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Cohomology of partial smash products

Edson Ribeiro Álvares, Marcelo Muniz Alves and Maŕıa Julia Redondo ∗

Abstract

We define the partial group cohomology as the right derived functor
of the functor of partial invariants, we relate this cohomology with par-
tial derivations and with the partial augmentation ideal and we show
that there exists a Grothendieck spectral sequence relating cohomology
of partial smash products with partial group cohomology and algebra
cohomology.

2010 MSC: 18G60, 16S35.

1 Introduction

The concept of partial group actions and representations was introduced in
[7] and [12], motivated by the desire to study algebras generated by partial
isometries on a Hilbert space H. More specifically, the initial motivation
for introducing partial group actions in [7] was to study a certain Z-graded
algebra as a smash product with respect to a weaker form of Z-action. This
construction led to the concept of partial G-action on an algebra A, which
consists of a family of ideals {Dg}g∈G of A and a family of algebra isomor-
phisms αg : Dg−1 → Dg satisfying some compatibilities. The associated par-
tial skew group algebra A×αG is the k-vector space ⊕g∈GDg endowed with
a multiplication that resembles the one that defines a skew group algebra,
and coincides with it when Dg = A for every g in G. Partial representations
of G appear naturally as an ingredient in the study of the representations
of the partial skew group algebra A×α G, see [4].

In [5] the authors expand the concept of partial smash product to that of
a partial crossed product, with cocycles taking values in multiplier algebras,
and this approach culminated in a characterization of the G-graded algebras

∗The third author is a researcher from CONICET, Argentina. This work has been
supported by the project PICT 2011-1510, ANPCyT.
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which are isomorphic to a partial crossed product. On the other hand,
recently it was proved that a large class of Z-graded algebras, the Leavitt
path algebras of graphs [1], can be expressed as partial smash products [9]
over the free group generated by the arrows of the underlying quiver. Among
other developments, we may cite also the development of a Galois theory
for partial actions [6, 2, 10, 11].

Given an action of G on an algebra B, every unital ideal of B carries
a partial action: if A is such an ideal, with unit 1A, then a partial G-
action on A is obtained by defining Dg as the ideal A ∩ g(A) and αg to
be the restriction of the map b ∈ B �→ g(b) ∈ B to the ideal Dg−1 . If
a partial action arises in this manner, one says that this partial action is
globalizable, and its globalization is the subalgebra Ã = ⊕g∈Gg(A). It is
well-known that if Ã is a (unital) globalization for A then the partial smash
product A×αG and the skew group algebra Ã[G] are Morita equivalent [4].
Therefore, since Hochschild cohomology is a Morita invariant, in principle
one could substitute Ã[G] for A×αG in order to calculate the cohomology of
the former. However there is a downside to this approach: the globalization
Ã may not be a unital algebra, and the way that Ã is usually obtained,
as the subalgebra generated by vector subspaces of an algebra of functions,
makes it hard to describe it explicitly (e.g., by generators and relations).
Therefore one needs tools to calculate the Hochschild cohomology of A×αG
that do not involve the globalization Ã, and here lies the main contribution
of this work.

In Section 2 we recall, to the benefit of the reader, some definitions and
fundamental known results regarding partial actions and partial representa-
tions of a group. Here we recall the definition of partial representation, and
show that the category of partial representations ParRepG is equivalent to
the category of representations of the partial group algebra KparG, see [4].
We also recall the definition of partial action of G on an algebra A, we recall
the construction of the partial smash product A×αG and we show that the
category of representations of the partial smash product A×αG is equivalent
to the category of covariant pairs CovPair(A,G) whose objects are pairs in
RepA× ParRepG with some compatibility property. Finally we show that
the partial group algebra KparG is in fact a partial smash algebra B ×β G,
see [4, Thm 6.9].

In Section 3 we define the partial group cohomology as the right de-
rived functor of the functor of partial invariants. As a first step we show
that the functor of partial invariants is representable, that is, (−)Gpar �
HomKpar G(B,−). Later we relate this cohomology with partial derivations
and with the partial augmentation ideal.
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In Section 4 we show that there exists a Grothendieck spectral sequence
relating cohomology of partial smash products with partial group cohomol-
ogy and algebra cohomology.

2 Basic definitions

In this section we introduce all the necessary definitions and results that
will be used throughout this article. We refer to [4] for more details.

Let G be a group and K be any field. We denote by e the identity of G.

Definition 1. A partial representation of G on the K-vector space V is a
map π : G → EndK(V ) such that, for all s, t ∈ G, we have:

(a) π(s)π(t)π(t−1) = π(st)π(t−1);

(b) π(s−1)π(s)π(t) = π(s−1)π(st);

(c) π(e) = 1,

where 1 = idV is the identity map on V .

In other words, π is a partial representation ofG if the equality π(s)π(t) =
π(st) holds when the two sides are multiplied either by π(s−1) on the left
or by π(t−1) on the right.

Example 1. Every representation ofG is a partial representation; moreover,
if H is any subgroup of G and π : H → EndK(V ) is a partial representation
of H, then the map π̃ : G → EndK(V ) given by

π̃(g) =

{
π(g) if g ∈ H,

0 otherwise

defines a partial representation of G.

Example 2. Partial representations underlie important algebras generated
by partial isometries. Among the most interesting cases are the Cuntz-
Krieger algebras [3], that is, universal C∗-algebras generated by a finite set
of partial isometries {S1, . . . , Sn} subject to some conditions. In this case
there exists a partial representation of the free group Fn sending the i-th
canonical generator to Si. This idea was generalized in [8] to treat the case
of infinite matrices and was used to give the first definition of Cuntz-Krieger
algebras for transition matrices on infinitely many states.
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Let π : G → EndK(V ) and π′ : G → EndK(W ) be two partial represen-
tations of G. A morphism of partial partial representations is a linear map
f : V → W such that f ◦ π(g) = π′(g) ◦ f for any g ∈ G. The category
of partial representations of G, denoted as ParRepG is the category whose
objects are pairs (V, π), where V is a K-vector space and π : G → EndK(V )
is a partial representation of G on V , and whose morphisms are morphisms
of partial representations.

Let B, C be algebras and π1 : G → EndK B, π2 : G → EndK C partial
representations. Then we can define a partial representation of Cop, πop

2 :
G → EndK Cop given by πop

2 (g) = π2(g
−1) and so a partial representation

of B⊗Cop given by π(g) = π1(g)⊗ πop
2 (g).

In order to study the representations of G one can consider the group
algebra KG which is an associative algebra with the same representation
theory of the group G; in a similar fashion, we can define the partial group
algebra KparG, whose representations are in one-to-one correspondence with
the partial representations of G as follows.

Definition 2. Given a group G and a field K, the partial group algebra
KparG is the universalK-algebra with unit 1 generated by the set of symbols
{[g] : g ∈ G}, with relations:

(1) [e] = 1;

(2) [s−1][s][t] = [s−1][st];

(3) [s][t][t−1] = [st][t−1]; for all s, t ∈ G.

Clearly the map G → KparG given by g �→ [g] is a partial representation
of the group G on the algebra KparG.

Theorem 2.1. The category ParRepG is equivalent to the category RepKparG.

Proof. It is straightforward to check that, if V is any K-vector space and
πV : G → EndK(V ) is a partial representation of G in V , then πV extends
uniquely by linearity to a representation φV : KparG → EndK(V ) such that
φV ([g]) = πV (g), that is,

G

πV ����
���

���
���

���
g �→[g] �� KparG

φV

��
EndK(V )

Conversely, if φV : KparG → EndK(V ) is a representation, then πV (g) =
φV ([g]) gives a partial representation of G in V . �
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To see how partial representations of groups are closely related to the
concept of partial actions of groups, let us briefly remember some facts about
partial group actions.

Definition 3. Let G be a group and A an algebra, a partial action α of
G on A is given by a collection {Dg}g∈G of ideals of A and a collection
{αg : Dg−1 → Dg}g∈G of (not necessarily unital) algebra isomorphisms,
satisfying the following conditions:

(1) De = A, and αe = idA;

(2) αh(Dh−1 ∩D(gh)−1) = Dh ∩Dg−1 ;

(3) If x ∈ Dh−1 ∩D(gh)−1 , then αgαh(x) = αgh(x).

It can be easily seen that condition (2) can be replaced by the “weaker”
condition: αh(D(gh)−1) ⊇ Dh ∩Dg−1 .

Example 3. An action of G on an algebra A is clearly a partial action,
defining Dg = A for all g ∈ G and αg the map a ∈ A �→ g(a) ∈ A.
Moreover, every unital ideal of A carries a partial action: if B is such an
ideal, with unit 1B, then a partial G-action β on B is obtained by defining
Dg = B ∩ g(B) and βg to be the restriction of αg to the ideal Dg−1 . Note
that each ideal Dg of B is also unital, with unit ug = 1Bg(1B).

Consider two partial actions (A, {Dg}g∈G, {αg}g∈G) and (B, {Eg}g∈G, {βg}g∈G).
A morphism of partial actions

ϕ : (A, {Dg}g∈G, {αg}g∈G) → (B, {Eg}g∈G, {βg}g∈G)

is an algebra morphism ϕ : A → B such that ϕ(Dg) ⊂ Eg and

Dg−1

αg ��

ϕ

��

Dg

ϕ

��
Eg−1

βg

�� Eg

for all g ∈ G. Partial actions and the morphisms between them form a
category that we denote as ParActG.

Remark 1. a) Since the domain of αgαh is α−1
h (Dh ∩Dg−1), conditions

(2) and (3) in the previous definition say that αgh is only an extension
of αgαh. However, the partial relations hold, that is, αgαhαg−1 =

5



αghαg−1 and αh−1αgαh = αh−1αgh. In fact these partial relations can
be used to rephrase the definition of partial action, see [7, Proposition
4.1].

b) If A =
∑

g∈GAg is a G-graded algebra, by definition the product AgAh

is contained in Agh, but in general they do not coincide. However, if
AgAg−1Ag = Ag for any g ∈ G, the partial relations between ideals
hold, that is, AgAhAg−1 = AghAg−1 and Ah−1AgAh = Ah−1Agh, see
[7, Proposition 5.3].

A partial action of a group G on a algebra A enables us to construct a
new algebra, called the partial smash product (also refered to as the “partial
skew group ring”), denoted by A×α G. Basically

A×α G =
∑
g∈G

Dg#g

as a K-module and with the product defined as

(ag#g)(bh#h) = αg(αg−1(ag)bh)#gh.

Note that αg−1(ag) ∈ Dg−1 , bh ∈ Dh and therefore

αg(αg−1(ag)bh) ∈ αg(Dg−1Dh) ⊂ αg(Dg−1 ∩Dh) ⊂ Dg ∩Dgh ⊂ Dgh.

Remark 2. It is well known that the definitions of skew group rings and
of smash products coincide when the Hopf algebra considered is KG. Simi-
larly, the definitions of partial skew group ring and of partial smash product
coincide when the ideals Dg are of the form Aug.

Example 4. Let A be the commutative algebra A = k[x, y]/〈x2, y2〉, G =
〈g : g2 = 1〉 the cyclic group of order 2 and I = Ay the ideal generated by y
(generated by y and xy as a vector space). Consider the partial action α of
G on A given by Dg = I, αg(y) = xy, αg(xy) = y. Then the partial smash
product A ×α G is not associative. More precisely, taking u = xδ1 + xyδg
we have that (uu)u = 0 and u(uu) = xyδg, see [4, Example 3.5].

From now on we assume that the domains Dg are ideals of the form Aug
where the generators ug are central idempotents of A for each g ∈ G. This
condition naturally appears, for instance, in the description of a Leavitt
path algebra as a partial smash product [9] and in the development of the
Galois theory for partial actions [6, 2, 10]; it also determines whether the
partial action can be obtained as a restriction as in Example 3 [4, Theorem
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4.5]. In this case the partial smash product is automatically associative and
the formula of the product in A×α G simplifies to

(aug#g)(buh#h) = aαg(buhug−1)ugh#gh.

It is easy to verify that the map π0 : G → A×αG, given by π0(g) = ug#g
is a partial representation of the group G on the algebra A×α G.

The partial smash product has an important universal property. Let A
be an algebra on which the group G acts partially, consider the canonical
inclusion φ0 : A → A ×α G defined by φ0(a) = aue#e which is easily seen
to be an algebra monomorphism. Given a K-vector space V , a pair of
maps (φV , πV ) is said to be a covariant pair if φV : A → EndK(V ) is a
representation and πV : G → EndK(V ) is a partial representation such that

φV (αg(aug−1)) = πV (g)φV (a)πV (g
−1).

We denote CovPair(A,G) the category whose objects are covariant pairs
(φV , πV ), and a morphism between covariant pairs f : (φV , πV ) → (φW , πW )
is a linear map f : V → W such that f ◦πV (g) = πW (g) ◦ f and f ◦φV (g) =
φW (g) ◦ f for any g ∈ G.

The universal property of A×α G is given by the following result.

Theorem 2.2. Let A be an algebra on which the group G acts partially, V
a K-vector space and (φV , πV ) a covariant pair related to these data. Then
there exists a unique algebra morphism Φ : A×α G → EndK(V ) such that

A×α G

Φ

��

A

φ0

������������

φV ����
���

���
�� G

π0

������������

πV�����
���

���
�

EndK(V )

is commutative.

Proof. It is clear that the map Φ : A×αG → Endk(V ) defined by Φ(aug#g) =
φV (a)πV (g) gives the desired result. �

Corollary 2.3. Let A be an algebra on which the group G acts partially.
Then the category RepA×αG is equivalent to the category of covariant pairs
CovPair(A,G).
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A very important result in the theory of partial representations of groups
is that the partial group algebra KparG is always isomorphic to a partial
smash product. First, it is important to note that the partial group algebra
KparG has a natural G-grading. Indeed we can decompose, as a vector
space, the whole partial group algebra as

KparG =
∑
g∈G

Bg,

where each subspace Bg is generated by elements of the form [h1][h2]...[hn]
such that g = h1h2...hn, and it is easy to see that the product in KparG
makes BgBh ⊂ Bgh. Now, for each g ∈ G define the element eg = [g][g−1] ∈
KparG. One can prove easily that these eg are idempotents for each g ∈ G.
These elements satisfy the following commutation relation:

[g]eh = egh[g].

Indeed,

[g]eh = [g][h][h−1] = [gh][h−1]

= [gh][(gh)−1][gh][h−1] = [gh][(gh)−1][g]

= egh[g].

From this, one can prove that all eg commute among themselves. Define
the subalgebra B =< eg|g ∈ G >⊂ KparG. This is a commutative algebra
generated by central idempotents, and it is not difficult to prove that the
subalgebra B corresponds to the uniform subalgebra Be coming from the
natural G grading above presented. Then, we have the following two results.

Theorem 2.4. Given a group G, there is a partial action of G on the
commutative algebra B above defined, such that KparG = B ×β G.

Proof. In order to define a partial action of G on B, we have to give the
domains Dg and the isomorphisms βg : Dg−1 → Dg for each g ∈ G. As
the elements eg are central idempotents in B, define the ideals Dg = egB.
Clearly, these ideals are unital algebras with unit eg. Now, the partially
defined isomorphisms between these ideals are

βg(eg−1eh1 · · · ehn) = [g]eg−1eh1 · · · ehn [g
−1] = egegh1 · · · eghn .

It is easy to verify that these data indeed define a partial action of G on
B. In order to prove the isomorphism, let us use both universal properties,
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of the partial smash product and of the partial group algebra. First, the
map π0 : G → B ×β G given by π0(g) = eg#g is a partial representation of
the group G on the partial smash product. Then, there is a unique algebra
morphism π̂ : KparG → B×βG, which factorizes this partial representation.
This morphism can be written explicitly as

π̂([g1]...[gn]) = eg1eg1g2 · · · eg1···gn#g1 · · · gn.
On the other hand, the canonical inclusion of B into KparG and the canoni-
cal partial representation form a covariant pair relative to the algebra KparG
then there is a unique algebra morphism ϕ : B ×β G → KparG explicitly
given by

ϕ(egeh1 · · · ehn#g) = egeh1 · · · ehn [g].

Easily, one can verify that the morphisms π̂ and ϕ are mutually inverses,
completing the proof. �

Theorem 2.5. The K-vector space B admits a partial representation π :
G → EndK(B) defined by π(g)(x) = [g]x[g−1] for any g ∈ G, x ∈ B.

Proof. The map π(g)(x) = [g]x[g−1] defines a partial representation since
π(e) = idV because [e] = 1; π(s)π(t)π(t−1) = π(st)π(t−1) because

[s][t][t−1]x[t][t−1][s−1] = [st][t−1]x[t][(st)−1]

and analogously, π(s−1)π(s)π(t) = π(s−1)π(st). �

3 Partial group cohomology

In this section we define the partial group cohomology as the right de-
rived functor of the functor of partial invariants. As a first step we show
that the functor of partial invariants is representable, that is, (−)Gpar �
HomKpar G(B,−). Later we relate this cohomology with partial derivations
and with the partial augmentation ideal.

If G is a group and φV : KparG → EndK(V ) is an object in RepKparG,
the set of partial G-invariants of V is defined as

V Gpar = {v ∈ V : φV ([g])(v) = φV (eg)(v) for all g ∈ G}.
It is clear that V Gpar is a K-vector space and if f : V → W is a morphism
in RepKparG and v ∈ V Gpar , then

φW ([g])(f(v)) = f(φV ([g])(v)) = f(φV (eg)(v)) = φW (eg)(f(v)),

hence f induces a linear map fGpar : V Gpar → WGpar .
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Proposition 3.1. (−)Gpar : RepKparG → RepK is a left exact functor.

Proof. From the previous discussion, it is clear that (−)Gpar is a functor. To
see that it is left exact it is enough to see that there is a natural isomorphism

(−)Gpar � HomKpar G(B,−)

given by v �→ fv with fv(1) = v. Observe that f is uniquely defined by the
element f(1) since

eg1eg2 · · · egm = [h1][h2] · · · [hm]1[h−1
m ] · · · [h−1

1 ]

where h1 = g1 and hi = g−1
i−1gi for any i = 2, . . . ,m. Finally observe that

the fact that any f ∈ HomKpar G(B, V ) is a morphism in RepKparG implies
that

φV ([g])(f(1)) = f(φB([g])(1)) = f([g]1[g−1])

= f([g][g−1][g][g−1])

= f(φB([g][g
−1])(1))

= f(φB(eg)(1)) = φV (eg)(f(1))

and hence f(1) ∈ V Gpar . �

Definition 4. If G is a group and M is an object in RepKparG, then the
partial group cohomology groups of G with coefficients in M are defined as

H
n
par(G,M) = ExtnKpar G(B,M),

that is, Hn(G,M) is the right derived functor of (−)Gpar � HomKpar G(B,−).

In order to compute a KparG-projective resolution of B we start with
the following exact sequence in RepKparG given by

0 → IG → KparG
ε→ B → 0

where IG = Ker ε is the partial augmentation ideal and ε([g1] · · · [gn]) =
eg1eg1g2 · · · eg1g2···gn .
Lemma 3.2. The morphism ε : KparG → B given by ε([g1] · · · [gn]) =
eg1eg1g2 · · · eg1g2···gn verifies the following properties:

(a) ε(xy)x = xε(y) for any x, y ∈ KparG;

(b) ε(xy) = ε(xy)ε(x) for any x, y ∈ KparG.
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Proof. Take x = [g1] · · · [gr], y = [h1] · · · [hs]. Recall that B is commutative,
eg is idempotent and [g]eh = egegh[g]. Then we have that

xε(y) = [g1] · · · [gr]eh1eh1h2 · · · eh1h2···hs

= eg1eg1g2 · · · eg1···grh1h2···hs [g1] · · · [gr]
= ε(xy)x

and

ε(xy)ε(x) = eg1eg1g2 · · · eg1···grh1h2···hseg1eg1g2 · · · eg1···gr
= ε(xy).

�

Now we define the vector space of partial derivations as follows:

Derpar(G,M) = {δ ∈ HomK(KparG,M) : δ(a.b) = aδ(b) + ε(b)δ(a)

for any a, b ∈ KparG}.
In particular, we say that δ ∈ Derpar(G,M) is inner if δ([g]) = [g]m − egm
for some m ∈ M . We denote by Intpar(G,M) the space of inner partial
derivations.

Proposition 3.3. There is a natural isomorphism

HomKpar G(IG,−) � Derpar(G,−).

Proof. The map

HomKpar G(IG,M) → Derpar(G,M)

given by
f �→ f̂ , with f̂(x) = f(x− ε(x).1)

is a natural isomorphism of vector spaces. Using Lemma 3.2 we get that f̂
is a partial derivation:

f̂(xy) = f(xy − ε(xy).1) = f(xy − xε(y) + ε(xy)x− ε(xy)ε(x))

= xf(y − ε(y)) + ε(xy)f(x− ε(x))

= xf̂(y) + ε(xy)f̂(y).

�
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Theorem 3.4. Let G be a group and M an object in KparG. Then

H
0
par(G,M) = MGpar = HomKpar G(B,M);

H
1
par(G,M) = Derpar(G,M)/ Intpar(G,M);

H
n
par(G,M) = Extn−1

Kpar G
(IG,M), n ≥ 2.

Proof. Associated to the short exact sequence

0 → IG → KparG
ε→ B → 0

there is a long exact sequence

0 �� HomKpar G(B,M) �� HomKpar G(Kpar G,M) �� HomKpar G(IG,M)

�� Ext1Kpar G
(B,M) �� Ext1Kpar G

(Kpar G,M) �� Ext1Kpar G
(IG,M)

�� Ext2Kpar G
(B,M) �� Ext2Kpar G

(Kpar G,M) �� . . .

Since KparG is projective, we have that ExtnKpar G(KparG,M) = 0 for any
n ∈ N, so

H
n
par(G,B) = Extn−1

Kpar G
(IG,M)

for any n ≥ 2. Finally H1
par(G,B) is the cokernel of the map

M � HomKpar G(KparG,M) → HomKpar G(IG,M)

and hence the commutative diagram

HomKpar G(Kpar G,M) ��

∼=
��

HomKpar G(IG,M) �� ��

∼=
��

Ext1Kpar G
(B,M)

���
�
�

Intpar(G,M) �� Derpar(G,M) �� �� Derpar(G,M)/ Intpar(G,M)

yields the desired result. �

4 Spectral sequence

In this section we will show that there exists a Grothendieck spectral se-
quence relating cohomology of partial smash products with partial group
cohomology and algebra cohomology:
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Theorem 4.1. For any A×αG-bimodule M there is a third quadrant coho-
mology spectral sequence starting with E2 and converging to H∗(A×αG,M):

Ep,q
2 = Hq

par(G,Hp(A,M)) ⇒ Hp+q(A×α G,M).

We start by studying the behaviour of the functors that are considered
in the mentioned spectral sequence. For any pair of objects

φX : KparG → EndK(X) ∈ RepKparG

and
ΦM : (A×α G)e → EndK(M) ∈ Rep(A×α G)e,

we consider the object

Δ : (A×α G)e → EndK(X ⊗B M) ∈ Rep(A×α G)e

given by

Δ(aug#g ⊗ buh#h)(x⊗m) = φX([g])(x)⊗ ΦM (aug#g ⊗ buh#h)(m)

which is well defined since

Δ(aug#g ⊗ buh#h)(φX(es)(x)⊗m)

= φX([g])(φX(es)(x))⊗ ΦM (aug#g ⊗ buh#h)(m)

= φX([g]es)(x)⊗ ΦM (aug#g ⊗ buh#h)(m)

= φX(egs[g])(x)⊗ ΦM (aug#g ⊗ buh#h)(m)

= φX(egs)φX([g])(x)⊗ ΦM (aug#g ⊗ buh#h)(m) (1)

= φX([g])(x)⊗ ΦM (ugs#e⊗ 1)ΦM (aug#g ⊗ buh#h)(m) (2)

= φX([g])(x)⊗ ΦM ((ugs#e)(aug#g)⊗ buh#h)(m) (3)

= φX([g])(x)⊗ ΦM ((aug#g)(us#e)⊗ buh#h)(m) (4)

= φX([g])(x)⊗ ΦM (aug#g ⊗ buh#h)ΦM (us#e⊗ 1)(m)

= Δ(aug#g ⊗ buh#h)(x⊗ ΦM (us#e⊗ 1)(m)).

From (1) to (2) we use that B is a commutative ring. From (3) to (4) we
use the equality (ugs#e)(aug#g) = (aug#g)(us#e) which can be deduced
as follows: (ugs#e)(aug#g) = ugsaug#g and, on the other hand,

(aug#g)(us#e) = augαg(usug−1)ug#g

= augαg(usug−1)#g.
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Now usug−1 ∈ DsDg−1 = Ds∩Dg−1
αg→ Dgs∩Dg = DgsDg. So, αg(usug−1) =

ugsug and then augαg(usug−1)#g = augugs#g.

In particular, if we take M = A×αG we have that X ⊗B (A×αG) is an
object in Rep(A×α G)e.

On the other hand, it is clear that M can be viewed as an object in
RepAe, where φM : Ae → EndK(M) is the composition

Ae φ0⊗φ0−→ (A×α G)e
ΦM−→ EndK(M)

given by
a⊗ b �→ aue#e⊗ bue#e �→ ΦM (aue#e⊗ bue#e)

and then we can consider the object

π : G → EndK(HomAe(A,M)) ∈ RepKparG

given by

π(g)(f)(x) = ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(ugx)).

It is clear that π(g)(f) ∈ HomAe(A,M) since

π(g)(f)(axb)

= ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(ugaxb))

= ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(uga)(αg−1(ugx)αg−1(ugb))

= ΦM (ug#g ⊗ ug−1#g−1)ΦM (αg−1(uga)ue#e⊗ αg−1(ugb)ue#e)

f(αg−1(ugx))

= ΦM ((ug#g)(αg−1(uga)ue#e)⊗ (αg−1(ugb)ue#e)(ug−1#g−1))

f(αg−1(ugx)) (5)

= ΦM ((aue#e)(ug#g)⊗ (ug−1#g−1)(bue#e))f(αg−1(ugx)) (6)

= ΦM (aue#e⊗ bue#e)ΦM (ug#g ⊗ ug−1#g−1)f(αg−1(ugx))

= ΦM (aue#e⊗ bue#e)π(g)(f)(x).

From (5) to (6) we use that

(ug#g)(αg−1(uga)ue#e) = ugαg(αg−1(uga)ug−1)ug#g

= ugαg(αg−1(uga)ug−1)#g

= ugαg(αg−1(uga))#g

= uga#g = (aue#e)(ug#g)
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and analogously,

(αg−1(ugb)ue#e)(ug−1#g−1) = αg−1(ugb)ug−1#g−1

= ug−1αg−1(bueug)ug−1#g−1

= (ug−1#g−1)(bue#e).

This map π induces a partial action since:

π(e)(f)(x) = ΦM (ue#e⊗ ue#e)f(αe−1(x)) = f(x)

and
π(g)π(h)π(h−1)(f)(x) = π(gh)π(h−1)(f)(x)

because

π(g)π(h)π(h−1)(f)(x)

= ΦM (ug#g ⊗ ug−1#g−1)(π(h)π(h−1)f)(αg−1(ugx))

= ΦM (ug#g ⊗ ug−1#g−1)ΦM (uh#h⊗ uh−1#h−1)ΦM (uh−1#h−1 ⊗ uh#h)

. f(αh(uh−1(αh−1(uh(αg−1(ugx)))))) (7)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(uh(αg−1(ugx))))) (8)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(uhug−1(αg−1(ugx))))) (9)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(αg−1(ughug)(αg−1(ugx)))))
(10)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(αh−1(αg−1(ughugx)))) (11)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(α(gh)−1(ughugx)))) (12)

= ΦM (ughug#g ⊗ uhug−1#g−1)f(αh(α(gh)−1(ughug)α(gh)−1(ughx)))

= ΦM ((ugh#gh)(uh−1#h−1)⊗ (uh#h)(u(gh)−1#(gh)−1)

. f(αh(u(gh)−1uh−1α(gh)−1(ughx))

= ΦM ((ugh#gh)⊗ (u(gh)−1#(gh)−1)ΦM ((uh−1#h−1)⊗ (uh#h))

. f(αh(uh−1α(gh)−1(ughx))

= π(gh)π(h−1)f(x).

From (7) to (8) we use that (ug#g)(uh#h)(uh−1#h−1) = (ugh#gh)(uh−1#h−1),
from (9) to (10) we use that αg−1(ughug) = uhug−1 and from (11) to (12)
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we use that α(gh)−1(ughug) = αh−1(αg−1(ughug)).

Now we consider the natural transformations

HomKpar G(−,HomAe(A,M))
Γ

�� Hom(A×αG)e(−⊗B (A×α G),M)
Λ		

defined as follows: given H ∈ HomKpar G(X,HomAe(A,M)), the map ΓX(H)
is defined by

ΓX(H)(x⊗ aug#g) := ΦM (1⊗ aug#g)H(x)(1)

and given T ∈ Hom(A×αG)e(X ⊗B (A×αG),M), the map ΛX(T ) is defined
by

ΛX(T )(x)(a) := T (x⊗ aue#e).

The map ΓX(H) is well defined since

ΓX(H)(eh.x⊗ aug#g)

= ΦM (1⊗ aug#g)H(eh.x)(1)

= ΦM (1⊗ aug#g)(φ(eh))H(x)(1)

= ΦM (1⊗ aug#g)(π(h)π(h−1)H(x)(1)

= ΦM (1⊗ aug#g)ΦM (uh#h⊗ uh−1#h−1)ΦM (u−1
h #h−1 ⊗ uh#h)

H(x)(αh(uh−1αh−1(uh1)))

= ΦM (1⊗ aug#g)ΦM ((uh#h)(u−1
h #h−1)⊗ (uh#h)(uh−1#h−1))

H(x)(uh)

= ΦM (1⊗ aug#g)ΦM ((uh#e)⊗ (uh#e))H(x)(uh)

= ΦM (uh#e⊗ (uh#e)(aug#g))H(x)(uh1)

= ΦM (1⊗ (uh#e)(aug#g))H(x)(uh(uh1))

= ΦM (1⊗ (uh#e)(uh#e)(aug#g))H(x)(1))

= ΦM (1⊗ (uh#e)(aug#g))H(x)(1)

= ΓX(H)(x⊗ (uh#e)(aug#g))
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and

ΓX(H)(Δ(cuh#h⊗ dus#s)(x⊗ aug#g)) =

= ΓX(H)(πX(h)(x)⊗ (cuh#h)(aug#g)(dus#s))

= ΦM (1⊗ (cuh#h)(aug#g)(dus#s))H(πX(h)(x))(1)

= ΦM (1⊗ (cuh#h)(aug#g)(dus#s))ΦM (uh#h⊗ uh−1#h−1)H(x)(1)

= ΦM (uh#h⊗ (αh−1(cuh)#e)(aug#g)(dus#s))H(x)(1)

= ΦM (uh#h⊗ (aug#g)(dus#s))H(x)(αh−1(cuh))

= ΦM (uh#h⊗ (aug#g)(dus#s))Φ(αh−1(cuh)#e⊗ (ue#e))H(x)(1)

= ΦM ((uh#h)(αh−1(cuh)#e)⊗ (aug#g)(dus#s))H(x)(1)

= ΦM ((uhαh(uh−1αh−1(cuh))#h)⊗ (aug#g)(dus#s))H(x)(1)

= ΦM (cuh#h⊗ (aug#g)(dus#s))H(x)(1)

= ΦM (cuh#h⊗ dus#s)ΦM (1⊗ aug#g)H(x)(1)

= ΦM (cuh#h⊗ (dus#s))ΓX(H)(x⊗ aug#g)).

On the other hand, ΛX(T ) ∈ HomKpar G(X,HomAe(A,M)) because

ΛX(T )(x)(cad) = T (x⊗ (cue#e)(aue#e)(due#e))

= ΦM (cue#e⊗ due#e)T (x⊗ aue#e)

= ΦM (cue#e⊗ due#e)ΛX(T )(x)(a)

and

ΛX(T )(πX(g)(x))(a)

= T (πX(g)(x)⊗ aue#e) = T ((πX(g)πX(g−1)πX(g))(x)⊗ aue#e)

= T ((πX(eg)πX(g))(x)⊗ aue#e)

= T (πX(g)(x)⊗ (ug#e)(aue#e)) = T (πX(g)(x)⊗ aug#e)

= T (πX(g)(x)⊗ (ug#g)(αg−1(aug)#e)(ug−1#g−1))

= ΦM (ug#g ⊗ ug−1#g−1)T (x⊗ αg−1(aug)#e)

= ΦM (ug#g ⊗ ug−1#g−1)ΛX(T )(x)(αg−1(aug)) = π(g)ΛX(T )(x)(a).

Moreover, Λ ◦ Γ = id because

ΛX(ΓX(H))(x)(a) = ΓX(H)(x⊗ aue#e) = H(x)(a)

and Γ ◦ Λ = id because

ΓX(ΛX(T ))(x⊗ aug#g) = ΦM (1⊗ aug#g)ΛX(T )(x)(1)

= ΦM (1⊗ aug#g)T (x⊗ ue#e) = T (x⊗ aug#g).

The previous facts lead us to the following two propositions.
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Proposition 4.2. The functors

HomKpar G(−,HomAe(A,M)) and Hom(A×αG)e(−⊗B (A×α G),M)

are naturally isomorphic.

Proof. The natural transformations ΔX and ΓX yield the desired bijections.
�

Proposition 4.3. There exists a commutative diagram of functors

Rep(A×α G)e

F1 

���
����

����
����

�
F �� RepK

RepKparG

F2

����������������

where
F (M) = Hom(A×αG)e(A×α G,M),

F1(M) = HomAe(A,M)

and
F2(X) = HomKpar G(B,X).

Proof. We can apply the previous proposition in the particular case of X =
B, and use the fact that B ⊗B (A ×α G) � A ×α G as A ×α G-bimodules
because

(aug#g)(1⊗ x)(buh#h) = eg ⊗ (aug#g)x(buh#h) = 1⊗ (aug#g)x(buh#h).

�

From [13, Theorem 10.47], in order to finish the proof of Theorem 4.1 we
need the following proposition, whose proof will appear after some lemmas.

Proposition 4.4. The functor F2 is left exact and F1(M) is right F2-acyclic
for every injective object M in Rep(A×α G)e.

Lemma 4.5. Let S be a commutative semigroup where every element is an
idempotent. Let K be a field, let KS be the semigroup algebra of S. If I is
a finitely generated ideal of KS then I is principal and is generated by an
idempotent of S.
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Proof. Let I be a finitely generated ideal of KS and let r1, . . . , rm be gen-
erators of this ideal. Choose idempotents u1, . . . , un of S such that each ri
is a combination of these idempotents, and let T be the subsemigroup of S
generated by u1, . . . , un. T is a commutative semigroup consisting only of
idempotents, which is the same as a lower semilattice: the associated partial
order is given by u ≤ v iff uv = vu = u, and the greatest lower bound of
{u, v} is uv. Since T is finite, [14, Theorem 1] says that KT has a basis of
orthogonal idempotents w1, . . . , wN (see also [15, Theorem 4.2]).

Each generator ri lies in KT and therefore we may write ri =
∑

j αi,jwj

for i = 1, . . . , n (with αi,j in K). Given that wjri = αi,jwj , the set

W = {wj ;αi,j �= 0 for some i}

is contained in I. On the other hand, every generator of I is a K-linear com-
bination of these elements and therefore the ideal generated by W coincides
with I.

Finally, the ideal generated by W is the ideal generated by the idem-
potent u =

∑
wj∈W wj ∈ I which acts as an identity for the elements of

I. Since the wj ’s are mutually orthogonal, uwj = wj for each j ∈ I.
Hence, if y ∈ I then y =

∑
wj∈W bjwj , with bj ∈ KS, and therefore

uy =
∑

wj∈W bj(uwj) =
∑

wj∈W bjwj = y. �

Lemma 4.6. Every B-module X is flat.

Proof. From [13, Proposition 3.58], it is enough to show that for any finitely
generated left ideal I of B, the morphism I⊗BX → B⊗BX ∼= X is injective.
By Lemma 4.5 and the fact that B = KS, where S is the commutative
semigroup S = {eg1eg2 · · · egn ; gi ∈ G,n ≥ 1}, we have that each such ideal
is principal and is generated by an idempotent u.

Now assume that
∑

i yi ⊗ xi ∈ I ⊗B X is such that
∑

i yi · xi = 0 in X.
Since yi ∈ I for each i we have yi = uyi and therefore∑

i

yi ⊗B xi =
∑
i

uyi ⊗B xi = u⊗B (
∑
i

yi · xi) = 0,

and it follows that I ⊗B X → B ⊗B X is injective. �

Corollary 4.7. The functor −⊗B (A×α G) : RepKparG → Rep(A×α G)e

is exact.
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Proof of Proposition 4.4. It is clear that F2(−) = HomKpar G(B,−) is left
exact. If M is an injective object in Rep(A ×α G)e, the isomorphism of
functors

HomKpar G(−,HomAe(A,M)) � Hom(A×αG)e(−⊗B (A×α G),M)

and Corollary 4.7 imply that HomKpar G(−,HomAe(A,M)) is an exact func-
tor. Hence ExtnKpar G(B,F1(M)) = 0 for any n > 0 and so F1(M) is F2-
acyclic. �
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