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We determine a sharp lower bound for the Hilbert function 
in degree d of a monomial algebra failing the weak Lefschetz 
property over a polynomial ring with n variables and gen-
erated in degree d, for any d ≥ 2 and n ≥ 3. We consider 
artinian ideals in the polynomial ring with n variables gener-
ated by homogeneous polynomials of degree d invariant under 
an action of the cyclic group Z/dZ, for any n ≥ 3 and any 
d ≥ 2. We give a complete classification of such ideals in terms 
of the weak Lefschetz property depending on the action.
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1. Introduction

The weak Lefschetz property (WLP) for an artinian graded algebra A over a field K, 
says there exists a linear form � that induces, for each degree i, a multiplication map 
×� : (A)i −→ (A)i+1 that has maximal rank, i.e. that is either injective or surjective. 
Though many algebras are expected to have the WLP, establishing this property for a 
specific class of algebras is often rather difficult. In this paper we study the WLP of the 
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specific class of algebras which are the quotients of a polynomial ring S = K[x1, . . . , xn]
over field K of characteristic zero by artinian monomial ideals generated in the same 
degree d. For this class of artinian algebras, E. Mezzetti and R. M. Miró-Roig [9], showed 
that 2n −1 is the sharp lower bound for the number of generators of I when the injectivity 
fails for S/I in degree d −1. In fact they give the lower bound for the number of generators 
for the minimal monomial Togliatti systems I ⊂ K[x1, . . . , xn] of the forms of degree d. 
For more details see the original articles of Togliatti [14,15]. In the first part of this article 
we establish the lower bound for the number of monomials in the cobasis of the ideal 
I in the ring S or equivalently, lower bound for the Hilbert function of S/I in degree 
d, which is HS/I(d) := dimK(S/I)d, where surjectivity fails in degree d − 1. Observe 
that once multiplication by a general linear form on a quotient of S is surjective, then 
it remains surjective in the next degrees. This implies that all these algebras with the 
Hilbert function HS/I(d) below our bound satisfy the WLP.

In the main theorems of the first part of this paper, we provide a sharp lower bound 
for HS/I(d) for artinian monomial algebra S/I, where the surjectivity fails for S/I in 
degree d − 1. For the cases when the number of variables is less than three the bound is 
known. The first main theorem provides the bound when the polynomial ring has three 
variables.

Theorem 1.1. Let I ⊂ S = K[x1, x2, x3] be an artinian monomial ideal generated in 
degree d, for d ≥ 2 such that S/I fails to have the WLP. Then we have that

HS/I(d) ≥
{

3d− 3 if d is odd
3d− 2 if d is even.

Furthermore, the bounds are sharp.

In the second theorem we provide a sharp bound when the number of variables is 
more than three.

Theorem 1.2. Let I ⊂ S = K[x1, . . . , xn] be an artinian monomial ideal generated in 
degree d, for d ≥ 2 and n ≥ 4 such that S/I fails to have the WLP. Then we have that

HS/I(d) ≥ 2d.

Furthermore, the bound is sharp.

In [11], Mezzetti, Miró-Roig and Ottaviani describe a connection between projective 
varieties satisfying at least one Laplace equation and homogeneous artinian ideals gen-
erated by polynomials of the same degree d failing the WLP by failing injectivity of the 
multiplication map by a linear form in degree d − 1. In [10], Mezzetti and Miró-Roig 
construct a class of examples of Togliatti systems in three variables of any degree. More 
precisely, they consider the action on S = K[x, y, z] of cyclic group Z/dZ defined by 
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[x, y, z] �→ [ξax, ξby, ξcz], where ξ is a primitive d-th root of unity and gcd(a, b, c, d) = 1. 
They prove that the ideals generated by forms of degree d invariant by such actions are 
all defined by monomial Togliatti systems of degree d. In [1], Colarte, Mezzetti, Miró-
Roig and Salat show that in S = K[x1, . . . , xn] the ideal fixed by the action of cyclic 
group Z/dZ, defined by [x1, . . . , xn] �→ [ξa1x1, . . . , ξanxn], where gcd(a1, . . . , an, d) = 1
and there are at most 

(
n+d−2
n−2

)
fixed monomials is a monomial Togliatti system.

In this article, we generalize the result in [1] and in Theorem 7.8 we prove that these 
ideals satisfy the WLP if and only if at least n −1 of the integers ai are equal. In addition, 
in the polynomial ring with three variables we give a formula for the number of fixed 
monomials and we provide bounds for such numbers.

2. Preliminaries

We consider standard graded algebras S/I, where S = K[x1, . . . , xn], I is a homoge-
neous ideal of S, K is a field of characteristic zero and the xi’s all have degree 1. Our ideal 
I will be an artinian monomial ideal generated in a single degree d. Given a polynomial 
f we denote the set of monomials with non-zero coefficients in f by Supp(f).

Now let us define the weak and strong Lefschetz properties for artinian algebras.

Definition 2.1. Let I ⊂ S be a homogeneous artinian ideal. We say that S/I has the 
Weak Lefschetz Property (WLP) if there is a linear form � ∈ (S/I)1 such that, for all 
integers j, the multiplication map

×� : (S/I)j −→ (S/I)j+1

has maximal rank, i.e. it is injective or surjective. In this case the linear form � is called 
a Lefschetz element of S/I. If for general linear form � ∈ (S/I)1 and for an integer j the 
map ×� does not have the maximal rank we will say that S/I fails the WLP in degree j.

We say that S/I has the Strong Lefschetz Property (SLP) if there is a linear form 
� ∈ (S/I)1 such that, for all integers j and k the multiplication map

×�k : (S/I)j −→ (S/I)j+k

has maximal rank, i.e. it is injective or surjective. We often abuse the notation and say 
that I fails or satisfies the WLP or SLP, when we mean that S/I does so.

In the case of one variable, the WLP and SLP hold trivially since all ideals are 
principal. Harima, Migliore, Nagel and Watanabe in [5, Proposition 4.4], proved the 
following result in two variables.

Proposition 2.2. Every artinian ideal in K[x, y] (charK = 0) has the Strong Lefschetz 
property (and consequently also the Weak Lefschetz property).
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In a polynomial ring with more than two variables, it is not true in general that 
every artinian monomial algebra has the SLP or WLP. Also it is often rather difficult 
to determine whether a given algebra satisfies the SLP or even WLP. One of the main 
general results in a ring with more than two variables is proved by Stanley in [13].

Theorem 2.3. Let S = K[x1, . . . , xn], where char(K) = 0. Let I be an artinian monomial 
complete intersection, i.e. I = (xa1

1 , . . . , xan
n ). Then S/I has the SLP.

Because of the action of the torus (K∗)n on monomial algebras, there is a canoni-
cal linear form that we have to consider. In fact we have the following result in [12, 
Proposition 2.2], proved by Migliore, Miró-Roig and Nagel.

Proposition 2.4. Let I ⊂ S be an artinian monomial ideal. Then S/I has the weak 
Lefschetz property if and only if x1 + x2 + · · ·+ xn is a weak Lefschetz element for S/I.

Let us now recall some facts of the theory of the inverse system, or Macaulay duality, 
which will be a fundamental tool in this paper. For a complete introduction, we refer the 
reader to [3] and [6].

Let R = K[y1, . . . , yn], and consider R as a graded S-module where the action of xi

on R is partial differentiation with respect to yi.
Since we assumed that char(K) = 0 there is a one-to-one correspondence between 

graded artinian algebras S/I and finitely generated graded S-submodules M of R, where 
I = AnnS(M) and is the annihilator of M in S and, conversely, M = I−1 is the S-
submodule of R which is annihilated by I (cf. [3, Remark 1]), p.17). Since the map 
◦� : Ri+1 −→ Ri is dual of the map ×� : (S/I)i −→ (S/I)i+1 we conclude that the 
injectivity (resp. surjectivity) of the first map is equivalent to the surjectivity (resp. 
injectivity) of the second one. Here by “◦�” we mean that the linear form � acts on R.

For a monomial ideal I the inverse system module (I−1)d is generated by the dual 
elements in Rd to the monomials in Sd \ Id.

Recall that for an n-dimensional variety X ⊆ PN and m ≥ 1 the m-th osculating 
space of X at a point p ∈ X, Tm

p (X), is the subspace of PN spanned by p and all 
the derivative points of order ≤ m of a local parametrization of X evaluated at p. The 
expected dimension of the m-th osculating space at a general point p ∈ X is equal to 
min{N, 

(
n+m
n

)
− 1}. If for some positive integer δ and a general point p ∈ X we have 

dimTm
p (X) = exp dimTm

p (X) − δ, then X is said to satisfy δ Laplace equation of order 
m.

Mezzetti, Miró-Roig and Ottaviani in [11] describe a relation between existence of 
artinian ideals I ⊂ S generated by homogeneous forms of degree d failing the WLP and 
the existence of projections of the Veronese variety V (n − 1, d) ⊂ P (n+d−1

d )−1 satisfying 
at least one Laplace equation of order d − 1.

For an artinian ideal I ⊂ S, they make the following construction. Assume that I is 
minimally generated by the homogeneous polynomials f1, . . . , fr of degree d and denote 
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by I−1, the inverse system module of I. Since I is artinian, the polynomials f1, . . . , fr
define a regular morphism

ϕId : Pn−1 −→ P r−1.

Denote by Xn−1,Id , the closure of the image of ϕId . There is a rational map

ϕ(I−1)d : Pn−1 ��� P (n+d−1
d )−r−1

associated to (I−1)d. Denote by Xn−1,(I−1)d , the closure of the image of ϕ(I−1)d .
With notations as above, in [11], Theorem 3.2, Mezzetti, Miró-Roig and Ottaviani 

prove the following theorem.

Theorem 2.5. Let I ⊂ S be an artinian ideal generated by r forms f1, . . . , fr of degree d. 
If r ≤

(
n+d−2
n−2

)
, then the following conditions are equivalent:

(1) The ideal I fails the WLP in degree d − 1,
(2) The forms f1, . . . , fr become K-linearly dependent on a general hyperplane H of 

Pn−1,
(3) The n − 1-dimensional variety Xn−1,(I−1)d satisfies at least one Laplace equation of 

order d − 1.

A monomial ideal I satisfying the equivalent conditions in the above theorem is called 
a monomial Togliatti system and moreover if no proper subset satisfies the equivalent 
conditions it is called a minimal monomial Togliatti system.

3. On the support of form f annihilated by � and its higher powers

Let S = K[x1, . . . , xn] be the polynomial ring where n ≥ 3 and K is a field of char-
acteristic zero. In this section we give some definitions and notations and prove some 
results about the number of monomials in the support of polynomials f ∈ (I−1)d with 
(x1 + · · · + xn)a ◦ f = 0 for some 1 ≤ a ≤ d. Now let us define a specific type of well 
known integer matrices which we use throughout this section.

Definition 3.1. For a non-negative integer k and positive integer m, where k ≤ m, we 
define the Toeplitz matrix Tk,m, to be the following (k + 1) × (m + 1) matrix

Tk,m =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
m−k

0
) (

m−k
1

) (
m−k

2
)

· · ·
(
m−k
m−k

)
0 · · · 0

0
(
m−k

0
) (

m−k
1

)
· · ·

(
m−k

m−k−1
) (

m−k
m−k

)
· · · 0

...
...

...
...

...
...

...
...

0 0 0 · · ·
(

m−k
) (

m−k
) (

m−k
) (

m−k
)

⎤
⎥⎥⎥⎥⎥⎥⎦
m−k−3 m−k−2 m−k−1 m−k
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where the (i, j)th entry of this matrix is 
(
m−k
j−i

)
and we use the convention that 

(
m
i

)
= 0

if i < 0 or m > i.

We have the following useful lemma which proves the maximal minors of Tk,m are 
non-zero.

Lemma 3.2. For each non-negative integer k and positive integer m where k ≤ m, all 
maximal minors of the Toeplitz matrix Tk,m are non-zero.

Proof. Let R = K[x, y] be the polynomial ring in variables x and y and choose monomial 
bases A := {xjyk−j}kj=0 and B := {xiym−i}mi=1 for the K-vector spaces Rk and Rm, 
respectively. Observe that Tk,m is the matrix representing the multiplication map ×(x +
y)m−k : Rk → Rm with respect to the bases A and B. Given any square submatrix 
M of size k + 1, define the ideal J ⊂ R generated by the subset of monomials in B, 
called B′, corresponding to the columns of Tk,m not in M . Therefore, A and B \B′ form 
monomial bases for (R/J)k and (R/J)m, respectively and M is the matrix representing 
the multiplication map ×(x + y)m−k : (R/J)k → (R/J)m with respect to A and B \ B′. 
Note that by the definition of J we have (R/J)k = Rk. Since by Proposition 2.2, any 
monomial R-algebra has the SLP, and by Proposition 2.4 x + y is a Lefschetz element 
for R/J , the multiplication map by x + y is a bijection and therefore the matrix M has 
non-zero determinant. This implies that all the maximal minors of Tk,m are non-zero. �

Consider a non-zero homogeneous polynomial f of degree d in the dual ring R =
K[y1, . . . , yn] for which we have (x1 + · · · + xn) ◦ f = 0. We use the following notations 
and definitions to prove some properties of such polynomial f .

Definition 3.3. For an ideal I of S, we denote the Hilbert function of S/I in degree d by 
HS/I(d) := dimK(S/I)d, and the set of all artinian monomial ideals of S generated in a 
single degree d by Id. In addition, for an artinian ideal I we define φ(I, d) : ×(x1 + · · ·+
xn) : (S/I)d−1 → (S/I)d and

ν(n, d) := min{H(S/I)(d) | φ(I, d) is not surjective, for I ∈ Id}.

Definition 3.4. In a polynomial ring S = K[x1, . . . , xn], for any monomial m and variable 
xi, we define

degi(m) := max{e | xe
i |m}

Define the set Md to be the set of monomials of degree d in R and denote the set of 
monomials of degree k with respect to the variable yi by,

Lk
i,d := {m ∈ Md | degi(m) = k} ⊂ Md.
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Lemma 3.5. Consider f be a form of degree d ≥ 2 in the dual ring R = K[y1, . . . , yn]
of S = K[x1, . . . , xn] and let the linear forms � := x1 + · · · + xn and �′ := � − xj for 
1 ≤ j ≤ n. Write f =

∑d
i=0 y

i
jgi, where gi is a polynomial of degree d − i in the variables 

different from yj, then for every 0 ≤ c ≤ d, we have

�c ◦ f =
d−c∑
k=0

c∑
i=0

(k + c− i)!
k!

(
c

i

)
ykj

(
�′
i ◦ gk+c−i

)
. (3.1)

In particular, �c ◦ f = 0 if and only if,

c∑
i=0

(k + c− i)!
k!

(
c

i

)(
�′
i ◦ gk+c−i

)
= 0, 0 ≤ k ≤ d− c. (3.2)

Proof. We prove the lemma using induction on c. For c = 0 the equality (3.1) is trivial. 
For c = 1, we have

� ◦ f =
d∑

k=0

(
kyk−1

j gk + ykj (�′ ◦ gk)
)

=
d−1∑
k=0

(
(k + 1)ykj gk+1 + ykj (�′ ◦ gk)

)
. (3.3)

Assume the equality holds for c − 1 then we have �c ◦ f = � ◦ (�c−1 ◦ f) and

� ◦ (�c−1 ◦ f)

= � ◦
(

d−c+1∑
k=0

c−1∑
i=0

(k + c− 1 − i)!
k!

(
c− 1
i

)
ykj

(
�′
i ◦ gk+c−1−i

))

=
d−c+1∑
k=0

c−1∑
i=0

(k + c− 1 − i)!
k!

(
c− 1
i

)(
kyk−1

j

(
�′
i ◦ gk+c−1−i

)
+ ykj

(
�′
i+1 ◦ gk+c−1−i

))

=
d−c∑
k=0

c−1∑
i=0

[
(k + c− i)!

(k + 1)!

(
c− 1
i

)
(k + 1)ykj

(
�′
i ◦ gk+c−i

)

+ (k + c− 1 − i)!
k!

(
c− 1
i

)
ykj

(
�′
i+1 ◦ gk+c−1−i

)]

=
d−c∑
k=0

c∑
i=0

(
(k + 1)(k + c− i)!

(k + 1)!

(
c− 1
i

)
+ (k + c− i)!

k!

(
c− 1
i− 1

))
ykj

(
�′
i ◦ gk+c−i

)

=
d−c∑
k=0

c∑
i=0

(k + c− i)!
k!

(
c

i

)
ykj

(
�′
i ◦ gk+c−i

)
. �

Using the above lemma the following proposition gives properties about the form f .
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Proposition 3.6. Let f be a non-zero form of degree d in the dual ring R = K[y1, . . . , yn]
of S = K[x1, . . . , xn] such that (x1 + · · · + xn) ◦ f = 0. Then the following conditions 
hold:

(i) If ydi /∈ Supp(f), then the sum of the coefficients of f corresponding to the monomials 
in Lk

i,d ∩ Supp(f) is zero; for each 0 ≤ k ≤ d − 1.
(ii) If a = max{degi(m) | m ∈ Supp(f)}, then Lk

i,d ∩ Supp(f) �= ∅; for all 0 ≤ k ≤ a.

Proof. Write the form f as, f =
∑d

k=0 y
k
i gk, where gk is a degree d − k polynomial in 

variables different from yi. Denote � = x1 + · · · + xn and �′ = � − xi. Since � ◦ f = 0, 
Lemma 3.5 implies that

(k + 1)yki gk+1 + yki (�′ ◦ gk) = 0, ∀ 0 ≤ k ≤ d− 1. (3.4)

To show (i) we act on each equation by (�′)d−k−1 and we get that

(k + 1)(d− k − 1)!gk+1(1, . . . , 1) + (d− k)!gk(1, . . . , 1) = 0 ∀ 0 ≤ k ≤ d− 1. (3.5)

Since we assumed gd = 0 we get that gk(1, . . . , 1) = 0 for all 0 ≤ k ≤ d −1, which implies 
that for all 0 ≤ k ≤ d − 1 sum of the coefficients of f corresponding to the monomials in 
Ld
i,d ∩ Supp(f) is zero and proves part (i).
To show part (ii), note that a = max{degi(m) | m ∈ Supp(f)} implies that ga �= 0. 

Using Equation (3.4) recursively we get that gj �= 0 for all 0 ≤ j ≤ a, which means that 
Lj
i,d ∩ Supp(f) �= ∅ for all 0 ≤ j ≤ a. �
In the following theorem we provide a bound for the number of monomials with 

non-zero coefficients in the non-zero form in the kernel of the map ◦(x1 + · · · +
xn)d−a : (I−1)d −→ (I−1)a. In particular it provides a bound on the number of gen-
erators for an equigenerated monomial ideal in S failing the WLP.

Theorem 3.7. Let f �= 0 be a form of degree d in the dual ring R = K[y1, . . . , yn] of the 
ring S = K[x1, . . . , xn]. If for the linear form � := x1 + · · ·+xn we have �d−a ◦ f = 0 for 
some 0 ≤ a ≤ d − 1, then | Supp(f)| ≥ a + 2.

Proof. For a variable yj write f =
∑d

i=0 y
i
jgi such that gi is a polynomial of degree d − i

in the variables different from yj . Since for some 1 ≤ a ≤ d − 1 we have �d−a ◦ f = 0
from Lemma 3.5 we have that

d−a∑
i=0

(k + d− a− i)!
k!

(
d− a

i

)(
�′
i ◦ gk+d−a−i

)
= 0, 0 ≤ k ≤ a. (3.6)

For every j with 1 ≤ j ≤ a +1 we act on each equation in the above system by (�′)j−k−1, 
so we have
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d−a∑
i=0

(k + d− a− i)!
k!

(
d− a

i

)(
�′
i+j−k−1 ◦ gk+d−a−i

)
= 0, 0 ≤ k ≤ a, (3.7)

equivalently for each j with 1 ≤ j ≤ a + 1 we have that

d−k∑
i=a−k

(d− i)!
k!

(
d− a

i− (a− k)

)(
�′
i+j−(a+1) ◦ gd−i

)
= 0, 0 ≤ k ≤ j − 1. (3.8)

Note that for k ≥ j the equations in (3.7) are zero.
For each 0 ≤ j ≤ a + 1 the coefficient matrix of the system in (3.8) in the forms 

(d − i)!�′i+j−(a+1) ◦ gd−i is the Toeplitz matrix T(j−1)×(d−a+j−1) up to multiplication of 
k-th row by 1

k! . Using Lemma 3.2 we get that all the maximal minors of this coefficient 
matrix are non-zero. This implies that in each system of equations either all the terms 
are zero or there are at least j + 1 non-zero terms.

Now we want to prove the statement by induction on the number of variables n. 
Suppose n = 2 then each gi is a monomial of degree d − i in one variable. In (3.8)
consider the corresponding system of equations for j = a + 1. If for every 0 ≤ i ≤ d we 
have that �′i ◦ gd−i = 0, it implies that for every 0 ≤ i ≤ d we have gd−i = 0 which 
contradicts the assumption that f �= 0. Therefore for at least a + 2 indices 0 ≤ i ≤ d we 
have �′i ◦ gd−i �= 0 which means | Supp(f)| ≥ a + 2.

Now we assume that the statement is true for the forms f in polynomial rings with 
n − 1 (n ≥ 3) variables and we prove it for the form with n variables.

We divide it into two cases. Suppose in the system of equations for every 1 ≤ j ≤ a +1
all terms are zero. In this case for each 1 ≤ j ≤ a + 1, letting i = a − j + 1 implies that 
(�′)a−j+1+j−(a+1) ◦ gd−(a−j+1) = gd−a+j−1 = 0 for all 1 ≤ j ≤ a + 1. Since we assume 
that f �= 0 there exists a + 1 ≤ i ≤ d such that gd−i �= 0, but considering j = 1 in (3.8)
with the assumption that all terms in this equation is zero we get that (�′)i−a ◦gd−i = 0. 
Using the induction hypothesis on the polynomial gd−i in n − 1 variables we get that 
| Supp(f)| ≥ | Supp(gd−i)| ≥ d − (d − i) − (i − a) + 2 = a + 2 as we wanted to prove.

Now we assume that there exists 1 ≤ j ≤ a +1 such that there are at least j+1 indices 
0 ≤ i ≤ d such that �′i+j−(a+1) ◦ gd−i �= 0 in the corresponding system of equations in 
(3.8). We take the largest index j with this property and we get that for these j + 1
indices we have that �′i+j−(a+1)+1◦gd−i = 0. Now using the induction hypothesis in these 
polynomials we get that | Supp(gd−i)| ≥ d − (d − i) − (i + j− (a +1) +1) +2 = a +2 − j, 
therefore

|Supp(f)| ≥
d∑

i=0
|Supp(gi)| ≥ (j + 1)(a + 2 − j) ≥ a + 2. �

4. Bounds on the number of generators of ideals with three variables failing WLP

In this section we consider artinian monomial ideals I ⊂ S = K[x1, x2, x3] generated 
in a single degree d. In [9], Mezzetti and Miró-Roig provided a sharp lower bound for 
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the number of generators of such ideals failing the WLP by failing injectivity of the 
multiplication map on the algebra in degree d − 1. Here we prove a sharp upper bound 
for the number of generators of such ideals failing the WLP by failing surjectivity in 
degree d −1 equivalently we provide a sharp lower bound for the number of generators of 
(I−1)d where the map ◦� : (I−1)d −→ (I−1)d−1 is not injective, where � = x1 + x2 + x3.

First we prove an easy but interesting result. Recall that every polynomial in at most 
two variables factors as a product of linear forms over an algebraically closed field. Here 
we note that the same statement holds in three variables if the polynomial vanishes by 
the action of a linear form on the dual ring. This in some cases corresponds to the failure 
of WLP. Note that for the WLP, the assumption on the field to be algebraically closed 
is not necessary, but in order to factor the form as a product of linear forms we need to 
have this assumption on the field. In addition the statement does not necessarily hold in 
polynomial rings with more than three variables.

Lemma 4.1. Let S = K[x1, x2, x3] and S/I be an artinian algebra over an algebraically 
closed field K. Let f be a form in the kernel of the map ◦� : (I−1)i −→ (I−1)i−1 for a 
linear form � and integer i, then f factors as a product of linear forms each of which is 
annihilated by �.

Proof. By a linear change of variables we consider S = K[x′
1, x

′
2, x

′
3] and R = K[y′1, y′2, y′3]

simultaneously in such a way that x′
1 = �. Then we have that � ◦ f(y1, y2, y3) = x′

1 ◦
f(y′1, y′2, y′3) = 0 where this implies that f is a polynomial in two variables y′2 and y′3. 
Using the fact that any polynomial in two variables over an algebraically closed field 
factors as a product of linear forms we conclude that f factors as a product of linear 
forms in y′2 and y′3. Hence all of them are annihilated by � = x′

1. �
The next proposition provides a bound for the number of non-zero terms in each 

homogeneous component with respect to one of the variables for a non-zero form f , 
where � ◦ f = 0.

Proposition 4.2. Let f be a non-zero form of degree d ≥ 2 in the dual ring R =
K[y1, y2, y3] of S = K[x1, x2, x3] such that (x1 + x2 + x3) ◦ f = 0. Then we have

|Lk
i,d ∩ Supp(f)| ≥ d− ai + 1, ∀ 0 ≤ k ≤ ai, 1 ≤ i ≤ 3,

where ai = max{degi(m) | m ∈ Supp(f)}.

Proof. Write f =
∑ai

k=0 y
k
i gk, where gk is a degree d − k polynomial in two variables 

different from yi. Let �′ = � − xi, then we have

0 = � ◦ f = � ◦ (
ai∑

k=0

yki gk) =
ai∑

k=0

(
kyk−1

i gk + yki (�′ ◦ gk)
)
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therefore

(k + 1)gk+1 + �′ ◦ gk = 0, ∀ 0 ≤ k ≤ ai (4.1)

after linear change of variables to u := yα + yβ and v := yα − yβ , Equation (4.1) implies 
that, (∂/∂u)ai−k+1 ◦ gk = 0 for any 0 ≤ k ≤ ai. Therefore, for each 0 ≤ k ≤ ai we have

gk =
ai−k∑
j=0

λju
jvai−k+j = vd−ai

ai−k∑
j=0

λju
jvai−k+j λj ∈ K.

Rewriting gk in the variables yα and yβ we get that

gk =(yα − yβ)d−ai

ai−k∑
j=0

λj(yα − yβ)j(yα + yβ)ai−k−j

=(
d−ai∑
s=0

(−1)s
(
d− ai

s

)
ysαy

d−ai−s
β )(

ai−k∑
t=0

λt(yα − yβ)t(yα + yβ)ai−k−t)

where the second sum is a polynomial of degree ai − k in the variables yα and yβ, and 
since any such polynomial is of the form 

∑ai−k
j=0 μjy

j
αy

ai−k−j
β for some μj ∈ K. So we 

have

gk =(
d−ai∑
s=0

(−1)s
(
d− ai

s

)
ysαy

d−ai−s
β )(

ai−k∑
j=0

μjy
j
αy

ai−k−j
β )

=
d−ai∑
s=0

ai−k∑
j=0

(−1)sμj

(
d− ai

s

)
ys+j
α yd−k−s−j

β

=
ai−k∑
j=0

j+d−ai∑
l=j

(−1)l−jμj

(
d− ai
l − j

)
ylαy

d−k−l
β .

We claim that gk has at most ai − k coefficients that are zero. Suppose ai − k + 1
coefficients in the above expression of gk are zero and consider the system of equations 
in the parameters μj corresponding to these coefficients being zero. Observe that the 
coefficient matrix of this system of equations is the transpose of a square submatrix of 
maximal rank of the Toeplitz matrix T(ai−k+1)×(d−k+1), up to multiplication of every 
second row and every second column by negative one. Using Lemma 3.2 we get that the 
determinant of this coefficient matrix is non-zero and this implies that all the parameters 
μj are zero hence gk is zero. Therefore for all 0 ≤ k ≤ ai the polynomial gk has at most 
(ai − k + 1) − 1 = ai − k zero terms. So we have |Lk

i,d ∩ Supp(f)| = | Supp(gk)| ≥
(d − k + 1) − (ai − k) = d − ai + 1 for all 0 ≤ k ≤ ai and all 1 ≤ i ≤ 3. �
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Now we are able to state and prove the main theorem of this section. Recall from 
Definition 3.3 that φ(I, d) = ×(x1 + x1 + x3) : (S/I)d−1 → (S/I)d.

Theorem 4.3. For d ≥ 2 we have that

ν(3, d) =
{

3d− 3 if d is odd
3d− 2 if d is even.

Where, ν(3, d) = min{H(S/I)(d) | φ(I, d) is not surjective, for I ∈ Id}, and Id is the set 
of all artinian monomial ideals of S generated in degree d.

Proof. First of all we observe that for f = (y1−y2)(y1−y3)(y2−y3)d−2 we have � ◦f = 0, 
where � = x1 + x2 + x3 and since | Supp(f)| = 3d − 3 for odd d and | Supp(f)| = 3d − 2
for even d, we have ν(3, d) ≤ 3d − 3 for odd d, and ν(3, d) ≤ 3d − 2 for even d.

To prove the equality, we check that for any f ∈ (I−1)d where, � ◦ f = 0, | Supp(f)| ≥
3d − 3 for odd d and | Supp(f)| ≥ 3d − 2 for even d.

We start by showing that | Supp(f)| ≥ 3d −3 for all d ≥ 3. Set ai = max{degi(m) | m ∈
Supp(f)} for 1 ≤ i ≤ 3. Without loss of generality, we may assume that a1 ≤ a2 ≤ a3. We 
can see a1 ≥ 2. In fact by using Proposition 4.2 we get that |L0

1,d∩Supp(f)| ≥ d −a1 +1. 
On the other hand since I is an artinian ideal generated in degree d we have ydi /∈ Supp(f)
for each 1 ≤ i ≤ 3 and this implies that |L0

1,d ∩ Supp(f)| ≤ d − 1 and therefore, a1 ≥ 2.
Write f =

∑a1
j=0 y

j
1gj , where gj is a polynomial of degree d − j in the variables y2

and y3. Using Proposition 4.2 we get, |Lj
1,d ∩ Supp(f)| ≥ d − a1 + 1 for all 0 ≤ j ≤ a1. 

Therefore,

|Supp(f)| ≥
a1∑
j=0

|Lj
1,d ∩ Supp(f)| ≥ (a1 + 1)(d− a1 + 1).

So | Supp(f)| ≥ (a1 + 1)(d − a1 + 1) = 3(d − 1) + (a1 − 2)(d − 2 − a1) ≥ 3d − 3, for 
2 ≤ a1 ≤ d − 2. Furthermore, strict inequality holds for 2 < a1 < d − 2, which means 
| Supp(f)| ≥ 3d − 2, for all 2 < a1 < d − 2. It remains to consider the cases where a1 = 2
and a1 ≥ d − 2.

If a1 = 2, the ideal J = (x3
1, x

d
2, x

d
3) ⊂ S is an artinian monomial complete intersection 

and by Theorem 2.3, J has the strong Lefschetz property. The Hilbert series of S/J shows 
that there is a unique generator for the kernel of the differentiation map ◦(x1+x2 +x3) :
(J−1)d −→ (J−1)d−1. Since the polynomial (y1−y2)(y1−y3)(y2−y3)d−2 is in the kernel 
of this map and has 3d − 2 non-zero terms for even degree d we have | Supp(f)| ≥ 3d − 2
for any homogeneous degree d form f where � ◦ f = 0.

Now suppose that a1 ≥ d − 2, then since a1 ≤ a2 ≤ a3 ≤ d − 1, all possible choices 
for the triple (a1, a2, a3) are (d − 1, d − 1, d − 1), (d − 2, d − 1, d − 1), (d − 2, d − 2, d − 1)
and (d − 2, d − 2, d − 2).
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Fig. 1. Monomials of degree d in K[y1, y2, y3] are considered as the points in the equilateral triangular 
arrangement with d + 1 dots on a side.

First, we consider the case (a1, a2, a3) = (d − 1, d − 1, d − 1). Proposition 4.2 implies 
that

|Lk
i,d ∩ Supp(f)| ≥ d− (d− 1) + 1 = 2, for all 0 ≤ k ≤ d− 1 and 1 ≤ i ≤ 3. (4.2)

Assume d is odd. Consider the set ∪d−1
(d+1)/2

(
Lk

1,d ∩ Supp(f)
)

which consists of all the 

monomials in Supp(f) where the exponent of y1 is between (d +1)/2 and d −1 (monomials 
on the horizontal lines shown in the right triangle in Fig. 1). Similarly, for y2 and y3. Note 

that since d is odd the three sets ∪d−1
(d+1)/2

(
Lk

1,d ∩ Supp(f)
)
, ∪d−1

(d+1)/2

(
Lk

2,d ∩ Supp(f)
)

and ∪d−1
(d+1)/2

(
Lk

3,d ∩ Supp(f)
)

are disjoint. Thus, using equation (4.2) we get that

|Supp(f)| ≥| ∪d−1
(d+1)/2 L

k
1,d ∩ Supp(f)| + | ∪d−1

(d+1)/2 L
k
2,d ∩ Supp(f)|

+ | ∪d−1
(d+1)/2 L

k
3,d ∩ Supp(f)|

≥3
(
2(d− 1 − d + 1

2 + 1)
)

= 3d− 3,

which shows the desired inequality for odd d, see Fig. 1.
Now we assume d is even. Similar to the odd case we consider the set

∪d−1
(d+2)/2

(
Lk

1,d ∩ Supp(f)
)

consisting of all monomials where the exponent of y1 is between (d + 1)/2 and d − 1
(monomials on the horizontal lines in the shaded part of the left triangle in Fig. 1). 
Consider the corresponding sets for y2 and y3. Moreover, denote by C the set of all 
monomials in Supp(f) where the exponent of at least one of the variables is exactly d2 , 
(monomials on the edges of the bold downward triangle in Fig. 1), in other words

C :=
(
Ld/2

1,d ∪ Ld/2
2,d ∪ Ld/2

3,d
)
∩ Supp(f).
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Fig. 2. Three cases for the triple (a1, a2, a3) when d is even.

The four sets

∪d−1
(d+2)/2

(
Lk

1,d ∩ Supp(f)
)
,∪d−1

(d+2)/2
(
Lk

2,d ∩ Supp(f)
)
,∪d−1

(d+2)/2
(
Lk

3,d ∩ Supp(f)
)

and C are disjoint. Using equation (4.2) and noticing that for each 1 ≤ i �= j ≤ 3 the sets 
Ld/2
i,d ∩Ld/2

j,d contains exactly two monomials we get that |C| ≥ 3 ×2 −3 = 3. If |C| = 3 then 

these three monomials are exactly the pairwise intersection of Ld/2
i,d for 1 ≤ i ≤ 3, which 

are yd/21 , yd/22 and yd/23 . Proposition 3.6, part (i) implies that the sum of the coefficients 
of f corresponding to the monomials in Ld/2

i,d ∩ Supp(f) is zero for each 1 ≤ i ≤ 3, thus 
the sum of the coefficients of each pair of the monomials in C is zero and this means the 
coefficients of all the monomials in C have to be zero which is a contradiction. So |C| ≥ 4. 
Using this and equation (4.2) we conclude that

|Supp(f)| ≥| ∪d−1
(d+2)/2 L

k
1,d ∩ Supp(f)| + | ∪d−1

(d+2)/2 L
k
2,d ∩ Supp(f)|

+ | ∪d−1
(d+2)/2 L

k
3,d ∩ Supp(f)| + |C|

≥3
(
2(d− 1 − d + 2

2 + 1)
)

+ 4 = 3d− 2.

For the three remaining cases where a1 = d − 2 we will show for even degree d we get 
| Supp(f)| ≥ 3d − 2, see Fig. 2. Note that when d = 4 and a1 = d − 2 = 2 we have seen 
already that | Supp(f)| ≥ 3d − 2. So we can assume d ≥ 6. Denote by S the set of all 
monomials in Supp(f) where the exponent of y1 is between 3 and d − 2, (monomials on 
the horizontal lines in the shaded part of the triangles in Fig. 2). In other words

S := ∪d−2
k=3

(
Lk

1,d ∩ Supp(f)
)
.

Using Proposition 4.2 we get |Lj
1,d∩Supp(f)| ≥ d −(d −2) +1 = 3 for each 0 ≤ j ≤ d −2. 

This implies that |S| ≥ 3(d − 4).
We have three cases as follows.
If (a1, a2, a3) = (d − 2, d − 2, d − 2), consider the set ∪d−2

j=d−3(L
j
2,d ∩ Supp(f)) (the 

monomials in Supp(f) where the exponent of y2 is either d − 3 or d − 2) and similarly 
∪d−2
j=d−3(L

j
3,d∩Supp(f)). Notice that ∪d−2

j=d−3(L
j
2,d∩Supp(f)) and ∪d−2

j=d−3(L
j
3,d∩Supp(f))

are disjoint. Also the intersection of ∪d−2
j=d−3(L

j
2,d ∩ Supp(f)) and S is either empty 
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or y3
1y

d−3
2 . Similarly, | 

(
∪d−2
j=d−3L

j
3,d ∩ Supp(f)

)
∩ S| ≤ 1. Therefore, applying Proposi-

tion 4.2 implies that

|Supp(f)| ≥ |S ∪
(
∪d−2
j=d−3(L

j
2,d ∩ Supp(f))

)
∪
(
∪d−2
j=d−3(L

j
3,d ∩ Supp(f))

)
|

≥ 3(d− 4) + (2 × 3 − 1) + (2 × 3 − 1) = 3d− 2.

If (a1, a2, a3) = (d − 2, d − 2, d − 1), we consider two sets ∪d−2
j=d−3(L

j
2,d ∩ Supp(f)) and 

∪d−1
j=d−3(L

j
3,d ∩ Supp(f)). The similar argument as in the previous case implies that

|Supp(f)| ≥ |S ∪
(
∪d−2
j=d−3(L

j
2,d ∩ Supp(f))

)
∪
(
∪d−1
j=d−3(L

j
3,d ∩ Supp(f))

)
|

≥ 3(d− 4) + (2 × 3 − 1) + (3 × 2 − 1) = 3d− 2.

If (a1, a2, a3) = (d − 2, d − 1, d − 1), we consider two sets ∪d−1
j=d−3(L

j
2,d ∩ Supp(f)) and 

∪d−1
j=d−3(L

j
3,d ∩ Supp(f)) and we conclude that

|Supp(f)| ≥ |S ∪
(
∪d−1
j=d−3(L

j
2,d ∩ Supp(f))

)
∪
(
∪d−1
j=d−3(L

j
3,d ∩ Supp(f))

)
|

≥ 3(d− 4) + (3 × 2 − 1) + (3 × 2 − 1) = 3d− 2. �
5. Bound on the number of generators of ideals with more than three variables failing 
WLP

In this section we consider artinian monomial ideals I ⊂ S = K[x1, . . . , xn] generated 
in degree d, for n ≥ 4. We provide a sharp lower bound for the number of monomials 
with non-zero coefficients in a non-zero form f ∈ (I−1)d such that (x1 + · · ·+xn) ◦f = 0. 
The next theorem provides such lower bound for the form f in terms of the maximum 
degree of the variables in f .

Theorem 5.1. For n ≥ 4 and d ≥ 2, let f be a non-zero form of degree d in the dual ring 
R = K[y1, . . . , yn] of S = K[x1, . . . , xn] such that (x1 + · · · + xn) ◦ f = 0. Then we have 
| Supp(f)| ≥ max{(ai+1)(d −ai+1) | ai �= 0}, where ai = max{degi(m) | m ∈ Supp(f)}.

Proof. We show that for each 1 ≤ i ≤ n we have | Supp(f)| ≥ (ai+1)(d −ai+1). Denote 
� = x1 + · · · + xn and �′ = � − xi and write f =

∑ai

k=0 y
k
i gk, where gk is a polynomial 

of degree d − k in the variables different from yi. Since we have � ◦ f = 0, Lemma 7.8
implies that

(k + 1)gk+1 + �′ ◦ gk = 0, ∀0 ≤ k ≤ ai

and acting on each equation by (�′)ai−k we get that (�′)ai−k+1 ◦gk = 0 for all 0 ≤ k ≤ ai. 
By the definition of ai we have gai

�= 0, Proposition 3.6 part (ii) implies that for every 



N. Altafi, M. Boij / Journal of Algebra 556 (2020) 136–168 151
0 ≤ k ≤ ai we have gk �= 0. Now applying Theorem 3.7 we get that for each 0 ≤ k ≤ ai, 
| Supp(gk)| ≥ d − k − (ai − k + 1) + 2 = d − ai + 1. Therefore,

|Supp(f)| =| ∪ai

k=0 Lk
i,d ∩ Supp(f)| =

ai∑
k=0

|Supp(gk)| ≥ (ai + 1)(d− ai + 1)

and we conclude that | Supp(f)| ≥ max{(ai + 1)(d − ai + 1) | 1 ≤ i ≤ n}. �
In general we can prove that the sharp lower bound is always 2d. Recall from Defini-

tion 3.3 that φ(I, d) = ×(x1 + · · · + xn) : (S/I)d−1 → (S/I)d.

Theorem 5.2. For n ≥ 4 and d ≥ 2, we have

ν(n, d) = 2d.

Where, ν(n, d) = min{H(S/I)(d) | φ(I, d) is not surjective, for I ∈ Id}, and Id is the set 
of all artinian monomial ideals of S generated in degree d.

Proof. First of all, we observe that for f = (y1 − y2)(y3 − y4)d−1 we have � ◦ f = 0 and 
since | Supp(f)| = 2d we get ν(n, d) ≤ 2d. To show the equality, let I ⊂ S be an artinian 
monomial ideal. We check that for any f ∈ (I−1)d where, � ◦ f = 0, | Supp(f)| ≥ 2d.

Using Theorem 5.1 above, we get that for some 1 ≤ i ≤ n where 1 ≤ ai ≤ d − 1 we 
have | Supp(f)| ≥ (ai +1)(d − ai +1). Observe that since we have ai ≤ d − 1 we get that 
(ai + 1)(d − ai + 1) = d(ai + 1) − (ai − 1)(ai + 1) ≥ 2d, which completes the proof. �
6. Formulations in terms of simplicial complexes and matroids

In [2] Gennaro, Ilardi and Vallès describe a relation between the failure of the SLP of 
artinian ideals and the existence of special singular hypersurfaces. In particular, for the 
ideals we consider in this section they proved that in the following cases the ideal I fails 
the SLP at the range k in degree d + i − k if and only if there exists at any point M
a hypersurface of degree d + i with multiplicity d + i − k + 1 at M given by a form in 
(I−1)d+i, see [2] for more details. In [2, Theorem 6.2], they provide a list of monomial 
ideals I ⊂ S = K[x1, x2, x3] generated in degree 5 failing the WLP. Here we give the 
exhaustive list of such ideals.

Definition 6.1. Let I ⊂ S be an artinian monomial ideal and G = {m1, . . . , mr} ⊂ Rd be 
a monomial generating set of (I−1)d. Assume that I fails the WLP by failing surjectivity 
in degree d − 1 thus there is a non-zero polynomial f ∈ (I−1)d with Supp(f) ⊂ G such 
that (x1 + · · · + xn) ◦ f = 0. We say I fails the WLP minimally if the set G is minimal 
with respect to inclusion.
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Remark 6.2. Note that for every artinian monomial ideal I ⊂ S where the WLP fails 
minimally, there is a unique form in the kernel of the map ◦(x1 + · · · + xn) : (I−1)d −→
(I−1)d−1. In fact, if there are two different forms with the same support we can eliminate 
at least one monomial in one of the forms and get a form where its support is strictly 
contained in the support of the previous ones, contradicting the minimality.

Proposition 6.3. For an artinian monomial ideal I ⊂ S generated in degree 5 with at 
least 6 generators, S/I fails the WLP by failing surjectivity in degree 4 if and only if 
the set of generators for the inverse system module I−1 contains the monomials in the 
support of one of the following forms, up to permutation of variables:

• (y2 − y3)(y1 − y3)2(y1 − y2)(2y1 − y2 − y3)
• (y2 − y3)(y1 − y3)(y1 − y2)2(2y1 + y2 − 3y3)
• (y2 − y3)(y1 − y3)(y1 − y2)(y2

1 + y1y2 + y2
2 − 3y1y3 − 3y2y3 + 3y2

3)
• (y2 − y3)(y1 − y3)(y1 − y2)(y2

1 − y1y2 − y2
2 − y1y3 + 3y2y3 − y2

3)
• (y2 − y3)2(y1 − y3)2(y1 − y2)
• (y2 − y3)(y1 − y3)(y1 − y2)3
• (y2 − y3)(y1 − y3)(y1 − y2)(y2

1 − y1y2 + y2
2 − y1y3 − y2y3 + y2

3).

Moreover, the support of all the above forms define monomial ideals failing surjectivity 
minimally.

Proof. We prove the statement using Macaulay2 and considering all artinian monomial 
ideals generated in degree 5 with at least 6 generators. There are 816 of such ideals but 
considering the ones failing the WLP by failing surjectivity in degree 4 and considering 
the forms in the inverse system module (I−1)5 there are only 25 distinct non-zero forms 
f ∈ (I−1)5 such that (x1 + x2 + x3) ◦ f = 0. Therefore, every ideal where I−1 contains 
the support of each polynomial fails WLP by failing surjectivity in degree 4. Permuting 
the variables we get only 7 equivalence classes which correspond to the forms given in 
the statement. �
Remark 6.4. The support of the last three forms in Proposition 6.3 consists of 12 mono-
mials which is the same as ν(3, 5) = 12 given in 4.3. Therefore, the support of each 
form in the last three cases, up to permutations of the variables generates I−1 with lease 
possible number of generators in degree 5 where I fails the WLP.

Using Proposition 4.1, each of the forms above factors in linear form over an alge-
braically closed field; e.g. K = C.

The next result completely classifies monomial ideals I ⊂ S = K[x1, x2, x3, x4], gen-
erated in degree 3, failing the WLP which extends Proposition 6.3 in [2].

Proposition 6.5. For an artinian monomial ideal I ⊂ S generated in degree 3 with at 
least 10 generators, surjectivity of the multiplication map by a linear form in degree 2 of 
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S/I fails if and only if the set of generators for inverse system module I−1 contains the 
monomials in the support of one of the following forms, up to permutation of variables:

• (y2 − y4)2(y1 − y3)
• (y2 − y4)(y1 − y4)(y1 − y2)
• (y2 − y3)(y1 − y4)(y1 − 2y3 + y4)
• (y2 − y3)(y1 − y4)(y1 − y2 − y3 + y4)
• (y3 − y4)(y2 − y4)(y1 − y3)
• (y1 − y4)(y1y2 + y1y3 − 2y2y3 − 2y1y4 + y2y4 + y3y4)
• (y1 − y2)(y1y2 − y1y3 − y2y3 + 2y3y4 − y2

4)
• (y3 − y4)(y2

2 − y1y3 + y1y4 − 2y2y4 + y3y4)
• (y3 − y4)(y2

1 + y2
2 − 2y1y3 − 2y2y4 + 2y3y4)

• 2y2
1y2 − 3y1y

2
2 + 2y2

2y3 − y1y
2
3 − 2y2

1y4 + 2y1y2y4 + y2
2y4 + 2y1y3y4 − 4y2y3y4 + y2

3y4

• y2
1y2 − y1y

2
2 + y2

2y3 − y1y
2
3 − y2

1y4 + 2y1y3y4 − 2y2y3y4 + y2
3y4 + y2y

2
4 − y3y

2
4

• y2
1y2 − y2

1y3 − 2y1y2y3 + 2y2y
2
3 + 4y1y3y4 − 2y2y3y4 − 2y2

3y4 − 2y1y
2
4 + y2y

2
4 + y3y

2
4

• y2
1y2 − y2

1y3 − y1y2y3 + y2y
2
3 − y1y2y4 + 3y1y3y4 − y2y3y4 − y2

3y4 − y1y
2
4 + y2y

2
4.

Moreover, the support of all the above forms define monomial ideals failing surjectivity 
minimally.

Proof. We prove it using the same method as the proof of Proposition 6.3 using 
Macaulay2. There are 8008 artinian monomial ideals generated in degree 3 with at 
least 10 generators. Considering the forms in the inverse system module (I−1)3 where 
(x1 +x2 +x3 +x4) ◦ f = 0 correspond to the ideals failing WLP with failing surjectivity 
in degree 2, there are 237 distinct non-zero forms. Thus any ideal I where its inverse 
system module I−1 contains the support of each of the forms fails WLP in degree 2. 
Also considering the permutation of the variables there are 13 distinct forms given in 
the statement. �
Remark 6.6. The first two forms have 6 monomials which is the same as ν(4, 3) = 6 given 
in 5.2. Therefore, each form in the last two cases, up to permutation of variables give 
the minimal number of generators for the inverse system module I−1 where I fails the 
WLP.

One can check that the factors in the forms given in Proposition 6.5 are irreducible 
even over the complex numbers (or any algebraically closed field of characteristic zero).

The above results lead us to correspond simplicial complexes to the class of ideals 
failing the WLP by failing surjectivity. Recall that Theorem 4.3 and Corollary 5.2 imply 
that in the polynomial ring S = K[x1, . . . , xn] when the Hilbert function of an artinian 
monomial algebra generated in a single degree d, HS/I(d), is less than ν(n, d), the mono-
mial algebra S/I satisfies the WLP. First we recall the following definitions:
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Definition 6.7. A matroid is a finite set of elements M together with the family of subsets 
of M , called independent sets, satisfying,

• The empty set is independent,
• Every subset of an independent set is independent,
• For every subset A of M , all maximal independent sets contained in A have the same 

number of elements.

A simplicial complex Δ is a set of simplices such that any face of a simplex from Δ
is also in Δ and the intersection of any two simplices is a face of both. Note that every 
matroid is also a simplicial complex with independent sets as its simplices.

Definition 6.8. Recall Md from Definition 3.4 which is the set of monomials in degree d
in the ring R and define M′

d = Md \ {yd1 , . . . , ydn}. We define independent set s ⊂ M′
d

to be the set of monomials such that the set {(x1 + · · · + xn) ◦m | m ∈ s} is a linearly 
independent set. A subset s ⊂ M′

d is called dependent if it is not an independent set. 
Then define Δd,sur to be the simplicial complex with the monomials in M′

d as the ground 
set and all independent sets as its faces. Note that Δd,sur forms a matroid.

Define Δ∗
d,sur to be the simplicial complex with the monomials in Sd \ {xd

1, . . . , x
d
n}

as its ground set and faces of Δ∗
d,sur are the corresponding monomials of M′

d \ s in S
where s is a dependent set.

Proposition 6.9. With the above notations we have

(i) dim(Δd,sur) ≤ hd−1(R) − 1,
(ii) dim(Δ∗

d,sur) = |Sd| − n − ν(n, d) − 1.

Proof. Too show (i) notice that any proper subset of the support of each of the forms in 
6.3 and 6.5 forms an independent set. For every independent set s, monomial ideal I ⊂ S

generated by the d-th power of the variables in S and corresponding monomials of M′
d\s

in S form an artinian ideal I, where S/I satisfies the WLP. Since the ground set of Δd,sur

is the subset of monomials Rd the size of an independent set is bounded from above by 
the number of monomials in Rd−1. Therefore we have dim(Δd,sur) ≤ hd−1(R) − 1.

In order to prove (ii) we observe that an artinian algebra S/I where I is generated by 
the d-th power of the variables in S together with the monomials in a face of Δ∗

d,sur, fails 
the WLP. In fact the multiplication map on S/I form degree d − 1 to d is not surjective. 
Theorem 4.3 and 5.2 imply that every subset s ⊂ M′

d with |s| ≤ ν(n, d) is independent. 
Therefore we have dim(Δ∗

d,sur) = |Sd| −n −ν(n, d) −1, the equality is because the bound 
is sharp. �
Example 6.10. The support of each polynomial given in Proposition 6.3 is a minimal non-
face of the simplicial complex Δ5,sur with the ground set M′

5 = M5 \ {y5
1 , y

5
2 , y

5
3}. This 
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simplicial complex has 25 minimal non-faces (considering the permutations of variables). 
Δ5,sur has 7 minimal non-faces of dimension 11, 6 minimal non-faces of dimension 13 
and 12 minimal non-faces of dimension 14.

Remark 6.11. Recall that the Alexander dual of a simplicial complex Δ on the ground 
set V is a simplicial complex with the same ground set and faces are all the subsets of V
where their complements are non-faces of Δ. Observe that Δ∗

d,sur is a simplicial complex 
in Sd and Δd,sur is a simplicial complex in the Macaulay dual ring Rd. Note that for any 
independent set s ⊂ M′

d the corresponding monomials of the complement M′
d \ s in the 

ring S is not a face of Δ∗
d,sur which implies that Δd,sur is Alexander dual to Δ∗

d,sur.

7. WLP of ideals fixed by actions of a cyclic group

Mezzetti and Miró-Roig in [10] studied artinian ideals of the polynomial ring 
K[x1, x2, x3], where K is an algebraically closed field of characteristic zero generated by 
homogeneous polynomials of degree d invariant under an action of cyclic group Z/dZ, for 
d ≥ 3 and they proved that if gcd(a1, a2, a3, d) = 1 they define monomial Togliatti sys-
tems. In [1], Colarte, Mezzetti, Miró-Roig and Salat consider such ideals in a polynomial 
ring with at least three variables. Throughout this section K = C and S = K[x1, . . . , xn], 
where n ≥ 3. Let d ≥ 2 and ξ = e2πi/d to be the primitive d-th root of unity. Consider 
the diagonal matrix

Ma1,...,an
=

⎛
⎜⎜⎝
ξa1 0 · · · 0
0 ξa2 · · · 0
...

...
...

0 0 · · · ξan

⎞
⎟⎟⎠

representing the cyclic group Z/dZ, where a1, a2, . . . , an are integers and the action is 
defined by [x1, . . . , xn] �→ [ξa1x1, . . . , ξanxn]. Since ξd = 1, we may assume that 0 ≤ ai ≤
d − 1, for every 1 ≤ i ≤ n. Let I ⊂ S be the ideal generated by all the forms of degree 
d fixed by the action of Ma1,...,an

. In [10, Theorem 3.1], Mezzetti and Miró-Roig showed 
that these ideals are monomial ideals when n = 3. Here we state it in general for all 
n ≥ 3 with a slightly different proof.

Lemma 7.1. For integer d ≥ 2, the ideal I ⊂ S = K[x1, . . . , xn] generated by all the forms 
of degree d fixed by the action of Ma1,...,an

is artinian and generated by monomials.

Proof. Since Ma1,...,an
is a monomial action in the sense that for every monomial m of 

degree d we have Mr
a1,...,an

m = cm for each 0 ≤ r ≤ d − 1 and for some c ∈ K, then if 
we have a form of degree d fixed by Ma1,...,an

, all its monomials are fixed by Ma1,...,an
. 

This implies that I is a monomial ideal. Note also that since ξd = 1, all the monomials 
xd

1, x
d
2, . . . , x

d
n are fixed by the action of Ma1,...,an

which means I is an artinian ideal. �
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Using the above result, from now on we take the monomial set of generators for I. 
Observe that for two distinct primitive d-th roots of unity we get different actions, but 
the set of monomials fixed by both actions are the same. Also the action Man+r,...,an+r

which is obtained by multiplying the matrix Ma1,...,an
with a d-th root of unity defines 

the same action on degree d monomials in S. In [10], Colarte, Mezzetti, Miró-Roig and 
Salat show that in the case that n = 3 where ai’s are distinct and gcd(a1, a2, a3, d) = 1, 
these ideals are all monomial Togliatti systems. In fact they show that the WLP of these 
ideals fails in degree d − 1 by failing injectivity of the multiplication map by a linear 
form in that degree. In this section, we study the cases where WLP of such ideals fails 
by failing surjectivity in degree d −1. Then we classify all such ideals in polynomial rings 
with more than 2 variables, in terms of their WLP.

We start this section by stating some results about the number of monomials of degree 
d fixed by the action Ma1,...,an

of Z/dZ in S. In fact we prove that this number depends 
on the integers ai’s. In the next result we give an explicit formula computing the number 
of such monomials where n = 3.

Proposition 7.2. For integers a1, a2, a3 and d ≥ 2, the number of monomials in S =
K[x1, x2, x3] of degree d fixed by the action of Ma1,a2,a3 is

1 + gcd(a2 − a1, a3 − a1, d) · d + gcd(a2 − a1, d) + gcd(a3 − a1, d) + gcd(a3 − a2, d)
2 .

(7.1)

Proof. From the discussion above, the number of monomials of degree d fixed by 
M0,a2−a1,a3−a1 and Ma1,a2,a3 are the same. Thus, we count the number of monomi-
als of degree d fixed by M0,a2−a1,a3−a1 . Any monomial of degree d in S can be written 
as xd−m−nymzn with 0 ≤ m, n ≤ d and m +n ≤ d and it is invariant under the action of 
M0,a2−a1,a3−a1 if and only if (a2 − a1)m + (a3 − a1)n ≡ 0 (mod d). In [8, Chapter 3], we 
find that the number of congruent solutions of (a2 − a1)m + (a3 − a1)n ≡ 0 (mod d) is 
gcd(a2 − a1, a3 − a1, d) · d but since the solutions (0, 0), (0, d) and (d, 0) (corresponding 
to the powers of variables) are all congruent to d and fixed by M0,a2−a1,a3−a1 we get two 
more solutions than gcd(a2−a1, a3−a1, d) ·d. In order to count the monomials of degree 
d invariant under the action of M0,a2−a1,a3−a1 we need to count the number of solutions 
of (a2 − a1)m + (a3 − a1)n ≡ 0 (mod d) satisfying the extra condition m + n ≤ d.

First we count the number of such solutions when m = 0 and n �= 0. So every 
1 ≤ n < gcd(a3 − a1, d) is a solution of (a3 − a1)n ≡ 0 (mod d). Therefore there are 
gcd(a3 −a1, d) −1 solutions in this case. Similarly, there are gcd(a2 −a1, d) −1 solutions 
when n = 0 and m �= 0. Counting the solutions when m +n = d is equivalent to counting 
the solutions of (a3 − a2)m ≡ 0 (mod d) which is similar to the previous case and is 
equal to gcd(a3 − a2, d) − 1. There is also one solution when m = n = 0.

Now rest of the solutions (where m �= 0 and n �= 0 and m +n �= d) by [8, Chapter 3] is 
equal to gcd(a2 −a1, a3 −a1, d) ·d −gcd(a3 −a2, d) −gcd(a2 −a1, d) −gcd(a3 −a1, d) +2
but we need to count the number of those satisfying 0 < m + n < d. Note that if 
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0 < m0 < d and 0 < n0 < d is a solution of (a2 − a1)m + (a3 − a1)n ≡ 0 (mod d) then 
0 < d −m0 < d and 0 < d − n0 < d is also a solution but one and only one of the two 
conditions 0 < m0 + n0 < d and 0 < d −m0 + d − n0 < d is satisfied. Therefore, there 
are

gcd(a2 − a1, a3 − a1, d) · d− gcd(a3 − a2, d) − gcd(a2 − a1, d) − gcd(a3 − a1, d) + 2
2

solutions satisfying 0 < m +n < d. Adding this with the solutions where m = 0 or n = 0
or m +n = d which we have counted them above together with two more pairs (0, d) and 
(d, 0) (explained in the beginning of the proof) we get what we wanted to prove. �

For a fixed integer d ≥ 2 Proposition 7.2 shows how the number of fixed monomials 
of degree d depends on the integers a1, a2, a3. In the following example we see how they 
are distributed.

Example 7.3. Using Formula (7.1) we count the number of monomials of degree d = 15
in K[x1, x2, x3] fixed by the action M0,a,b for every 0 ≤ a, b ≤ 14. We see the distribution 
of them in terms of μ(I) in the following table:

m 10 11 12 13 17 28 34 46 51 136
dm 24 72 24 48 24 12 12 2 6 1

where dm = |{(a, b) | μ(I) = m}|. Note that the last column of the table corresponds 
to the action M0,0,0 where we get μ(I) = (K[x1, x2, x3])15 = 136. There are exactly 24
pairs (a, b) where either at least one of them is zero or a = b, which in these cases we get 
μ(I) = 17. We have gcd(a, b, d) �= 1 for all the cases with μ(I) > 17 and gcd(a, b, d) = 1
for all the cases with μ(I) < 17.

As we saw in the above example the distribution of the number of monomials of degree 
d fixed by Ma1,a2,a3 is quite difficult to understand but we prove that such numbers are 
bounded from above depending on the prime factors of d in the case that ai’s are distinct 
and gcd(a1, a2, a3, d) = 1.

Proposition 7.4. For d ≥ 3 and distinct integers 0 ≤ a1, a2, a3 ≤ d − 1 with 
gcd(a1, a2, a3, d) = 1, let μ(I) be the number of monomials of degree d fixed by Ma1,a2,a3 . 
Then

μ(I) ≤
{

(p+1)d+p2+3p
2p if p2 � d

(p+1)d+4p
2p if p2 | d,

where p is the smallest prime dividing d. Moreover, the bounds are sharp.
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Proof. Using Proposition 7.2 we provide an upper bound for gcd(a2 − a1, d) + gcd(a3 −
a1, d) + gcd(a3 − a2, d). For some integer t we have d = gcd(a2 − a1, d) · gcd(a3 − a1, d) ·
gcd(a3 − a2, d) · t. Since gcd(a3 − a1, d) · gcd(a3 − a2, d) = d

gcd(a2−a1,d)·t , we have

gcd(a3 − a1, d) + gcd(a3 − a2, d) ≤ 1 + d

gcd(a3 − a2, d) · t
.

Therefore,

gcd(a2 − a1, d) + gcd(a3 − a1, d) + gcd(a3 − a2, d)

≤ gcd(a2 − a1, d) + d

gcd(a3 − a1, d) · t
+ 1

≤ gcd(a2 − a1, d) + d

gcd(a2 − a1, d)
+ 1

≤ p + d

p
+ 1.

Note that, gcd(a2−a1, d) +gcd(a3−a1, d) +gcd(a3−a2, d) = d +2 > p + d
p +1 if and only 

if at least two integers ai are the same which contradicts the assumption. Since for every 
q ≥ p we have p + d

p+1 ≥ q+ d
q +1 we get gcd(a2−a1, d) +gcd(a3−a1, d) +gcd(a3−a2, d) ≤

p + d
p + 1.

Now assume that p2 � d, to reach the bound we let a2 − a1 = p and a3 − a1 = d
p . 

In this case since we have that gcd(a3 − a2, d) = 1, Proposition 7.2 implies that μ(I) ≤
(p+1)d+p2+3p

2p .

If p2 | d, choosing a2−a1 = p and a3−a1 = d

p
implies that gcd(a3−a2, d) = p. So the 

given bound can not be sharp. Observe that for q > p and q | d we have q+d
q+1 ≤ 1 +d

p+1. 
Therefore in this case we have gcd(a2−a1, d) +gcd(a3−a1, d) +gcd(a3−a2, d) ≤ 1 + d

p +1, 
and equality holds for a2 − a1 = 1 and a3 − a1 = d

p so by Proposition 7.2 we have that 
μ(I) ≤ (p+1)d+4p

2p . �
In the proof of Proposition 7.2, we used the fact that the number of solutions (m, n)

for (a2−a1)m +(a3−a1)n ≡ 0 (mod d) (corresponding to the action by Ma1,a2,a3) where 
m, n �= 0 and m +n �= d is exactly twice the number of solutions of (b −a)m +(c −a)n ≡ 0
(mod d) satisfying 0 < m + n < d. But in the polynomial ring with more than three 
variables this is no longer the case that the solutions of the corresponding equation 
of Ma1,...,an

are distributed in a nice way so we do not have the explicit formula as 
in Proposition 7.2 in higher number of variables. In Proposition 7.5 below we pro-
vide an upper bound for this number in the polynomial ring with four variables where 
gcd(a1, a2, a3, a4, d) = 1. The bound implies HS/I(d − 1) ≤ HS/I(d) and therefore the 
WLP in degree d −1 is an assertion of injectivity. In [1, Theorem 4.8], Colarte, Mezzetti, 
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Miró-Roig and Salat show that the number of monomials in (K[x1, . . . , xn])n+1 fixed by 
the action M0,1,2,...,n of Z/(n + 1)Z is bounded above by 

(2n−1
n−1

)
, for any n ≥ 3.

Proposition 7.5. For d ≥ 2 and integers 0 ≤ a1, a2, a3, a4 ≤ d − 1, where at most two of 
the integers among ai’s are equal and gcd(a1, a2, a3, a4, d) = 1. Let μ(I) be the number 
of monomials of degree d in S = K[x1, x2, x3, x4] fixed by Ma1,a2,a3,a4 . Then

μ(I) ≤ 1 + (d + 2)(d + 1)
2 .

Proof. Any monomial of degree d in S can be written as xm1
1 xm2

2 xm3
3 xd−m1−m2−m3

4 with 
0 ≤ m1, m2, m3 ≤ d and m1 + m2 + m3 ≤ d. Monomial xm1

1 xm2
2 xm3

3 xd−m1−m2−m3
4 is 

invariant under the action of Ma1,a2,a3,a4 or equivalently Ma1−a4,a2−a4,a3−a4,0 if and only 
if

(a1 − a4)m1 + (a2 − a4)m2 + (a3 − a4)m3 ≡ 0 (mod d), m1 + m2 + m3 ≤ d. (7.2)

In [8, Chapter 3] we find that the number of congruent solutions of (a1 − a4)m1 + (a2 −
a4)m2+(a3−a4)m3 ≡ 0 (mod d) is d2. We first count the number of congruent solutions 
of (7.2) where at least one of m1, m2 or m3 is zero. Suppose m1 = 0 then by [8, Chapter 
3], the number of congruent solutions of (a2 − a4)m2 + (a3 − a4)m3 ≡ 0 (mod d) is 
gcd(a2−a4, a3−a4, d) ·d. Similarly, by [8, Chapter 3], the number of congruent solutions 
of (7.2) having two coordinates zero, for example m1 = m2 = 0, is gcd(a3 − a4, d). All 
together the number of congruent solutions of (7.2) where at least one of the coordinates 
m1, m2, m3 is zero is as follows

d (gcd(a1 − a4, a2 − a4, d) + gcd(a2 − a4, a3 − a4, d) + gcd(a1 − a4, a3 − a4, d))

− gcd(a1 − a4, d) − gcd(a2 − a4, d) − gcd(a3 − a4, d) + 1.

Note that if (m10, m20, m30) is a solution of (7.2) such that mi0 �= 0 for i = 1, 2, 3, then 
(d −m10, d −m20, d −m30) is a solution of (a1 − a4)m1 + (a2 − a4)m2 +(a3 − a4)m3 ≡ 0
(mod d) where 3d −m10 −m20 −m30 ≥ d. Therefore, the number of congruent solutions 
of (7.2) where no mi is zero is bounded from above by

[d2 − (d(gcd(a1 − a4, a2 − a4, d) + gcd(a2 − a4, a3 − a4, d) + gcd(a1 − a4, a3 − a4, d))

− gcd(a1 − a4, d) − gcd(a2 − a4, d) − gcd(a3 − a4, d) + 1)]/2.

Using Proposition 7.2, we count the number of solutions (7.2) where at least one of the 
coordinates mi is zero. If m1 = 0 then by Proposition 7.2 the number of solutions of 
(a2 − a4)m2 + (a3 − a4)m3 = 0 (mod d) where 0 ≤ m2, m3 ≤ d and m2 + m3 ≤ d is

gcd(a2 − a4, a3 − a4, d) · d + gcd(a2 − a4, d) + gcd(a3 − a4, d) + gcd(a2 − a3, d) + 2
.
2
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Similarly we can count the number of such solutions when m2 = 0 or m3 = 0. Now 
suppose that m1 = m2 = 0 then we get gcd(a3 − a4, d) + 1 where 0 ≤ m3 ≤ d. All 
together the number of solutions of (7.2) where at least one mi is zero is

[d(gcd(a1 − a4, a2 − a4, d) + gcd(a2 − a4, a3 − a4, d) + gcd(a1 − a4, a3 − a4, d))

+ gcd(a1 − a2, d) + gcd(a1 − a3, d) + gcd(a2 − a3, d) + 2]/2.

Therefore, the number of solutions of (7.2) is bounded from above by

d2 +
∑3

i=1 gcd(ai − a4, d) +
∑

1≤i<j≤3 gcd(ai − aj , d) + 1
2 . (7.3)

To show the assertion of the theorem we need to show (7.3) is bounded from above by 
(d+2)(d+1)+2

2 where at most 2 of integers among ai’s are equal and gcd(a1, a2, a3, a4, d) =
1. So we need to show that

3∑
i=1

gcd(ai − a4, d) +
∑

1≤i<j≤3
gcd(ai − aj , d) =

∑
1≤i≤j≤4

gcd(ai − aj , d) ≤ 3d + 3. (7.4)

To show this we consider the following cases:

(1) Suppose at least two terms in the left hand side of (7.4) are equal to d then at least 
three integers among ai’s are equal which contradicts the assumption.

(2) Suppose that one of the terms in the left hand side is equal to d. By relabeling the 
indices we may assume that gcd(a1 − a2, d) = d, this implies that a1 = a2 then we 
need to show that

d + 2 gcd(a1 − a3, d) + 2 gcd(a1 − a4, d) + gcd(a3 − a4, d) ≤ 3d + 3

since we assume that gcd(a1, a2, a3, a4, d) = 1 we have that gcd(a1 −a4, d), gcd(a3 −
a4, d) and gcd(a1 − a3, d) are all distinct and strictly less than d. Thus we have

d+2 gcd(a1 −a3, d)+2 gcd(a1 −a4, d)+gcd(a3 −a4, d) ≤ d+2d2 +2d3 + d

4 < 3d+3.

(3) Suppose all the terms in the left hand side of (7.4) are strictly less than d. Then the 
assumption gcd(a1, a2, a3, a4, d) = 1 implies that at most two terms can be d/2 and 
assuming the other terms are d/3 we get∑

1≤i≤j≤4
gcd(ai − aj , d) ≤ 3d + 3 ≤ 2(d/2) + 4(d/3) = d + d/2 < 3d + 3. �

In the rest of this section we study the WLP of ideals in S = K[x1, . . . , xn] for n ≥ 3
generated by all forms of degree d ≥ 3 invariant by the action Ma1,...,an

of Z/dZ. First 
we prove the following key lemma.
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Lemma 7.6. For integer d ≥ 2 and distinct integers 0 ≤ a1, a2, a3 ≤ d − 1, let Ma1,a2,a3

be a representation of Z/dZ. Define the linear form

L =
l∑

j=0
ξjx1 +

l+k+1∑
j=l+1

ξjx2 +
2d−1∑

j=l+k+2

ξjx3,

where l and k are the residues of a2 −a3 − 1 and a3 −a1 − 1 modulo d. Then the support 
of the form F = Ld − L

d are exactly the monomials of degree d in K[x1, x2, x3] which 
are not invariant under the action of Ma1,a2,a3 , where L is the conjugate of L and ξ is 
a primitive d-th root of unity.

Proof. First, note that for a rational number j we let ξj = ej
2πi
2 . We observe that 

for integers 0 ≤ p ≤ q we have 
∑q

p ξ
i = ξ

p+q
2

∑q
p ξ

i− p+q
2 , where 

∑q
p ξ

i− p+q
2 = ξ

p−q
2 +

ξ
p−q
2 +1 + · · ·+ξ

q−p
2 −1 +ξ

q−p
2 which is invariant under conjugation, so it is a real number. 

Therefore, we have

L =
l∑

j=0
ξjx1 +

l+k+1∑
j=l+1

ξjx2 +
2d−1∑

j=l+k+2

ξjx3 = r1ξ
l
2x1 + r2ξ

2l+k+2
2 x2 + r3ξ

l+k+1
2 x3

where r1, r2 and r3 are non-zero real numbers. In fact, using the assumption that a1, 
a2 and a3 are distinct we get that 0 ≤ l, k ≤ d − 2 which implies that the ri’s are all 
non-zero. The form F can be written as

F = Ld − L
d

=
(
r1ξ

l
2x1 + r2ξ

2l+k+2
2 x2 + r3ξ

l+k+1
2 x3

)d

−
(
r1ξ

− l
2x1 + r2ξ

− 2l+k+2
2 x2 + r3ξ

− l+k+1
2 x3

)d

.

Consider monomial m = xα1
1 xα2

2 xα3
3 of degree d in K[x1, x2, x3]. The coefficient of m in 

F is zero if and only if the coefficients of m in Ld is real. The coefficient of m in Ld is 
real if and only if

α1
l

2+α2
2l + k + 2

2 +α3
l + k + 1

2 ≡ α1
−l

2 +α2
−(2l + k + 2)

2 +α3
−(l + k + 1)

2 (mod d)

which is equivalent to have

α1l + α2(2l + k + 2) + α3(l + k + 1) ≡ 0, (mod d).

Therefore, the monomials with non-zero coefficients in F are exactly the monomials of de-
gree d in K[x1, x2, x3], which are not fixed by the action of Ml,2l+k+2,l+k+1. Substituting 
l, k we get that Ml,2l+k+2,l+k+1 is equivalent to the action Ma2−a3−1,2a2−a3−a1−1,a2−a1−1
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and by adding a1 − a2 + a3 + 1 to the indices the last one is also equivalent to Ma1,a2,a3

which proves what we wanted. �
Remark 7.7. The assumption in Lemma 7.6 that ai’s are distinct is necessary to have 
the form F non-zero. If at least two of the integers ai are equal then in the linear form 
L at least the coefficient of one of the variables x1, x2 and x3 is zero. Then we conclude 
that in Ld all the monomials have real coefficients which implies F = 0.

Lemma 7.6, can be extended to any polynomial ring with odd number of variables. 
In fact in this case we can find n − 1 integers li in terms of the integers ai defining the 
action Ma1,...,an

in such a way that a similar linear form as L in the lemma in n variables 
does the same.

In [1, Proposition 4.6], Colarte, Mezzetti, Miró-Roig and Salat show that the WLP 
of I fails by failing injectivity in degree d − 1 in the polynomial ring K[x1, . . . , xn]. In 
fact they provide the non-zero form f =

∏d−1
i=1 (ξia1x1 + · · · + ξianxn) in the kernel of 

the multiplication map by a linear form on artinian algebra K[x1, . . . , xn]/I from degree 
d − 1 to degree d. So all the monomials with non-zero coefficient in (x1 + · · ·+ xn)f are 
fixed by the action Ma1,...,an

.
We can now state and prove our main theorem which generalizes [10, Proposition 3.2]

and [1, Proposition 4.6] and gives the complete classification of ideals in S = K[x1, . . . , xn]
generated by all forms of degree d fixed by the action of Ma1,...,an

, for every n ≥ 3 and 
d ≥ 2, in terms of their WLP.

Theorem 7.8. For integers d ≥ 2, n ≥ 3 and 0 ≤ a1, . . . , an ≤ d − 1, let Ma1,...,an
be a 

representation of the cyclic group Z/dZ and I ⊂ S = K[x1, . . . , xn] be the ideal generated 
by all forms of degree d fixed by the action of Ma1,...,an

. Then, I satisfies the WLP if 
and only if at least n − 1 of the integers ai are equal.

Proof. Suppose at least n − 1 of the integers ai’s are equal and by relabeling the vari-
ables we may assume that a1 = a2 = · · · = an−1. For n = 3, Lemma 5.2 [10] shows 
that I satisfies the WLP. Similarly for n ≥ 3 the ideal I contains (x1, x2, . . . , xn−1)d, 
and then all the monomials in (S/I)d are divisible by xn which implies that the map 
×xn : (S/I)d−1 −→ (S/I)d is surjective. Since [(S/I)/xn(S/I)]d = 0 we have that 
[(S/I)/xn(S/I)]j = 0 for all j ≥ d and then ×xn : (S/I)j−1 −→ (S/I)j is sur-
jective for all j ≥ d. On the other hand, since I is generated in degree d, the map 
×xn : (S/I)j−1 −→ (S/I)j is injective, for every j < d. Therefore, I has the WLP.

To show the other implication, we assume that at most n −2 integers ai are equal and 
we prove that I fails WLP by showing that map ×(x1 + · · ·+ xn) : (S/I)d−1 −→ (S/I)d
is neither injective nor surjective.

By [1, Proposition 4.6], for the non-zero form f =
∏d−1

i=1 (ξia1x1 + · · · + ξianxn) of 
degree d − 1 we have that (x1 + · · ·+ xn)f is a form of degree d in I. Therefore the map 
×(x1 + · · · + xn) : (S/I)d−1 −→ (S/I)d is not injective.
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Now it remains to show the failure of surjectivity. To do so by Macaulay duality 
equivalently we show that the map ◦(x1+ · · ·+xn) : (I−1)d −→ (I−1)d−1 is not injective. 
Note that the inverse module (I−1)d is generated by all the monomials of degree d in 
the dual ring R = K[y1, . . . , yn] which are not fixed by the action Ma1,...,an

.
We consider two cases depending on ai’s. First, assume that there are at least three 

distinct integers among ai’s and by relabeling the variables we may assume that a1 <

a2 < a3.
By applying Lemma 7.6 on the ring R, we get the linear form

L =
l∑

j=0
ξjy1 +

l+k+1∑
j=l+1

ξjy2 +
2d−1∑

j=l+k+2

ξjy3,

where l and k are the residues of a2−a3−1 and a3−a1−1 modulo d and ξ is a primitive 
d-th root of unity. Since a1, a2 and a3 are distinct F = Ld − L

d is non-zero form of 
degree d. The monomials with non-zero coefficients in F are exactly the monomials of 
degree d in K[y1, y2, y3] which are not fixed by the action Ma1,a2,a3 . Therefore, all the 
monomials of degree d in R fixed by the action Ma1,...,an

have coefficient zero in F and 
thus we get that F ∈ (I−1)d. Moreover, sum of the coefficients in L and L is exactly 
2(1 + ξ1 + ξ2 + · · · + ξd−1) = 0. Therefore,

(x1 + · · · + xn) ◦ F = (x1 + · · · + xn) ◦ (Ld) − (x1 + · · · + xn) ◦ (Ld)

= d · Ld−1 ·
(
(x1 + · · · + xn) ◦ L

)
− d · Ld−1 ·

(
(x1 + · · · + xn) ◦ L

)
= d · (Ld−1 − L

d−1) ·
(
2(1 + ξ1 + ξ2 + · · · + ξd−1)

)
= 0,

and this implies that ×(x1 + · · · + xn) : (S/I)d−1 −→ (S/I)d is not surjective in this 
case. Now assume that there are only two distinct integers among ai’s. Without loss of 
generality we may assume that a1 = a2 = · · · = am < am+1 = am+2 = · · · = an. Since 
we assume that at most n − 2 of the integers ai’s are equal, we have m, n − m ≥ 2
and so a1 = a2 �= an−1 = an. Consider the element H = (y1 − y2)(yn − yn−1)d−1 ∈ R. 
Acting by Mr

a1,...,an
on H we get that Mr

a1,...,an
(y1 − y2)(yn− yn−1)d−1 = ξr(a1−an)(y1 −

y2)(yn − yn−1)d−1 for every 0 ≤ r ≤ d − 1. So H is fixed by the action Ma1,...,an
if 

and only if a1 = an which we assumed a1 �= an. This implies that H is not fixed by 
Ma1,...,an

. Moreover, notice that every monomial m with non-zero coefficient in H is 
mapped to ξa1+(d−1)anm by the action Ma1,...,an

. So since 0 ≤ ai ≤ d − 1, for every 
1 ≤ i ≤ n, then monomial m is fixed by the action Ma1,...,an

if and only if a1 = an but 
we assumed a1 < an. We conclude that none of the monomials in H is fixed by Ma1,...,an

, 
therefore H ∈ (I−1)d. Moreover, we have that (x1 + · · ·+ xn) ◦H = 0 and then the map 
×(x1 + · · · + xn) : (S/I)d−1 −→ (S/I)d is not surjective. �
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We illustrate Theorem 7.8 in the next example for the ideal in the polynomial ring 
with three variables failing the WLP.

Example 7.9. Let I ⊂ S = K[x1, x2, x3] be the ideal generated by forms of degree d = 10
fixed by the action of M0,2,4. Theorem 7.1 implies that I is generated by all monomials 
of degree d fixed by the action of M0,2,4. By Theorem 7.8 above we get that I fails 
WLP form degree 9 to degree 10. Since by Theorem 7.2 we have HS/I(10) = 52 < 55 =
HS/I(9), failing WLP is an assertion of failing surjectivity of the multiplication map 
×(x1+x2+x3) : (S/I)9 −→ (S/I)10. We equivalently show that the map ◦(x1+x2+x3) :
(I−1)10 −→ (I−1)9 is not injective.

Using Lemma 7.6, we let L be the linear form L =
∑7

j=0 ξ
jy1+

∑11
j=8 ξ

jy2+
∑19

j=12 ξ
jy3

for l = 7 and k = 3 in the dual ring R = K[y1, y2, y3]. Then we get the non-zero form 
F = L10−L

10 in the kernel of the map ◦(x1+x2+x3) : (I−1)10 −→ (I−1)9. Computations 
by Macaulay2 software, show that the kernel of this map has dimension 2. We can actually 
get the other form in the kernel by changing ξ with ξ′ = ξ3 = e6πi/d. Therefore we have 
L′ =

∑7
j=0 ξ

3jy1 +
∑11

j=8 ξ
3jy2 +

∑19
j=12 ξ

3jy3 and then G = L′d −L′d is another form of 
degree 10 in the kernel where (x1 + x2 + x3) ◦G = 0.

8. Dihedral group acting on K[x, y, z]

In the previous section we have studied the WLP of ideals generated by invariant 
forms of degree d under an action of cyclic group of order d. In this section we study an 
action of dihedral group D2d on the polynomial ring with three variables S = K[x, y, z]
where K = C and d ≥ 2. Let ξ2πi/d be a primitive d-th root of unity and

Ad =
(
ξ 0 0
0 ξ−1 0
0 0 1

)
, Bd =

(0 ξ−1 0
ξ 0 0
0 0 −1

)

be a representation of dihedral group D2d. Let F =
∏d−1

j=0(ξjx + ξ−jy + z)(ξjx + ξ−jy−
z) which is a polynomial of degree 2d invariant by the action Ad and Bd of dihedral 
group D2d. We study the WLP of the artinian monomial ideal in S generated by all the 
monomials in F with non-zero coefficients. First we count the number of generators of 
such ideals.

Proposition 8.1. For integer d ≥ 2, let Ad and Bd be a representation of D2d and let I ⊂ S

be the artinian monomial ideal generated by all monomial with non-zero coefficients in 
F =

∏d−1
j=0(ξjx + ξ−jy + z)(ξjx + ξ−jy − z). Then μ(I) = d + 3, if d = 2k + 1; and 

μ(I) = 2d + 5, if d = 2k.
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Proof. Fist, assume d = 2k + 1 and consider the action by

M2,2d−2,d =

⎛
⎝ω2 0 0

0 ω2d−2 0
0 0 ωd

⎞
⎠

of a cyclic group Z/2dZ where ω = e2πi/2d is a primitive 2d-root of unity. Then consider 
the form H =

∏2d−1
j=0 (ω2jx + ω(2d−2)jy + ωdjz). We have that

H =
2d−1∏
j=0

(ξjx + ξ−jy + (−1)jz)

=
d−1∏
j=0

(ξjx + ξ−jy + (−1)jz)(ξj+dx + ξ−j+dy + (−1)j+dz)

=
d−1∏
j=0

(ξjx + ξ−jy + (−1)jz)(ξjx + ξ−jy + (−1)j+dz)

=
d−1∏
j=0

(ξjx + ξ−jy − z)(ξjx + ξ−jy + z) = F.

Note that the monomials fixed by the action of M2,2d−2,d, M0,2d−4,d−2 and M0,1,a are the 
same, where (2d − 4)a = (d − 2), since d is odd such an integer a exists. By Theorem 7.2
we get that the number of monomials fixed by any of those actions is d +3. On the other 
hand Theorem 2, in [7] implies that the number of terms with non-zero coefficient in H
and then in F is exactly d + 3 which implies that μ(I) = d + 3.

Now assume that d = 2k and consider the action by M2,2d−2,0 =

⎛
⎝ω2 0 0

0 ω2d−2 0
0 0 1

⎞
⎠

of a cyclic group Z/2dZ. Consider the form G =
∏2d−1

j=0 (ω2jx + ω(2d−2)jy + z) then we 
have

G =
2d−1∏
j=0

(ξjx + ξ−jy + z)

=
d−1∏
j=0

(ξjx + ξ−jy + z)(ξj+dx + ξ−j+dy + z)

=
d−1∏
j=0

(ξjx + ξ−jy + z)(−ξjx− ξ−jy + z)

= (−1)d
d−1∏
j=0

(ξjx + ξ−jy + z)(ξjx + ξ−jy − z) = F
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also we have that F = G = (
∏d−1

j=0(ξjx +ξ−jy+z))2 and denote f :=
∏d−1

j=0(ξjx +ξ−jy+z). 
Theorem 2 in [7], implies that the monomials in f with non-zero coefficients are exactly 

the monomials of degree d fixed by the action M1,d−1,0 =
(
ξ 0 0
0 ξd−1 0
0 0 1

)
of a cyclic 

group Z/dZ. Therefore, using Theorem 7.2 we get that there are 3 +d/2 monomials with 
non-zero coefficients in f , and they are exactly the monomials of the form (xy)αzd−2α

and xd and yd.
We now count the monomials in F = f2. First we claim that the form f has alternating 

sign in the variable z. To show this we evaluate the form in x = y = 1 then we get

d−1∏
j=0

(ξj + ξ−j + z) =
d/2−1∏
j=0

(ξj + ξ−j + z)(ξj+d/2 + ξ−j+d/2 + z)

= (−1)d/2
d/2−1∏
j=0

(w2 + a2
j )

where aj = ξj + ξ−j and z2 = −w. Then this expression proves the claim.
Multiplying xd and yd in f with d/2 +1 monomials (xy)αzd−2α gives 2(d/2 +1) = d +2

monomials in F . Using the claim above we get that all d + 1 monomials of degree 2d
of the form (xy)βz2d−2β have non-zero coefficients in F . Adding 2 corresponding to the 
monomials x2d and y2d we get that there are exactly 2d +5 monomials in F with non-zero 
coefficients or equivalently μ(I) = 2d + 5. �
Proposition 8.2. For integer d ≥ 2 let I ⊂ K[x, y, x] be the ideal generated by all the 
monomials with non-zero coefficients in F =

∏d−1
j=0(ξjx + ξ−jy + z)(ξjx + ξ−jy − z), 

introduced in Proposition 8.1. Then I fails WLP from degree 2d − 1 to degree 2d.

Proof. Suppose that d = 2k + 1, using Proposition 8.1 we have that

HS/I(2d) = HS(2d) − μ(I) = (2d2 + 3d + 1) − (d + 3)

= 2(d2 + d− 1) > d(2d + 1) = HS/I(2d− 1).

Consider the form K = (x +y−z) 
∏d−1

i=1 (ξix + ξ−iy+z)(ξ−ix + ξiy−z) of degree 2d −1. 
Since we have (x + y + z)K = F , the map ×(x + y + z) : (S/I)2d−1 −→ (S/I)2d is not 
injective.

Now assume d = 2k, then Proposition 8.1 implies that

HS/I(2d) = HS(2d) − μ(I) = (2d2 + 3d + 1) − (2d + 5)

= 2d2 + d− 4 < d(2d + 1) = HS/I(2d− 1).

Therefore, in order to prove S/I fails the WLP we need to prove that the multiplication 
map by x + y + z on the algebra from degree 2d − 1 to degree 2d is not surjective. To do 
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so we use the representation theory of the symmetric group S2 where 1 acts trivially and 
−1 interchanges x and y. Note that this action fixes the form x + y + z. We look at the 
multiplicity of the alternating representation of S/I in degree 2d − 1 and 2d. In degree 
2d − 1 there are d(2d + 1) monomials in S/I that are fixed by the identity permutation 
and there are d monomials of the form (xy)αz2d−1−2α that are fixed by interchanging 
x and y. Therefore the multiplicity of the alternating representation in degree 2d − 1 is 
(d(2d + 1) − d)/2 = d2. In degree 2d there are (2d + 1)(d + 1) − (2d + 5) = 2d2 + d − 4
monomials in S/I that are all fixed by the identity permutation and there is no monomial 
of the form (xy)αz2d−2α in the algebra which is fixed by interchanging x and y, since 
they all belong to I. So the multiplicity of the alternating representation of S/I in degree 
2d is (2d2 +d − 4)/2. Since (2d2 +d − 4)/2 > d2 for d ≥ 5 the multiplication by x + y+ z

cannot be surjective by Schur’s lemma.
For d = 4 computations in Macaulay2 show the multiplication map by x + y + z is 

not surjective on S/I from degree 7 to degree 8. �
Remark 8.3. In Proposition 8.2, we have proved that for odd integer d the monomial 
ideals generated by the monomials of degree 2d with non-zero coefficients in F fail WLP 
by failing injectivity in degree 2d − 1, therefore such ideals define minimal monomial 
Togliatti systems.
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