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In this paper, we define m-tail reflexive sheaves as reflexive 
sheaves on projective spaces with the simplest possible 
cohomology. We prove that the rank of any m-tail reflexive 
sheaf E on Pn is greater or equal to nm −m. We completely 
describe m-tail reflexive sheaves on Pn of minimal rank and 
we construct huge families of m-tail reflexive sheaves of higher 
rank.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study and classification of vector bundles with the simplest possible cohomology 
has been of great interest for many years. The first and most famous result is due to 
Horrocks who proved that a vector bundle E on Pn without intermediate cohomology 
splits into a sum of line bundles ([8]). The next case of simplest cohomology for a vector 
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bundle is the one when we have it all concentrated in one point, still for the intermediate 
cohomology groups, i.e Hi(E(α)) = K

r for i = n − 1 and a fixed integer α and vanishes 
elsewhere. Using Beilinson’s spectral sequence we get that such bundles are nothing more 
than a direct sum of r copies of a twist of the tangent bundle TPn , plus possible direct 
summands of line bundles.

There have been in literature many works whose goal was the generalization of Hor-
rocks theorem for vector bundles on projective varieties X different than Pn; works that 
characterize vector bundles on X either without intermediate cohomology or splitting 
into a direct sum of line bundles.

In this work, we want to classify reflexive sheaves with the simplest possible coho-
mology. Reflexive sheaves were introduced in 1980 by Hartshorne in [6,7] and since then 
many progress have been accomplished. According to Hartshorne’s own words, the first 
reason for studying them is natural curiosity; but moreover, they were defined as a new 
important tool for studying rank 2 bundles on P3 and their moduli spaces, and for the 
classification of space curves. Recently, the moduli problem of rank 2 reflexive sheaves 
has been extended to smooth projective threefolds ([12]).

In 2008 Abe and Yoshinaga prove that a reflexive sheaf F on Pn splits into a direct 
sum of line bundles if and only if there exists a hyperplane H ⊂ P

n such that F|H
also splits as a sum of line bundles ([1]; Theorem 0.2). In 2013 Yau and Ye generalize 
the splitting criterion to smooth projective varieties ([14]; Theorem C) and they give 
conditions to ensure that a reflexive sheaf E on a Horrocks variety splits into a sum of 
line bundles and, hence, it is locally free.

The goal of our paper goes on a different direction, not considering the cases that 
turn out to be locally free sheaves. Indeed, we want to study proper reflexive sheaves, 
by which we mean that they are not locally free, assuming that they have the simplest 
possible cohomology. Therefore the first natural question that we should answer is the 
following one: what do we mean by the simplest possible cohomology?

In Section 2, after recalling the necessary notation and preliminary results, we will 
notice that the answer will be obtained giving a closer look at the local to global spectral 
sequence of the Ext group. Indeed, we will ask all the intermediate cohomology to vanish 
except for a “tail” of constant dimension m of the cohomology groups Hn−1(F(α)) for 
sufficiently negative degrees α ∈ Z. This result has motivated the following definition:

Definition 1. Let F be a reflexive sheaf on Pn. We will call F an m-tail reflexive sheaf if 
it satisfies

Hi
∗(F) = 0 for 1 ≤ i ≤ n− 2

and

hn−1(F(t)) =
{

m if t ≤ k

0 if t > k
for some integer k.
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We will see that the cohomological requests force the sheaf not to be free at a 
0-dimensional subscheme of length at most m. Notice that, we could not have asked 
for all the intermediate cohomology to vanish, or else we will still obtain that the sheaf 
is a direct sum of line bundles.

After proving a lower bound for the rank of an m-tail reflexive sheaf on Pn, we will 
focus our attention on m-tail reflexive sheaves of minimal rank; we will call them minimal
m-tail reflexive sheaves and denote them by Sm. We will show that for any hyperplane 
H ⊂ P

n avoiding the singular locus of Sm we have Sm|H ∼= (TH)m. This result is 
extremely useful in many ways. First of all, it tells us that the sheaves Sm are the clear 
generalization of the tangent bundles, in the sense that we have the simplest cohomology 
possible, beyond the one given by the sum of line bundles.

In Section 3 we will prove the results which will give us the complete description of 
the minimal tail reflexive sheaves. Such description will be achieved proving the following 
steps. First we prove that every Sm is constructed by iterative extensions of S1, which 
we will call chain of extensions of S1’s, see Proposition 3.6. We then prove the main 
structure result of the paper:

Theorem 2. Let Sm be a minimal m-tail reflexive sheaf with s different singular points 
p1, · · · , ps. Then,

Sm = ⊕s
i=1Sni

where Sni
is a minimal ni-tail reflexive sheaf with a unique singular point pi. Moreover, 

m = n1 + · · · + ns.

We therefore study the matrices which give us a minimal tail reflexive sheaf singular 
at only one point, see Proposition 3.10 and Theorem 3.11. The last results translates our 
problem to the classification of fat points of length m in the projective space.

In Section 4 we will focus on the non-minimal case. We will define a new family 
of m-tail reflexive sheaf that we will call level, see Definition 4.1, and we completely 
describe these sheaves, relating them with the minimal case. The classification of all
m-tail reflexive sheaves is out of reach and we will conclude the paper outlying the 
difficulties that we should overcome if we want to study the general case.
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2. Background

We will work on an algebraically closed field K of arbitrary characteristic. Given the 
projective space Pn = Proj(K[x0, . . . , xn]) and a coherent sheaf F on Pn, we will denote 
the twisted sheaf F ⊗ OPn(l) by F(l). We will write F∨ = Hom(F , OPn) for the dual 
sheaf and, as usual, Hi(Pn, F), or simply Hi(F), will denote the cohomology group with 
dimensions hi(F). Given V a vector space, we will denote by V ∗ its dual. We will use the 
standard notation for the graded K[x0, . . . , xn]-module Hi

∗(Pn, F) = ⊕l∈ZH
i(Pn, F(l)). 

Throughout the paper, given a matrix whose entries are linear forms, we will call change 
of coordinates a finite number of elementary transformations on the rows and columns 
of the matrix, combined also with a change of basis on Pn.

We will now recall the main definitions and results used throughout the paper.

Definition 2.1. A coherent sheaf F on a projective variety X is called reflexive if the 
canonical morphism F → F∨∨ is an isomorphism.

The singular locus of a coherent sheaf F on a smooth projective variety X, denoted 
as Sing(F), is the set of points where F fails to be locally free, and it is known that

Sing(F) = {x ∈ X | Fx is not a free OX,x − module}

=
⋃dim X

p=1 Supp Extp(F ,OX)

where Supp stands the scheme-theoretic support of the sheaf (see [10], Chapter 2, 
Lemma 1.4.1). In the particular case where F is reflexive, we have that codimX(Sing(F)) ≥
3 (see [6], Corollary 1.4).

From now on, we will be interested on proper reflexive sheaves, i.e. reflexive sheaves 
not locally free.

A resolution of length d of a coherent sheaf F over Pn is defined as an exact sequence

0 → Ld → · · · → L1 → L0 → F → 0

where Li splits as a direct sum of line bundles, and the minimal number of the length 
of such resolutions is called the homological dimension of F and denoted by hd(F).

Another important tool that we will use is the so called spectral sequence of global and 
local Ext, which states the following (see for instance [13], Section 5.8).

Theorem 2.2. Let F , G be quasi coherent sheaves of OPn-modules. Then there is a spectral 
sequence with E2-term Hj(Exti(F , G)) that converges to Exti+j(F , G).

Choose G = OPn . By looking closely at the second sheet of the latter spectral sequence, 
we observe that the 0-row is given by the cohomology of the dual sheaf. We have that 
the simplest sheet and therefore the simplest convergence will be given if the only other 
non vanishing row is the one given by the cohomology of Ext1(F , OPn).
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As noticed before, since Exti(F , OPn) = 0 for i > 1, the support of such sheaf defines 
the singular locus of F and it seems natural that the simplest case will be given when F
fails to be locally free at a finite set of points. Indeed, with the singular locus supported on 
points, the cohomology groups Hj(Ext1(F , OPn)) vanish for any j > 0, simplifying even 
more the spectral sequence. The only non zero value, given by h0(Ext1(F , OPn)), will 
test how much the sheaf fails to be locally free. Motivated by the previous observations 
and recalling that, by Serre duality, Extj(F , OPn(−n − 1)) 
 Hn−j(F)∗, we propose 
Definition 2.3 as the definition of proper reflexive sheaves with the simplest possible 
cohomology.

Specifically, we introduce a family of sheaves with no intermediate cohomology except 
for a “tail” of constant dimension m for the (n − 1)-th cohomology group. As we have 
just observed such sheaves represent from the cohomological point of view the simplest 
case of sheaves which are not locally free, because, as we will show soon (Lemma 2.5), 
if all the intermediate cohomology vanishes, the sheaf is locally free and, by Horrocks, a 
sum of line bundles.

Definition 2.3. Let F be a reflexive sheaf on Pn. We will call F an m-tail reflexive sheaf
if it satisfies

(i) Hi
∗(F) = 0 for 1 ≤ i ≤ n − 2, and

(ii) hn−1(F(t)) =
{

m if t ≤ k

0 if t > k
for some integer k.

We say that an m-tail reflexive sheaf is normalized if k = −n − 1. Tensoring by an 
appropriate line bundle, any m-tail reflexive sheaf can be normalized and, from now on, 
we will always assume that our m-tail reflexive sheaves are normalized.

Example 2.4. (a) Any non-zero general global section σ ∈ H0(TPn(−1)) gives rises to an 
exact sequence:

0 → OPn(1) σ→ TPn → F → 0

where F is a 1-tail reflexive sheaf on Pn ([10] Example 1.1.13).
(b) Let p1, · · · , pm be a set of general points in Pn and let �1i , · · · , �ni be K-linearly 

independent linear forms passing through pi, 1 ≤ i ≤ m. Set F := coker(M t) where

M =

⎡
⎢⎢⎢⎢⎣
M1 0 0 · · · 0
0 M2 0 . . . 0
...

. . .
...

0 0 · · · 0 Mm

⎤
⎥⎥⎥⎥⎦

and M i =
[
�1i · · · �ni

]
. F fits into a short exact sequence
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0 → Om
Pn

Mt

→ OPn(1)nm → F → 0

and we easily check that it is an m-tail reflexive sheaf on Pn.
(c) Let F be a rank 8 reflexive sheaf on P3 defined by the following short exact 

sequence

0 → O2
P3 ⊕OP3(2)2 Mt

→ OP3(1)6 ⊕OP3(3)6 → F → 0,

where M is given by

M =

⎡
⎢⎢⎢⎣
x0 x1 x2 x3 0 0 0 0 0 0 0 0
0 0 x0 x1 x2 x3 0 0 0 0 0 0
0 0 0 0 0 0 x0 − x1 x2 x3 0 0 0
0 0 0 0 0 0 0 0 0 x0 + x1 x2 x3

⎤
⎥⎥⎥⎦ .

It is easy to check that F is a 2-tail reflexive sheaf on P3. Indeed, F is the direct sum of a 
rank 4 vector bundle F1 plus two 1-tail sheaves, whose “tail” starts in degree −5. Using 
Macaulay2, see [5], we check that h2(F1(−4)) = h2(F1(−3)) = 2 and zero elsewhere.

(d) Let F be a rank 18 reflexive sheaf on P3 defined by the following short exact 
sequence

0 → O3
P3 ⊕OP3(2)2 ⊕OP3(3)3 Mt

→ OP3(1)9 ⊕OP3(3)8 ⊕OP3(4)9 → F → 0,

where M is given by

M =

⎡
⎢⎣M1 0 0

0 M2 0
0 0 M3

⎤
⎥⎦ ,

with

M1 =

⎡
⎢⎣ x0 x1 x2 x3 0 0 0 0 0

0 0 x3 0 x0 x1 x2 0 0
0 0 0 0 x3 0 x0 x1 x2

⎤
⎥⎦ ,

M2 =
[
x0 x1 x2 x3 0 0 0 0
0 0 0 0 x0 x1 x2 x3

]

and

M3 =

⎡
⎢⎣ x0 x1 x2 0 0 0 0 0 0

0 0 0 x0 x1 x2 0 0 0
0 0 0 0 0 0 x0 x1 x2

⎤
⎥⎦ .

It is easy to check that F is a 3-tail reflexive sheaf on P3.
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As in part (c), F is the direct sum of a bundle F1 given by M1, plus two copies of the 
tangent bundle given by M2, plus the direct sum of three 1-tail sheaves, given by M3. 
Using Macaulay2, we compute the cohomology of the bundle F1 and we conclude that 
F is indeed a 3-tail (decomposable) reflexive sheaf.

By the cohomological properties (i) and (ii) of Definition 2.3, it follows from [3], 
Proposition 1.4 that an m-tail reflexive sheaf F has homological dimension hd(F) = 1. 
In addition, if F is normalized its minimal resolution has the following shape

0 →
s⊕

i=1
OPn(ai)

A→
q⊕

j=1
OPn(bj) → F → 0 (2.1)

with a1 ≤ a2 ≤ . . . ≤ as and b1 ≤ b2 ≤ . . . ≤ bq. Since F is normalized from the fact 
that hn−1(F(−n − 1)) = m and hn−1(F(t)) = 0 for any t ≥ −n we get that a1 = 0. 
Moreover if, for some j, bj ≤ 0, we have that OPn(bj) is automatically a direct summand 
of F , adding no information at the (n − 1)-th cohomology group of the sheaf. Therefore, 
we can restrict our attention to the case bj ≥ 1 for any j, 1 ≤ j ≤ q. Finally, by minimal 
we mean that if an entry of the matrix A is given by a polynomial of degree bj − ai ≤ 0, 
then that entry is equal to zero.

Lemma 2.5. Let F be an m-tail reflexive sheaf on Pn with a minimal free resolution

0 →
s⊕

i=1
OPn(ai)

A→
q⊕

j=1
OPn(bj) → F → 0. (2.2)

Then, Sing(F) ⊂ P
n is a 0-dimensional scheme of length at most m. In particular, if 

m = 0, then F has no intermediate cohomology and it splits as a direct sum of line 
bundles.

Proof. Directly from resolution (2.2), we obtain that Extp(F(α), OPn) = 0 for each p ≥ 2
and each integer α. Applying Hom(−, OPn) to the resolution (2.2) of the m-tail sheaf F , 
we get the exact sequence

0 → F∨ →
q⊕

j=1
OPn(−bj) →

s⊕
i=1

OPn(−ai) → Ext1(F ,OPn) → 0 (2.3)

and we deduce that

Sing(F) =
n⋃

p=1
Supp Extp(F ,OPn) = Supp Ext1(F ,OPn).

Therefore the low degree terms of second sheet of the spectral sequence of the local–global 
Ext (all the other ones vanish) are given by, using Serre duality in the bottom line,
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H0(Ext1(F(α),OPn )) H1(Ext1(F(α),OPn )) H2(Ext1(F(α),OPn )) · · · Hn(Ext1(F(α),OPn ))
H0(F∨(−α)) H1(F∨(−α)) H2(F∨(−α)) · · · Hn(F∨(−α))

whose convergence gives the exact sequence of cohomology groups

0 → H1(F∨(−α)) → Hn−1(F(α− n− 1))∗ → H0(Ext1(F(α),OPn)) →

→ H2(F∨(−α))) → Hn−2(F(α− n− 1))∗ = 0.

Using Serre’s vanishing theorem, for α � 0,

h0(Ext1(F(α),OPn)) = h0(Ext1(F ,OPn) ⊗OPn(−α))

is constantly equal to m, which implies that h0(Ext1(F(α), OPn)) = m for every integer 
α and the support of Ext1(F , OPn) is a 0-dimensional scheme of length at most m. Hence 
we can conclude that Sing(F) is a 0-dimensional scheme of length at most m. If m = 0, 
i.e. F does not have intermediate cohomology, we obtain that there are no points in the 
singular locus. Hence, F is locally free and, by Horrocks, it splits into a direct sum of 
line bundles. �
3. Minimal m-tail reflexive sheaves

We start the section determining the minimal rank of m-tail reflexive sheaves.

Lemma 3.1. Let F be a reflexive m-tail sheaf on Pn. Then rkF ≥ (n − 1)m.

Proof. Recall that normalizing the sheaf, if necessary, we can assume that

hn−1(F(−n− 1)) = m and hn−1(F(−n)) = 0. (3.1)

From the exact sequence (2.1) we induce the following one in cohomology

0 → Hn−1(F(−n− 1)) →
⊕
i

Hn(OPn(ai − n− 1)) →
⊕
j

Hn(OPn(bj − n− 1)) = 0

and the conditions (3.1) force to have m trivial summands in the 
⊕

i OPn(ai)’s, i.e.

⊕
i

OPn(ai) = Om
Pn ⊕

⊕
i

OPn(ãi) with ãi > 0.

In the same way, from the equality hn−1(F(−n − 2)) = m and the minimality of (2.1), 
we must have

⊕
OPn(ai) = Om

Pn ⊕
k⊕

OPn(ãi) with ãi ≥ 1, and

i i=1
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⊕
j

OPn(bj) = OPn(1)nm ⊕
r⊕

j=1
OPn(b̃j) with b̃j ≥ 1.

Indeed we have that, denoting by α the number of summands with ãi = 1 and by β the 
ones with b̃j = 1,

hn−1(F(−n− 2))) − hn(OPn(−n− 2)m) − hn(OPn(−n− 1)α) + hn(OPn(−n− 1)β)−
− hn(F(−n− 2)) = 0,

which gives us m −m(n + 1) − α + β ≥ 0 and hence β ≥ mn + α ≥ mn.
Therefore, we obtain the following resolution of the sheaf F ,

0 → Om
Pn ⊕

k⊕
i=1

OPn(ãi) → OPn(1)nm ⊕
r⊕

j=1
OPn(b̃j) → F → 0. (3.2)

Again by minimality of (3.2), the sheaf F will be constructed as an extension of the sheaf 
defined as the cokernel of Om

Pn→OPn(1)nm. Indeed, it is possible to fit F in the following 
commutative diagram

0 0 0

0
⊕k

i=1 OPn(ãi)
Ct ⊕q

j=1 OPn(b̃j) H 0

0 Om
Pn ⊕

⊕k
i=1 OPn(ãi)

Mt

OPn(1)nm ⊕
⊕r

j=1 OPn(b̃j) F 0

0 Om
Pn

At

OPn(1)nm G 0

0 0 0

Such diagram is constructed considering its first two lines, which define commutative 
squares because of the degrees of the line bundles involved in the direct summands and 
the third line follows applying the Snake Lemma.

Finally, we get that rkF ≥ (n − 1)m. �
This last Lemma motivates the following definition:

Definition 3.2. Let F be an m-tail reflexive sheaf on Pn. We will say that F is a minimal
m-tail reflexive sheaf if it has rank (n − 1)m and we will denote it by Sm.
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Remark 3.3. (i) Notice that if F is a minimal m-tail reflexive sheaf, by the minimality 
of the rank, it can not have a line bundle as a direct summand.

(ii) It is straightforward from the proof of Lemma 3.1 that any minimal m-tail reflexive 
sheaf Sm has a resolution of the following type

0 → Om
Pn

At
m→ OPn(1)nm → Sm → 0. (3.3)

In the particular case m = 1 we can suppose to have, after changing basis, the following 
resolution

0 → OPn

⎡
⎢⎢⎣

x0
x1

...
xn−1

⎤
⎥⎥⎦

→ OPn(1)n → S1 → 0.

(iii) The direct sum Sm1 ⊕ Sm2 of an m1-tail reflexive sheaf and an m2-tail reflexive 
sheaf is an (m1 + m2)-tail reflexive sheaf. Even more, it will follow from Theorem 3.9
that if Sm is a minimal m-tail reflexive sheaf with 2 different singular points p1 and p2
then Sm = Sm1 ⊕ Sm2 with m = m1 + m2, Sing(Sm1) = {p1} and Sing(Sm2) = {p2}.

(iv) On the other hand, not all minimal m-tail reflexive sheaves split as a direct sum 
of minimal tail sheaves. For example, set F := coker(M t) where

M =
[
x y z 0 0 0
t 0 0 x y z

]

F fits into a short exact sequence

0 → O2
P3

Mt

→ OP3(1)6 → F → 0

and we easily check that it is a 2-tail reflexive sheaf on P3 which does not split.

We will now demonstrate a result that will be extremely useful throughout this paper.

Proposition 3.4. Let H 
 P
n−1 be a hyperplane of Pn which does not meet Sing(Sm). 

Then Sm|H 
 Tm
Pn−1 , i.e., Sm restricts to m copies of the tangent bundle on Pn−1.

Proof. We can assume without loss of generality that the hyperplane is defined as H :=
{xn = 0} and we consider the restriction of the resolution of Sm to this hyperplane

0 → Om
Pn−1

At
m|H→ OPn−1(1)nm → Sm|H → 0. (3.4)

After a possible change of basis, we can prove that the (m × nm)-matrix Am|H has a 
column of zeros if and only if H0(S∨

m(1)|H) �= 0. In fact, as shown in [2, Lemma 2.10], 



84 L. Costa et al. / Journal of Algebra 499 (2018) 74–102
h0(S∨
m(1)|H) = p �= 0 if and only if Sm(−1)|H splits as S ′ ⊕ Op

Pn−1 , which implies that, 
after a change of basis if necessary, p columns of Am|H are equal to zero.

Let us see that H0(S∨
m(1)|H) = 0. To this end, considering the exact sequence

0 → S∨
m → S∨

m(1) → S∨
m(1)|H → 0 (3.5)

it is enough to see that H1(S∨
m) = H0(S∨

m(1)) = 0. Let us see first that H1(S∨
m) = 0.

Dualizing the resolution of Sm we get the following diagram

0 S∨
m OPn(−1)nm A Om

Pn Ext1(Sm,OPn) 0

K1

0 0

and the following exact sequence in cohomology

H0 (OPn(−1)nm) H0(A)→ H0 (Om
Pn) → cokerH0(A) → 0

with cokerH0(A) ⊂ H0(Ext1(Sm, OPn)). Since H0 (OPn(−1)nm) = 0, we have 
dim cokerH0(A) = m. On the other hand, since Sm is an m-tale reflexive sheaf 
h0(Ext1(Sm, OPn)) = m. Therefore cokerH0(A) = H0(Ext1(Sm, OPn)) which implies 
that h0(K1) = 0. Hence, from the above diagram we get h1(S∨

m) = 0.
Now consider the dual sequence tensored by the hyperplane bundle

0 S∨
m(1) Onm

Pn

A(1)
OPn(1)m Ext1(Sm,OPn) 0

K1(1)

0 0

from where we deduce that

H0(S∨
m(1)) ∼= KerH0(A(1)). (3.6)

Moreover, by Serre duality KerH0(A(1)) ∼= cokerHn(At(−n − 2)). Using the exact 
sequence
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0 → Om
Pn → Onm

Pn (1) → Sm → 0

together with the fact that Sm is an m-tail reflexive sheaf we deduce that

dim cokerHn(At(−n− 2)) = 0.

Therefore it follows from (3.6) that h0(S∨
m(1)) = 0 and hence h0(S∨

m(1)|H) = 0.
Therefore, Am|H has no column of zeros and all its entries are linear forms in 

x0, . . . , xn−1. By performing a change of coordinates, we can assume that Am|H is di-
vided in (1 × n)-dimensional blocks which we denote by Ai

m and whose entries are n
independent linear forms �i1, . . . , �in ∈ K[x0, . . . , xn−1]. Hence, we can describe the ma-
trix as

Am|H =

⎡
⎢⎢⎢⎢⎣
A1

m 0 0 · · · 0
0 A2

m 0 . . . 0
...

. . .
...

0 0 · · · 0 Am
m

⎤
⎥⎥⎥⎥⎦

and this implies that Sm|H 
 Tm
Pn−1 . �

Remark 3.5. By Proposition 3.4, Hn−2(Sm|H(α)) = 0 for any α ≤ −n − 1. Hence, using 
the exact sequence

0 → Sm(−1) → Sm → Sm|H → 0

we get that the map Hn−1(Sm(α − 1)) l→ Hn−1(Sm(α)), defined by the multiplication 
by a linear form l, is an isomorphism for every α ≤ −n − 1.

Our next goal is to describe minimal m-tail reflexive sheaves on Pn. We start with 
technical results, useful to better understand them.

Lemma 3.6. Let Am be an (m × nm) matrix with linear entries defining Sm, i.e., Sm is 
given by

0 → Om
Pn

At
m→ OPn(1)nm → Sm → 0.

Then, after a change of basis, Sm can be defined by an (m × nm) matrix with at least 
one row with exactly n linearly independent linear forms.

Proof. We denote by Am(P ) the evaluation of the m × nm matrix Am at a point P
of Pn. Since Sm is not locally free, there exists at least one point P ∈ P

n such that 
rkAm(P ) < m. So, after a change of basis, we can assume that the first row of Am(P ) is 
a linear combination of the other rows. Hence, if l1, . . . , lm are the rows of Am(P ), there 
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exist α2, . . . , αm ∈ K such that l1 = α2l2 + . . . + αmlm. On the other hand, notice that 
if we denote by r1, . . . , rm the rows of Am, the matrix

A′
m =

⎛
⎜⎜⎜⎜⎝

r1 − α2r2 − . . .− αmrm
...

rm−1

rm

⎞
⎟⎟⎟⎟⎠

also defines Sm. Moreover, the first row of A′
m(P ) is zero by construction, which means 

that all the linear forms of the first row of A′
m vanish at the point P . Therefore, in the 

first row of A′
m we cannot have more than n linearly independent linear forms. Finally, 

if in one row of the matrix defining the minimal m-tail reflexive sheaf Sm we have a 
number of independent linear forms strictly less than n, then Sm would fail to be locally 
free on at least a line, which according to Lemma 2.5 cannot occur. Therefore, Sm can 
be defined by an (m × nm) matrix of linear entries with at least one row with exactly n
linearly independent linear forms. �

The following result will tell us that every minimal m-tail reflexive sheaf can be 
obtained as a chain of extensions. We will say that F is an m-chain of extensions of S1
if it can be obtained by iterated extensions by S1, which means that its defining matrix 
is given by

⎡
⎢⎢⎢⎢⎣
L1 0 0 · · · 0
∗ L2 0 . . . 0
...

. . .
...

∗ ∗ · · · ∗ Lm

⎤
⎥⎥⎥⎥⎦

where the Li’s are (1 × n) matrices, each one defined by n linearly independent linear 
forms.

Proposition 3.7. Let Sm be a minimal m-tail reflexive sheaf. Then Sm is an m-chain of 
extensions of S1’s.

Proof. From Lemma 3.6, we can assume that Sm is defined by a matrix Am of the form
(
x0 · · · xn−1 0 · · · 0

C Bm−1

)
.

This means that Sm can be realized as an extension

0 → S1 → Sm → F → 0 (3.7)

of F by S1, obtaining the following commutative diagram
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0 0 0

0 OPn

[x0 ··· xn−1]tOn
Pn S1 0

0 Om
Pn

At
m OPn(1)nm Sm 0

0 Om−1
Pn

Bt
m−1OPn(1)nm F 0

0 0 0

In fact, the diagram is constructed considering the first two rows and completing it using 
the Snake Lemma.

Restricting the sequence (3.7) to a hyperplane H ∼= P
n−1 not passing through 

Sing(Sm) ⊃ Sing(S1), by Proposition 3.4 we obtain

0 → TPn−1 → Tm
Pn−1 → F|Pn−1 → 0.

Indeed, the restriction of the short exact sequence remains exact because, since TPn−1 is 
a simple vector bundle, i.e. Hom(TPn−1 , TPn−1) ∼= K, the map TPn−1 → Tm

Pn−1 is either 
injective or zero. The zero case leads to contradiction, or else F would restrict as the 
direct sum of m copies of the tangent bundle.

Hence, we conclude that F|Pn−1 ∼= Tm−1
Pn−1 . This also tells us that F must not be locally 

free at a finite set of points, else we would not have a vector bundle as its restriction.
From the last row of the above diagram we have hn−1(F(−n − 1)) = m − 1, 

hn−1(F(t)) = 0 for t > −n − 1 and Hi
∗(F) = 0, for i = 1, . . . , n − 2. Moreover, from

0 → F(−1) → F → F|Pn−1 ∼= Tm−1
Pn−1 → 0

together with the fact that Hn−2(TPn−1(α)) = 0 for α �= −n, we have that hn−1(F(t)) ≤
m − 1 for t ≤ −n − 1. Finally, since Sm and S1 are tail reflexive sheaves, considering 
(3.7) we obtain hn−1(F(t)) ≥ m − 1 for t ≤ −n − 1.

Putting altogether we have proved that F is a minimal (m − 1)-tail reflexive sheaf 
on P

n.
Iterating the process, the proposition is proven. �
Now we will prove that any minimal m-tail reflexive sheaf Sm with the singular locus 

Sing(Sm) containing at least two different points is a direct sum of minimal tail reflexive 
sheaves with only one point in its singular locus. This will be a consequence of the 
following result
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Proposition 3.8. Let Si be a minimal i-tail reflexive sheaf and Sj be a minimal j-tail 
reflexive sheaf such that Sing(Si) ∩Sing(Sj) = ∅. Assume that F is a minimal (i + j)-tail 
sheaf given by an extension

0 → Si → F → Sj → 0.

Then, F ∼= Sj ⊕ Si.

Before proving the proposition, notice that the hypothesis of F being minimal is 
necessary; indeed not every extension of minimal tail is a minimal tail. Consider for 
example the sheaf F defined on P3 as the cokernel of the transposed of the matrix

⎡
⎢⎣ x y z 0 0 0 0 0 0
t 0 0 x y z 0 0 0
0 0 0 0 t 0 x y z

⎤
⎥⎦

which is an extension of an S2 and S1 (in our notation it is also a 3-chain extension 
of S1’s). Computing cohomology (using Macaulay2) we get that h2(F(−5)) = 3 and 
h2(F(−6)) = 2, hence F is not a 3-tail reflexive sheaf.

Proof of Proposition 3.8. Denote by Ai the matrix defining Si as a cokernel and by Aj

the matrix defining Sj as a cokernel.
Consider the dual of the sequence defining the extension

0 → S∨
j → F∨ → S∨

i
f→ Ext1(Sj ,OPn) → Ext1(F ,OPn) → Ext1(Si,OPn) → 0

and recall we have already noticed that h0(Ext1(Si, OPn)) = i, h0(Ext1(Sj , OPn)) = j

and by assumption h0(Ext1(F , OPn)) = i + j. Moreover, being the Ext sheaves involved 
supported on a 0-dimensional scheme, all their cohomology, except for their global sec-
tions, vanish. This forces the map f to be zero, henceforth to the splitting of the dual 
sequence into the following short exact sequences

0 → S∨
j → F∨ → S∨

i → 0 (3.8)

and

0 → Ext1(Sj ,OPn) → Ext1(F ,OPn) → Ext1(Si,OPn) → 0. (3.9)

Since Ext1(Sj , OPn) and Ext1(Si, OPn) are both coherent sheaves supported on disjoint 
0-dimensional schemes, the exact sequence (3.9) splits. Hence

Ext1(F ,OPn) ∼= Ext1(Si,OPn) ⊕ Ext1(Sj ,OPn).

On the other hand we have the following diagram with exact rows and columns:
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0 0 0

0 S∨
j F∨ S∨

i 0

0 OPn(−1)jn OPn(−1)(i+j)n OPn(−1)in 0

0 Oj
Pn Oi+j

Pn Oi
Pn 0

0 Ext1(Sj ,OPn) Ext1(F ,OPn) Ext1(Si,OPn) 0

0 0 0

From the splitting of the last row, the matrix A has the two blocks At
i and At

j at the 
diagonal and zeros elsewhere. Finally cutting the second column in short exact sequences 
and using the fact that F is a reflexive sheaf we get the exact sequence

0 → Oi+j
Pn

At

→ OPn(1)(i+j)n → F → 0.

Therefore, F ∼= Sj ⊕ Si. �
Now we are ready to state our first structure Theorem on minimal m-tail reflexive 

sheaves. We will see that any minimal m-tail reflexive sheaf with different singular points 
splits as a direct sum of minimal tail sheaves with a unique singular point. This is a 
strong structural property of minimal tail reflexive sheaves that, as we will prove in the 
subsequent example, does not hold for reflexive sheaves in general.

Theorem 3.9. Let Sm be a minimal m-tail reflexive sheaf with s different singular points 
p1, · · · , ps. Then,

Sm = ⊕s
i=1Sni

where Sni
is a minimal ni-tail reflexive sheaf with a unique singular point pi. Moreover, 

m = n1 + · · · + ns.

Proof. We will proceed by induction on m. If m = 1 there is nothing to say. Assume 
m > 1. It follows from Proposition 3.7 that Sm sits in an exact sequence of the following 
type



90 L. Costa et al. / Journal of Algebra 499 (2018) 74–102
0 → Sm−1 → Sm → S1 → 0 (3.10)

where S1 is a minimal 1-tail sheaf singular at a only one point p ∈ Sing(Sm).
By hypothesis of induction,

Sm−1 = ⊕w
i=1Sñi

where Sñi
is a minimal ñi-tail reflexive sheaf with a unique singular point pi, m − 1 =

ñ1 + . . .+ ñw and w is either equal to s or s −1. We will denote by Fi the matrix defining 
Sñi

and by X the matrix defining S1.
If p /∈ Sing(Sm−1), then w = s − 1 and by Proposition 3.8 the exact sequence (3.10)

splits and

Sm
∼= Sm−1 ⊕ S1 ∼= ⊕s−1

i=1Sni
⊕ S1

and we are done.
Assume that there exist i0 such that p ∈ Sing(Si0). Without loss of generality we can 

assume that i0 = 1. According to (3.10), the matrix associated to Sm is given by blocks 
as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 0 0 0 · · · 0
0 F2 0 0 · · · 0
0 0 F3 0 · · · 0
...

...
. . . . . .

...
0 0 Fw 0
A1 A2 A3 · · · Aw X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Denote by Gw the reflexive sheaf defined by the matrix

[
Fw 0
Aw X

]

so that Gw is given as the extension

0 → Snw
→ Gw → S1 → 0.

Since Sm is a minimal tail reflexive sheaf, Gw is a minimal tail reflexive sheaf. Moreover, 
by assumption p /∈ Sing(Snw

). Hence, by Proposition 3.8, Gw
∼= S1 ⊕ Snw

which implies 
that Aw = 0.

By performing operations in rows and columns and repeating the same argument we 
get that A2 = · · · = Aw = 0 and therefore Sm is given by the matrix
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fw 0 0 0 · · · 0
0 Fs−2 0 0 · · · 0
0 0 F3 0 · · · 0
...

...
. . . . . .

...
0 0 F1 0
0 0 0 · · · A1 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, consider G1 given by the matrix

[
F1 0
A1 X

]
.

Since Sm is a minimal tail sheaf, G1 is a minimal tail sheaf with support only one 
point p = p1 and

Sm
∼= ⊕w

i=2Sni
⊕ G1

which proves what we want. �
By means of the following example we will illustrate that the property that we have 

just seen, is intrinsic of tail reflexive sheaves.

Example 3.10. Let E be a rank 2 stable reflexive sheaf on P3 with Chern classes (−1, 4, 16). 
E admits a locally free resolution of the following type (see [9], Theorem 2.10)

0 → OP3(−5) (f,g,�)t→ OP3(−1)2 ⊕OP3(−4) → E → 0.

Choosing f, g general forms of degree 4 and � a general linear form, we have by construc-
tion that Sing(E) = V (f, g, �) is a set of 16 different points and since E is stable it does 
not split.

According to Theorem 3.9 we can reduce the classification problem of minimal m-tail 
reflexive sheaves to the classification of minimal m-tail reflexive sheaves that have only 
one singular point.

To this end, the following is the key result

Proposition 3.11. Fix a point p ∈ P
n. Let F be a rank (n − 1)m reflexive sheaf on Pn

with Sing(F) = {p} and given by an extension

0 → Sl
1 → F → Sm−l → 0. (3.11)

So, F is the cokernel of a matrix A with
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At =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 0 0 · · · 0
0 X 0 0 · · · 0
0 0 X 0 · · · 0
...

...
. . . . . .

...
0 0 X 0
A1 A2 A3 · · · Al B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)

and X = [�1, · · · , �n] is given by the n-linearly independent forms �i defining p. Define 
Gi as the cokernel of the transpose of the matrix

Ci :=
[
X 0
Ai B

]
, 1 ≤ i ≤ l

and define Hi as the cokernel of the transpose of the matrix obtained by deleting the i-th 
row and i-th block of columns of At. Then:

(a) F is a minimal m-tail reflexive sheaf if and only if Hi is a minimal (m − 1)-tail 
reflexive sheaf for 1 ≤ i ≤ l.

(b) F is a minimal m-tail reflexive sheaf if and only if Gi is a minimal (m − l + 1)-tail 
reflexive sheaf for 1 ≤ i ≤ l.

Proof. (a) If there exists one Hi which is not tail, according to the exact sequence

0 → S1 → F → Hi → 0

the sheaf F would not be tail. Indeed, if Hi is not m − 1 tail it means that its (n − 1)-th 
cohomology group decreases when we twist by subsequent negative degrees, forcing F
not to be m-tail. Hence we only need to prove the converse. Assume that for 1 ≤ i ≤ l, Hi

is tail. Observe that for any 1 ≤ i ≤ l, Gi is tail and consider the commutative diagram

0 0

0 Sl−1
1 Sl−1

1 0

0 S1 F Hi 0

0 S1 Gi Sm−l 0

0 0 0
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Since Gi and Hi are both tail reflexive sheaves, dualizing we get the following diagram:

0 0 0

0 S∨
m−l G∨

i S∨
1 0

0 H∨
i

α F∨ coker(α) 0

0 Sl−1
1

∨ � Sl−1
1

∨ 0

0 0

By the snake lemma, coker(α) ∼= S∨
1 . Therefore, since we have the short exact sequence

0 → H∨
i → F∨ → S∨

1 → 0

we get that F is a minimal m-tail reflexive sheaf.
(b) Because of the definition of Gi, the result follows by applying (l − 1) times item 

(a) to F , each time deleting one row and one block of columns. �
The previous result tells us that each Sm, with Sing(Sm) = {p} is obtained as the 

extension, described by a matrix of type (3.12) of an Sl, also having Sing(Sl) = {p}, with 
Sm−l

1 , again having Sing(S1) = {p}. This means that if we want to classify minimal tail 
reflexive sheaves, we have reduced the classification family to a simpler family of sheaves. 
Indeed, keeping the above notations, if F is a minimal m-tail sheaf, every matrix of 
type Ci, obtained from the matrix defining F , also defines a minimal tail sheaf. Hence, 
if the rank of the new matrix drops by more than one when evaluated at the singular 
point of the associated sheaf, we can repeat the argument starting with the matrix Ci. 
Iterating the process, we will consider smaller and smaller matrices, until we arrive at a 
matrix A with at most one row with the only non-zero coordinates given by the linear 
forms defining p. In other words, repeating the argument we can reduce to the case of 
the minimal m-tail reflexive sheaves defined as

0 → Om
Pn

A→ OPn(1)nm → Sm → 0

with only one singular point p, such that the rank of the defining matrix A drops only 
by one when evaluated at the singular point p, i.e. rkA(p) = m − 1.

From now on we will assume that p = (0 : . . . : 0 : 1) and we will denote by ESm
=

Ext1(Sm, OPn) so that we have the exact sequence
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0 → S∨
m → OPn(−1)nm At

→ Om
Pn → ESm

→ 0.

The next results will show us that the problem of classifying those minimal m-tail 
reflexive sheaves with only one singular point p and whose rank of the defining matrix 
drops only by one when evaluated at p is equivalent to the problem of classifying fat 
points of length m whose ideal has the radical associated to a simple point.

Recall the following result (see [4], Pag. 231)

Theorem 3.12. Let M a finitely generated torsion module over a commutative ring R
with a free presentation

Rp ϕ→ Rq → M → 0

then we have

F0(M) ⊂ AnnM

where AnnM denotes the annihilator of the module and F0(M) the Fitting ideal defined 
by the maximal minors of a matrix for ϕ.

As a direct consequence of the theorem, we have that the support of ESm
is a closed 

subscheme of the 0-dimensional scheme whose ideal is defined by the maximal minors of 
the matrix A. Let us observe that we are sure that the last ideal defines a 0-dimensional 
scheme because it always contains the polynomials xm

0 , . . . , xm
n−1, indeed, the matrix 

defining the minimal tail sheaves we are focusing now can be expressed as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 0 0 · · · 0
∗ X 0 0 · · · 0
∗ ∗ X 0 · · · 0
...

...
. . . . . .

...
∗ ∗ X 0
∗ ∗ ∗ · · · ∗ X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with X = [x0 x1 . . . xn−1] .

Therefore the support of ESm
is given by the fat point P̃ obtained by “adding direc-

tions” to P . Because of the rank hypothesis, we have that, considered as a skyscraper 
sheaf on P̃ ,

0 ≤ rk ESm
≤ 1.

This gives us an inclusion of sheaves ESm
↪→ OP̃ , the last sheaf denoting the structure 

sheaf of the fat point. Because h0(ESm
) = m by hypothesis, we conclude that ESm

is the 
structural sheaf of a fat point of length m.

Let us now prove the other direction.
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Theorem 3.13. There is a one to one correspondence between the subschemes of Pn of 
length m supported at one point p and the minimal m-tail reflexive sheaves Sm with 
Sing(Sm)= {p} and such that the rank of its defining matrix drops by one when evaluated 
at p.

Proof. We have already seen that the minimal m-tail satisfying the required rank con-
ditions have as singular locus a fat point of length m.

Let us now consider P̃ be a fat point of length m whose ideal has the radical associated 
to one simple point p (so we think of P̃ as (0 : . . . : 0 : 1) plus directions).

Consider the structural sheaf OP̃ which, using the Beilinson spectral sequence, has 
the following resolution

0 → OPn(−n)m → OPn(−n + 1)mn → · · · → OPn(−1)mn → Om
Pn → OP̃ → 0 (3.13)

We divide it into the following exact sequences

0 → K1 → OPn(−1)mn → Om
Pn → OP̃ → 0

0 → K2 → OPn(−2)
(n
2
)
m → K1 → 0

...
0 → Ki → OPn(−i)

(n
i

)
m → Ki−1 → 0

...
0 → OPn(−n)m → OPn(−n + 1)mn → Kn−2 → 0.

(3.14)

Dualizing the first sequence, we get

0 → Om
Pn → OPn(1)mn → K∨

1 → 0.

Our goal is to prove that K∨
1 is a minimal m-tail reflexive sheaf. Notice that 

Ext1(K∨
1 , OPn) = OP̃ . Therefore from the local to global spectral sequence we get that

hn−1(K∨
1 (α)) = m for α << 0.

By definition we also have hn−1(K∨
1 (−n − 1)) = m. Thus it is enough to prove that the 

restriction of K∨
1 to an hyperplane H not containing the fat point is isomorphic to m

copies of the tangent bundle on Pn−1. As in the proof of Proposition 3.4, this is true 
if and only if H0(K1(1)|H) = 0 and this follows observing that, being defined in the 
resolution of the structure sheaf of the fat point, we have that h1(K1) = h0(K1(1)) = 0, 
which gives us the required vanishing.

Henceforth, using as before the following short exact sequence

0 → K∨
1 (−1) → K∨

1 → Tm
Pn−1 → 0
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we obtain that K∨
1 
 Sm, a minimal m-tail reflexive sheaf. Obviously, the rank of the 

matrix defining the sheaf drops by one when evaluated in p = (0 : . . . : 0 : 1), or else we 
would not have Ext1(Sm, OPn) = OP̃ . �

Unfortunately, nowadays, this classification problem is out of range. In fact it is also 
related to the classification of finite rank n commutative K-algebras. It is known that if 
n ≤ 6 there are finitely many types up to isomorphism, while the isomorphism classes 
are of infinite number if n ≥ 7. The complete list for rank up to 6 can be found in [11].

Examples 3.14. (a) If the fat point, in the projective space Pn, is defined by the ideal 
(xm

0 , x1, . . . , xn−1) then the matrix A of the associated minimal tail reflexive sheaf is the 
following

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 · · · · · · 0

T X 0
...

0 T X 0 · · · 0
...

. . . . . .
...

0 · · · 0 T X 0
0 · · · · · · 0 T X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with X = [x0, x1, . . . , xn−1] and T denotes the 1 × n matrix [xn, 0, . . . , 0].
(b) It is possible to associate to each item of Poonen’s list the matrix of the associated 

sheaf, which will not include here for briefness.
Just to give an explicit example, considering P3 = Proj(K[x, y, z, t]), take the fat point 

given, in the open subset defined by {t �= 0}, by the ideal (x2 +z3, xy, y2 +z3, xz, yz, z4). 
The matrix of the minimal tail will be

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x y z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t 0 0 x y z 0 0 0 0 0 0 0 0 0 0 0 0
0 t 0 0 0 0 x y z 0 0 0 0 0 0 0 0 0
0 0 t 0 0 0 0 0 0 x y z 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 t x y z 0 0 0
0 0 0 t 0 0 0 t 0 0 0 0 0 0 t x y z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4. Final remarks

We end the paper with some remarks concerning non minimal m-tail reflexive sheaves. 
To do so, we start with what we call level m-tail reflexive sheaves.

Definition 4.1. Let F be an m-tail reflexive sheaf on Pn. We will say that F is level if it 
can be defined by a short exact sequence
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0 → Om
Pn →

q⊕
j=1

OPn(bj) → F → 0, (4.1)

with bj ≥ 1.

For later conveniences, we will rewrite the resolution of a level m-tail reflexive sheaf 
as

0 → Om
Pn → OPn(1)p ⊕

q′⊕
j=1

OPn(bj) → F → 0 (4.2)

with bj ≥ 2. Notice that by the proof of Lemma 3.1, p ≥ nm.
We first observe that any minimal m-tail reflexive sheaf is level and according to 

Example 2.4 (c) and (d) not all m-tail reflexive sheaves are level. We also notice that 
the following property holds:

Lemma 4.2. Assume that F is a normalized m-tail reflexive sheaf given by an extension 
of the following type

e : 0 → OPn(a) → F → Sm → 0, a ≥ 0.

Then F ∼= Sm ⊕OPn(a).

Proof. Applying the contravariant functor Hom(−, OPn(a)) to the extension e we get 
the long exact sequence:

· · · → Hom(OPn(a),OPn(a)) ∼= K
α→ Ext1(Sm,OPn(a)) β→ Ext1(F ,OPn(a)) → 0.

Since it is exact, β ◦ α = 0. On the other hand α sends 1 ∈ K to the extension e and β
is an isomorphism. Hence e = 0 which implies that F ∼= Sm ⊕OPn(a). �

In the next theorem we will see that we can reduce the description of level m-tail 
reflexive sheaves to the description of minimal m-tail reflexive sheaves. Indeed, we have

Theorem 4.3. Let F be a level m-tail reflexive sheaf, whose resolution is described as in 
(4.2). Then

F 
 Sm ⊕OPn(1)p−nm ⊕
q′⊕

j=1
OPn(bj).

Proof. Considering the short exact sequence (4.2), we get the following commutative 
diagram
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0 0

⊕q′

j=1 OPn(bj)
� ⊕q′

j=1 OPn(bj)

0 Om
Pn

(A | B)t

�

OPn(1)p ⊕
⊕q′

j=1 OPn(bj) F 0

0 Om
Pn

At

OPn(1)p E 0

0 0

(4.3)

Indeed, we consider the long exact sequence obtained by applying the functor 
Hom(

⊕q′

j=1 OPn(bj), ∗) to the exact sequence (4.2)

0 → Hom(
q′⊕

j=1
OPn(bj),Om

Pn) → Hom(
q′⊕

j=1
OPn(bj),OPn(1)p ⊕

q′⊕
j=1

OPn(bj))

→ Hom(
q′⊕

j=1
OPn(bj),F) → · · ·

Since bj ≥ 2 for each j, Hom(
⊕q′

j=1 OPn(bj), Om
Pn) = 0 and we get the following 

commutative diagram

0

⊕q′

j=1 OPn(bj)
� ⊕q′

j=1 OPn(bj)

f

0 Om
Pn

(A | B)t

�

OPn(1)p ⊕
⊕q′

j=1 OPn(bj) F 0

Om
Pn

At

OPn(1)p E 0

0 0

(4.4)

which comes from the Snake Lemma applied on the two first rows in the diagram.
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We will now show that the map f is injective. Consider a non zero element s1 in 
H0(F(−bq′)). From the fact that F is a reflexive sheaf and that H0(F(−bq′ − b)) = 0
for all b > 0, we get the short exact sequence

0 → OPn(bq′)
s1→ F → G1 → 0 (4.5)

with G1 a torsion free sheaf.
Consider now an element s2 ∈ H0(F(−bq′−1)), independent from s1 (if bq′−1 �= bq′

this is straightforward). Using the exact sequences (4.2) and (4.5) we see that s2 gives 
us a non zero section in H0(G1(−bq′−1)) and the following commutative diagram, where 
the commutativity of the square is simply given by composition,

0

OPn(bq′−1)

0 OPn(bq′) F

�

G1 0

F
g

G2

0

Applying again the Snake Lemma to the two columns of the previous diagram, we obtain 
the short exact sequence

0 → OPn(bq′−1) → ker g → OPn(bq′) → 0

which implies that ker g 
 OPn(bq′−1) ⊕OPn(bq′). Using the fact that F is a level m-tail 
sheaf, Hn−1(F(−n −2)) = m which implies that p ≥ nm and therefore rkF = p +q′−m ≥
m(n −1) +q′ > q′. Hence, we can iterate the process and we obtain the required injectivity 
for f .

Directly from Diagram (4.4) we have that

hn−1(F(−n− 2)) = hn−1(E(−n− 2)) = m.

This implies that the matrix A must have exactly nm linearly independent columns, or 
else we will not have the right dimension on the cohomology groups required by F being 
m-tail. This means that E 
 E ′ ⊕OPn(1)p−nm and also F 
 F ′ ⊕OPn(1)p−nm, with F ′

defined by the short exact sequence
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0 → Om
Pn → OPn(1)nm ⊕

q′⊕
j=1

OPn(bj) → F ′ → 0.

Therefore, we have that the generators of the module Hn−1
∗ (F ′) are concentrated in one 

degree, which implies, considering that hn−1(F ′(α)) = m for every α ≤ −n − 1 and 

hn−1(F ′(α)) = 0 for every α > −n − 1, that all maps Hn−1(F ′(α− 1)) l→ Hn−1(F ′(α))
are isomorphisms for every α ≤ −n − 1 and the choice of a linear form l. Taking a 
hyperplane H not passing through Sing(F) and the exact sequence

0 → F ′(α− 1) → F ′(α) → F ′
|H(α) → 0

we get that Hi
∗(F ′

|H) = 0 for i = 1, . . . , n −3 and Hn−2
∗ (F ′

|H) = Hn−2(F ′
|H(−n −2)) with 

hn−2(F ′
|H(−n − 2)) = m. This implies that F ′

|H 
 Tm
Pn−1

⊕q′

j=1 OPn−1(b̃j). Comparing 

with the resolution of F ′, we have 
⊕q′

j=1 OPn−1(b̃j) =
⊕q′

j=1 OPn−1(bj).
This means that the restriction E ′

|H is defined as the cokernel of the map

q′⊕
j=1

OPn−1(bj) → Tm
Pn−1 ⊕

q′⊕
j=1

OPn−1(bj)

hence E ′
|H 
 Tm

Pn−1 ⊕ cokerβ with 
⊕q′

j=1 OPn−1(bj) 
β→

⊕q′

j=1 OPn−1(bj). It follows from 
the commutativity of the upper right square of diagram (4.4) restricted to H that β is 
injective. This implies that β is actually an isomorphism, because we could “simplify” 
the matrix that represents it by eliminating summands starting from the highest degree. 
Therefore, E ′

|H 
 Tm
Pn−1 , which gives us that E ′ is a minimal m-tail reflexive sheaf, i.e. 

E ′ 
 Sm.
Finally we can conclude applying Lemma 4.2 to the last column of the diagram 

(4.4). �
Remark 4.4. Notice that in the proof of Theorem 4.3 we have seen that the restriction 
of a level m-tail reflexive sheaf, as defined by (4.2), behaves nicely. Indeed, that

F|Pn−1 ∼= Tm
Pn−1 ⊕OPn−1(1)p−nm ⊕

q′⊕
j=1

OPn−1(bj).

To end the paper, we can see that in addition the general case leads to many other 
different situations, involving for example the classification of Steiner bundles on the 
projective space, another problem not yet solved.

Consider an m-tail reflexive sheaf F on Pn, defined by the resolution

0 → Om
Pn ⊕

k⊕
OPn(ai)

Mt

→ OPn(1)p ⊕
q⊕

OPn(bj) → F → 0

i=1 j=1
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with ai ≥ 2 and bj ≥ 2, for each i = 1, . . . , k and j = 1, . . . , r and p ≥ nm. We can 
assume

M =
[
A 0
B C

]

so that we get the following commutative diagram

0 0 0

0
⊕k

i=1 OPn(ai)
Ct ⊕q

j=1 OPn(bj) H 0

0 Om
Pn ⊕

⊕k
i=1 OPn(ai)

Mt

OPn(1)p ⊕
⊕q

j=1 OPn(bj) F 0

0 Om
Pn

At

OPn(1)p G 0

0 0 0

By definition, Sing(F) consists of m points. The problem here arises from the fact that we 
do not know how such singular points “distribute” on the matrices A or C. It could hap-
pen that Sing(G) is empty and therefore A defines a vector bundle, as in Example 2.4 (d), 
and the bundle G is known in literature as a Steiner bundle. The classification of Steiner 
bundles on the projective space is still a question with only partial answers, so the study 
of m-tail reflexive sheaves in general will depend on the future developments in that 
direction.

Remark 4.5. Obviously, it is possible to classify some specific situation, for example if 
m = 1 and ai �= aj for i �= j. Indeed the only possibilities for G and H will be twists 
either of the tangent bundle on Pn or S1.
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