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and allows one to deal with arbitrary Lie algebras, not neces-
sarily algebraic. In this sense, the latter is more universal.
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1. Introduction

This note is primarily motivated by the paper by A. Ooms [10] in which, among other 
interesting results, the author constructs a counterexample to my completeness criterion 
for Mishchenko–Fomenko subalgebras [2]. I do not intend to disprove this statement 
by Ooms. My point is that the example by A. Ooms and the completeness criterion 
from [2] are both correct. The confusion is caused by the fact that the definitions of 
Mishchenko–Fomenko subalgebras used in [10] and [2] are different. The purpose of the 
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present note is to clarify this issue and perhaps to convince the reader that the definition 
from [2] is, in some respect, better.

2. Formal Ad∗-invariants

Originally, Mishchenko–Fomenko subalgebras appeared in the context of integrable 
Hamiltonian systems on Lie algebras, real or complex. However this construction is 
purely algebraic and in what follows we consider finite-dimensional Lie algebras over an 
algebraically closed field K of characteristic zero. Here we recall and slightly modify the 
results of [6]. Basically, we want to develop some algebraic techniques allowing us to 
deal with arbitrary Lie algebras g, not necessarily algebraic. So we do not assume the 
existence of any polynomial and even rational Ad∗-invariants. Moreover, we never use 
the Lie group G associated with g.

Let g be a finite dimensional Lie algebra, g∗ its dual space and P (g) denote the algebra 
of polynomials1 on g∗. The algebra P (g) is endowed with the standard Lie–Poisson 
bracket

{f(x), g(x)} = 〈x, [df(x), dg(x)]〉, x ∈ g∗, df(x), dg(x) ∈ g, (1)

and we will refer to P (g) as the Lie–Poisson algebra associated with g.
Our goal is to construct a “big” commutative subalgebra in P (g). The argument shift 

method suggested by A. Mishchenko and A. Fomenko [9] is based on some nice properties 
of Ad∗-invariants. In general, however, polynomial (and even rational) invariants do not 
necessarily exist. To avoid this problem one can use formal invariants which can be 
defined in the following way.

Definition 1. Let F =
∑∞

k=1 f
(k) be a formal power series where f (k) ∈ P (g) is a homo-

geneous polynomial of degree k ∈ N. We say that F is a formal Ad∗-invariant at a point 
a ∈ g∗, if the following (formal) identity holds for all ξ ∈ g:

〈dF(x), ad∗
ξ(a + x)〉 = 0. (2)

From the differential-geometric point of view this condition simply means that the 
differential of F at the point a + x vanishes on the tangent space of the coadjoint orbit 
through this point. Thus, the above relation can be understood as the standard definition 
of an invariant function F where F is replaced by its Taylor expansion F at the point 
a ∈ g∗. The formal identity (2) amounts to the following infinite sequence of polynomial 
relations:

1 P (g), as a set, is of course the same as the symmetric Lie algebra S(g), but we use a slightly different 
point of view thinking of P (g) as a Poisson algebra and of its elements as functions on the vector space g∗.



60 A. Bolsinov / Journal of Algebra 483 (2017) 58–70
〈df (1)(x), ad∗
ξa〉 = 0,

〈df (2)(x), ad∗
ξa〉 = −〈df (1)(x), ad∗

ξx〉,

〈df (3)(x), ad∗
ξa〉 = −〈df (2)(x), ad∗

ξx〉,

. . .

〈df (k)(x), ad∗
ξa〉 = −〈df (k−1)(x), ad∗

ξx〉,

. . .

where ξ ∈ g is arbitrary, or equivalently

ad∗
df(1)(x)a = 0,

ad∗
df(2)(x)a = −ad∗

df(1)(x)x,

ad∗
df(3)(x)a = −ad∗

df(2)(x)x,

. . .

ad∗
df(k)(x)a = −ad∗

df(k−1)(x)x,

. . .

(3)

The first relation means that the differential df (1) of the first term belongs to the 
ad∗-stationary subalgebra of a ∈ g∗ or equivalently:

f (1) ∈ Ann (a) = {η ∈ g | ad∗
ηa = 0},

as f (1) is a linear function and hence we may identify f (1) with df (1).
Let us denote the space of all formal Ad∗-invariants at a ∈ g∗ by Yformal(g, a). It is 

easy to see that this set is closed under addition and multiplication (clearly, the usual 
multiplication of formal power series is well defined in our case). Thus, any polynomial 
p(F1, . . . , Fs) in formal invariants F1, . . . , Fs ∈ Yformal(g, a) is still a formal invariant. 
Moreover, if we consider a formal power series

P(F1, . . . ,Fs) =
∞∑

k=1

p(k)(F1, . . . ,Fs)

of formal invariants F1, . . . , Fs ∈ Yformal(g, a), then P(F1, . . . , Fs) ∈ Yformal(g, a).
The next theorem is a formal analog of some well-known facts about local invariants 

of a smooth action of a Lie group at a generic point.
As usual, we say that a ∈ g∗ is regular, if dim Ann (a) is minimal and is equal to 

s = ind g.

Theorem 1. Let a ∈ g∗ be regular and ξ1, . . . , ξs be a basis of Ann (a). Then there ex-
ist formal Ad∗-invariants F1, . . . , Fs such that their linear terms f (1)

1 , . . . , f (1)
s coincide 
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with ξ1, . . . , ξs respectively. Moreover, any other formal invariant F ∈ Yformal(g, a) can 
uniquely be represented as a formal power series of F1, . . . , Fs.

Proof. The “existence part” of Theorem 1 was proved in [6]. We only need to comment 
on the second part. This statement immediately follows from

Lemma 1. Suppose that F ∈ Yformal(g, a) starts with a term of degree m, i.e., F =∑∞
k=m f (k). Then there is a homogeneous polynomial p(m)(F1, . . . , Fs) of degree m such 

that F − p(m)(F1, . . . , Fs) starts with a term of degree m + 1.

Proof. Since F =
∑∞

k=m f (k) is a formal invariant, we have a sequence of relations similar 
to (3) but these relations start with the identity

〈df (m)(x), ad∗
ξa〉 = 0 for all ξ ∈ g,

or equivalently,

ad∗
df(m)(x)a = 0,

i.e., df (m)(x) ∈ Ann (a). In other words, f (m) is a homogeneous polynomial of degree m
on g∗ whose differential at every point x ∈ g∗ belongs to Ann (a). But this condition 
obviously means that f (m) can, in fact, be written as a polynomial of the basis elements 
ξ1, . . . , ξs ∈ Ann (a), i.e. f (m) = p(m)(ξ1, . . . , ξs).

Since ξi’s are the linear terms of Fi’s, we see that the m-terms of F and p(m)(F1, . . . , Fm)
coincide so that the power series F −p(m)(F1, . . . , Fm) starts with a term of degree m +1, 
as required. �

Thus, Lemma 1 says the following. Given a formal invariant F =
∑

f (k) ∈ Yformal(g, a)
we can, step by step, kill all of its homogeneous terms by subtracting a suitable polyno-
mial p(m)(F1, . . . , Fs), m = 1, 2, . . . , in other words, F =

∑
p(m)(F1, . . . , Fs) as required.

The uniqueness of such an expansion follows from the independence of F1, . . . , Fs so 
that no nontrivial polynomial in F1, . . . , Fs may vanish identically. �
Remark 1. A similar result holds true for an arbitrary linear representation ρ : g →
End(V ) (see [6]). The only difference is that Ann (a) should be replaced by the orthogonal 
complement T⊥

a ⊂ V ∗ to the “ρ-orbit” Ta = {ρ(ξ)a, ξ ∈ g} ⊂ V . If ρ � ad∗, we use 
the natural identification Ann (a) � T⊥

a which disappears in the general case but the 
construction of formal invariants at a ∈ V still makes sense.

Notice that finding a formal invariant (up to any order) is a problem of Linear Algebra. 
Indeed, we only need to solve successively the sequence of relations (3). The “existence 
part” of Theorem 1 tells us that the systems of linear equations we obtain at each step 
are all consistent and, moreover, the proof given in [6] explains how to make the choice 
of a solution f (k) unique.
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3. Mishchenko–Fomenko subalgebras: two versions

We first recall the definition used in [1,2].

Definition 2. Let a ∈ g∗ be regular and F1 =
∑

f
(k)
1 , . . . , Fs =

∑
f

(k)
s ∈ Yformal(g, a) be 

an arbitrary basis of formal Ad∗-invariants at the point a ∈ g∗ as in Theorem 1. The 
algebra of polynomial shifts Fa(g) is defined to be the subalgebra in P (g) generated by 
the homogeneous polynomials f (k)

i , i = 1, . . . , s = ind g, k ∈ N.

Remark 2. In [1,2], instead of formal Ad∗-invariants we considered the Taylor expansions 
of smooth or analytic (local) invariants F which always exist in a neighbourhood of a 
regular point a ∈ g∗ (for real or complex Lie algebras):

F (a + tx) �
∞∑

k=0

tkf (k)(x).

The above definition is just a straightforward extension (or algebraic reformulation) of 
this construction to the case of an arbitrary field of characteristic zero. The term “algebra 
of polynomial shifts” was used in our recent paper [4] to emphasise the difference from 
“standard shifts” F (x + ta) which are not necessarily polynomial in x (e.g., if F itself 
is not a polynomial). We consider Fa(g) as the first version of a Mishchenko–Fomenko 
subalgebra but avoid using this terminology to avoid further confusion with another type 
of Mishchenko–Fomenko subalgebras discussed below.

The following proposition summarises the main properties of the algebra of polynomial 
shifts.

Theorem 2. Let a ∈ g∗ be an arbitrary regular element and Fa(g) the corresponding 
algebra of polynomial shifts. Then the following properties hold:

1. Fa(g) does not depend on the choice of the basis formal invariants F1, . . . , Fs ∈
Yformal(g, a).

2. The linear polynomials from Fa(g) are elements of Ann (a). In other words, Fa(g) ∩
g = Ann (a).

3. Fa(g) is commutative w.r.t. to the standard Lie–Poisson bracket (1).
4. Fa(g) is commutative w.r.t. to the Poisson a-bracket

{f, g}a = 〈a, [df(x), dg(x)]〉, x ∈ g∗, df(x), dg(x) ∈ g.

5. Fa(g) is complete, i.e., tr.deg. Fa(g) = 1
2 (dim g +ind g), if and only if codim Sing ≥ 2, 

where

Sing = {y ∈ g∗ | dim Ann y > ind g} ⊂ g∗

is the set of singular points in g∗.
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6. In general, the number of algebraically independent polynomials in Fa is

tr.deg. Fa(g) = 1
2
(dim g + ind g) − deg pg,

where pg is the fundamental semi-invariant of g.

Proof. Items 2, 3, 4 and 5 have been discussed in many papers (see, for instance, [1,2,
4–6]). The item 5 is the completeness criterion from [2]. The counterexample from [10]
uses a different definition of a Mishchenko–Fomenko algebra and does not contradict to 
item 5 (see Example 1 below). The item 6 was recently proved in [8] for the Mishchenko–
Fomenko algebras Ya(g) in the sense of Definition 3 below, but it is still true for Fa(g)
if a is regular. Theorem 3 proved below immediately implies both 5 and 6.

We only need to explain item 1 which is fairly easy. Let F =
∑

f (m) ∈ Yformal(g, a)
be an arbitrary formal Ad∗-invariant. It is sufficient to show that each term f (m) of 
this formal series belongs to the Mishchenko–Fomenko subalgebra Fa(g). We know from 
Theorem 1 that F can be written as a formal power series in F1, . . . , Fs. But this im-
mediately implies that every term f (m) admits a polynomial representation via f (k)

i , 
i = 1, . . . , s = ind g, k ≤ m, and hence belongs to Fa(g) as required. �

The next definition of Mishchenko–Fomenko subalgebra is used in [8,10,11] and seems 
to be more common in the algebraic literature.

Definition 3. Let Y (g) = P (g)g ⊂ P (g) be the algebra of Ad∗-invariant polynomials or, 
equivalently, the centre of P (g). For f ∈ Y (g), a ∈ g∗ and t ∈ K consider the expansion

f(x + ta) =
∑

fa,m(x)tm (4)

into the powers of t. The polynomials fa,m(x) are called the a-shifts of f . The 
Mishchenko–Fomenko algebra Ya(g) is defined as the subalgebra in P (g) generated by 
the a-shifts fa,k of all f ∈ Y (g) (or equivalently of the generators of Y (g)).

We first notice that if a ∈ g∗ is regular, then Ya(g) is a subalgebra of Fa(g). Indeed, 
without loss of generality we may assume that the generators f ∈ Y (g) are homogeneous, 
then f(x + ta) = tdf(a + t−1x), where d = deg f and the expansion (4) is, in fact, 
equivalent to the Taylor expansion of f(x) at the point a:

f(a + x) =
d∑

m=0
f (m), where f (m) = fa,d−m.

Since 
∑d

m=0 f
(m) is a formal invariant at the point a ∈ g∗ in the sense of Definition 1, 

all the a-shifts fa,k belong to Fa(g) and consequently Ya(g) ⊂ Fa(g).
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On the other hand, the algebra of polynomial Ad∗-invariants Y (g) might be trivial 
even if ind g = s > 0. In such a case, the Mishchenko–Fomenko algebra Ya(g) is trivial 
too in contrast to Fa(g) that remains non-trivial since independent formal Ad∗-invariants 
F1, . . . , Fs always exist (Theorem 1).

To illustrate this phenomenon and to show how to describe Fa(g) in practice, we 
consider Counterexample to Bolsinov’s assertion from [10].

Example 1. Consider the solvable Lie algebra g of dimension 8 and index 2 defined by 
the relations:

[x0, x1] = 5x1, [x0, x2] = 10x2, [x0, x3] = −13x3, [x0, x4] = −8x4, [x0, x5] = −3x5,

[x0, x6] = 2x6, [x0, x7] = 7x7, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6, [x1, x6] = x7,

[x2, x3] = x5, [x2, x4] = x6, [x2, x5] = x7.

The algebra of polynomial Ad∗-invariants is trivial, i.e., Y (g) = {K} and therefore the 
Mishchenko–Fomenko subalgebra Ya(g) is trivial too. The singular set Sing has codimen-
sion 3 and is defined by three linear equations {x5 = x6 = x7 = 0}. Thus, according 
to the completeness criterion from [2] (Bolsinov’s assertion), the algebra of polynomial 
shifts Fa(g), a /∈ Sing, is complete, i.e., tr.deg.Fa(g) = 1

2 (dim g + ind g) = 5.
The Lie algebra g possesses two independent rational Ad∗-invariants. If they are given 

explicitly, then the coefficients of their Taylor expansions at the point a ∈ g can be taken 
as generators of Fa(g). However, even if we do not have any information about them, we 
can still use formal Ad∗-invariants to construct five algebraically independent polynomial 
shifts. As an example, take a ∈ g∗ such that x7(a) = 1 and xi(a) = 0, i = 0, . . . , 6. The 
stationary subalgebra Ann (a) is generated by x3 and x4 and therefore according to 
Theorem 1 there exist formal invariants of the form:

F = x3 + f (2) + f (3) + . . .

H = x4 + h(2) + h(3) + . . .

The “higher” terms can easily be found successively by solving relations (3). Moreover, 
the solution is unique if in addition we require that f (i) and h(i) vanish identically on 
the two-dimensional subspace defined by x0 = x1 = x2 = x5 = x6 = x7 = 0. Here is the 
result of a straightforward computation:

f (2) = 13
7 x3x7 − x4x6 −

1
2x

2
5, f (3) = 39

49x3x
2
7 −

3
7x

2
5x7 −

6
7x4x6x7 + x5x

2
6

h(2) = 8
7x4x7 − x5x6, h(3) = 4

49x4x
2
7 −

1
7x5x6x7 + 1

3x
3
6.

There is no need to continue this process, as we have already found 5 algebraically 
independent polynomial shifts: x3, x4, f (2), h(2) and one of f (3), h(3). Thus, the algebra 
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Fa(g) so obtained is complete despite the fact that Y (g) and therefore Ya(g) are both 
trivial.

This phenomenon was well understood long ago and, in fact, was the main reason 
for us to slightly modify the original construction by A. Mishchenko and A. Fomenko in 
order to avoid the problem with non-existence of polynomial invariants and construct a 
commutative subalgebra of P (g) as large as possible. To the best of my knowledge this 
modification is due to Andrey Brailov who explained this construction to me in 1986 
when I was a PhD student. I am not sure, however, if he ever published this important 
remark.

The following proposition gives an obvious necessary and sufficient condition for Fa(g)
and Ya(g) to coincide.

Proposition 1. The following conditions are equivalent:

1. Ann (a) is generated by the differentials df(a), f ∈ Y (g),
2. a ∈ g∗ is regular and Fa(g) = Ya(g).

Proof. Notice that Condition 1 implies that a is regular. Furthermore, if homogeneous 
invariants f1, . . . , fs ∈ Y (g) are such that df1(a), . . . , dfs(a) form a basis of Ann (a), then 
we may consider the Taylor expansions of f1, . . . , fs at a ∈ g

fi(a + x) =
∑

m

f
(m)
i , i = 1, . . . , s = ind g,

as a basis in Yformal(g, a). Since the homogeneous terms f (m)
i in these expansions are 

the same as the a-shifts of fi, we immediately conclude that Fa(g) ⊂ Ya(g) and hence, 
Fa(g) = Ya(g).

On the other hand, assume that a ∈ g∗ is regular and Fa(g) = Ya(g). Let us compare 
the linear functions contained in Fa(g) and Ya(g). According to item 2 of Theorem 2, 
the linear functions of Fa(g) are exactly the elements of Ann (a). On the other hand, the 
linear functions from Ya(g) are the differentials df(a), f ∈ Y (g). Since Fa(g) = Ya(g), 
we get the desired conclusion. �

There are many examples of g and a ∈ g∗ for which the above condition is fulfilled. 
The most important of them are semisimple (reductive) Lie algebras.

If tr.deg.Y (g) < ind g, then Ya(g) is strictly smaller than Fa(g). On the contrary, if 
tr.deg.Y (g) = ind g, then Ya(g) and Fa(g) coincide for almost all regular a ∈ g. However, 
if a is regular but the differentials of the polynomial invariants do not generate Ann (a), 
then we have proper inclusion Ya(g) � Fa(g) (although tr.deg.Ya(g) = tr.deg.Fa(g)).
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Example 2. Consider, for instance, the seven-dimensional nilpotent Lie algebra g with 
relations (this is the Lie algebra g7,1.1(iλ),λ=1 with number 155 from the list presented 
in [10]2):

[x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6, [x1, x6] = x7,

[x2, x3] = x5, [x2, x4] = x6, [x3, x4] = x7.

It is straightforward to verify that ind g = 3 and the singular set Sing ⊂ g∗ is defined 
by three equations {x5 = x6 = x7 = 0} so that codim Sing = 3. The algebra Y (g) of 
polynomial invariants is generated by four polynomials (see [10]):

x7, f = x2
6−2x5x7, g = 2x5

6−10x5x
3
6x7 +15x2

5x6x
2
7−15x4x5x

3
7 +15x3x6x

3
7−15x2x

4
7,

and

h = (4f5 − g2)/x3
7 = −225x2

2x
5
7 + 450x2x3x6x

4
7 − 450x2x4x5x

4
7+

450x2x
2
5x6x

3
7 − 300x2x5x

3
6x

2
7 + 60x2x

5
6x7 − 225x2

3x
2
6x

3
7 + 450x3x4x5x6x

3
7−

450x3x
2
5x

2
6x

2
7 + 300x3x5x

4
6x7 − 60x3x

6
6 − 225x2

4x
2
5x

3
7 + 450x4x

3
5x6x

2
7−

300x4x
2
5x

3
6x7 + 60x4x5x

5
6 − 128x5

5x
2
7 + 95x4

5x
2
6x7 − 20x3

5x
4
6,

which satisfy one relation 4f5 − g2 − hx3
7 = 0.

Since tr.deg.Y (g) = ind g, the differentials df(a), f ∈ Y (g) generate Ann (a) for almost 
all regular points a ∈ g∗ but not for all in this case. From the point of view of the theory 
of integrable Hamiltonian systems, it is natural to think of the generators x7, f, g and h
as first integrals of a Hamiltonian system on g∗, and consider the momentum mapping 
Φ = (x7, f, g, h) : g∗ → K4. At a generic point the differential of this map has rank 3 
and it makes sense to introduce the set of critical points of Φ

Crit =
{
y ∈ g∗ | dim span{df(y), f ∈ Y (g)} < ind g

}
.

In the notation from [8], the complement to this set Crit can be written as g∗Reg in 
contrast to g∗reg = g∗\Sing. In our example, Crit is defined by two equations {x6 = x7 = 0}
so that Crit is larger than Sing (or equivalently, g∗Reg is smaller than g∗reg).

This means that there are regular elements a ∈ g∗ for which Ya(g) � Fa(g), namely 
it is so for every a ∈ g∗ with x6(a) = x7(a) = 0, x5(a) �= 0. For instance, if we take 
a ∈ g∗reg \g∗Reg = Crit\Sing such that x5(a) = 1, xi(a) = 0, i �= 5, then it is easy to verify 
that Ya(g) contains only one linear function, namely, x7, whereas Fa(g) contains three: 
x5, x6 and x7 (a basis of Ann (a)).

2 There is nothing special in this example. My choice was more or less random within a sub-list of Lie 
algebras with some suitable properties.
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4. Infinitesimal properties of Fa(g) and Ya(g)

For any Poisson subalgebra A ⊂ P (g), we define dA(x) as the subspace of g generated 
by the differentials of f ∈ A at point x ∈ g∗:

dA(x) = span
{
df(x), f ∈ A

}
⊂ g.

A description of such subspaces turns out to be important for various problems in algebra, 
differential geometry and Hamiltonian mechanics and in this section we discuss and 
compare them for the subalgebras Fa(g) and Ya(g) following our recent paper [4].

The description of dFa(x) is very simple and can be given in terms of the pencil of 
skew-symmetric forms generated by the forms Ax, Aa : g × g → K defined as

Ax(ξ, η) = 〈x, [ξ, η]〉 and Aa(ξ, η) = 〈a, [ξ, η]〉.

The following statement is well known [2,5,6].

Proposition 2. dFa(x) =
∑

KerAx+λa =
∑

Ann (x + λa), where the sum is taken over 
all 3 λ ∈ K such that x + λa /∈ Sing.

Recall that a pair of skew-symmetric forms can simultaneously be reduced to an 
elegant Jordan–Kronecker canonical form [12] playing an important role in the theory of 
compatible Poisson brackets [3,5,7,13]. Here we formulate one straightforward and simple 
corollary of the Jordan–Kronecker decomposition theorem referring to [4] for details.

Let A and B be two skew-symmetric forms on a finite-dimensional vector space V , we 
will think of them as just two skew-symmetric matrices. Let r = maxλ∈K rank (A + λB)
be the rank of the pencil of skew-symmetric forms P = {A + λB}. Without loss of 
generality we assume that B is regular in this pencil, i.e. rankB = r.

Consider the Pfaffians of all r× r diagonal minors of A +λB as polynomials in λ and 
denote by p their greatest common divisor. Notice that p = 1 if and only if the rank of 
A + λB never drops, i.e., equals r for each λ ∈ K. The following formula is a corollary 
of the Jordan–Kronecker decomposition theorem.

Proposition 3. Let L =
∑

Ker (A +λB) where the sum is taken over all λ ∈ K such that 
rank (A + λB) = r. Then dimL = 1

2 (dimV + corankP) − deg p.

Let us transfer and apply this formula to our pencil of skew-symmetric forms P =
{Ax+λa} on g. Obviously, dimV = dim g and corankP = ind g (here we use the fact that 
a ∈ g∗ is regular). So we only need to clarify the meaning of p. This (kind of a) polynomial 
is known as the fundamental semi-invariant pg of g. To define pg consider the Pfaffians 

3 It is sufficient to consider finitely many values of λ in this sum. For example, one can arbitrarily choose 
distinct rational numbers λ1, . . . , λk with k = dim g.
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p1, . . . , pN of all r × r diagonal minors of the matrix Ay =
(
ckijyk

)
, r = dim g − ind g. 

Then pg is the greatest common divisor of p1, . . . , pN (all these polynomials are now 
considered as elements of P (g), i.e., as polynomials in y1 . . . , yn). Thus we have,

p1(y) = pg(y) · h1(y)

. . .

pN (y) = pg(y) · hN (y)

where h1(y), . . . , hN (y) do not have any non-constant common factors. This implies, by 
the way, that the singular set Sing is the union of two subsets

Sing0 = {pg = 0} and Sing1 = {h1(y) = 0, . . . , hN (y) = 0}.

Thus, there are three possibilities:

• pg = 1 and then Sing0 = ∅, Sing = Sing1 and codim Sing ≥ 2,
• hi = const ∈ K and then Sing = Sing0, codim Sing = 1 and Sing1 = ∅,
• both pg and hi are non-constant, then both Sing0 and Sing1 are non-empty and 

codim Sing0 = 1 and codim Sing1 ≥ 2.

Replacing y by x + λa we obtain two possibilities: either pg(x + λa) is still a greatest 
common divisor of p1(x + λa), . . . , pN (x + λa) (now we consider them as polynomials 
in one single variable λ), or the greatest common divisor px,a(λ) is “bigger”. The latter 
condition simply means that h1(x + λa), . . . , hN (x + λa) have a non-trivial common 
factor, or in geometric terms, that the straight line x + λa, λ ∈ K, intersects the set 
Sing1.

Thus, we come to the following conclusion which is similar to the Joseph–Shafrir 
formula (Section 7.2 in [8]). Notice that this is a straightforward corollary of the Jordan–
Kronecker decomposition theorem.

Theorem 3. Let a ∈ g∗ be regular and dFa(x) = span
{
df(x), f ∈ Fa(g)

}
⊂ g, x ∈ g∗. 

Then

dim dFa(x) = 1
2(dim g + ind g) − deg px,a,

where px,a(λ) is the greatest common divisor of the Pfaffians p1(x +λa), . . . , pN (x +λa)
of all r × r diagonal minors of the matrix Ax+λa =

(
ckij(xk + λak)

)
, r = dim g − ind g.

In particular,

dim dFa(x) ≤ 1(dim g + ind g) − deg pg,
2
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with equality if and only if the straight line x + λa, λ ∈ K, does not intersect the subset 
Sing1 ⊂ Sing.

A similar formula holds true for Mishchenko–Fomenko subalgebras Ya(g) after 
some additional amendments. For each x ∈ g∗ consider the subspace dYa(x) =
span

{
df(x), f ∈ Ya(g)

}
⊂ g. As noticed above, for regular a ∈ g∗ we have the inclusion 

Ya(g) ⊂ Fa(g) and therefore dYa(x) ⊂ dFa(x) for any x ∈ g∗. A sufficient condition for 
these two subspaces to coincide is very simple (cf. Proposition 1).

Proposition 4. Let a ∈ g∗ be regular. If the straight line x + λa does not belong to Crit, 
then dYa(x) = dFa(x).

Proof. Indeed, if y = x + λa /∈ Crit∪ Sing, then the differentials of the shifted invariants 
fλ(x) = f(x + λa) ∈ Ya(g), f ∈ Y (g), generate KerAx+λa. Thus, KerAx+λa ⊂ dYa(x)
for infinitely many λ’s and in view of Proposition 2, we have the converse inclusion 
dFa(x) ⊂ dYa(x). �

On the other hand, Ya(g) is well defined for any a ∈ g∗ both regular and singular, 
whereas Fa(g) in general makes no sense for singular a ∈ g∗. Nevertheless, the descrip-
tion of the subspace dYa(x) is easy to obtain if we notice that dYa(x) = dYx(a) and 
more generally this subspace dYx(a) depends only of the two-dimensional subspace of g∗
generated by a and x so that dYa(x) = dYa′(x′) if span(a′, x′) = span(a, x). In particular, 
if the straight line x + λa does not belong to the singular set, we may assume without 
loss of generality that x is regular. Then we have

Proposition 5. Let x ∈ g∗ be regular and assume the straight line a + λx does not belong 
to Crit. Then dYa(x) = dFx(a).

Hence we immediately obtain the following version of Theorem 3 for the Mishchenko–
Fomenko subalgebras Ya(g) (simply by interchanging x and a).

Theorem 4. Let x ∈ g∗ be regular and dYa(x) = span
{
df(x), f ∈ Ya(g)

}
⊂ g. Assume 

that tr.deg.Y (g) = ind g and the straight line a + λx does not belong to Crit. Then

dim dYa(x) = 1
2(dim g + ind g) − deg pa,x,

where pa,x(λ) is the greatest common divisor of the Pfaffians p1(a +λx), . . . , pN (a +λx)
of all r × r diagonal minors of the matrix Aa+λx =

(
ckij(ak + λxk)

)
, r = dim g − ind g.

Furthermore,

dim dYa(x) ≤ 1(dim g + ind g) − deg pg,
2
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with equality if and only if the straight line a + λx, λ ∈ K, does not intersect the subset 
Sing1 ⊂ Sing.

For a fixed a ∈ g∗ such a line exists if and only if a /∈ Sing1. In particular,

tr.deg.Ya(g) ≤
1
2(dim g + ind g) − deg pg,

with equality if and only if a /∈ Sing1.

Remark 3. The latter statement of this theorem is the Joseph–Shafrir formula (Section 7.2 
in [8]). In particular, Sing1 must coincide with the set g∗ \ g∗wreg introduced in [8] in a 
different way.
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