ 〈gi〉 gives a bijection between key 
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Fig. 2. The monoid module T = T1 ⊕ T2 in Example 4.1.

T -witness and key ∼i-witnesses, and by [4, Theorem 5.6], each congruence ∼i has only 
finitely many Green’s classes of key witnesses. Since g1, . . . , gk generate T , this bounds 
the number of Green’s classes of key T -witnesses. �
4. Mesoprimary decomposition of monoid modules

In this section, we construct a mesoprimary decomposition for any monoid module 
congruence ∼ (with one caveat; see Remark 4.8). First, we construct a mesoprimary 
component for each ∼-witness.

Example 4.1. Let Q = N
2 and write R = k[Q] = k[x, y]. Let T1 denote the Q-module 

grading M1 = R/〈x2, y2〉, let T2 denote the Q-module grading the R-module

M2 = (R⊕R)/〈(x2 − 1)e1, (x2 − 1)e2, (x− 1)ye1, y(e1 − e2), y2e1〉,

where e1 and e2 denote the generators of M ⊕M . Write ∞1 and ∞2 for the nil elements 
of T1 and T2, respectively, and let T = T1 ⊕ T2. See Fig. 2 for a depiction.

The mesoprimary decomposition of T constructed in Theorem 4.6 has 4 components: 
one component is the identity congruence on T1 and identifies every element of T2
with ∞1; the remaining 3 components (one for each key witness e1, e2, ye1 ∈ T2) de-
compose T2 and each identifies every element of T1 with ∞2. The only non-identity 
relation in the common refinement of all 4 congruences relates ∞1 and ∞2.

Definition 4.2. Fix a Q-module T . A cogenerator of T is a non-nil element t ∈ T with 
q · t ∈ N(T ) for every nonunit q ∈ Q. A Q-module T is coprincipal if it is P -mesoprimary 
and all its cogenerators lie in the same Green’s class in TP . A congruence ∼ on T is 
coprincipal if T/ ∼ is a coprincipal Q-module.

Definition 4.3. Fix a Q-module T , a prime P ⊂ Q, and a witness w ∈ T for P . Let q
denote the image of q ∈ Q in QP , and t denote the image of t ∈ T in TP .

• The order ideal TP
�w cogenerated by w at P consists of those a ∈ T whose image 

a ∈ TP precedes w under Green’s preorder.
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• The congruence cogenerated by w along P is the equivalence relation ∼P
w on T that 

sets all elements outside of TP
�w equivalent and sets a ∼P

w b whenever a and b differ 
by a unit in TP and q · a = q · b = w ∈ TP for some q ∈ QP .

Lemma 4.4 justifies the nomenclature in Definition 4.3.

Lemma 4.4. The congruence cogenerated by w along P is a coprincipal congruence on T
cogenerated by w. Furthermore, T/ ∼P

w is properly connected, and if T \TP
�w is nonempty, 

then it is the nil class of T/ ∼P
w.

Proof. Let T ′ = T/ ∼P
w . Every non-nil element of T ′ has the image of w as a multiple, 

so T ′ is properly connected, and it is clear that the image of T \ TP
�w is nil modulo ∼P

w

as long as it is nonempty. Furthermore, w cogenerates ∼P
w since the result of acting by 

any p ∈ P lies outside TP
�w, and any t ∈ T with non-nil image in T ′ satisfies q · t = w for 

some q ∈ Q, so every cogenerator for ∼P
w lies in the Green’s class of w in TP .

It remains to show that T ′ is mesoprimary. By Lemma 3.9, TP
�w has finitely many 

Green’s classes in TP , so each p ∈ P acts nilpotently on T ′ and thus T ′ is P -primary. 
Furthermore, for each t ∈ T and for a, b ∈ Q \ P , we have a · t ∼P

w b · t if and only 
if a · w ∼P

w b · w. In particular, the P -prime congruences at the non-nil elements of T ′

coincide, so by Theorem 3.12, T ′ is mesoprimary. �
Definition 4.5. Fix a Q-module T and a congruence ∼ on T .

(1) An expression of ∼ as the common refinement of finitely many mesoprimary con-
gruences ∼1, ∼2, . . . is a mesoprimary decomposition if, for each component ∼i with 
associated prime ideal Pi ⊂ Q, the Pi-prime congruences of ∼ and ∼i at each co-
generator for ∼i coincide.

(2) A mesoprimary decomposition of ∼ is key if, for each Pi-mesoprimary component 
∼i, every cogenerator for ∼i is a key Pi-witness for ∼.

We are now ready to give the main result of this paper. Theorems 3.13 and 4.6 together 
imply, as a special case, that every monoid module with at most one nil element admits 
a key mesoprimary decomposition (see Remark 4.8).

Theorem 4.6. Fix a congruence ∼ on a Q-module T . The common refinement of the 
coprincipal congruences cogenerated by the key witnesses of ∼ identifies only the nil 
elements of T/ ∼.

Proof. The nil class of the congruence cogenerated by a witness w ∈ T for P contains 
the nil in the connected component of w (if one exists), as well as every element outside 
of this connected component. This means any P -coprincipal component identifies all of 
the nil elements of T .
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Now, fix distinct a, b ∈ T and assume a is not nil. If a and b lie in distinct connected 
components, then any cogenerated congruence whose order ideal contains a does not 
identify a and b. Assuming a and b lie in the same connected component, it suffices 
to find a monoid prime P ⊂ Q and a key witness w ∈ T for P such that a and b
are not equivalent under ∼P

w . Fix a prime P minimal among those containing the ideal 
I = {q ∈ Q : q · a = q · b}. Notice that I (and thus P ) must be nonempty since a and b
lie in the same connected component.

Since P contains I, the elements a and b have distinct images a and b in TP , and 
each q ∈ IP also satisfies q · a = q · b. By minimality of PP over IP , there is a maximal 
Green’s class among the elements {q ∈ QP : q · a �= q · b}. Pick an element q ∈ Q such 
that q lies in this Green’s class, and set w = q · a ∈ T . Then w is a key witness for P by 
construction, and the localization of ∼P

w does not equate a and b in TP , so ∼P
w does not 

equate a and b in T . This completes the proof. �
Corollary 4.7. Fix a Q-module T and a congruence ∼ on T . If T/ ∼ has at most one nil 
element, then ∼ admits a key mesoprimary decomposition.

Proof. Apply Theorem 4.6 and Lemma 4.4 to T/ ∼. �
Remark 4.8. Theorem 4.6 states that mesoprimary decomposition of monoid modules 
fails to distinguish nil elements from one another, and that this is the only obstruction to 
constructing mesoprimary decompositions in this setting. Fortunately, for the purposes 
of decomposing graded modules over a monoid algebra, these elements all correspond to 
zero in the module and thus are indistinguishable.

5. The category of tightly graded kkk[Q]-modules

Section 2 defined the category Q-Mod of Q-modules, the setting in which mesoprimary 
decomposition of monoid congruences is generalized in the prior sections of this paper. In 
this section, we define the category BQ of tightly graded k[Q]-modules (Definition 5.6), 
the objects of which are graded by objects of Q-Mod. It is to these graded modules that 
we generalize mesoprimary decomposition of binomial ideals in the subsequent sections 
of this paper.

Definition 5.1. Fix a Q-module T and a k[Q]-module M .

• M is graded by T (or just T -graded) if there exists a collection of finite dimensional 
vector spaces {Mt}t∈T such that M ∼=

⊕
t∈T Mt as Abelian groups, and for each 

q ∈ Q, xq ·Mt ⊂ Mq·t.
• The grading of M by T is fine (or M is finely-graded by T ) if dimk Mt ≤ 1 for each 

t ∈ T .
• A fine grading of M by T is tight (or M is tightly-graded by T ) if
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– Mt �= 0 for each non-nil t ∈ T ,
– the orbit of each ∞ ∈ N(T ) with M∞ = 0 is properly connected, and
– whenever m ∈ Mt is nonzero with xq ·m = 0, we have dimk Mq·t = 0.

Remark 5.2. A tight grading of a k[Q]-module M by a Q-module T ensures that we can 
determine enough of the structure of M from the grading. The first condition ensures 
that T does not have any unnecessary elements, and the second ensures each connected 
component has its own nil (see Proposition 5.7). Example 5.3 demonstrates what can 
cause the third condition to fail.

Example 5.3. The k[x]-module M = 〈x2〉 ⊕ (k[x]/〈x2〉) is finely graded by N, but since 
x · (0, x) is zero, this grading is not tight. However, M is tightly graded by the disjoint 
union of 〈2〉 ⊂ N (which tightly grades 〈x2〉 ⊂ k[x]) and N/〈2〉 (which tightly grades 
k[x]/〈x2〉). This grading more accurately reflects the algebraic structure of M .

In order to study finely graded k[Q]-modules, it suffices to consider tight gradings. In 
particular, every tight grading is fine, and Theorem 5.4 shows that a tight grading can 
be recovered from any fine grading by choosing an appropriate Q-module.

Theorem 5.4. Fix a k[Q]-module M finely graded by a Q-module T . Then there exists a 
Q-module that tightly grades M .

Proof. We construct the desired Q-module in two steps. First, define a Q-module T ′

that, as a set, consists of those t ∈ T for which dimk Mt = 1, along with a distinguished 
element ∞. Given t ∈ T ′ and q ∈ Q, define q · t ∈ T ′ by

q · t =
{

q · t ∈ T xqMt �= 0
∞ otherwise.

That is, the result of acting on t by q in T if xqMt �= 0, and ∞ ∈ T ′ otherwise. The 
Q-module T ′ also finely grades M since each nonzero Mt for t ∈ T has a corresponding 
degree in T ′. Moreover, the only degree t ∈ T ′ with dimk Mt = 0 is t = ∞, and whenever 
xqMt = 0, we have q · t = ∞. In particular, T ′ satisfies the first and third conditions for 
a tight grading in Definition 5.1.

Next, let T ′
1, . . . , T

′
r denote the distinct Q-orbits of T ′ \ {∞}, and let T ′′ denote 

the disjoint union of T ′
1, . . . , T

′
r along with distinguished elements ∞1, . . . , ∞r. Define a 

Q-module structure on T ′′ so that ∞i is nil for each i ≤ r, and for t ∈ T ′
i and q ∈ Q,

q · t =
{

∞i q · t = ∞
q · t ∈ T ′

i otherwise.

Since the orbit of each nil ∞i of T ′′ with trivial support in M is properly connected, T ′′

tightly grades M . This completes the proof. �
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Definition 5.5. Suppose M and N are k[Q]-modules, graded by Q-modules T and U , 
respectively.

• A homomorphism φ : M → N is said to be graded with degree ψ ∈ HomQ(T, U) if 
for each t ∈ T , we have φ(Mt) ⊂ Nψ(t).

• Let HomR(M, N)ψ denote the set of morphisms φ : M → N of degree ψ, and

HomR(M,N) =
⊕

ψ∈HomQ(T,U)

HomR(M,N)ψ

for the set of graded homomorphisms from M to N . HomR(M, N) is naturally a 
HomQ(T, U)-graded k[Q]-module with ring action (xq · φ)(m) = φ(xq ·m) for each 
m ∈ M and q ∈ Q.

• A homomorphism φ ∈ HomR(M, N) is homogeneous if it is a sum of homomorphisms 
with homogeneous degree in HomQ(T, U).

Definition 5.6. The category of tightly graded k[Q]-modules is the category BQ whose 
objects are pairs (M, T ) consisting of a Q-module T together with a k[Q]-module M
tightly graded by T , and whose morphisms are graded k[Q]-module homomorphisms. 
When there is no confusion, we often write M ∈ BQ to denote the k[Q] module and use 
TM to denote the Q-module which tightly grades M .

Proposition 5.7. The category BQ is closed under taking direct sums and tensor products. 
More precisely, given two k[Q]-modules M and N tightly graded by Q-modules T and U , 
respectively, the direct sum M ⊕N is naturally graded by T ⊕U , and the tensor product 
M ⊗k[Q] N is naturally graded by T ⊗Q U .

Proof. The homogeneous elements of M⊕N have the form (m, 0), (0, n) for homogeneous 
m ∈ Mt, n ∈ Nu, and the degree map is given by deg(m, 0) = t ∈ T ⊕U , deg(0, n) = u ∈
T ⊕U . The homogeneous elements of M ⊗k[Q] N have the form m ⊗ n for homogeneous 
m ∈ Mt, n ∈ Nu, and the degree map is given by deg(m ⊗ n) = t ⊗ u. Notice that

deg(m⊗ (xq · n)) = t⊗ (q · u) = (q · t) ⊗ u = deg((xq ·m) ⊗ n),

so this degree map is well defined. �
6. Mesoprimary kkk[Q]-modules

In this section, we define binomial submodules of tightly graded k[Q]-modules (Defini-
tion 6.1), generalizing the concept of “binomial ideal”. We define mesoprimary binomial 
submodules (Definition 6.3), which, like mesoprimary binomial ideals, are characterized 
by their unique associated mesoprime ideal (Theorem 6.7).
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Definition 6.1. Fix a tightly T -graded k[Q]-module M and a nonzero element m ∈ M .

• The element m is a monomial if it is homogeneous under the T -grading.
• The element m is a binomial if it is a sum of at most two monomial elements.
• A submodule N ⊂ M is monomial (resp. binomial) if it is generated by monomial 

(resp. binomial) elements.

Lemma 6.2. Fix a tightly T -graded k[Q]-module M and a binomial submodule N ⊂ M . 
Let ∼N denote the equivalence relation on T which sets a ∼N b whenever ma +mb ∈ N

for some nonzero ma ∈ Ma, mb ∈ Mb. Then ∼N is a congruence on T , and M = M/N

is tightly graded by T = T/ ∼N .

Proof. It is clear that ∼N is a congruence on T , and that T finely grades M . If t ∈ T is 
non-nil, then each representative t ∈ T for t is non-nil, meaning dimk M t = 1. Addition-
ally, if xq ·m = 0 for some nonzero m ∈ M t, then any nonzero m ∈ M whose image in 
M equals m satisfies xq ·m = 0. Since T tightly grades M , this means dimk Mq·t = 0, so 
dimk Mq·t = 0. Lastly, if t ∈ T is nil and dimk M t = 0, then each representative t ∈ T

of t is nil and satisfies dimk Mt = 0. As such, N cannot contain any nonzero binomials 
whose monomials have image of degree t in M , so T tightly grades M , as desired. �
Definition 6.3. A tightly T -graded k[Q]-module M is mesoprimary if T is a mesopri-
mary Q-module and M∞ = 0 for each nil ∞ ∈ T . A binomial submodule N ⊂ M is 
mesoprimary if M/N is a mesoprimary k[Q]-module.

Example 6.4. If I ⊂ k[Q] is a binomial ideal, then k[Q]/I is tightly T -graded for T =
Q/ ∼I . Moreover, k[Q]/I is mesoprimary when T is mesoprimary and I is maximal 
among binomial ideals inducing the congruence ∼I . By Lemma 3.4, this is precisely 
when I is mesoprimary; see [4, Definition 10.4].

Definition 6.5 generalizes [4, Definition 12.1].

Definition 6.5. Fix a tightly T -graded k[Q]-module M , and a binomial submodule 
N ⊂ M . Fix a monoid prime P ⊂ Q, and let G denote the unit group of QP .

• The monomial localization of M at P , denoted MP , is the k[Q]P -module obtained 
by adjoining to M the inverses of all monomials outside of the monomial ideal mP =
〈xp : p ∈ P 〉.

• An element w ∈ T is an N -witness for P if w is a ∼N -witness for P on T , and w
is essential if a nonzero element of Mw is minimal (under Green’s preorder) among 
the monomials of some element m ∈ M annihilated by mP in MP /NP . A nonzero 
monomial mw ∈ Mw is called a monomial P -witness for N .

• Fix a monomial N -witness m ∈ Mw for P . The stabilizer of w along a prime P ⊂ Q

is the subgroup KP
w ⊂ GP fixing the class of w in TP . The character at m is the 
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homomorphism ρ : KP
w → k

∗ such that (Iρ,P )P = ann(m) + mP , where m denotes 
the image of m in MP . The P -mesoprime of M at m is the mesoprime ideal Iρ,P .

• If m ∈ Mw is an essential N -witness for P , we say the mesoprime Iρ,P is associated 
to N , and m is an N -witness for Iρ,P .

Proposition 6.6 generalizes [4, Lemma 12.4], and can be proven using a similar argu-
ment to Theorem 3.13.

Proposition 6.6. Any binomial submodule of a tightly graded k[Q]-module has finitely 
many essential witnesses.

Theorem 6.7 generalizes [4, Proposition 12.10], and may fail to hold if the grading 
Q-module is not properly connected; see Example 6.8.

Theorem 6.7. Fix a tightly T -graded k[Q]-module M with T properly connected, and fix 
a binomial submodule N ⊂ M . Then N is mesoprimary if and only if N has exactly one 
associated mesoprime.

Proof. Let M = M/N and T = T/ ∼N . First, suppose N has exactly one associated 
mesoprime Iρ,P . This means the P -prime congruences agree at all N -witnesses, so T
has exactly one associated prime congruence, and thus is mesoprimary. Furthermore, if 
M∞ �= 0 for some nil ∞ ∈ T , then the associated mesoprime at any nonzero element of 
M∞ differs from the associated mesoprime in any non-nil degree t ∈ T with q · t = ∞
for some q ∈ Q.

Next, suppose N is mesoprimary. Fix N -witnesses w, w′ ∈ T with associated meso-
primes Iρ,P and Iρ′,P , respectively, and suppose w = q · w′. Since T has exactly one 
associated prime congruence, multiplication by xq induces an isomorphism Iρ,P → Iρ′,P , 
that is, the associated mesoprimes at w and w′ coincide. Since T is properly connected, 
this shows that the associated mesoprimes at every M -witness coincide. �
Example 6.8. Resuming notation from Theorem 6.7, the result may fail to hold in general 
if T is not properly connected. Let I = 〈x −1, y〉, J = 〈x −2, y〉 ⊂ k[x, y], M = k[x, y]/I⊕
k[x, y]/J , and T = Q/ ∼I ⊕Q/ ∼J with nils identified. Even though M is mesoprimary, 
it has two distinct associated mesoprimes, one for each connected component of Q/ ∼I

⊕Q/ ∼J .

7. Mesoprimary decomposition of binomial submodules

In this section, we use mesoprimary submodules (Definition 6.3) to construct a meso-
primary decomposition of any binomial submodule of a tightly graded k[Q]-module 
(Theorem 7.4), thus completing our answer to Problem 1.2.
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Definition 7.1. Denote by M a tightly T -graded k[Q]-module, N ⊂ M a binomial sub-
module, P ⊂ Q a prime, and mw ∈ Mw a monomial N -witness for P .

• The monomial submodule cogenerated by w along P is the submodule MP
w (N) of M

generated in those degrees u ∈ T that lie outside of the order ideal TP
≤w cogenerated 

by w along P under the congruence ∼N .
• The P -mesoprime component of N cogenerated by w is the preimage WP

w (I) in M
of the submodule NP + CP

w (N) + MP
w (N) ⊂ MP , where

CP
w (N) = 〈ma −mb : xq(ma −mb) ∈ Mw〉.

Example 7.2. Resuming notation from Definition 7.1, if M = k[Q] and N = I is a 
binomial ideal, then CP

w (I) = Iρ,P ⊂ M , so in this case Definition 7.1 is equivalent 
to [4, Definition 12.13]. In general, we have Iρ,PMP ⊂ CP

w (I), but equality need not 
hold. Let Q = N

2, M = (k[x, y]/〈y − xy, y2〉)⊕2, and T the Q-module that tightly 
grades M . Write e1 and e2 for the generators of the summands of M , and let N =
〈ye1 − ye2〉, w = ye1. Then the associated mesoprime at w is Iρ,P = 〈1 − x, y〉 and 
WP

w (N) = 〈e1−e2, e1(1 −x), e2(1 −x)〉. Here, WP
w (N) must contain the binomial e1−e2

in order to induce the desired coprincipal congruence on T , and this is not captured in 
the combinatorial data of Iρ,P alone.

Proposition 7.3. Denote by M a tightly T -graded k[Q]-module, N ⊂ M a binomial sub-
module, P ⊂ Q a prime, and w ∈ T an N -witness for P . The submodule WP

w (N) is 
mesoprimary with associated mesoprime Iρ,P . In particular, if N induces the congruence 
∼ on T , then WP

w (N) induces the coprincipal congruence ∼P
w.

Proof. Let ≈ denote the congruence induced by WP
w (N). We can see from the definitions 

that ∼P
w refines ≈, so it remains to show that no further relations are added. Since the 

congruences induced by NP and CP
w (N) both refine ∼P

w , it suffices to show that the nil 
class of ≈ is identical to that of ∼P

w . That is, we must check that whenever a ∼ b and 
a ≈ b for non-nil a, b ∈ T , these relations are induced by the same binomial elements 
in NP and CP

w (N). Suppose ma − mb ∈ N for nonzero ma ∈ Ma, mb ∈ Mb such that 
a ≈ b but ma, mb /∈ MP

w (N). Since a, b ∈ TP
�w(∼), we can find q ∈ Q so that q · a and 

q · b are Green’s equivalent to w in TP . This means xqma − xqmb ∈ Mw ∩N , and since 
w is not in the nil class of ∼, we must have xqma − xqmb = 0. In particular, this means 
ma −mb ∈ CP

w (N), as desired. �
Theorem 7.4. Any binomial submodule N of a tightly T -graded k[Q]-module M equals 
the intersection of the coprincipal components cogenerated by its essential witnesses.

Proof. Pick an element m ∈ M outside of N . The goal is to find an essential witness w
and a monoid prime P such that m lies outside of the coprincipal component WP

w (N).
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First, suppose the image of m lies outside of the localization NP along a maximal 
prime P of Q. Replacing m with a monomial multiple of m, it suffices to assume that 
mPm ⊂ N , that is to say, m is annihilated (modulo N) by the maximal ideal mP . This 
means some monomial of m has as its graded degree an essential witness w for P . By 
the minimality of w, the image of m modulo WP

w (N) lies in the image of Mw modulo 
WP

w (N), which is nonzero by Proposition 7.3.
Next, suppose the image of m under localization along some non-maximal monoid 

prime P lies outside of NP . The above argument implies that the localized image of m
lies outside of some P -coprincipal component of NP , which by Definition 7.1 equals the 
localization WP of a P -coprincipal component W of N . Since localizing W along P is 
injective, this completes the proof. �
8. Primary decomposition of binomial submodules

In this section, we extend the results of [4, Section 15] to construct a primary decom-
position for any binomial submodule of a tightly graded k[Q]-module. More specifically, 
the results presented in this section directly parallel those found in [4, Proposition 15.1], 
[4, Corollary 15.2], and [4, Theorem 15.4], used to construct primary decompositions of 
mesoprimary binomial ideals over an algebraically closed field. Corollary 8.3, together 
with Theorem 7.4, yields a combinatorial method of primarily decomposing a binomial 
submodule whenever k = k is algebraically closed.

Proposition 8.1. Fix a tightly T -graded k[Q]-module M and a mesoprimary binomial 
submodule N ⊂ M . The associated primes of N are precisely the associated primes of its 
unique associated mesoprime Iρ,P . In particular, N is primary if and only if its associated 
mesoprime is prime.

Proof. Suppose TP = TP / ∼N has unit group G. Notice that localizing along P induces 
an injection M/N ↪→ (M/N)P since the monomials outside of mP are nonzerodivi-
sors on the quotient modulo any P -mesoprimary ideal. Moreover, by Theorems 6.7
and 3.12, (M/N)P has finitely many nonzero (TP /G)-graded pieces, all isomorphic to 
(k[Q]/Iρ,P )P . The partial order on TP /G afforded by Lemma 3.9 induces a filtration of 
(M/N)P by MP -submodules, each free of finite rank as a module over (k[Q]/Iρ,P )P . �
Theorem 8.2. Suppose k = k is algebraically closed. Fix a tightly T -graded k[Q]-module 
M and a mesoprimary binomial submodule N ⊂ M . If Iρ,P is the unique associated 
mesoprime of N and Iρ,P =

⋂
σ Iσ,P is the unique primary decomposition of Iρ,P from 

[4, Proposition 11.9], then

N =
⋂

σ(N + Iσ,PM)

is the unique minimal primary decomposition of N .
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Proof. Each submodule N+Iσ,PM ⊂ M is binomial and mesoprimary, and thus primary 
by Proposition 8.1. The intersection 

⋂
σ(N + Iσ,PM) certainly contains N , and the 

converse follows from the equality N = N + Iρ,PM . �
Corollary 8.3. Suppose k = k is algebraically closed. Every binomial submodule N ⊂ M

of a tightly T -graded k[Q]-module M admits a primary decomposition in which each 
component is again binomial.

Proof. Apply Theorem 7.4 to construct a mesoprimary decomposition for N , then apply 
Theorem 8.2 to each mesoprimary component. �
Remark 8.4. In [5], mesoprimary decomposition is used to combinatorially construct 
irreducible decompositions of binomial ideals, using “soccular decomposition” as an in-
termediate step. It remains an interesting question to extend soccular decomposition to 
tightly graded modules; we record this here.

Problem 8.5. Extend soccular decomposition [5] to tightly graded modules.
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