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1. Introduction

1.1. Background and aims

The theory of (g, K)-modules is an algebraic approach to representation theory of real 
reductive Lie groups. Recently, integral and rational structures of real reductive groups 
and their representations have been studied by M. Harris, G. Harder, F. Januszewski, 
and the author ([9], [10], [8], [18], [19], [11], and [12] for example). J. Bernstein et al. 
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also introduced contraction families as pairs over the polynomial ring C [z] in [3] and [4]. 
These are all regarded as a part of the theory of (g, K)-modules over commutative 
rings.

The functor Ig,K
q,M and its derived functor are an important construction of (g, K)-mod-

ules over the complex number field C. In particular, they include an algebraic analog 
of real parabolic induction, and produce the so-called Aq(λ)-modules which are discrete 
series representations of real semisimple Lie groups in special cases. If we are given a 
map (q, M) → (g, K) of pairs, the functor Ig,K

q,M is right adjoint to the forgetful functor 
F
q,M
g,K from the category of (g, K)-modules to that of (q, M)-modules. Its derived functor 

can be computed by the standard resolution which is obtained from the Koszul complex 
(see [21] for details).

Januszewski constructed the functor Ig,K
q,M and its derived functor in a similar way to 

the complex case when the base ring is a field of characteristic 0 and the groups K, M are 
reductive ([18], [19]). In a view from homological algebra, this cannot be generalized in a 
straightforward way when the base ring is no longer a field. For integral structures, Harder 
suggests to replace C by the ring Z of integers in the standard resolution for a definition of 
the (g, K)-cohomology. In [11] and [12], the author constructed the functor Ig,K

q,M and its 
derived functor over an arbitrary commutative ring. The arguments of [11] heavily rely on 
generalities on categories, especially, closed symmetric monoidal categories. Though we 
know the existence of the functor, we did not understand what they actually produced.

The study of the functor Ig,K
q,M consist of three steps:

(A) Construct Ig,K
q,M and its derived functor, or prove their existence.

(B) Find pairs and suitable (q, M)-modules which are meaningful to representation the-
ory of real reductive groups.

(C) Study the resulting (g, K)-modules from the functor Ig,K
q,M .

Generalities on Part (A) were established by [11] and [12] as mentioned above. Part (B) 
is well-studied in principle when the base is C (see [21]). Usually, (g, K) may be the 
Harish-Chandra pair associated to a real reductive group, and (q, M) may be real or 
θ-stable parabolic subpairs. However, if we work over Z, we will have many choices 
of Z-forms of such pairs over Z. This problem will be related to explicit descriptions 
in Part (C). The main purpose of this paper is to work on Part (C) in an abstract 
way.

Notation 1.1.1. For (g, K)-modules V and V ′, write Homg,K(V, V ′) for the k-module of 
(g, K)-homomorphisms from V to V ′. We will use similar notations for modules over 
other algebraic objects like K-modules.

Convention 1.1.2. The tensor products without decoration are understood to be over the 
base ring k.
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In [19], Januszewski discussed the behavior of Ext•g,K the functor Ig,K
q,M along extensions 

k′/k of fields, and proved the base change formulas

Homg,K(X,−) ⊗ k′ ∼= Homg⊗k′,K⊗k′(X ⊗ k′,−⊗ k′)

Ext•g,K(−,−) ⊗ k′ ∼= Extg⊗k′,K⊗k′(−⊗ k′,−⊗ k′)

RIg,K
q,M (V ) ⊗ k′ � RIg⊗k′,K⊗k′

q⊗k′,M⊗k′(V ⊗ k′)

H•(g,K,−) ⊗ k′ ∼= H•(g⊗ k′,K ⊗ k′,−⊗ k′)

under suitable finiteness conditions (see [19] for details). This can be regarded as 
Part (C). He also considered rational forms of cohomological inductions (Part (B) and 
Part (C), see [19] 7.1).

In [17], base change formulas of representations of affine group schemes K over com-
mutative rings k are discussed.

Notation 1.1.3. If M → K is a homomorphism between flat affine group schemes over 
k, let us denote the right adjoint functor to the forgetful functor from the category of 
K-modules to that of M -modules by IndK

M .

Let K be an affine group scheme, and V be a K-module which is finitely generated 
and projective as a K-module. According to [17] I.2.10, we have HomK(V, −) ⊗ k′ ∼=
HomK⊗k′(V ⊗k′, − ⊗k′). Moreover, if k′ is finitely generated and projective as a k-module 
then the isomorphism above holds for small colimits of such V . For a homomorphism 
M → K between flat affine group schemes over k, the group cohomology H•(K, −) and 
the cohomology functor Rn IndK

M (−) respects flat base changes ([17] Proposition I.4.13).
Our goal is to establish these isomorphisms along flat homomorphisms from Noethe-

rian rings. Supplementarily, we also work again on Part (A) to relax the definition of 
pairs in [11]. Fix k as a commutative ground ring.

Condition 1.1.4.

(1) A k-module V is said to satisfy Condition 1.1.4 (1) if for any flat commutative 
k-algebra R, the canonical homomorphism

Homk(V, k) ⊗R → Homk(V,R)

is an isomorphism.
(2) A k-module V is said to satisfy Condition 1.1.4 (2) if for any k-module W and any 

flat commutative k-algebra R, the canonical homomorphism

Homk(V,W ) ⊗R → Homk(V,W ⊗R)

is an isomorphism.
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Example 1.1.5. Finitely presented k-modules V satisfy Condition 1.1.4 (2).

Condition 1.1.6. Let K be a flat affine group scheme over k. Write Ie for the kernel 
of the counit of the coordinate ring of K. Then K is said to satisfy Condition 1.1.6 if 
the k-modules Ie/I2

e and its dual k = Homk(Ie/I2
e , k) enjoy Condition 1.1.4 (1) and (2) 

respectively.

Example 1.1.7. If k is Noetherian, and Ie/I2
e is finitely generated then k is also finitely 

generated. In particular, both Ie/I2
e and k satisfy Condition 1.1.4 (2).

Notation 1.1.8. For a flat affine group scheme satisfying Condition 1.1.6, its Lie algebra 
will be denoted by the corresponding small German letter.

A pair consists of a flat affine group scheme K satisfying Condition 1.1.6 and a 
k-algebra A with a K-action φ, equipped with a K-equivariant Lie algebra homomor-
phism ψ : k → A. Moreover, a pair is demanded to satisfy the equality dφ(ξ) = [ψ(ξ),−]
for any ξ ∈ k, where dφ is the differential representation of φ. The point of modifica-
tion from [11] is on the condition of Ie/I2

e . In [11], we required that Ie/I2
e is finitely 

generated and projective ([11] Condition 2.2.2). For a pair (A, K), an (A, K)-module 
is a K-module, equipped with a K-equivariant A-module structure such that the two 
induced actions of k coincide ([11]). We consider a version to replace algebras A by Lie 
algebras g. Remark that in this paper, we do not discuss differential graded modules 
like [11]. Then the same arguments as [11] Section 2.3 and [12] Theorem 2.1.1 still work.

Lemma 1.1.9. Let (A, K) → (B, L) be a map of pairs in the above sense. Then we have 
a forgetful functor FA,K

B,L from the category of (B, L)-modules to that of (A, K)-modules, 
which admits a right adjoint functor IB,L

A,K .

In [13], we focus on Part (B) and Part (C). In that paper, we consider the cases where 
the group K is a torus. Then the theory of Hecke algebras and the Koszul resolutions 
work well. For instance, we study integral models of the pairs associated to the finite 
covering groups of PU(1, 1) and their principal series representations and discrete series 
representations. We see that whether the induced modules from Ig,K

q,M vanish or not really 
depends on the choice of Z-forms of pairs over C. For applications of this paper, we also 
discuss torsion in the algebraic Borel–Weil–Bott induction of split reductive groups over 
Z in [13].

1.2. Main results

In this paper, the pairs (A, K) we mainly consider arise from their versions (g, K)
for Lie algebras through A = U(g) the enveloping algebra of g. Therefore we write 
(g, K)-modules for (U(g), K)-modules.
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Notation 1.2.1. For a pair (g, K) over k, denote the category of (g, K)-modules by 
(g, K)-mod.

We next introduce the functors of flat base changes. Let k → k′ be a flat homomor-
phism of commutative rings, and (g, K) be a pair over k.

Lemma A (Proposition 3.1.1).

(1) The Lie algebra g ⊗ k′ and the affine group scheme K ⊗ k′ over k′ naturally form a 
pair (g ⊗ k′, K ⊗ k′) over k′.

(2) The extension and the restriction of scalars of modules extend to an adjunction

−⊗k k′ : (g,K)-mod � (g⊗ k′,K ⊗ k′)-mod : Reskk′ .

Assume k to be Noetherian. We compare a relation of Hom modules and flat base 
changes.

Theorem B (Flat base change theorem, Theorem 3.1.6). Suppose that g is finitely gener-
ated as a k-module. Then for any finitely generated (g, K)-module X, we have a natural 
isomorphism

Homg,K(X,−) ⊗ k′ ∼= Homg⊗k′,K⊗k′(X ⊗ k′,−⊗ k′).

Theorem C (Theorem 3.1.7). Let k → k′ be a flat ring homomorphism, and (q, M) →
(g, K) be a map of pairs. Suppose that the following conditions are satisfied:

(i) k ⊕ q → g is surjective.
(ii) q and g are finitely generated as k-modules.

Then we have an isomorphism

(Ig,K
q,MV ) ⊗k k′ ∼= Ig⊗kk

′,K⊗kk
′

q⊗kk′,M⊗kk′(V ⊗k k′).

Example 1.2.2. Let k be the ring Z of integers, and k′ be the field Q of rational numbers. 
Then Theorem C asserts that Ig,K

q,M (V ) is a Z-form (with torsions) of Ig⊗Q,K⊗Q

q⊗Q,M⊗Q(V ⊗Q).

The condition (i) of Theorem C is satisfied in the following cases:

Example 1.2.3 (The Zuckerman functor). The Lie algebra q is equal to g, and the map 
q → g is the identity. In this case, Γ = Ig,K

g,M is called the Zuckerman functor.

Example 1.2.4. The pair (g, K) is trivial. In other words, g is the zero Lie algebra 0, and 
K is the trivial group scheme Spec k. In this case, the functor I0,Spec k

q,M will be denoted 
by H0(q, M, −).
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Example 1.2.5 (The algebraic Borel–Weil induction). Let G be a split reductive group 
over Z. Fix a maximal split torus T of G, and a positive root system of the Lie algebra 
g of G. Write b̄ for the Lie subalgebra of g corresponding to the negative roots. Then 
we have a map (b̄, T ) → (g, G) of pairs. The corresponding functor Ig,G

b̄,T
is called the 

Borel–Weil induction. Its derived functor is called the Borel–Weil–Bott induction.

We also have its derived version:

Notation 1.2.6. Let (g, K) be a pair. Then denote the unbounded derived category of 
(g, K)-modules and its full subcategory spanned by complexes cohomologically bounded 
below by D(g, K) and D+(g, K) respectively.

Theorem D (Theorem 3.1.10). Let k → k′ be a flat ring homomorphism, and (q, M) →
(g, K) be a map of pairs. Suppose that the following conditions are satisfied:

(i) k ⊕ q → g is surjective.
(ii) q and g are finitely generated as k-modules.

Then we have a natural isomorphism

(RIg,K
q,M−) ⊗k k′ � RIg⊗k′,K⊗k′

q⊗k′,M⊗k′(−⊗k k′)

on D+(q, M).

In view of Theorem D, the cohomology modules of Ig,K
q,M over Z are Z-forms of those 

over Q via the base change ⊗Q under the suitable conditions. As mentioned in the 
introduction of [11], it is an expected new phenomenon that the cohomology involve 
torsions. We give an example in [13].

It will be convenient to consider an unbounded analog of Theorem D. In fact, then we 
can use infinite homotopy colimits. They are needed when we consider the homotopy de-
scent for instance ([14]). The idea of descent and its applications to number theory have 
already appeared in [19]. For the proof of Theorem D, we do not have a standard resolu-
tion. Instead we prove that ⊗k′ sends injective objects to acyclic objects with respect to 
Ig⊗k′,K⊗k′

q⊗k′,M⊗k′ . Then we see the base change formula of complexes degreewise. Therefore the 
argument does not extend literally to the unbounded case. To establish an unbounded 
analog, we replace the unbounded derived categories. For a pair (g, K) over a Noethe-
rian ring k, write the stable derived category of (g, K)-modules by IndCoh(g, K) in the 
sense of [22]. In terms of higher categories, this can be thought of as the ind-completion 
(see [23]) of the ∞-category Coh(g, K) of cohomologically bounded complexes whose 
cohomologies are finitely generated as (g, K)-modules.

Let k → k′ be a flat homomorphism of Noetherian rings, and (q, M) → (g, K) be a 
map of pairs over k. Then we can define the ind-analogs of the functors above:



46 T. Hayashi / Journal of Algebra 514 (2018) 40–75
−⊗ k′ : Ind Coh(g,K) → Ind Coh(g⊗ k′,K ⊗ k′)

−⊗ k′ : Ind Coh(q,M) → Ind Coh(q⊗ k′,M ⊗ k′)

Ig,K,ind
q,M : IndCoh(q,M) → Ind Coh(g,K)

Ig⊗k′,K⊗k′,ind
q⊗k′,M⊗k′ : Ind Coh(q⊗ k′,M ⊗ k′) → IndCoh(g⊗ k′,K ⊗ k′).

Theorem E (Theorem 3.3.4). There is a canonical isomorphism

Ig,K,ind
q,M (−) ⊗ k′ → Ig⊗k′,K⊗k′,ind

q⊗k′,M⊗k′ (−⊗ k′).

Moreover, it restricts to the natural isomorphism RIg,K
q,M (−) ⊗ k′ � RIg⊗k′,K⊗k′

q⊗k′,M⊗k′(− ⊗ k′)
of Theorem D under the identifications

Ind Coh(q,M)+ � D(q,M)+

IndCoh(g⊗ k′,K ⊗ k′)+ � D(g⊗ k′,K ⊗ k′)+

This reduces to a base change formula for D(g, K) in special cases by the following 
assertion:

Proposition F (Proposition 3.3.5). Suppose that k is a field of characteristic 0, (g, K) be 
a pair with K reductive and dim g < +∞. Then the embedding Coh(g, K) → D(g, K)
induces an equivalence IndCoh(g, K) � D(g, K).

We also show a finite analog of Theorem B, Theorem C, and Theorem D without 
assuming conditions (i) and (ii). This is rather a straightforward generalization of [19]
Corollary 2.2 and Theorem 2.5.

Variant G (Variant 3.2.12, Variant 3.2.13, Lemma 3.2.15). Let (q, M) → (g, K) be a 
map of pairs over a commutative ring k, and k → k′ be a ring homomorphism. Assume 
that k′ is finitely generated and projective as a k-module.

(1) There is a canonical isomorphism Homg,K(−, −) ⊗k′ ∼= Homg⊗k′,K⊗k′(− ⊗k′, − ⊗k′)
on (g, K)-modop × (g, K)-mod. Here (g, K)-modop denotes the opposite category to 
(g, K)-mod.

(2) There is a natural isomorphism

(Ig,K
q,M−) ⊗k k′ ∼= Ig⊗kk

′,K⊗kk
′

q⊗kk′,M⊗kk′(−⊗k k′).

(3) There is a natural isomorphism of the functors on the unbounded derived category 
of (q, M)-modules:

RIg,K
q,M (−) ⊗ k′ � RIg,K

q,M (−⊗ k′).
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A typical application is to add 
√
−1 to the given ring. In fact, we will need 

√
−1 (and 

other fractions) to make integral forms of compact Lie groups to be split. For instance, 
the special orthogonal group SO(2) ∼= SpecZ [x, y] /(x2 + y2 − 1) is isomorphic to the 
split torus of rank 1 after the base change to Z 

[√
−1, 1

2
]
.

Notation 1.2.7. Let (h, K) → (g, K) be a map of pairs over a commutative ring with 
K → K being the identity. The left and right adjoint functors to the forgetful functor 
from the category of (g, K)-modules to that of (h, K)-modules will be denoted by indg

h

and prog
h

respectively.

Our strategy of the proofs of Theorem B and Variant G is to use general arguments 
on generators to reduce them to the group case through the induction indg

k
: K-mod →

(g, K)-mod. The remaining assertion is then a version of [17] I.2.10 for flat affine group 
schemes. Theorem C is basically obtained by formal arguments of adjunctions. Remark 
that we have to analyze the resulting bijections since the inverse map of Theorem B is 
not canonical.

Finally, we discuss flat base changes of pro. Unlike the case k = C, it should be difficult 
in general since the internal Hom of K-mod is quite complicated. In this paper, we find 
a practically nice setting to imitate the description of [21] Proposition 5.96. Let G be a 
real reductive group, (gC, KC) be the associated pair over C to G, and (qC, (KL)C) be 
a θ-stable parabolic subpair, where θ is the Cartan involution. Let ūC be the opposite 
nilradical to qC. Write h for the element of the Cartan subalgebra corresponding to the 
half sum of roots of the nilradical uC of qC ([21] Proposition 4.70).

Let k be a Noetherian subring of C, and (q, KL) ⊂ (g, K) be a k-form of (qC, (KL)C) ⊂
(gC, KC). Assume that there is a complementary KL-stable subalgebra ū ⊂ g to q which 
is a k-form of ūC. Moreover, suppose that the following conditions are satisfied:

(i) There is a free basis of q.
(ii) There is a free basis {Eαi

} of ū consisting of root vectors of ūC.
(iii) The (KL)C-orbit of h is contained in the Cartan subalgebra. This is satisfied when 

the Levi subgroup of G corresponding to (qC, (KL)C) belongs to the Harish-Chandra 
class in the sense of [21] Definition 4.29.

Theorem H (Proposition 4.1.3, Proposition 4.2.2, Proposition 4.2.5). Let Z be a torsion-
free (q, KL)-module. Moreover, assume that Z ⊗C is admissible and that h acts on it as 
a scalar.

(1) The enveloping algebra U(ū) is decomposed into a direct sum U(ū) = ⊕OU(ū)O of 
KL-submodules U(ū)O which are free of finite rank as k-modules.

(2) There is an isomorphism of KL-modules

progq(Z) ∼= ⊕Homk(U(ū)O, Z).
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In particular, it enjoys the base change formula

progq(Z) ⊗ C ∼= progC

qC
(Z ⊗ C).

Suppose that we have a semidirect product q = l ⊕ u which is compatible with the 
Levi decomposition qC = lC ⊕ uC. Assume also that u is free of rank r < ∞. For an 
(l, KL)-module λ on k, (temporarily) define Aq(λ) as Rdim(uC∩kC)Γ progq(λ ⊗ ∧ru). Then 
we obtain the base change formula of Aq(λ) along k → C by combining Theorem H and 
Theorem D.

1.3. Notations

For a coalgebra C over a commutative ring k, C-comod denotes the category of 
C-comodules.

For an integral domain k, its fractional field will be denoted by Frac(k).
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2. Comodules

2.1. Generalities on comodules

In this section, let C be a coalgebra over a commutative ring k. It is easy to formulate 
the base change adjunction of comodules. Namely, for a k-algebra k′, the forgetful functor 
and the base change give rise to the natural bijection

HomC(V,W ) ∼= HomC⊗k′(V ⊗ k′,W ),

where V is a C-comodule, and W is a C ⊗ k′-comodule.
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In the rest, assume that C is flat over k. We note general constructions of comodules. 
Let V be a C-comodule, V0 be a k-submodule, and S be a subset of V .

Construction 2.1.1. Define IV,V0 as the full subcategory of the overcategory C-comod/V

spanned by subcomodules of V contained in V0, and V ◦
0 be the colimit of the canonical 

functor IV,V0 → C-comod.

Proposition 2.1.2.

(1) The category IV,V0 is filtered.
(2) The comodule V ◦

0 exhibits the maximal subcomodule of V contained in V0.

Proof. To prove (1), suppose that we are given two comodules W, W ′ ⊂ V0. Then the 
image of the sum W ⊕W ′ → V belongs to IV,V0 . Since IV,V0 is a diagram of subobjects 
of a fixed object of a category, the other condition automatically follows. Part (2) now 
follows since filtered colimits of k-modules are exact. �
Construction 2.1.3. Define JV,S as the full subcategory of the overcategory C-comod/V

spanned by subcomodules of V containing S, and set 〈S〉 as the limit of the canonical 
diagram JV,S → C-comod.

Proposition 2.1.4. The comodule 〈S〉 exhibits the smallest subcomodule of V containing S.

Proof. Choose a vertex S ⊂ W ⊂ V of C-comod/V , and denote the composite arrow 
〈S〉 → W → V by i. Observe that i is independent of the choice of W . In fact, take 
another object S ⊂ W ′ ⊂ V . Since monomorphisms are stable under pullbacks, W×V W ′

is a subcomodule of W, W ′ containing S. The resulting commutative diagram

W

〈S〉 W ×V W ′ V

W ′.

shows the independence.
We next prove that the map 〈S〉 → V is a monomorphism. Suppose that we are given 

two homomorphisms U
f

⇒
g

〈S〉 i→ V such that i ◦ f = i ◦ g. Let us denote the canonical 

projection 〈S〉 → W by pW , and the inclusion W ↪→ V by iW . The equality

iW ◦ pW ◦ f = i ◦ f = i ◦ g = iW ◦ pW ◦ g
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implies pW ◦ f = pW ◦ g. Therefore these equal maps form a cone over JV,S whose vertex 

is U . Moreover, the two maps U
f

⇒
g

〈S〉 are morphisms of cones. Since 〈S〉 is terminal, 

the two arrows are equal.
Finally, we prove that 〈S〉 is the minimum. In fact, if we are given a subcomodule 

S ⊂ W ⊂ V , then we have a commutative diagram

〈S〉 V

W

by definition. Since the upper horizontal and the upper right diagonal arrows are injec-
tive, so is the rest. �
Example 2.1.5 ([16] 27 Exercise 8). Set C as the coordinate ring of the affine group 
scheme SL2 over Z. Let V be an irreducible representation of SL2 over Q with dimV =
n + 1, and vn be a highest weight vector of V . Then V m := 〈vn〉 ⊂ V is described as 
follows:

V m = ⊕n
i=0Zvn−2i

Evn−2i = (n− i + 1)vn−2i+2

Fvn−2i = (i + 1)vn−2i−2.

Proposition 2.1.6 ([17] I.2.13). For an element v ∈ V , the comodule 〈v〉 is contained in 
a finitely generated k-module.

This leads us to a categorical conclusion for comodules. To state it, we prepare some 
general teminologies and facts. For our applications, we may restrict ourselves to abelian 
categories if necessary. For general references, see [1] and [5].

Definition 2.1.7. Let A be a locally small cocomplete abelian category. Then a small set 
G of objects of A is called a family of generators if the following equivalent conditions 
are satisfied:

(a) Maps f, g : X → Y satisfying f ◦ e = g ◦ e for any Q ∈ G and e ∈ Hom(Q, X) are 
equal.

(b) For every object X ∈ A, the morphism 
∐

Q∈G

e∈Hom(Q,X)
Q 

∐
e→ X is epic.

(c) If we are given a monomorphism i : X → Y which is not an isomorphism, there 
exists a map Q → Y with Q ∈ G that does not factor through i.

(d) A morphism X → Y in A is an isomorphism if and only if for any member Q ∈ G, 
the induced map Hom(Q, X) → Hom(Q, Y ) is a bijection.
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The next fact is obvious by definition:

Lemma 2.1.8. A functor between locally small (cocomplete abelian) categories with a faith-
ful right adjoint functor respects families of generators.

Definition 2.1.9. Let C be a locally small category with small filtered colimits. Then an 
object A ∈ C is said to be compact if for any small filtered diagram Y• of C, the induced 
map

lim−−→Hom(A, Y•) → Hom(A, lim−−→Y•)

is a bijection.

Definition 2.1.10. A locally small cocomplete abelian category is compactly generated if 
it admits a small set of compact generators.

We have a nontrivial consequence from characterizations of compactly generated cat-
egories:

Lemma 2.1.11 ([1] Remark 1.9, the proof of Theorem 1.11). Let A be a compactly gener-
ated (abelian) category with a small set G of compact generators. Then compact objects 
of A are generated by G under finite colimits.

These are used in 3.2 and 4.1 as key techniques. We now go back to comodules.

Corollary 2.1.12. If k is Noetherian, the category C-comod is compactly generated. In 
other words, every comodule is the union of its finitely generated subcomodules.

Proof. The assertions follow from Proposition 2.1.6. Note that for a C-comodule V , the 
following conditions are equivalent ([15] Proposition 1.3.3):

(a) V is compact in C-comod;
(b) V is compact as a k-module;
(c) V is a finitely presented k-module. �
Corollary 2.1.13. Suppose that k is a PID. Then indecomposable comodules which are 
free of finite rank over k form a family of generators of C-comod.

Proof. According to the proof of [20] Proposition 1.2, subcomodules of direct sums of 
finite copies of C form a family of generators of C-comod. In view of Proposition 2.1.6, we 
may restrict the members of the family to torsion-free finitely generated subcomodules. 
The assertion is now obvious. �

The next lemma is used in the end of this paper:
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Lemma 2.1.14. Let k → k′ be an injective homomorphism of commutative rings, C be a 
flat coalgebra over k, and V be a C-comodule. Suppose that the following conditions are 
satisfied:

(i) V is flat as a k-module.
(ii) There is a decomposition V ∼= ⊕OVO as a k-module.
(iii) V ⊗ k′ ∼= ⊕OVO ⊗ k′ is a direct sum of C ⊗ k′-subcomodules of V ⊗ k′.

Then each of VO is a subcomodule of V , and V ∼= ⊕OVO exhibits a decomposition as a 
C-comodule.

Proof. According to (ii), we have an isomorphism V ⊗C ∼= ⊕OVO ⊗C. It will suffice to 
show that the coaction respects each O-component. Take the base change along k → k′

to obtain a commutative diagram

V V ⊗ C

V ⊗ k′ (V ⊗ k′) ⊗k′ (C ⊗ k′).

Since V and C are flat, the vertical arrows are injective. Therefore the assertion is reduced 
to k = k′, and it is equivalent to (iii). �
2.2. Representations of flat affine group schemes and (g, K)-modules

Let H be a commutative Hopf algebra, and write K = SpecH. For a k-module V and 
a k-algebra R, set AutR(V ⊗R) as the group of automorphisms of the R-module V ⊗R. 
This determines a group k-functor Aut(V ) : CAlgk → Grp; R �→ AutR(V ⊗ R), where 
CAlgk (resp. Grp) is the category of commutative k-algebras (resp. groups). We also 
write CAlgk,flat for the full subcategory of CAlgk spanned by flat k-algebras. Note that 
CAlgk,flat is stable under ⊗. Recall that a representation of K is a k-module V , equipped 
with a homomorphism K → Aut(V ) of group k-functors. Equivalently, a representation 
is a k-module, equipped with an R-linear group action of K(R) on V ⊗ R for each 
k-algebra R such that for f : R → R′ and g ∈ K(R) the diagram

V ⊗R
ν(g)

f

V ⊗R

f

V ⊗R′
ν(f◦g)

V ⊗R′

commutes. A k-module homomorphism f : V → V ′ of representations of K is said to be 
a K-homomorphism if for all k-algebras R, the diagrams
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V ⊗R
ν(g)

f⊗idR

V ⊗R

f⊗idR

V ′ ⊗R
ν′(g)

V ′ ⊗R

commute. Set K-mod as the category of representations of K. If K is flat over k, define 
K-modflat in a similar way.

Lemma 2.2.1. The categories K-mod and H-comod are isomorphic. Moreover, if K is 
flat, these are also isomorphic to K-modflat.

Proof. See [25] Theorem 3.2 for the first assertion. In view of its proof, the coaction of 
H is recovered by the actions of the valued point groups K(k), K(H), and K(H ⊗H). 
Therefore the same argument proves H-comod ∼= K-modflat if H is flat. �

Suppose next that H is flat over k. Though we have a general description of the 
internal Hom of the symmetric monoidal category H-comod ([15] Theorem 1.3.1), it is 
usually too complicated to compute in practice. Here we give a better realization in a 
special case:

Proposition 2.2.2. Let K be an affine group scheme, and V, V ′ be K-modules.

(1) If V is finitely generated and projective as a k-module, there is a natural K-action on 
Hom(V, V ′). Moreover, the standard adjunction Homk(− ⊗ V, V ′) ∼=
Homk(−, Hom(V, V ′)) restricts to

HomK(−⊗ V, V ′) ∼= HomK(−,Hom(V, V ′)).

(2) Suppose that K is flat. If V satisfies Condition 1.1.4 (2), there is a natural 
K-action on Hom(V, V ′). Moreover, the standard adjunction Homk(− ⊗ V, V ′) ∼=
Homk(−, Hom(V, V ′)) restricts to

HomK(−⊗ V, V ′) ∼= HomK(−,Hom(V, V ′)).

Proof. Suppose that V is finitely generated and projective as a k-module. Then for any 
k-algebra R, we have a canonical isomorphism Hom(V, V ′) ⊗ R ∼= Hom(V, V ′ ⊗ R) ∼=
HomR(V ⊗R, V ′⊗R). Under this identification, we put a K(R)-action on Hom(V, V ′) ⊗R

by

(ν(g)f)(v) = νV ′(g)f(νV (g−1)v).
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Running through all R, we obtain Hom(V, V ′) ∈ K-mod. We can see the adjunction in 
the usual way. If K is flat, we may restrict R to be flat (Lemma 2.2.1). Then the same 
argument works for V with Condition 1.1.4 (2). �
Proof of Lemma 1.1.9. This is proved in a similar way to [11] Theorem 2.3.6 (2). The 
adjoint representation of K makes sense from Lemma 2.2.1 (see also [11] below Condi-
tion 2.2.2). The construction of the colocalization (−)k in [11] Lemma 2.3.2 works from 
Proposition 2.2.2 (2). �
Proposition 2.2.3. Let (g, K) be a pair over a commutative ring k.

(1) For (g, K)-modules V and V ′, the tensor product V ⊗W is a (g, K)-module for the 
tensor representation of K and

πV⊗V ′(x)(v ⊗ v′) = πV (x)v ⊗ v′ + v ⊗ πV ′(x)v′,

where v⊗v′ ∈ V ⊗V ′, x ∈ g, and πV (resp. πV ′) denotes the action of g on V (resp. 
V ′).

(2) The category (g, K)-mod is closed symmetric monoidal for the monoidal structure 
defined in (1). Moreover, the closed structure is compatible with that of K-mod.

Notation 2.2.4. The internal Hom of the symmetric monoidal category K-mod will be 
denoted by F (−, −).

Proof of Proposition 2.2.3. It is easy to see that the tensor product V ⊗ V ′ of (1) is a 
module over both K and g. Apply − ⊗ V ′ and − ⊗ V to the K-equivariant maps

g⊗ V → V

g⊗ V ′ → V ′

respectively. Since K-mod is symmetric monoidal, we have two K-equivariant maps from 
g ⊗V⊗V ′ to V⊗V ′. Since their sum coincides with πV⊗V ′ , the latter is also K-equivariant. 
The actions of k coincide by the Leibnitz rule of the differential representations for the 
tensor product. To see that this defines a symmetric monoidal category, it will suffice to 
show that the constraints of associativity and symmetry of K-mod respect the g-actions. 
This is obvious.

Recall that we have a K-equivariant k-homomorphism g → U(g) ⊗ U(g); x �→ x ⊗
1 − 1 ⊗ x (regard g ∼= g ⊗ k ∼= k ⊗ g). For (g, K)-modules V, V ′, define π = πF (V,V ′) :
g ⊗ F (V, V ′) → F (V, V ′) by the following composite arrows:

g⊗ F (V, V ′) ⊗ V → U(g) ⊗ U(g) ⊗ F (V, V ′) ⊗ V

∼= U(g) ⊗ F (V, V ′) ⊗ U(g) ⊗ V
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πV→ U(g) ⊗ F (V, V ′) ⊗ V

→ U(g) ⊗ V ′

πV ′→ V ′.

This is K-equivariant by definition. To see that this is a g-action, we see that the two 
maps

g⊗ g⊗ F (V, V ′) ⇒ F (V, V ′)

coincide. If we write f ⊗ v �→ f(v) for the counit F (V, V ′) ⊗ V → V ′, it is equivalent to

(π([x, y])f)(v) = (π(x)(π(y)f))(v) − (π(y)(π(x)f))(v)

for x, y ∈ g and f ∈ F (V, V ′). Observe that πF (V,V ′) is characterized by the equality

(π(x)f)(v) = πV ′(x)f(v) − f(πV (x)v)

by definition, and thus

(π(x)(π(y)f))(v) = π(x)(π(y)f)(v) − (π(y)f)(π(x)v)

= π(x)π(y)f(v) − π(x)f(π(y)v) − π(y)f(π(x)v) + f(π(y)π(x)v).

The assertion now follows from the formal computation

(π([x, y])f)(v) = π([x, y])f(v) − f(π([x, y])v)

= π(x)π(y)f(v) − π(y)π(x)f(v) − f(π(x)π(y)v) + f(π(y)π(x)v)

= (π(x)(π(y)f))(v) − (π(y)(π(x)f))(v).

We next show that F (V, V ′) is a (g, K)-module. Since V, V ′ are (g, K)-modules, the 
action π can be rewritten as

(π(ξ)f)(v) = π(ξ)f(v) − f(π(ξ)v) = dν(ξ)f(v) − f(dν(ξ)v),

for ξ ∈ k. Since the counit F (V, V ′) ⊗ V → V ′ is k-equivariant with respect to the 
differential representations, we have

(π(ξ)f)(v) = dν(ξ)f(v) − f(dν(ξ)v) = (dν(ξ)f)(v).

Finally, we prove that F (V, V ′) exhibits the closed structure. Let V ′′ be another 
(g, K)-module, and ϕ : V ′′ → F (V, V ′) be a K-module homomorphism. It will suffice to 
show that ϕ is g-equivariant if and only if the composition Φ : V ′′⊗V → F (V, V ′) ⊗V →
V ′ is g-equivariant. Observe that the following conditions are equivalent:
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(a) ϕ is g-equivariant;
(b) The diagram

g⊗ V ′′ idg⊗ϕ

πV ′′

g⊗ F (V, V ′)

πF (V,V ′)

V ′′ F (V, V ′)

commutes;
(c) The diagram

g⊗ V ′′ ⊗ V
ϕ

πV ′′

g⊗ F (V, V ′) ⊗ V
πF (V,V ′)

F (V, V ′) ⊗ V

V ′′ ⊗ V
Φ

V ′

commutes.

One can also rewrite (c) as

Φ(π(x)v′′ ⊗ v) = π(x)ϕ(v′′)(v) − ϕ(v′′)(π(x)v) = π(x)Φ(v′′ ⊗ v) − Φ(v′′ ⊗ π(x)v)

which is equivalent to saying that Φ is g-equivariant. This completes the proof. �
Definition 2.2.5. Let (g, K) be a pair over a commutative ring k, and V be a 
(g, K)-module. Then set V c = F (V, k).

Suppose that we are given a map (q, K) → (g, K) of pairs which is the identity on K.

Corollary 2.2.6. For a (q, K)-module W and a (g, K)-module V , there is a natural iso-
morphism indg

q W ⊗ V ∼= indg
q(W ⊗ F

q,K
g,K(V )).

Proof. For a (g, K)-module X, we have a natural bijection

Homg,K(indg
q W ⊗ V,X) ∼= Homg,K(indg

q W,F (V,X))
∼= Homq,K(W,Fq,K

g,K(F (V,X)))
∼= Homq,K(W ⊗ F

q,K
g,K(V ),Fq,K

g,K(X))
∼= Homg,K(indg

q(W ⊗ F
q,K
g,K(V )), X).
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The assertion now follows from the Yoneda lemma. �
Corollary 2.2.7 (The easy duality). There is a natural isomorphism indg

q(W )c ∼=
progq(W c) for a (q, K)-module W .

Proof. For a (g, K)-module V , we have

Homg,K(V, indg
q(W )c) ∼= Homg,K(V ⊗ indg

q W,k)
∼= Homg,K(indg

q(V ⊗W ), k)
∼= Homq,K(V ⊗W,k)
∼= Homq,K(V,W c)
∼= Homg,K(V,prog

k
(W c)).

The assertion now follows from the Yoneda Lemma. �
3. The flat base change theorems

3.1. The main statements

We start with the definition of the base change functor. Let k → k′ be a homo-
morphism of commutative rings. For an algebra A over k, an A ⊗ k′-module W is an 
A-module for

A⊗k W ∼= (A⊗ k′) ⊗k′ W → W.

Conversely, if we are given an A-module V , V ⊗ k′ is an A ⊗ k′-module for

(A⊗ k′) ⊗k′ (V ⊗ k′) ∼= (A⊗ V ) ⊗ k′ → V ⊗ k′.

These form an adjunction

HomA(V,W ) ∼= HomA⊗k′(V ⊗ k′,W ).

Similarly, if we are given a flat affine group scheme K over k, we have the base change 
adjunction (see the beginning of Section 2.1). In terms of k-functors, they are described 
as follows: For k′ a k-algebra, we have

K(R) → (K ⊗ k′)(R⊗ k′)

→ AutR⊗k′(W ⊗k′ (R⊗ k′))
∼= AutR⊗k′(W ⊗R)

→ AutR(W ⊗R)



58 T. Hayashi / Journal of Algebra 514 (2018) 40–75
(K ⊗ k′)(R) = Homk′(k [K] ⊗ k′, R)
∼= Homk(k [K] , R)

→ AutR(V ⊗R)
∼= AutR((V ⊗ k′) ⊗k′ R).

Hence the differential representations are compatible with the restrictions and the flat 
base changes. That is, let k′ be a flat k-algebra.

• If we are given a K ⊗ k′-module W , the differential representation on the restriction 
of W to K coincides with

k⊗W ∼= (k⊗ k′) ⊗k′ W → W ;

• For a K-module V , the differential representation of K ⊗ k′ on the K ⊗ k′-module 
V ⊗ k′ is induced from

k⊗ V → V → V ⊗ k′

by the universality of the base change.

We now obtain the following consequence from these functorial constructions:

Proposition 3.1.1. Let (g, K) be a pair over k, and k′ be a flat k-algebra. Then we have 
an adjunction

−⊗k k′ : (g,K)-mod � (g⊗ k′,K ⊗ k′)-mod : Reskk′ .

Remark 3.1.2. If K is smooth over k, the base change makes sense for all k′ since the 
smoothness is stable under arbitrary base changes.

Remark 3.1.3. For a weak pair (g, K) in the sense of [11], the base change of weak 
(g, K)-modules always makes sense even if K does not satisfy Condition 1.1.6.

Corollary 3.1.4. Let (q, M) → (g, K) be a map of pairs over k, k′ be a flat k-algebra, and 
V be a (q ⊗ k′, M ⊗ k′)-module. Then there is an isomorphism

Ig,K
q,M (Reskk′(V )) ∼= Reskk′(Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(V )).

In particular, if W is a (q, M)-module,

Ig,K
q,M (Reskk′(W ⊗ k′)) ∼= Reskk′(Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(W ⊗ k′)).
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Proof. Pass to the right adjoints of (− ⊗ k′) ◦ F
q,M
g,K

∼= F
q⊗k′,M⊗k′

g⊗k′,K⊗k′ ◦ (− ⊗ k′): For any 
(g, K)-module X, we have

Homg,K(X, Ig,K
q,M (Reskk′(V ))) ∼= Homq,M (X,Reskk′(V ))

∼= Homq⊗k′,M⊗k′(X ⊗ k′, V )

∼= Homg⊗k′,K⊗k′(X ⊗ k′, Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(V ))

∼= Homg,K(X,Reskk′(Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(V ))).

The assertion now follows from the Yoneda lemma. �
Construction 3.1.5 (The comparison natural transform). Let (q, M) → (g, K) be a map 
of pairs over k, and k′ be a flat k-algebra. Then applying Ig,K

q,M to the unit of Proposi-
tion 3.1.1, we obtain a natural transform

Ig,K
q,M (−) → Ig,K

q,M (Reskk′(−⊗ k′)) ∼= Reskk′(Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(−⊗ k′)).

Pass to the adjunction of Proposition 3.1.1 to get

Ig,K
q,M (−) ⊗ k′ → Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(−⊗ k′)

which will be referred to as ι = ιk,k′ .

In the rest of this section, assume k to be Noetherian. We will prove in Section 3.2
below:

Theorem 3.1.6 (Flat base change theorem). Let k′ be a flat k-algebra, and (g, K) be a pair 
over k with g finitely generated over k. Then for any finitely generated (g, K)-module X, 
we have an isomorphism

Homg,K(X,−) ⊗ k′ ∼= Homg⊗k′,K⊗k′(X ⊗ k′,−⊗ k′).

Theorem 3.1.7. Let k → k′ be a flat ring homomorphism, and (q, M) → (g, K) be a map 
of pairs. Suppose that the following conditions are satisfied:

(i) k ⊕ q → g is surjective.
(ii) q and g are finitely generated as k-modules.

Then ι : (Ig,K
q,M−) ⊗k k

′ → Ig⊗kk
′,K⊗kk

′

q⊗kk′,M⊗kk′(− ⊗k k
′) (Construction 3.1.5) is an isomorphism.

We also have its derived version:
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Definition 3.1.8. Let k be a Noetherian ring, and (g, K) be a pair. Suppose that g is 
finitely generated. Set Coh(g, K) as the full subcategory of the derived category D(g, K)
of (g, K)-modules spanned by cohomologically bounded complexes with finitely gener-
ated cohomologies.

Theorem 3.1.9. Let k be a Noetherian ring, (g, K) be a pair, and k′ be a flat k-algebra. 
Then the flat base change theorem

RHomg,K(−,−) ⊗ k′ � RHomg,K(−,−⊗ k′)

holds on Coh(g, K)op ×D(g, K)+.

Theorem 3.1.10. Let k → k′ be a flat ring homomorphism, and (q, M) → (g, K) be a 
map of pairs. Suppose that the following conditions are satisfied:

(i) k ⊕ q → g is surjective.
(ii) q and g are finitely generated as k-modules.

Then we have a natural isomorphism

(RIg,K
q,M−) ⊗k k′ � RIg⊗k′,K⊗k′

q⊗k′,M⊗k′(−⊗k k′)

on D+(q, M).

For a simple application, we can prove the algebraic Borel–Weil theorem over fields of 
characteristic 0. Suppose that k is a field of characteristic 0. Let G be a split reductive 
group. Fix a maximal split torus T of G and a positive root system of the Lie algebra g
of G. Write b̄ for the Lie subalgebra of g corresponding to the negative roots.

Proposition 3.1.11. Let λ be a dominant character of T . There is an isomorphism 
Ig,G
b̄,T

(λ) ⊗ k̄ ∼= Ig⊗k̄,G⊗k̄

b̄⊗k̄,T⊗k̄
(λ ⊗ k̄), where k̄ is the algebraic closure of k. In particular, 

Ig,G
b̄,T

(λ) is an absolutely irreducible representation of G.

We write V (λ) = Ig,G
b̄,T

(λ). The coordinate ring of G will be denoted by O(G).

Corollary 3.1.12. The homomorphism of coalgebras ⊕λ Endk(V (λ)) → O(G) is an iso-
morphism, where λ runs through all dominant characters of T .

Proof. Passing to the base change along k → k̄, we may assume that k is algebraically 
closed. Then the assertion follows from the algebraic Peter–Weyl theorem. �
Corollary 3.1.13 ([24]). The absolutely irreducible representations V (λ) of G form a com-
plete list of irreducible representations of G.
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3.2. Proof of the theorems

In this section, let k be a Noetherian ring.

Lemma 3.2.1. Let C be a flat coalgebra, and V, X, Y be C-comodules. Suppose that we 
are given a commutative diagram of k-modules

V
f

g

Y

X,

i

where i is injective. If the maps f and i intertwine the coactions of C, then so does g.

Lemma 3.2.2. Let (g, K) be a pair over a commutative ring k. Then a k-submodule V ′

of a (g, K)-module V is a subobject in (g, K)-mod if and only if it is a submodule over 
both g and K.

We omit the proofs of the two above assertions since they follow from standard argu-
ments.

Lemma 3.2.3. Let g be a finitely generated Lie algebra over k. Then the enveloping algebra 
U(g) is left and right Noetherian.

Proof. The assertion follows since the enveloping algebra is by definition a quasi-
commutative filtered algebra whose associated graded algebra is generated by g. �

Recall that a Grothendieck abelian category is said to be locally Noetherian if every 
object is presented by a filtered colimit of Noetherian objects.

Proposition 3.2.4. Let k be a Noetherian ring, and (g, K) be a pair over k. If g is a 
finitely generated k-module, the category (g, K)-mod is locally Noetherian. Moreover, for 
a (g, K)-module V , the following conditions are equivalent:

(a) V is Noetherian;
(b) V is compact;
(c) V is finitely generated as a U(g)-module.

Proof. Let V be a (g, K)-module. From Lemma 3.2.3, (c) implies (a). Conversely, if 
V is a Noetherian object, there exists a maximal finitely generated (g, K)-submodule 
V ′ ⊂ V . Choose a finite set S of generators of V ′. Let v be an arbitrary element of V . 
Then we obtain a K-submodule V0 := 〈S, v〉 which is finitely generated as a k-module 
(Proposition 2.1.6). Since the g-submodule generated by V0 is the image of the map
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U(g) ⊗ V0 → U(g) ⊗ V → V,

it is a (g, K)-submodule containing V ′ (Lemma 3.2.3). The maximality therefore implies 
V = V ′. Hence (c) follows. Moreover, Corollary 2.1.12 then implies that (g, K)-mod is 
locally Noetherian. The equivalence of (a) and (b) is a consequence of generalities on 
locally Noetherian abelian categories. �
Definition 3.2.5. Let B be a bialgebra. An element v of a B-comodule (V, ρ) is B-invariant 
if ρ(v) = v⊗1. We denote the k-submodule of invariant elements by V B . In other words, 
V B is the equalizer of the coaction ρ and idV ⊗ 1 : V → V ⊗ B. If B is the coordinate 
ring of an affine group scheme K, we will denote V B by H0(K, V ).

Proposition 3.2.6 ([17] I.2.10). Let V be a B-comodule, and W be a k-module. Then:

(1) W is a B-comodule for w �→ w ⊗ 1. This is called a trivial comodule.
(2) There is a natural bijection HomB(W, V ) ∼= Homk(W, V B).
(3) We have a natural identification V B = HomB(k, V ).

Proof. Regard k as a coalgebra over k. Then W is a comodule over k in the obvious way. 
Since the given map k → B is a homomorphism of coalgebras, it induces a coaction of 
B on W which coincides with (1).

Part (2) is obvious by definition: Every B-comodule homomorphism f : W → V is 
valued in V B . Then (3) is obtained by applying W = k. �
Variant 3.2.7. Let (g, K) be a pair over a commutative ring k, and V be a (g, K)-module. 
Then H0(g, K, V ) is naturally identified with the intersection of H0(K, V ) and the 
g-invariant part of V .

Lemma 3.2.8 ([17] I.2.10). Let B be a bialgebra, V be a B-comodule over a commutative 
ring k, and k′ be a flat k-algebra. Then we have

V B ⊗ k′ ∼= (V ⊗ k′)B⊗k′
.

Proof. Think of V B as Ker(ρ − idV ⊗ 1 : V → V ⊗B). �
Corollary 3.2.9. Let K be a flat affine group scheme, and V, V ′ be K-modules. Then there 
is a canonical isomorphism H0(K, F (V, V ′)) ∼= HomK(V, V ′).

Proof. It follows from the natural identification

H0(K,F (V, V ′)) = HomK(k, F (V, V ′)) ∼= HomK(V, V ′). �
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Corollary 3.2.10. Let K be a flat affine group scheme, and Q be a representation of K. 
Suppose that Q is finitely presented as a k-module. Then HomK(Q, −) satisfies the flat 
base change formula: For any flat k-algebra k′, there is a canonical isomorphism

HomK(Q,−) ⊗ k′ ∼= HomK⊗k′(Q⊗ k′,−⊗ k′).

Proof. It is immediate from Corollary 3.2.9, Proposition 2.2.2 (2), and Lemma 3.2.8. �
Variant 3.2.11. Let K be a flat affine group scheme over a commutative ring k, and k′

be a k-algebra which is finitely generated and projective as a k-module. Then we have a 
natural isomorphism

HomK(−,−) ⊗ k′ ∼= HomK⊗k′(−⊗ k′,−⊗ k′)

on K-modop ×K-mod.

Proof. Replacing k′ by a finitely generated and projective k-module W , we may prove

HomK(−,−) ⊗W ∼= HomK(−,−⊗W ).

Here W is regarded as a trivial K-module. It reduces to the cases where W is free of finite 
rank by passing to retracts. Then the assertion follows since HomK(−, −) is additive in 
the second variable. �
Proof of Theorem 3.1.6. Let S be the collection of objects X of (g, K)-mod such 
that Homg,K(X, −) satisfies the flat base change formula. Recall that (g, K)-mod
is a compactly generated category whose compact objects are the finitely generated 
(g, K)-modules (Proposition 3.2.4). Since S is closed under formation of finite colimits, 
it will suffice to show indg

k
Q ∈ S, where Q is a K-module which is finitely generated as 

a k-module (Corollary 2.1.12, Lemma 2.1.8, Lemma 2.1.11). For any (g, K)-module W , 
we have

Homg,K(indg

k
Q,W ) ⊗ k′ ∼= HomK(Q,W ) ⊗ k′

∼= HomK⊗k′(Q⊗ k′,W ⊗ k′)
∼= HomK(Q,Reskk′(W ⊗ k′))
∼= Homg,K(indg

k
Q,Reskk′(W ⊗ k′))

∼= Homg⊗k′,K⊗k′(indg

k
Q⊗ k′,W ⊗ k′)

(see Corollary 3.2.10). This completes the proof. �
Proof of Theorem 3.1.7. On the other hand, according to Lemma 2.1.8, Proposi-
tion 3.2.4, and Definition 2.1.7 (d), it will suffice to show that for any finitely generated 
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(g, K)-module V and a (q, M)-module W , the k′-homomorphism induced from ι in 
Construction 3.1.5

Homg⊗k′,K⊗k′(V ⊗ k′, Ig,K
q,M (W ) ⊗ k′) → Homg⊗k′,K⊗k′(V ⊗ k′, Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(W ⊗ k′))

is a bijection.
On the other hand, notice that the assumption (i) implies that the forgetful functor 

F
q,M
g,K respects compact objects. We therefore have a bijection

Homg⊗k′,K⊗k′(V ⊗ k′, Ig,K
q,M (W ) ⊗ k′) ∼= Homg,K(V, Ig,K

q,M (W )) ⊗ k′

∼= Homq,M (V,W ) ⊗ k′

∼= Homq⊗k′,M⊗k′(V ⊗ k′,W ⊗ k′)

∼= Homg⊗k′,K⊗k′(V ⊗ k′, Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(W ⊗ k′)).

The assertion is reduced to showing that these two arrows coincide.
Observe that the adjunction of (Fq⊗k′,M⊗k′

g⊗k′,K⊗k′ , I
g⊗k′,K⊗k′

q⊗k′,M⊗k′) is k′-linear since so is 
F
q⊗k′,M⊗k′

g⊗k′,K⊗k′ , and the adjunctions are described by units and counits which are 
k′-homomorphisms by definition. Therefore the bijection

Homq⊗k′,M⊗k′(V ⊗ k′,W ⊗ k′) ∼= Homg⊗k′,K⊗k′(V ⊗ k′, Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(W ⊗ k′))

is k′-linear. It implies that the sequence of bijections above is k′-linear. Hence we may 
restrict the maps along

Homg,K(V, Ig,K
q,M (W )) → Homg⊗k′,K⊗k′(V ⊗ k′, Ig,K

q,M (W ) ⊗ k′).

In this case, for f ∈ Homg,K(V, Ig,K
q,M (W )), f ⊗ 1 ∈ Homg⊗k′,K⊗k′(V ⊗ k′, Ig,K

q,M (W ) ⊗ k′)
goes to the element in

Homg⊗k′,K⊗k′(V ⊗ k′, Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(W ⊗ k′)) ∼= Homg,K(V, Ig,K
q,M (Reskk′(W ⊗ k′)))

described as

V
f→ Ig,K

q,M (W ) → Ig,K
q,M (Reskk′(W ⊗ k′)).

This coincide with ι ◦ (f ⊗ 1) by definition of ι. This completes the proof. �
Notice that for a finitely generated and projective k-module W , the functor − ⊗W

respects small limits of k-modules. Hence similar arguments work in the finite setting:

Variant 3.2.12. Let (g, K) be a pair over a commutative ring k, and k → k′ be a ring 
homomorphism. Assume that k′ is finitely generated and projective as a k-module. Then 
we have an isomorphism
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Homg,K(−,−) ⊗ k′ ∼= Homg⊗k′,K⊗k′(−⊗ k′,−⊗ k′)

on (g, K)-modop × (g, K)-mod.

Variant 3.2.13. Let (q, M) → (g, K) be a map of pairs over a commutative ring k, and 
k → k′ be a ring homomorphism. Assume that k′ is finitely generated and projective as 
a k-module. Then the map

ι : (Ig,K
q,M−) ⊗k k′ → Ig⊗kk

′,K⊗kk
′

q⊗kk′,M⊗kk′(−⊗k k′)

is an isomorphism.

To prove the derived base change theorems, we need to deal with injective and acyclic 
objects. Recall that if we are given a Grothendieck abelian category A and its family C of 
generators, an object X ∈ A is injective if and only if it has a right lifting property with 
respect to monomorphisms to members of C. In particular, if A is locally Noetherian, 
the following conditions are equivalent:

(a) X is injective;
(b) X has a right lifting property with respect to monomorphisms to members of C;
(c) X has a right lifting property with respect to monomorphisms between Noetherian 

objects.

Lemma 3.2.14. Let (g, K) be a pair over a Noetherian ring k, and k′ be a flat k-algebra. 
Suppose that g is finitely generated over k. If I is an injective (g, K)-module, so is 
Reskk′(I ⊗ k′).

Proof. This is an immediate consequence of Theorem 3.1.6. In fact, for every injective 
homomorphism A → B of (g, K)-modules, we have

Homg,K(B,Reskk′(I ⊗ k′)) ∼= Homg,K(B, I) ⊗ k′

� Homg,K(A, I) ⊗ k′

∼= Homg,K(A,Reskk′(I ⊗ k′)). �
Proof of Theorem 3.1.9. For a finitely generated (g, K)-module X, and a complex I
concentrated in nonnegative degrees of injective (g, K)-modules, we have

RHomg,K(X, I) ⊗ k′ � Homg,K(X, I) ⊗ k′

∼= Homg,K(X, I ⊗ k′)

= RHomg,K(X, I ⊗ k′).
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The general case is deduced by passing to shifts and finite colimits in Coh(g, K). This 
completes the proof. �
Proof of Theorem 3.1.10. Let I• be a complex bounded below of injective (g, K)-mod-
ules. Since Reskk′ is exact and conservative on (g ⊗ k′, K ⊗ k′)-mod, so it is on 
D(g ⊗ k′, K ⊗ k′). Hence each In ⊗ k′ is Ig⊗k′,K⊗k′

q⊗k′,M⊗k′ -acyclic (Corollary 3.1.4 and 
Lemma 3.2.14). Corollary 3.1.7 now implies

(RIg,K
q,MI•) ⊗k k′ = Ig,K

q,M (I•) ⊗ k′

∼= Ig⊗k′,K⊗k′

q⊗k′,M⊗k′(I• ⊗ k′)

� RIg⊗k′,K⊗k′

q⊗k′,M⊗k′(I• ⊗k k′).

This completes the proof. �
Variant G (3) is deduced from the following finite variant of Lemma 3.2.14:

Lemma 3.2.15. Let (g, K) be a pair over a commutative ring, and Q be a (g, K)-module 
which is finitely generated and projective as a k-module. Then − ⊗Q respects injectively 
fibrant complexes of (g, K)-modules (see [12]).

Proof. We have a canonical isomorphism Q ∼= Homk(Homk(Q, k), k) of (g, K)-modules 
(see Proposition 2.2.2, Proposition 2.2.3). Hence we have a natural isomorphism

Homg,K(−,−⊗Q) ∼= Homg,K(−,−⊗ Homk(Homk(Q, k), k))
∼= Homg,K(−,Homk(Homk(Q, k),−))
∼= Homg,K(−⊗ Homk(Q, k),−).

The assertion now follows since Homk(Q, k) is flat as a k-module. �
3.3. The unbounded derived version

In this section, we replace D(g, K) by another ∞-category to establish a generalization 
of Theorem 3.1.10. Regard D(g, K) as the derived ∞-category, and set IndCoh(g, K)
as the ind-completion of Coh(g, K) in the sense of [23]. Let k → k′ be a flat ring 
homomorphism of Noetherian rings, and (q, M) → (g, K) be a map of pairs over k. 
Suppose that the following conditions are satisfied:

(i) k ⊕ q → g is surjective.
(ii) q and g are finitely generated as k-modules.
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Lemma 3.3.1. The functors

−⊗ k′ : D(g,K) → D(g⊗ k′,K ⊗ k′)

−⊗ k′ : D(q,M) → D(q⊗ k′,M ⊗ k′)

F
q,M
g,K : D(g,K) → D(q,M)

respect coherent objects. In particular, they extend to left adjoint functors

−⊗ k′ : Ind Coh(g,K) → IndCoh(g⊗ k′,K ⊗ k′)

−⊗ k′ : Ind Coh(q,M) → IndCoh(q⊗ k′,M ⊗ k′)

F
q,M
g,K : Ind Coh(g,K) → IndCoh(q,M).

Proof. It follows by definition. For Fq,M
g,K , use (i). �

Let us denote the resulting right adjoint functors as

Resk,ind
k′ : IndCoh(g⊗ k′,K ⊗ k′) → Ind Coh(g,K)

Resk,ind
k′ : IndCoh(q⊗ k′,M ⊗ k′) → Ind Coh(q,M)

Ig,K,ind
q,M : Ind Coh(q,M) → IndCoh(g,K).

Remark 3.3.2 (The second adjoint functor). Since Fq,M
g,K is a proper left adjoint functor 

between compactly generated stable ∞-categories, Ig,K,ind
q,M admits a right adjoint functor 

([23] Corollary 5.5.2.9 (1)). A second adjoint functor is also formulated for another 
category of representations in [7].

To see the relation of our new right adjoint functors with the classical derived functors, 
recall that the standard t-structure on D(g, K) descends to Coh(g, K), and then extends 
to Ind Coh(g, K).

Lemma 3.3.3.

(1) The functors

−⊗ k′ : Ind Coh(g,K) → IndCoh(g⊗ k′,K ⊗ k′)

−⊗ k′ : Ind Coh(q,M) → IndCoh(q⊗ k′,M ⊗ k′)

F
q,M
g,K : IndCoh(g,K) → Ind Coh(q,M)

are t-exact.
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(2) The functors

Resk,ind
k′ : IndCoh(g⊗ k′,K ⊗ k′) → IndCoh(g,K)

Resk,ind
k′ : Ind Coh(q⊗ k′,M ⊗ k′) → IndCoh(q,M)

Ig,K,ind
q,M : IndCoh(q,M) → Ind Coh(g,K)

are left t-exact.

In particular, the adjunctions restrict to the eventually coconnective part.

Proof. Part (1) follows since

−⊗ k′ : Coh(g,K) → Coh(g⊗ k′,K ⊗ k′)

−⊗ k′ : Coh(q,M) → Coh(q⊗ k′,M ⊗ k′)

F
q,M
g,K : Coh(g,K) → Coh(q,M)

are t-exact. Then (2) is immediate from the generalities on t-structures. �
Recall that for a stable ∞-category C with a coherent t-structure, there is a canonical 

equivalence Ind Coh(C)+ � C+ ([2] Proposition 6.3.2). If we restrict the diagram

IndCoh(g,K)
−⊗k′

IndCoh(g⊗ k′,K ⊗ k′)

D(g,K)
−⊗k′

D(g⊗ k′,K ⊗ k′)

to the eventually coconnective part, the vertical arrows are equivalences. Passing to the 
right adjoint, we conclude that Resk,ind

k′ coincides with Reskk′ on D(g ⊗ k′, K ⊗ k′)+
and D(q ⊗ k′, M ⊗ k′)+ under the identification. Similarly, we have Ig,K,ind

q,M |D(q,M)+ �
RIg,K

q,M |D(q,M)+ .

Theorem 3.3.4. The comparison map ι : Ig,K,ind
q,M (−) ⊗ k′ → Ig⊗k′,K⊗k′,ind

q⊗k′,M⊗k′ (− ⊗ k′) is a 

natural isomorphism. Moreover, it restricts to the natural isomorphism RIg,K
q,M (−) ⊗k′ �

RIg⊗k′,K⊗k′

q⊗k′,M⊗k′(− ⊗ k′) of Theorem 3.1.10 under the identifications

Ind Coh(q,M)+ � D(q,M)+

IndCoh(g⊗ k′,K ⊗ k′)+ � D(g⊗ k′,K ⊗ k′)+
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Proof. Since the functors are continuous, we may prove the natural isomorphism on 
Coh(q, M). Then the assertion is reduced to Theorem 3.1.10 since Construction 3.1.5 is 
compatible with our ind-setting under the equivalences of the type IndCoh(C)+ � C+

(recall the compatibility of the adjunctions of − ⊗ k′ and F in the two settings from 
Lemma 3.3.1 and the argument below there). �

Finally, suppose that k is a field of characteristic 0, (g, K) be a pair with K reductive 
and dim g < +∞.

Proposition 3.3.5. The embedding Coh(g, K) → D(g, K) induces an equivalence
Ind Coh(g, K) � D(g, K).

Proof. If we are given an arbitrary finitely generated (g, K)-module V , there is a finite 
dimensional K-submodule V0 such that the induced homomorphism U(g) ⊗U(k) V0 → V

is surjective. Since its kernel is also finitely generated, we can repeat this procedure 
to obtain a resolution of V by finitely generated and projective (g, K)-modules. Ac-
cording to the existence of the standard projective resolution ([18] 1.4.4), the category 
(g, K)-mod has a finite homological dimension. In particular, we may assume the res-
olution to be bounded by truncations. Moreover, it implies that V is compact in the 
∞-category D(g, K). Passing to shifts and finite colimits, we can conclude that every 
coherent complex is compact in D(g, K). Since Coh(g, K) generates D(g, K) under col-
imits, the equivalence follows ([23] Proposition 5.3.5.11, Proposition 5.5.1.9). �
4. Variants for pro

4.1. Computation of pro

Lemma 4.1.1. Let K be a flat affine group scheme over k, and {VO}O be a set of 
K-modules. Suppose that for any finitely generated K-module Q, HomK(Q, VO) vanishes 
for all but finitely many indices O. Then the direct sum ⊕VO also exhibits a product of 
{VO} in K-mod.

Proof. It is obvious since we have a bijection for any finitely generated K-module Q

HomK(Q,⊕VO) ∼= ⊕HomK(Q,VO) ∼=
∏

HomK(Q,VO).

The second one follows from the assumption on {VO}. Since such Q form a family of 
generators, the assertion follows (Corollary 2.1.12, Definition 2.1.7). �

We give a characterization of the assumption above in practical settings.

Proposition 4.1.2. Let k be a Noetherian domain, K be a flat affine group scheme over 
a Noetherian ring k, and V = ⊕VO be a direct sum of K-modules.
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(1) If V is torsion-free, and V ⊗ Frac(k) is admissible then for any finitely generated 
K-module Q, HomK(Q, VO) vanishes for all but finitely many indices O.

(2) If for any finitely generated K-module Q, HomK(Q, V ) is finitely generated then 
V ⊗ Frac(k) is admissible.

(3) Suppose that each of VO is finitely generated. If for a finitely generated K-module 
Q, HomK(Q, VO) vanishes for all but finitely many indices O then HomK(Q, V ) is 
finitely generated.

Proof. To see (1), consider a sequence for a finitely generated K-module Q

HomK(Q,V ) = ⊕HomK(Q,VO)

⊂ ⊕HomK⊗Frac(k)(Q⊗ Frac(k), VO ⊗ Frac(k))
∼= HomK⊗Frac(k)(Q⊗ Frac(k), V ⊗ Frac(k)).

Since V ⊗ Frac(k) is admissible, HomK(Q, VO ⊗ Frac(k)) vanishes for all but finitely 
many O. Since VO are torsion-free, the submodules HomK(Q, VO) vanish for almost 
all O.

Part (2) follows from the flat base change theorem: For any finitely generated 
K-module Q, we have

dim HomK⊗Frac(k)(Q⊗ Frac(k), V ⊗ Frac(k)) = dim HomK(Q,V ) ⊗ Frac(k) < +∞.

Since finite dimensional representations of K ⊗Frac(k)-modules are generated by repre-
sentations Q ⊗Frac(k) under finite colimits (Corollary 2.1.12), V ⊗Frac(k) is admissible.

Finally, suppose that VO are finitely generated. Then for a finitely generated 
K-module Q, HomK(Q, V ) is isomorphic to a direct sum of HomK(Q, VO) along finitely 
many indices O. Since VO is finitely generated, so is HomK(Q, V ). This completes the 
proof. �
Proposition 4.1.3. Let (q, M) → (g, M) be an injective map of pairs over a Noetherian 
ring k, and Z be a (q, M)-module. Suppose that the map M → M is the identity. More-
over, assume the following conditions:

(i) For x ∈ g, we have [x, x] = 0.
(ii) There is an M -equivariant Lie subalgebra ū ⊂ g such that the summation map 

q ⊕ ū → g is an isomorphism of k-modules.
(iii) There are free bases of q and ū.
(iv) The enveloping algebra U(ū) is decomposed into a direct sum U(ū) = ⊕OU(ū)O of 

M -submodules U(ū)O which are finitely generated as k-modules.
(v) For any finitely generated M -module Q, HomM (Q, Hom(U(ū)O, Z)) vanishes for 

all but finitely many O.
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Then we have an isomorphism as an M -module

progq(Z) ∼= ⊕O Homk(U(ū)O, Z).

In particular, a base change formula along a ring homomorphism k → k′ between Noethe-
rian rings

progq(Z) ⊗ k′ ∼= prog⊗k′

q⊗k′(Z ⊗ k′)

is valid in the following cases:

(a) k → k′ is flat.
(b) For any finitely generated M ⊗k′-module Q, HomM⊗k′(Q, Hom(U(ū)O⊗k′, Z⊗k′))

vanishes for all but finitely many O.

Remark 4.1.4. The functor progq can be regarded as a right adjoint functor to the forget-
ful functor from the category of weak (g, M)-modules to that of weak (q, M)-modules. 
Therefore the base change functor along arbitrary ring homomorphisms makes sense 
(Remark 3.1.3).

Proof of Proposition 4.1.3. According to the PBW theorem ([6]), we have an isomor-
phism of M -modules

progq(Z) ∼= F (U(ū), Z).

The condition (v) and Lemma 4.1.1 imply that F (U(ū), Z) ∼= ⊕O Hom(U(ū)O, Z). This 
completes the proof. �
4.2. Examples

Suppose that we are given a reductive pair (gC, KC) over C and a θ-stable parabolic 
subpair (qC, (KL)C) in the sense of [21], where θ is the Cartan involution. Let lC (resp. 
uC, ūC) denote the Levi part (resp. nilradical, the opposite nilradical) of q, let Δ(ūC) =
{α1, · · · , αs} be the set of roots in ūC, and h = hρ(uC) be the element of the Cartan 
subalgebra as in [21] Proposition 4.70. In particular, we have αi(h) < 0 for αi ∈ Δ(ūC).

Example 4.2.1. Observe that (lC, (KL)C) ⊂ (qC, (KL)C) are θ-stable subpairs of (gC, KC), 
where lC is the Levi part of qC. Note that uC is also θ-stable. Therefore they associate 
maps of contraction families over the polynomial ring C [z]

(̃lC, (KL)C ⊗ C [z]) ← (q̃C, (KL)C ⊗ C [z]) → (g̃C,KC ⊗ C [z])

in the sense of [3] and [4]. Define the cohomological induction as
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RI
g̃C,KC⊗C[z]
q̃C,(KL)C⊗C[z]F

q̃C,(KL)C⊗C[z]
l̃C,(KL)C⊗C[z] (−⊗C[z] ∧dim uũ),

where Fq̃C,(KL)C⊗C[z]
l̃C,(KL)C⊗C[z] is the forgetful functor

(̃lC, (KL)C ⊗ C [z])-mod → (q̃C, (KL)C ⊗ C [z])-mod.

Remark that prog̃C

q̃C
is exact ([13] Variant 2.6, Corollary 2.12). Let Z be a torsion-free 

(̃lC, (KL)C ⊗ C [z])-module with a scalar action of h. If Z ⊗ C(z) is admissible, the 
cohomological induction enjoys a flat base change formula to the algebraic closure C(z)
of the field of rational functions C(z)

RI
g̃C,KC⊗C[z]
q̃C,(KL)C⊗C[z]F

q̃C,(KL)C⊗C[z]
l̃C,(KL)C⊗C[z] (−⊗C[z] ∧dim uũ) ⊗ C(z)

∼= RI
g⊗C(z),KC⊗C(z)
qC⊗C(z),(KL)C⊗C(z)F

qC⊗C(z),(KL)C⊗C(z)
lC⊗C(z),(KL)C⊗C(z) Z ⊗ ∧dim uu⊗ C(z))

(use [21] Proposition 5.96). Suppose also that the τ -type Zτ ⊂ Z for each irreducible 
representation τ of (KL)C is free of finite rank over C [z]. Then for any C-algebra homo-
morphism C [z] → C, we have a base change formula

prog̃C

q̃C
(Z) ⊗C[z] C ∼= prog̃C⊗C[z]C

q̃C⊗C[z]C
(Z ⊗C[z] C).

Let k be a Noetherian subring of C, and (q, KL) ⊂ (g, K) be a k-form of (qC, (KL)C) ⊂
(gC, KC) in the sense that (qC, (KL)C) ⊂ (gC, KC) is isomorphic to the base change of 
(q, KL) ⊂ (g, K). Assume that there is a complementary KL-stable subalgebra ū ⊂ g to 
q which is a k-form of ūC. Moreover, suppose that the following conditions are satisfied:

(i) There is a free basis of q.
(ii) There is a free basis {Eαi

} of ū consisting of root vectors of ūC.
(iii) The (KL)C-orbit of h is contained in the Cartan subalgebra.

Proposition 4.2.2. In this setting, there is a family {U(ū)O} of finitely generated 
KL-submodules of U(ū) such that

U(ū) = ⊕OU(ū)O.

Construction 4.2.3. Let G be the component group π0((KL)C) of (KL)C. For each x ∈ G, 
fix a representative gx ∈ (KL)C and set hx = Ad(gx)h, where Ad is the action of (KL)C
on gC. Since the unit component (KL)0C centralizes h, it is independent of the choice of 
gx. In particular, if g = e is the unit then he = h. Observe next that G acts on the 
complex vector space CG by translation of entries. For a G-orbit O in CG, define U(ū)O
as

U(ū)O = ⊕	r∈O ⊕∑
niαi(hx)=rx kEn1

α1
En2

α2
· · ·Ens

αs
.

for any x∈G



T. Hayashi / Journal of Algebra 514 (2018) 40–75 73
We also set

U(ū)	r = ⊕∑
niαi(hx)=rx

for any x∈G
kEn1

α1
En2

α2
· · ·Ens

αs
.

Proof of Proposition 4.2.2. The k-modules U(ū)O are finitely generated by definition. 
According to the PBW theorem, we have U(ū) ∼= ⊕OU(ū)O as a k-module. To see that 
U(ū)O is a KL-submodule, we may assume k = C (Lemma 2.1.14).

Fix �r ∈ O and exponents {ni} with 
∑

niαi(hx) = rx. Let g ∈ (KL)C in a component 
x ∈ G, and write

Ad(g)En1
α1
En2

α2
· · ·Ens

αs
=

∑

	r′∈CG

v′	r′

with v′	r′ ∈ U(ū)	r′ . Then for any y ∈ G,
∑

	r′∈CG

r′yv	r′ =
∑

[hy, v	r′ ]

=
[
hy,Ad(g)En1

α1
En2

α2
· · ·Ens

αs

]

= Ad(g)
[
Ad(g)−1hy, E

n1
α1
En2

α2
· · ·Ens

αs

]

= Ad(g)
[
hx−1y, E

n1
α1
En2

α2
· · ·Ens

αs

]

= rx−1y Ad(g)En1
α1
En2

α2
· · ·Ens

αs

= rx−1y

∑

	r′∈CG

v	r′ .

Therefore v	r′ vanishes unless �r′ = x−1 · �r. In particular, Ad(g)En1
α1
En2

α2
· · ·Ens

αs
∈

U(ū)x−1	r ⊂ U(ū)O. This completes the proof. �
Example 4.2.4. Let 0 ≤ p ≤ q be nonnegative integers with n = p + q ≥ 1. Then the 
diagonal embedding GLp × GLq → GLp+q gives rise to a pair (glp+q, GLp × GLq) over 
Z. Consider a partition n =

∑l
i=1 pi with pi ≥ 1 for 1 ≤ i ≤ l. Write m0 = min{m ≥

1 : p <
∑m

i=1 pi}. Set Q as the subgroup of GLp+q consisting of upper triangular block 
matrices of size p1 × p2 × · · · × pl. Let KL be the subgroup of Q consisting of matrices 
whose entries are zero outside

m0−1⋃

m=1
{(a, b) ∈ {1, 2 · · · , n}2 : 1 +

m−1∑

i=1
pi ≤ a, b ≤

m∑

i=1
pi}

∪ {(a, b) ∈ {1, 2 · · · , n}2 : 1 +
m0−1∑

i=1
pi ≤ a, b ≤ p}

∪ {(a, b) ∈ {1, 2 · · · , n}2 : p + 1 ≤ a, b ≤
m0∑

pi}

i=1
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∪
l⋃

m=m0+1
{(a, b) ∈ {1, 2 · · · , n}2 : 1 +

m−1∑

i=1
pi ≤ a, b ≤

m∑

i=1
pi}.

Then q and KL form a subpair of (glp+q, GLp × GLq). Moreover, it is an integral model 
of the pair associated to U(p, q) and a θ-stable parabolic subpair. Moreover, it enjoys 
the conditions above.

For (v) in Proposition 4.1.3, let Z be a torsion-free (q, KL)-module. See also Propo-
sition 4.1.2 (1).

Proposition 4.2.5 ([21] Proposition 5.96). If Z ⊗ C is admissible, and that h acts on 
Z ⊗ C as a scalar then the (KL)C-module ⊕ Hom(U(ū)O, Z ⊗ C) is admissible.
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