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Abstract

Let G be a finite group that acts on an abelian monoid A. If φ :A → G is a map so that φ(aφ(a)(b)) =
φ(a)φ(b), for all a, b ∈ A, then the submonoid S = {(a,φ(a)) | a ∈ A} of the associated semidirect product
A � G is said to be a monoid of IG-type. If A is a finitely generated free abelian monoid of rank n and
G is a subgroup of the symmetric group Symn of degree n, then these monoids first appeared in the work
of Gateva-Ivanova and Van den Bergh (they are called monoids of I-type) and later in the work of Jespers
and Okniński. It turns out that their associated semigroup algebras share many properties with polynomial
algebras in finitely many commuting variables.

In this paper we first note that finitely generated monoids S of IG-type are epimorphic images of monoids
of I-type and their algebras K[S] are Noetherian and satisfy a polynomial identity. In case the group of
fractions SS−1 of S is torsion-free abelian then it is characterized when K[S] also is a maximal order.
It turns out that they often are, and hence these algebras again share arithmetical properties with natural
classes of commutative algebras. The characterization is in terms of prime ideals of S, in particular G-
orbits of minimal prime ideals in A play a crucial role. Hence, we first describe the prime ideals of S. It also
is described when the group SS−1 is torsion-free.
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1. Introduction

In [9] Gateva-Ivanova and Van den Bergh introduced a new class of monoids T , called
monoids of I-type, with the aim of constructing non-commutative algebras that share many
properties with polynomial algebras in finitely many commuting variables. In particular, the
semigroup algebras K[T ] are Noetherian maximal orders that satisfy a polynomial identity.
Moreover, these monoids are intimately connected with set theoretic solutions of the quantum
Yang–Baxter equation and Bieberbach groups. In this paper, we consider a much wider class of
semigroups S and show that often their algebras K[S] still are Noetherian maximal orders that
satisfies a polynomial identity. Earlier recent results on the construction of such algebras can be
found in [13,14,16], as well as an extensive literature on the topic.

To put things into context, we first recall the definition of a monoid of I-type. By FaMn we
denote the free abelian monoid of rank n with basis {u1, . . . , un}. A monoid S, generated by a
set X = {x1, . . . , xn}, is said to be of left I-type if there exists a bijection (called a left I-structure)
v : FaMn → S such that v(1) = 1 and {v(u1a), . . . , v(una)} = {x1v(a), . . . , xnv(a)}, for all a ∈
FaMn. Similarly one defines monoids of right I-type. In [9] it was shown that a monoid S of
left I-type has a presentation S = 〈x1, . . . , xn | R〉, where R is a set of

(
n
2

)
defining relations of

the type xixj = xkxl , so that every word xixj with 1 � i, j � n appears at most once in one of
the relations. Hence, one obtains an associated bijective map r :X × X → X × X, defined by
r(xi, xj ) = (xk, xl) if xixj = xkxl is a defining relation for S, otherwise one defines r(xi, xj ) =
(xi, xj ). For every x ∈ X, denote by fx :X → X and by gx :X → X the mappings defined by
fx(xi) = p1(r(x, xi)) and gx(xi) = p2(r(xi, x)), where p1 and p2 denote the projections onto
the first and second component, respectively. So, r(xi, xj ) = (fxi

(xj ), gxj
(xi)). One says that r

(or simply S) is left non-degenerate if each gx is bijective. In case each fx is bijective then r

(or S) is said to be right non-degenerate. Also, one says that r is a set theoretic solution of the
Yang–Baxter equation if r1r2r1 = r2r1r2, where ri :Xm → Xm is defined as idXi−1 ×r × idXm−i−1

and idXj denotes the identity map on the Cartesian product Xj .
In [9] the equivalence of the first two statements of the following theorem has been proven.

The equivalence with the third statement has been proven in [13].

Theorem 1.1. The following conditions are equivalent for a monoid S.

1. S is a monoid of left I-type.
2. S is finitely generated, say by x1, . . . , xn, and is defined by

(
n
2

)
homogeneous relations of the

form xixj = xkxl so that every word xixj with 1 � i, j � n appears at most once in one of
the relations and the associated bijective map r is a solution of the Yang–Baxter equation
and is left non-degenerate.

3. S is a submonoid of a semidirect product of a free abelian monoid FaMn of rank n and a
symmetric group of degree n, so that the projection onto the first component is bijective. That
is, S = {(a,φ(a)) | a ∈ FaMn} where φ is a mapping from FaMn to Symn so that

φ(a)φ(b) = φ
(
aφ(a)(b)

)
, (1)

or equivalently

φ(ac) = φ(a)φ
(
φ(a)−1(c)

)
, (2)

for all a, b, c ∈ FaMn.
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It follows that a monoid is of left I-type if and only if it is of right I-type. Such monoids are
simply called monoids of I-type (as in [13]).

Note that the above mentioned semidirect product FaMn � Symn is defined via the natural ac-
tion of Symn on a chosen basis {u1, . . . , un} of the free abelian monoid FaMn, that is, φ(a)(ui) =
uφ(a)(i). Let Fan denote the free abelian group with the same basis. Then, the monoid S has
a group of quotients SS−1 contained in Fan � Symn and SS−1 = {(a,φ(a)) | a ∈ Fan}, where
φ : Fan → Symn is a mapping that extends the map FaMn → Symn and it also satisfies (1). In [13]
such groups are called groups of I-type. In [9] and [13] it is shown that SS−1 is a solvable Bieber-
bach group, that is, SS−1 is a finitely generated solvable torsion-free group. These groups also
have been investigated by Etingof, Guralnick, Schedler and Soloviev in [6,7], where they are
called structural groups.

Gateva-Ivanova and Van den Bergh [9], proved that the semigroup algebra of such a monoid
shares a lot of properties with commutative polynomial algebras in finitely many variables. In
particular, it is a Noetherian domain that satisfies a polynomial identity and it is a maximal order.

Jespers and Okniński in [14] investigated when an arbitrary semigroup algebra satisfies these
latter properties. The assumptions on S say that K[S] is a Noetherian domain that satisfies a
polynomial identity. For details we refer to [14] and [17] (see also the introduction of Section 3).

Theorem 1.2. Let K be a field and S a submonoid of a torsion-free finitely generated abelian-by-
finite group. The monoid algebra K[S] is a Noetherian maximal order if and only if the following
conditions are satisfied:

1. S satisfies the ascending chain condition on one sided ideals,
2. S is a maximal order in its group of quotients H = SS−1,
3. for every minimal prime P in S,

SP = {g ∈ H | Cg ⊆ S for some H -conjugacy class C of H

contained in S and with C � P }

has only one minimal prime ideal.

It is worth mentioning that Brown in [3] proved that, for a field K , a group algebra K[G]
of a torsion-free polycyclic-by-finite group G is a maximal order in its classical ring of quo-
tients (which is a domain). A characterization of commutative semigroup algebras K[A] that are
Noetherian domains and maximal orders can be found in [10]. It turns out that K[A] is such an
algebra if and only if A is finitely generated and a maximal order in its torsion-free group of
quotients AA−1 (see also the comments given in Section 3). Extensions of this result to Krull
orders have been proved by Chouinard [4].

2. Monoids of IG-type

We begin with introducing the larger class of monoids of interest. Let G be a group and A a
monoid. Recall that G is said to act on A if there exists a monoid morphism ϕ :G → Aut(A).
The associated semidirect product A �ϕ G we often simply denote by A � G.
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Definition 2.1. Suppose G is a finite group acting on a cancellative abelian monoid A. A sub-
monoid S of A � G so that the natural projection on the first component is bijective is said to be
a monoid of IG-type. Thus,

S = {(
a,φ(a)

) ∣∣ a ∈ A
}
,

with φ :A → G a mapping satisfying (1). (We denote the action of g ∈ G on a ∈ A as g(a).)

Note that for every a ∈ A,

(
a,φ(a)

)|G| = (
aφ(a) · · ·φ(a)|G|−1(a),φ(a)|G|) = (

aφ(a) · · ·φ(a)|G|−1(a),1
)
.

It follows that b = aφ(a) · · ·φ(a)|G|−1(a) ∈ A is such that φ(b) = 1 and, for every a−1b1 ∈
AA−1 (the group of quotients of A), we have a−1b1 = b−1(φ(a) · · ·φ(a)|G|−1(a)b1). So, any
element of AA−1 can be written as a−1b with a, b ∈ A and φ(a) = 1. Furthermore, if a−1

1 b1 =
a−1

2 b2, with ai, bi ∈ A and φ(ai) = 1, then by Eq. (1), it is easily verified that φ(b1) = φ(b2).
We hence can extend the action of G onto A to an action of G onto AA−1 and thus obtain a
mapping φ :AA−1 → G so that

φ
(
a−1b

) = φ(b),

for every a, b ∈ A with φ(a) = 1. This mapping again satisfies (1).
Hence S is a submonoid of the group AA−1 � G. Since AA−1 � G is abelian-by-finite and

S is cancellative, Lemma 7.1 in [17] yields that S has a group of fractions SS−1 ⊆ AA−1 � G.
Furthermore, because of Theorem 15 in [17], the algebra K[S] satisfies a polynomial identity,
and if K[S] is prime then SS−1 = SZ(S)−1, with Z(S) the center of S [16].

We claim that the natural projection of SS−1 → AA−1 is a one-to-one mapping. Indeed, if
a−1

1 b1 = a−1
2 b2 (with ai, bi ∈ A, φ(ai) = 1) then, by (1), φ(b1) = φ(b2). So,

(
a−1

1 b1, φ
(
a−1

1 b1
)) = (

a−1
1 b1, φ(b1)

) = (
a−1

2 b2, φ(b2)
) = (

a−1
2 b2, φ

(
a−1

2 b2
))

.

This proves the injectiveness. The surjectiveness follows from the fact that

(
a−1

1 b1, φ
(
a−1

1 b1
)) = (

a−1
1 b1, φ(b1)

)
= (a1,1)−1(b1, φ(b1)

)
= (

a1, φ(a1)
)−1(

b1, φ(b1)
) ∈ SS−1,

for ai, bi ∈ A with φ(ai) = 1. Groups of the type SS−1 we call groups of IG-type. So we have
shown the following.

Corollary 2.2. A group H is of IG-type if and only if H is a subgroup of a semidirect product
A � G of a finite group G with an abelian group A so that

H = {(
a,φ(a)

) ∣∣ a ∈ A
}
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and

φ
(
aφ(a)(b)

) = φ(a)φ(b),

for all a, b ∈ A. Of course, such a group is abelian-by-finite.

A subset B of A is said to be φ-invariant if φ(a)(B) = B for all a ∈ A. In case B is a subgroup
of A then this condition is equivalent with B being a normal subgroup of SS−1.

Note also that if S = {(a,φ(a)) | a ∈ A} ⊆ A � G is a monoid of IG-type, with A an abelian
monoid and G = {φ(a) | a ∈ A} a finite group then

∏
φ(a)∈G φ(a)(b) is an invariant element

of A, for every b ∈ A. (In this case we will also use G-invariant as φ-invariant.) It follows that
every element of SS−1 can be written as (z,1)−1(a,φ(a)) with z, a ∈ A and z and invariant
element in A. So (z,1) is a central element of S.

We now describe when the semigroup algebra K[S] of a monoid of IG-type is Noetherian.
This easily can be deduced from the following lemma and the recent result of Jespers and
Okniński proved in [12] which says that, for a submonoid T of a polycyclic-by-finite group,
the semigroup algebra K[T ] is left Noetherian if and only if K[T ] is right Noetherian, or equiv-
alently, T satisfies the ascending chain condition on left (or right) ideals. An algebra which is
left and right Noetherian we simply call Noetherian. However, for completeness’ sake we in-
clude a simple proof for the monoids under consideration. The subgroup generated by a set X of
elements in a group G is denoted gr(X). By 〈X〉 we denote the monoid generated by X.

Lemma 2.3. Let A = 〈u1, . . . , un〉 be a finitely generated abelian monoid, G a finite group act-
ing on A. Let S = {(a,φ(a)) | a ∈ A} ⊆ A � G be a monoid of IG-type. Put B = {φ(a)(ui) |
a ∈ A, 1 � i � n}. Then the following conditions hold:

1. G acts on the set B , that is, φ(a)(B) = B , for all a ∈ A.
2. S = 〈(b,φ(b)) | b ∈ B〉.
3. For some divisor k of |G|, the subgroup gr{(bk,1) | b ∈ B} is normal and of finite index

in SS−1.
4. S = ⋃

f ∈F 〈(bk,1) | b ∈ B〉(f,φ(f )) and (f,φ(f ))〈(bk,1) | b ∈ B〉 = 〈(bk,1) | b ∈ B〉(f,

φ(f )), for some finite subset F of A.

Proof. The first and second part follow at once from the equalities (1) and (2). Put N = {a ∈
AA−1 | φ(a) = 1}, the kernel of the natural homomorphism SS−1 → G. So, N is an abelian
subgroup of finite index k in AA−1, with k a divisor of |G|. It follows that φ(ak) = 1, for any
a ∈ A and that the abelian monoid C = 〈(bk,1) | b ∈ B〉 is contained in S and its group of
quotients CC−1 = gr{(bk,1) | b ∈ B} is normal and of finite index in SS−1. This proves the third
part. Part four is now also clear. �

If, in the previous lemma, U(A) = {1} then one can take {u1, . . . , un} to be the set of inde-
composable elements, that is, the set consisting of those elements f ∈ A so that Af is a maximal
principal ideal. Indeed, since A is finitely generated, we know that A satisfies the ascending chain
condition on ideals. Hence, A has finitely many indecomposable elements, say u1, . . . , un, and
A = 〈u1, . . . , un〉 [15]. Clearly any automorphism of A permutes the indecomposable elements.
It follows that S = 〈(u1, φ(u1)), . . . , (un,φ(un))〉.
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Let S be a submonoid of a group G. Assume N is a normal subgroup of G. If N ⊆ S then, as
in group theory we denote by S/N the monoid consisting of the cosets sN = Ns, with s ∈ S.

Proposition 2.4. Let A be an abelian monoid and G a finite group acting on A. Let S =
{(a,φ(a)) | a ∈ A} ⊆ A � G be a monoid of IG-type. Then, the semigroup algebra K[S] is
Noetherian if and only if the abelian monoid A is finitely generated, or, equivalently, S is finitely
generated.

Proof. Suppose that K[S] is right Noetherian. Because K[L] is a right ideal of K[S] for every
right ideal L of S, it follows easily that S satisfies the ascending chain condition on right ideals.
Consequently, also A satisfies the ascending chain on right ideals. Indeed, if L is a right ideal
of A, then λL = {(a,φ(a)) ∈ S | a ∈ L} is a right ideal of S and λL ⊂ λL′ if and only if L ⊂ L′.
So A is an abelian and cancellative monoid that satisfies the ascending chain condition on ideals.
Hence, so is the monoid A/U(A). Because U(A/U(A)) = {1}, it follows (see the remark above)
that A/U(A) is finitely generated by its indecomposable elements. Clearly U(S) = {(a,φ(a)) |
a ∈ U(A)} and because IK[S] ∩ K[U(S)] = I for any right ideal I of K[U(S)], it follows
that the group algebra K[U(S)] is Noetherian. Hence it is well known that U(S) is a finitely
generated monoid. Consequently, U(A) and thus also A is finitely generated.

For the converse, suppose that A = 〈u1, . . . , un〉 is finitely generated. From Lemma 2.3
it follows that the algebra K[S] is a finite module over the commutative Noetherian algebra
K[〈(bk,1) | b ∈ B〉]. Hence K[S] is Noetherian. �

We now give a link with monoids of I-type by proving another characterization of finitely
generated monoids S of IG-type.

Theorem 2.5. A finitely generated monoid S is of IG-type if and only if there exists a monoid of I-
type T = {(x,ψ(x)) | x ∈ FaMm} ⊆ FaMm � Symm and a subgroup B of Fam that is ψ -invariant
so that S ∼= T B/B .

Proof. Assume S = {(a,φ(a)) | a ∈ A} ⊆ A � G is a finitely generated monoid of IG-type,
where G is a finite group acting on the finitely generated abelian monoid A = 〈u1, . . . , un〉. Of
course we may assume that G = {φ(a) | a ∈ A}.

Let m = n|G| and let FaMm be the free abelian monoid of rank m with basis the set
M = {vg,i | g ∈ G, 1 � i � n}. Clearly the mapping f : FaMm → A defined by f (vg,i) = gui

is a monoid epimorphism. For x ∈ FaMm define a mapping ψ(x) :M → M by ψ(x)(vg,i) =
vφ(f (x))g,i . Then ψ(x) ∈ Symm, f (ψ(x)(y)) = φ(f (x))(f (y)) and ψ(xψ(x)(y)) = ψ(x)ψ(y),
for any x, y ∈ FaMm. So T = {(x,ψ(x)) | x ∈ FaMm} is a monoid of I-type contained
in FaMm � Symm. Furthermore, f e :T → S defined by f e((x,ψ(x))) = (f (x),φ(f (x))) is a
monoid epimorphism. Its extension to an epimorphism T T −1 → SS−1 we also denote by f e.
Let B = ker(f e). Clearly, if (x,ψ(x)) ∈ B then φ(f (x)) = 1 and thus ψ(x) = 1. Thus, B ⊆ Fam

and B is ψ -invariant. So T B = BT is a submonoid of T T −1 and T B/B ∼= S. This proves the
necessity of the conditions.

Conversely, assume T = {(x,ψ(x)) | x ∈ FaMm} ⊆ FaMm � Symm is a monoid of I-type and
B is a subgroup of Fam that is ψ -invariant. Let A = FaMm B/B and let f : FaMm → A be the
natural monoid epimorphism. Because of (2) we get that ψ(x) = ψ(y) if f (x) = f (y). Hence,
for each a = f (x) the mapping φ(a) :A → A given by φ(a)(f (y)) = f (ψ(x)(y)) is a well
defined bijection of finite order. Furthermore, φ(aφ(a)(b)) = φ(a)φ(b) for all a, b ∈ A. Hence
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S = {(a,φ(a)) | a ∈ A} is a monoid of IG-type contained in A � G, where G = {φ(a) | a ∈ A}.
The mapping T B → S defined by mapping (x,ψ(x)) onto (a,φ(a)) is a monoid epimorphism
and it easily follows that this map induces an isomorphism between T B/B and S. �

We note that the proposition can be formulated using congruence relations as follows.
A finitely generated monoid S is of IG-type if and only if there exists a monoid of I-type
T = {(a,ψ(a)) | a ∈ FaMm} ⊆ FaMm � Symm and there exists a congruence relation ρ on FaMm

with

aρb implies ψ(a) = ψ(b) and ψ(x)(a)ρψ(x)(b), (3)

for every a, b, x ∈ FaMm, and so that S ∼= T/ρ where ρ is the congruence relation on T defined
by (a,ψ(a))ρ(b,ψ(b)) if and only if aρb, for a, b ∈ FaMm.

We remark that many monoids of IG-type are not of I-type. Indeed, suppose S = {(a,φ(a)) |
a ∈ A} is a monoid of IG-type with A a finitely generated monoid so that U(A) = {1}. Let
{u1, . . . , un} be the set of indecomposable elements of A. So A = 〈u1, . . . , un〉. It follows that
the elements (ui, φ(ui)) are the unique indecomposable elements of S, that is, they cannot be
decomposed as a product of two non-invertible elements. So S also has n indecomposables. In
particular, the number of indecomposables in a monoid T of I-type equals the torsion-free rank
of any abelian subgroup of finite index in T T −1. So, if the torsion-free rank of AA−1 is strictly
smaller than n then S is not of I-type.

3. Torsion-freeness of groups of IG-type

We recall some notation and terminology on maximal orders (see for example [14]). A can-
cellative monoid S which has a left and right group of quotients G is called an order. Such
a monoid S is called a maximal order if there does not exist a submonoid S′ of G prop-
erly containing S and such that aS′b ⊆ S for some a, b ∈ S. For subsets A,B of G put
(A :l B) = {g ∈ G | gB ⊆ A} and (A :r B) = {g ∈ G | Bg ⊆ A}. It turns out that S is a maxi-
mal order if and only if (I :l I ) = (I :r I ) = S for every fractional ideal I of S. The latter means
that SIS ⊆ I and cI, Id ⊆ S for some c, d ∈ S. If S is a maximal order, then (S :l I ) = (S :r I )

for any fractional ideal I . One simply denotes this fractional ideal by (S : I ) or by I−1. Recall
that I is said to be divisorial if I = I ∗, where I ∗ = (S : (S : I )). The divisorial product I ∗ J of
two divisorial ideals I and J is defined as (IJ )∗.

Also recall that a cancellative monoid S is said to be a Krull order if and only if S is a maximal
order satisfying the ascending chain condition on integral divisorial ideals, that is, fractional
ideals contained in S. In this case the set D(S) of divisorial ideals is a free abelian group for the
∗ operation. If G is abelian-by-finite, then every ideal of S contains a central element. In this
case, it follows that the minimal primes of S form a free basis for D(S). The positive cone of this
group (with respect to this basis) is denoted by D(S)+.

In this section, we investigate periodic elements of a monoid S = {(a,φ(a)) | a ∈ A} of IG-
type, and we will restrict our attention to the case that A is a finitely generated maximal order
(and hence a Krull order) with trivial unit group, AA−1 is torsion-free and the action of G =
{φ(a) | a ∈ A} on A is faithful. Because of the latter condition we may consider G as a subgroup
of the automorphism group of A. Since A is finitely generated, we know that A has only finitely
many minimal prime ideals and every prime ideal is a union of minimal prime ideals. Recall from
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Theorem 37.5 in [19] that, as SS−1 is polycyclic-by-finite, K[S] (or equivalently K[SS−1]) is a
domain if and only if SS−1 is torsion-free.

Proposition 3.1. Let A be an abelian cancellative monoid. Assume that A is a finitely generated
maximal order and U(A) = {1}. If S = {(a,φ(a)) | a ∈ A} ⊆ A � G is a monoid of IG-type and
the action of G = {φ(a) | a ∈ A} is faithful, then

S ∼= (
D(A)+ � G

) ∩ SS−1,

where D(A) is the divisor class group of A and G is a subgroup of the permutation group of the
minimal primes of A.

Proof. As A is a Krull order, we know that D(A) is a free abelian group with the set Spec0(A)

consisting of the minimal primes of A as a free generating set. Of course, for each a ∈ A, φ(a)

induces an automorphism on Spec0(A), and thus also on D(A). We denote this again by φ(a).
It follows that, if I is an ideal of S, then φ(a)(I ∗) = (φ(a)(I ))∗. We thus obtain a morphism
G → Sym(Spec0(A)). This mapping is injective. Indeed, suppose φ(a) is the identity map on
Spec0(A), with a ∈ A. For c ∈ A the ideal Ac is divisorial. hence Aφ(a)(c) = φ(a)(Ac) = Ac.
Since, by assumption U(A) = {1} it follows that φ(a)(c) = c. Hence it follows that φ(a) = 1.
Because, also by assumption, the action of G on A is faithful, it follows that φ(a) is the identity
map on G, as desired.

Again, because U(A) = {1}, we get a monoid morphism

S → D(A)+ � G :
(
a,φ(a)

) �→ (
aA,φ(a)

)
.

So, identifying S with its image in D(A)+ � G (and also SS−1 with its image in {(a−1bA,

φ(a−1b)) | a, b ∈ A} ⊆ D(A) � G), we get that

S ⊆ (
D(A)+ � G

) ∩ SS−1.

Conversely, if b ∈ AA−1 and (bA,φ(b)) ∈ D(A)+ � G, then bA ⊆ A and thus b ∈ A. Hence
(bA,φ(b)) ∈ S. �

Note that this characterization is a non-commutative version of result of Chouinard that
describes commutative cancellative semigroups that are Noetherian maximal orders or more gen-
erally Krull orders [4].

To investigate the torsion-freeness, we need the following theorem. The authors would like to
thank Karel Dekimpe for the proof of this result [5].

Theorem 3.2. Let H be a group of affine transformations such that H ∩ Rn (the subgroup of
pure translations) is of finite index in H . Then the following properties are equivalent.

1. H is torsion-free.
2. The action of H on Rn is fixed-point free, that is, if g · a = a for some a ∈ Rn and g ∈ H ,

then g = 1.
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Proof. Suppose that the action of H on Rn has a fixed-point. Let therefore h 
= 1 and x ∈ Rn

be such that h · x = x. Then, also hk · x = x for every k ∈ Z. Because H ∩ Rn is of finite index
in H there exists a k〉0 such that hk is a pure translation. But as this translation has a fixed-point
it follows that hk should be trivial. Therefore, H has torsion.

Conversely, suppose that H is a finite subgroup of the affine transformations in dimension n.
So every element h of H is of the form (th,Mh), with th the translation part and Mh the linear
part. Take h1, h2 ∈ H then:

(th1h2 ,Mh1h2) = (th1 + Mh1 th2,Mh1Mh2).

Therefore the map

φ :H → GL(n,R) :h �→ Mh,

is a group morphism. Hence Rn is an H -module. With this module structure the map t :H → Rn

becomes a 1-cocycle. Because H is finite, we have that H 1(H,Rn) = 0 and therefore the map t

is a 1-coboundary [2]. Consequently there exists a x ∈ Rn with th = x − Mhx for every h ∈ H

and therefore we have a fixed-point. �
Note that, if SS−1 is torsion-free, then so is necessarily AA−1. Indeed, if am = 1 in AA−1,

then, by Lemma 2.3, (aφ(a)(a)φ(a)2(a) · · ·φ(a)k−1(a),1)m = 1 ∈ SS−1, for some divisor k

of |G|.
Assume now that S = {(a,φ(a)) | a ∈ A} is a monoid of IG-type with faithful action of G =

{φ(a) | a ∈ A} on A. Suppose that AA−1 is a torsion-free finitely generated abelian group. So,
SS−1 ⊆ Zk �G and G ⊆ Aut(Zk) ∼= GLk(Z). Hence, every element of G can be seen as a k × k-
matrix with values in Z and the action of SS−1 on Zk can be extended to Rk and can be written
as:

(
a,φ(a)

) · b = φ(a)b + a,

where a ∈ Zk, φ(a) ∈ GLk(Z), b ∈ Zk (or Rk) and φ(a)b is given by the classical matrix mul-
tiplication. For convenience sake we use the additive notation on Zk and Rk (instead of the
multiplicative on AA−1). So, SS−1 ⊆ Rk � GLk(R). Thus, SS−1 is a group of affine transfor-
mations and every element of SS−1 is of the form (a,φ(a)), where a is the translation part and
φ(a) the linear part. Clearly, (a,A)(b,B) = (a + Ab,AB). As G is a finite group, we also have
that the subgroup of pure translations is of finite index in SS−1.

As an immediate consequence of Theorem 3.2, we get that the quotient group SS−1 ⊆
AA−1 � G is torsion-free if and only if the action of SS−1 on Rn is fixed-point free.

If also U(A) = {1} and A is a maximal order in its free abelian group of quotients then,
by Proposition 3.1, we can extend the action of SS−1 to an action of the semidirect product
D(A) � G and G acts as the symmetric group on the set Spec0(A) = {P1, . . . ,Pl}. Hence the
action can also naturally be extended to an action of the semidirect product Rl � G.

Theorem 3.3. Let A be an abelian cancellative monoid. Assume A is a finitely generated maximal
order with U(A) = {1} and AA−1 is torsion-free. If S = {(a,φ(a)) | a ∈ A} ⊆ A�G is a monoid
of IG-type with faithful action of G = {φ(a) | a ∈ A} on A, then an element (a,φ(a)) of SS−1 is
periodic if and only if there exists a divisorial ideal I of A such that aφ(a)(I ) = I .
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Proof. Suppose (a,φ(a)) is a periodic element. So, because of Proposition 3.1 and the proof of
Theorem 3.2, (aA,φ(a)) ∈ D(A) � Syml has a fixed point b in Rl . Write aA = P

α1
1 ∗ · · · ∗ P

αl

l ,
with αi ∈ Zl and Spec0(A) = {P1, . . . ,Pl}. So φ(a) · b + α = b, where α = (α1, . . . , αl). Since
φ(a) acts as a permutation on the components of b ∈ Rl , it is not so difficult to see that φ(a) ·
�b�+α = �b�, where �b� is the integral part of b. Hence we have a fixed point in Zl . This means
that aφ(a)(I ) = I , where I = P

β1
1 ∗ · · · ∗ P

βl

l , with (β1, . . . , βl) = �b�.
Conversely, suppose there exists a divisorial ideal I of A such that aφ(a)(I ) = I . It follows

that

aφ(a)(a)φ(a)2(a) · · ·φ(a)n(a)φ(a)n+1(I ) = I.

So if φ(a)n+1 = 1, then we obtain that aφ(a)(a) · · ·φ(a)n(a)A = A. Again because U(A) = 1,
it follows that aφ(a)(a) · · ·φ(a)n(a) = 1. Consequently, (a,φ(a))n+1 = 1, as desired. �

We now give concrete examples of monoids of IG-type that are not of I-type. The first one
is based on an example of an abelian finitely generated monoid that is considered by Anderson
in [1].

Example 3.4. Let A = 〈u1, u2, u3, u4 | uiuj = ujui, u1u2 = u3u4〉 and let || :A → Z denote the
degree function on A defined by |ui | = 1. Put

σ =
⎛
⎝0 1 1

1 0 1

0 0 −1

⎞
⎠ ∈ Gl3(Z).

The natural action of Z2 = 〈σ 〉 on Z3 = AA−1 = gr(u1, u2, u3) defines a semidirect product
A � Z2. Then

S = {(
a,φ(a)

) ∣∣ a ∈ A, φ(a) = 1 if |a| ∈ 2Z, φ(a) = σ if |a| ∈ 2Z + 1
} ⊆ A � Z2

is a monoid of IG-type (which is not of I-type) and its group of quotients

SS−1 = {(
a,φ(a)

) ∣∣ a ∈ Z3, φ(a) = 1 if |a| ∈ 2Z, φ(a) = σ if = |a| ∈ 2Z + 1
}

is torsion-free.

Proof. Because A = AA−1 ∩ F+, the intersection of the group of quotients AA−1 and the
positive cone of a free abelian group, we know that A is a maximal order (see [1,4]). Clearly
U(A) = {1} and A has four minimal primes: Q1 = (u1, u3), Q2 = (u1, u4), Q3 = (u2, u3) and
Q4 = (u2, u4). So, these minimal primes generate the free abelian group D(A) ∼= Z4. Because
of Theorem 3.3, to prove that SS−1 is torsion-free we need to show that if (a,φ(a)) ∈ SS−1

such that aφ(a)(I ) = I for some divisorial ideal I of A then a = 1. Clearly, if |a| ∈ 2Z
then φ(a) = {1}, and thus aI = I implies a = 1. So, suppose a has odd degree. Then a =
u

a1
1 u

a2
2 u

a3
3 or a = u

a1
1 u

a2
2 u

a4
4 . We deal with the former case (the other case is dealt with simi-

larly). It is readily verified that Au1 = Q1 ∗ Q2, Au2 = Q3 ∗ Q4 and Au3 = Q1 ∗ Q3. Write
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I = Q
γ1
1 ∗ Q

γ2
2 ∗ Q

γ3
3 ∗ Q

γ4
4 , with each γi ∈ Z. Because σ interchanges Q1 with Q4 and Q2 with

Q3, the equality Aa ∗ φ(a)(I ) = (Aaφ(a)(I ))∗ = I becomes

Q
a1+a3
1 ∗ Q

a1
2 ∗ Q

a2+a3
3 ∗ Q

a2
4 ∗ Q

γ1
4 ∗ Q

γ2
3 ∗ Q

γ3
2 ∗ Q

γ4
1 = Q

γ1
1 ∗ Q

γ2
2 ∗ Q

γ3
3 ∗ Q

γ4
4 .

It follows that a1 + a2 + a3 = 0, in contradiction with the fact that a is of odd degree.
Note that, as AA−1 has torsion-free rank 3, while A, and therefore also S, has 4 indecompos-

able elements, it follows from the remark at the end of Section 2 that S is not of I-type. �
A second type of examples of monoids of IG-type that are not of I-type can be constructed as

a natural class of submonoids of a monoid of I-type. In [13, Section 4] an example in this class
is given to show that there exists monoids T of I-type with a group of fractions T T −1 that is not
poly-infinite cyclic.

Example 3.5. Let T = {(a,φ(a)) | a ∈ FaMn} ⊆ FaMn �G be a monoid of I-type with H =
{φ(a) | a ∈ A}. Suppose B is a G-invariant submonoid of FaMn. Then, S = {(b,φ(b)) | b ∈ B}
is a monoid of IG-type. Note again that if B = BB−1 ∩ FaMn then we know from [4] that B is a
maximal order. Clearly, U(B) = {1}.

We give a concrete example. Let T = 〈x1, x2, x3, x4〉 be the monoid defined by the relations
x1x2 = x3x3, x2x1 = x4x4, x1x3 = x2x4, x1x4 = x4x2, x2x3 = x3x1, x3x2 = x4x1. We know
that T is a monoid of I-type (see [13, Section 4]) and thus, by Theorem 1.1, T = {(a,φ(a)) |
a ∈ FaMn} for some map φ : FaMn → Symn. Put FaM4 = 〈u1, u2, u3, u4〉, φ(ui) = σi and
xi = (ui, σi). The defining relations allow us to discover the action on FaM4. For example,
x1x2 = (u1, σ1)(u2, σ2) = (u1σ1(u2), σ1σ2) and x3x3 = (u3, σ3)(u3, σ3) = (u3σ3(u3), σ3σ3).
Since x1x2 = x3x3 we get that σ1(u2) = u3 and σ3(u3) = u1. Going through all the defining
relations we obtain that

σ1 = (23), σ2 = (14), σ3 = (1243), σ4 = (1342).

Clearly, G = {φ(a) | a ∈ FaM4} ∼= D8, the dihedral group of order 8. Let B = 〈u3
i , u

2
i uj , uiujuk |

1 � i 
= j 
= k � 4〉. Then B has a group of quotients BB−1 = gr(u3
1, u1u

−1
4 , u2u

−1
4 , u3u

−1
4 ) =

{a ∈ Fa4 | |a| ∈ 3Z}, where |a| denotes the natural (total) degree of a. Clearly, B is G-invariant.
Hence, S = {(b,φ(b)) | b ∈ B} ⊆ B � G is a monoid of IG-type. Note that G is now considered
as a subgroup of Aut(B). Because BB−1 has torsion-free rank 4 and since B (and thus S) has 20
indecomposable elements, it follows that S is not of I-type.

We now give an example of a monoid S of IG-type so that SS−1 has non-trivial periodic
elements. On the other hand, SS−1 does not contain non-trivial finite normal subgroups and thus
K[SS−1] (and K[S]) are prime algebras (see for example [17,18]).

Example 3.6. Let A = 〈u1, u2, u3, u4 | u1u2 = u3u4〉 be the maximal order as in Example 3.4.
Let D8 = 〈a, b | a4 = 1, b2 = 1, a3b = ba〉, with a = (1324) and b = (12), the dihedral group of
order 8. So D8 acts naturally on A. In the semidirect product A � D8 consider the elements xi =
(ui, σi), where σ1 = (1324), σ2 = (12), σ3 = (1423) and σ4 = (34) and let S = 〈x1, x2, x3, x4〉.
Then S is a monoid of IG-type. Furthermore, SS−1 has non-trivial periodic elements but SS−1

does not have non-trivial finite normal subgroups. So K[S] is a prime ring.
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Proof. It is easily verified that S = {(a,φ(a)) | a ∈ A} and thus S is a monoid of IG-type, with
G = {φ(a) | a ∈ A} = D8. So, SS−1 ⊆ AA−1 � D8. Clearly,

(u3, σ3)
(
σ−1

1

(
u−1

1

)
, σ−1

1

) = (
u3u

−1
2 , (12)(34)

)
,

and, as u4 = u1u2u
−1
3 in AA−1, we have that (u3u

−1
2 , (12)(34))2 = 1. So SS−1 has non-trivial

periodic elements.
We claim now that SS−1 does not contain a finite normal subgroup, or equivalently, K[SS−1]

is prime. Indeed, since AA−1 is torsion-free, it is readily verified that finite normal subgroups
N of SS−1 must be such that their natural projection onto G = D8 are contained in gr(a). Fur-
thermore, it then follows that N contains a finite normal subgroup of G that is of order 2. So N

contains a central element of order 2. But central elements in SS−1 are of the form (ui
1u

i
2,1), so

they are not periodic. This proves the claim. �
We finish this section by showing that the infinite dihedral group D∞ is a group of IG-type.

It also gives an example with non-trivial torsion.

Example 3.7. Let σ be the non-trivial isomorphism of the infinite cyclic group Z. So σ(1) = −1.
Then H = {(a,φ(a)) | a ∈ Z, φ(a) = σ if a ∈ 2Z+1, φ(a) = 1 if a ∈ 2Z} is a group of IG-type
and H ∼= D∞.

Proof. Put a = (2,1) and b = (1, σ ). Then, H = gr(a, b) and as bab−1 = a−1, b2 = 1 we have
that H ∼= D∞. �

In [3] it is shown that the group algebra K[D∞] is not a maximal order and that this algebra is
the key in characterizing when a group algebra of a polycyclic-by-finite group is a prime maximal
order.

4. Prime ideals and maximal orders

Throughout this section S = {(a,φ(a)) | a ∈ A} ⊆ A � G is a monoid of IG-type, with A

a finitely generated abelian cancellative monoid, G = {φ(a) | a ∈ A} a finite group and SS−1

is torsion-free. For an ideal I of A, we put (I,φ(I )) = {(a,φ(a)) | a ∈ I }. Note that this is a
right ideal of S. By Spec(S) we denote the set of all prime ideals of S. Recall that the height
of Q ∈ Spec(S) is, by definition, the largest non-negative integer n, so that S has a chain of
primes Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = Q. We denote this height by ht(Q).

We first describe the prime ideals of S. For this we will make use of the next theorem
(Theorem 1.4 in [14]). It is worth mentioning (as is already done in [14]) that, since SS−1 is
a localization of S with respect to an Ore set of regular elements of Noetherian ring K[S],
the prime ideals of the group algebra K[SS−1] are in a one-to-one correspondence with the
prime ideals P of K[S] that do not intersect S (see for example [11, Theorems 9.22, 9.20 and
Lemma 9.21]). Since prime ideals of group algebras of polycyclic-by-finite groups have been
well studied through the work of Rosablade (see [18,19]) we thus get a lot of information on all
prime ideals of K[S].

Proposition 4.1. Let S be a submonoid of a torsion-free finitely generated abelian-by-finite group
G and let K be a field.
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1. If P is a prime ideal in S, then K[P ] is a prime ideal in K[S].
2. If Q is a prime ideal in K[S] with Q ∩ S 
= ∅, then K[Q ∩ S] is a prime ideal in K[S].
3. The height one prime ideals of K[S] intersecting S are of the form K[P ], where P is a

minimal prime ideal of S.

Theorem 4.2. Let S = {(a,φ(a)) | a ∈ A} ⊆ A�G be a monoid of IG-type and suppose SS−1 is
torsion-free. The prime ideals P of S of height m are the sets (Q1 ∩ · · · ∩Qn,φ(Q1 ∩ · · · ∩Qn))

so that

1. each Qi is a prime ideal of A of height m,
2. aφ(a)(Q1 ∩ · · · ∩ Qn) ⊆ Q1 ∩ · · · ∩ Qn, for every a ∈ A (that is, (Q1 ∩ · · · ∩ Qn,

φ(Q1 ∩ · · · ∩ Qn)) is an ideal of S),
3. condition (2) is not satisfied for an intersection over a proper subset of {Q1, . . . ,Qn} (that

is, (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)) is a maximal set satisfying conditions (1) and (2)).

Proof. Let P be a prime ideal of S and let K be a field. Because of Proposition 4.1, K[P ] is a
prime ideal of K[S]. Let Ak = {ak | a ∈ A}, where k is a divisor of the order of the group G such
that φ(ak) = 1, for every a ∈ A (see Lemma 2.3). We identify the group AkA−k with its natural
image in SS−1. The algebra K[S] has a natural gradation by the finite group SS−1/AkA−k . The
homogeneous component of degree e (the identity of AkA−k) is the semigroup algebra K[Ak].
So, by Theorem 17.9 in [19],

K[P ] ∩ K
[
Ak

] = P1 ∩ · · · ∩ Pn,

an intersection of primes Pi of K[Ak], each of the same height as K[P ] (these are all the primes
of K[Ak] minimal over K[P ∩ Ak]). Clearly,

P ∩ Ak =
n⋂

i=1

(
Pi ∩ Ak

)
,

each Pi ∩ Ak is a prime ideal of Ak and thus K[Pi ∩ Ak] is a prime ideal of K[Ak]. From
Proposition 4.1 and Theorem 17.9 in [19] we verified that ht(P ) = ht(Pi ∩ Ak). As every Pi

is minimal over K[P ∩ Ak] and because K[Pi ∩ Ak] also is a prime over K[P ∩ Ak] and it is
contained in Pi it follows that K[Pi ∩ Ak] = Pi . So

P ∩ Ak = Q
(k)
1 ∩ · · · ∩ Q(k)

n ,

with Q
(k)
i = Pi ∩ Ak .

We also make another remark. Let Q be a prime ideal of A, then Q(k) = {qk | q ∈ Q} ⊆
Q ∩ Ak and Q(k) is a prime ideal of Ak . Furthermore Q ∩ Ak is a nil ideal modulo Q(k). Since
Ak is commutative it follows that Q ∩ Ak ⊆ Q(k). Hence Q ∩ Ak = Q(k). So we have a bijection
between the primes of Q and Q(k) (and corresponding primes have the same height).

If (a,φ(a)) ∈ P then

(
a,φ(a)

)(
φ(a)−1(a),φ

(
φ(a)−1(a)

)) · · · = (
ak,1

) ∈ P ∩ Ak.
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Hence ak ∈ Q
(k)
1 ∩· · ·∩Q

(k)
n , and thus a ∈ Q1 ∩· · ·∩Qn. Therefore P ⊆ (Q1 ∩· · ·∩Qn,φ(Q1 ∩

· · · ∩ Qn)). Conversely, if (b,φ(b)) ∈ (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)), then

((
b,φ(b)

)k)k ∈ (
Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)

) ∩ Ak ⊆
(

n⋂
i=1

(
Qi ∩ Ak

)
,1

)
⊆ P.

So (Q1 ∩· · ·∩Qn,φ(Q1 ∩· · ·∩Qn)) is a right ideal of S that is nil modulo P . Since S/P satisfies
the ascending chain condition on one sided ideals, it follows that (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩
Qn)) ⊆ P (see for example 17.22 in [8]). Hence P = (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)).

Since P is a left ideal we also have that aφ(a)(Q1 ∩ · · · ∩ Qn) ⊆ Q1 ∩ · · · ∩ Qn.
Next we show that if P1 = (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)) and P2 = (Q′

1 ∩ · · · ∩ Q′
m,

φ(Q′
1 ∩ · · · ∩ Q′

m)) are different prime ideals (of the same height) of S then {Q1, . . . ,Qn} ∩
{Q′

1, . . . ,Q
′
m} = ∅. Indeed, suppose the contrary, then, without loss of generality, we may assume

that Q1 = Q′
1. As P1 
= P2, and because they are of the same height, we thus get that say n > 1

and m > 1.
Clearly (Q2 ∩ · · · ∩ Qn,φ(Q2 ∩ · · · ∩ Qn)) is a right ideal of S and

(
Q2 ∩ · · · ∩ Qn,φ(Q2 ∩ · · · ∩ Qn)

)
P2

⊆ {(
aφ(a)

(
Q′

1 ∩ · · · ∩ Q′
m

)
, φ

(
aφ(a)

(
Q′

1 ∩ · · · ∩ Q′
m

))) ∣∣ a ∈ Q2 ∩ · · · ∩ Qn

}
⊆ ((

Q′
1 ∩ · · · ∩ Q′

m

) ∩ (Q2 ∩ · · · ∩ Qn),φ
((

Q′
1 ∩ · · · ∩ Q′

m

) ∩ (Q2 ∩ · · · ∩ Qn)
))

⊆ P1.

But as ht(Q1) = ht(Q2) = · · · = ht(Qn) and the primes Q1, . . . ,Qn are distinct it follows that

Q2 ∩ · · · ∩ Qn � Q1 ∩ · · · ∩ Qn.

As P1 is prime we thus get that P2 ⊆ P1. But since they are of the same height, it follows that
P1 = P2, a contradiction. The above claim of course implies the minimality as stated in the
theorem.

To end the proof, we need to show that ideals (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)) with the
listed properties are prime ideals of S. We know that Q

(k)
1 = Q1 ∩ Ak is a prime ideal of Ak of

the same height as Q1. Also K[Q(k)
1 ] is a prime ideal of K[Ak]. Again using graded techniques

and [19, 17.9] we know that there exists a prime ideal P of K[S] that lies over K[Qk
1]. So

K[Qk
1] is a minimal prime over P ∩ K[Ak] and P ∩ K[Ak] = K[Qk

1] ∩ X2 ∩ · · · ∩ Xm, where
X2, . . . ,Xm are minimal primes over P ∩ K[Ak] and they are of the same height as K[Qk

1].
Clearly P ∩ S is a prime ideal of S and (P ∩ S) ∩ Ak = Q

(k)
1 ∩ (X2 ∩ Ak) ∩ · · · ∩ (Xm ∩ Ak).

Hence, by the first part of the proof, P1 = P ∩S = (Q1 ∩Q′
2 ∩· · ·∩Q′

m,φ(Q1 ∩Q′
2 ∩· · ·∩Q′

m))

with (Q
(k)
i )′ = (X2 ∩ Ak).

We can now do the same for Q2, . . . ,Qn. Hence, we get primes P2, . . . ,Pn of S so that
P2 = (Q2 ∩ J2, φ(Q2 ∩ J2)), . . . , Pn = (Qn ∩ Jn,φ(Qn ∩ Jn)), with each Ji an intersection of
primes of A that are of the same height as Qi . Furthermore, because of the assumptions we get
that

(
J2, φ(J2)

)(
Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)

) ⊆ (J2 ∩ Q1 ∩ · · · ∩ Qn) ⊆ P2.
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Since (J2, φ(J2)) � P2 this yields that (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)) ⊆ P2 = (Q2 ∩
J2, φ(Q2 ∩ J2)). Since {Q1, . . . ,Qn} satisfies the minimality condition as stated in the theorem,
we obtain that Q2 ∩ J2 = Q1 ∩ · · · ∩ Qn. Thus P1 = P2 = · · · = Pn = (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩
· · · ∩ Qn)) and thus this is a prime ideal of S. �

The following is an immediate consequence from the previous result (and its proof).

Corollary 4.3. If L = {Q1, . . . ,Qn} is a full G-orbit of primes of the same height in A, then
there exists a partition {X1, . . . ,Xn} of L, so that( ⋂

Q∈Xi

Q,φ

( ⋂
Q∈Xi

Q

))
= Pi

are prime ideals of S.

We now can prove the main result. It provides a characterization of semigroup algebras K[S]
of monoids of IG-type that are a maximal order.

Theorem 4.4. Let S = {(a,φ(a)) | a ∈ A} ⊆ A � G be a monoid of IG-type. Suppose that SS−1

is torsion-free and suppose that the abelian monoid A is finitely generated and a maximal order.
Then, the Noetherian PI-domain K[S] is a maximal order if and only if the minimal primes of S

are of the form

P = (
Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)

)
,

where {Q1 · · ·Qn} = {φ(a)(Q1) | a ∈ A} ⊆ Spec0(A).

Proof. Because of the assumption, the results in the first section show that K[S] is a Noetherian
domain that satisfies a polynomial identity. In particular, S satisfies the ascending chain condition
on one sided ideals.

We first prove the sufficiency of the mentioned condition. So, suppose that the minimal primes
of S are of the from (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)), where {Q1 · · ·Qn} = {φ(a)(Q1) |
a ∈ A} ⊆ Spec0(A). To prove that K[S] is a maximal order, it is sufficient to verify conditions (2)
and (3) of Theorem 1.2. The former says that S is a maximal order. Because of Lemma 4.4 in [14],
in order to prove this property, it is sufficient to show that (P :l P ) = (P :r P ) = S for every
prime ideal P of S. From Theorem 4.2 we know that P = (Q,φ(Q)) with Q an intersection of
prime ideals in A of the same height, say n. Assume (x,φ(x)) ∈ (P :l P ). Then xφ(x)(Q) ⊆ Q.
If n 
= 0 (so Q is an intersection of primes that are not minimal) then the divisorial closure of both
Q and φ(x)(Q) equals A. As x(φ(x)(Q))∗ ⊆ Q∗ we thus get that x ∈ A and thus (x,φ(x)) ∈ S.
If n = 0, then, by assumption, Q is G-invariant and thus we get that xQ ⊆ Q. Since A is a
maximal order, this yields that x ∈ A and again (x,φ(x)) ∈ S. So (P :l P ) = S. On the other
hand, suppose (Q,φ(Q))(x,φ(x)) ⊆ (Q,φ(Q)). Then A(Q ∩ Ak)x ⊆ Q. If n 
= 0 then Q ∩ Ak

is not contained in a minimal prime ideal of A and thus the divisorial closure of both A(Q ∩ Ak)

and Q is A. Since (A(Q ∩ Ak))∗x ⊆ Q∗ we get that (x,φ(x)) ∈ S. So it remains to show that
(P :r P ) = S for a minimal prime ideal P . Hence, by assumption P = (Q,φ(Q)) with Q a
G-invariant ideal. More generally, we prove that (I :r I ) = S for any ideal I = (M,φ(M)) of S

with M a G-invariant ideal of A.
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We now prove this by contradiction. So suppose that I is such an ideal of S with Ig ⊆ I for
some g ∈ SS−1 \ S.

Now, as g ∈ SS−1, we know that g = (a,φ(a))(z,1)−1 with z an invariant element of A,
and thus (z,1) central in S. As A is a maximal order, we have that the minimal primes of A

freely generate the abelian group D(A). So, in the divisor group D(A), we can write Az as a
product of minimal primes. Because Az is invariant, the minimal primes in a G-orbit have the
same exponent. Hence,

Az = (
J

n1
1

)∗ ∗ · · · ∗ (
J

nl

l

)∗
,

where each Ji is an intersection of all minimal primes of A in a G-orbit. So, because of the
assumption and Theorem 4.2, each (Ji, φ(Ji)) is a minimal prime of S. Of course also Aa

is a divisorial product of minimal primes of A. If necessary, canceling some common fac-
tors of Aa and Az, we may assume that Aaz−1 = K ∗ L−1 � A, and thus KL−1 � A with
L = (J

n1
1 )∗ ∗ · · · ∗ (J

nl

l )∗, L−1 = (A : L) and K is not contained in Ji , for every i with 1 � i � l.
Note that, also, L−1 is G-invariant and thus (L−1, φ(L−1)) is a fractional ideal of S. Of course,
I (K,φ(K))(L−1, φ(L−1)) ⊆ I . Because S satisfies the ascending chain condition on ideals, we
can choose I maximal with respect to the property that such K and L exist with KL−1 � A.

Clearly we obtain that

I
(
K,φ(K)

)(
L−1, φ

(
L−1))(L,φ(L)

) ⊆ I
(
L,φ(L)

) ⊆ S
(
L,φ(L)

)
⊆ (

J
ni

i , φ
(
J

ni

i

))
⊆ (

Ji,φ(Ji)
)
.

Since, (Ji, φ(Ji)) is a prime ideal of S, we get that either (KL−1L,φ(KL−1L)) ⊆ (Ji, φ(Ji))

or I ⊆ (Ji, φ(Ji)). Because of the above, the former is excluded. Hence I ⊆ (Ji, φ(Ji)). As Ji is
G-invariant, we get again that (J−1

i , φ(J−1
i )) is a fractional ideal of S that contains S. Therefore,

we get that I ⊆ (J−1
i , φ(J−1

i ))I is an ideal of S. Since

(
J−1

i , φ
(
J−1

i

))
I
(
K,φ(K)

)(
L−1, φ

(
L−1)) ⊆ (

J−1
i , φ

(
J−1

i

))
I,

the maximality condition on I thus implies that

(
J−1

i , φ
(
J−1

i

))
I = I.

Since M is G-invariant this yields that J−1
i M = M and thus J−1

i ∗ M∗ = M∗. So J−1
i = A,

a contradiction.
We now show that, if P is a minimal prime ideal of S then the monoid SP has only one

minimal prime. As Ak is G-invariant, Lemma 2.3 in [14] gives that SP = S(P ) with

S(P ) = {
g ∈ SS−1

∣∣ Cg ⊆ S, C � P, C ⊆ Ak,

for some conjugacy class C of SS−1}.
Again, by assumption, P = (Q1 ∩ · · · ∩ Qn,φ(Q1 ∩ · · · ∩ Qn)), where {Q1, . . . ,Qn} is a full
G-orbit of minimal primes of A. First we prove that
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S(P ) = (
AQ1 ∩ · · · ∩ AQn,φ(AQ1 ∩ · · · ∩ AQn)

)
. (4)

So suppose that (b,φ(b)) ∈ S(P ). Then there exists a conjugacy class C of SS−1 in Ak with

C
(
b,φ(b)

) ⊆ S

and C not contained in P . But as C is contained in Ak it is easily verified that C =
{(φ(a)(ck),1) | φ(a) ∈ G}, for some c ∈ A. Since C � P and because {Q1, . . . ,Qn} is a G-orbit,
this yields that C � Qi , for every i ∈ {1, . . . , n}. Hence, it follows that b ∈ AQ1 ∩· · ·∩AQn . Con-
versely, suppose that b ∈ AQ1 ∩ · · · ∩ AQn . Then there exist ci ∈ A \ Qi with ck

i b ∈ A for every

i ∈ {1, . . . , n}. As M = Akck
1 ∪ · · · ∪ Akck

n � Q
(k)
1 ∩ · · · ∩ Q

(k)
n , it follows that, in D(Ak), M∗

is a product of minimal primes that do not belong to {Q(k)
1 , . . . ,Q

(k)
n }. So, N = ∏

g∈G g(M∗)
is an invariant ideal of Ak and N � Q1 ∩ · · · ∩ Qn. Clearly, NbA ⊆ A. Choose d ∈ N \ P .
Then C′ = {φ(a)(d) | a ∈ A} is a SS−1-conjugacy class contained in Ak , but not in P . Since,
C′(b,φ(b)) ⊆ S, we get that (b,φ(b)) ∈ S(P ), as desired. This finishes the proof of (4).

The monoid B = AQ1 ∩ · · · ∩ AQn is a maximal order with minimal prime ideals Pi = AQ1 ∩
· · ·∩QiAQi

∩ · · ·∩AQn , 1 � i � n. From Lemma 2.2 in [14] we know that I (P ) = {(x,φ(x)) ∈
SP | (x,φ(x))C ⊆ P, for some G-conjugacy class C ⊆ S with C � P } is a prime ideal of SP . It
is easily seen that I (P ) = {(x,φ(x)) ∈ SP | (x,φ(x))C ⊆ P, for some G-conjugacy class C ⊆
Ak with C � P }. From (4) it then follows that I (P ) = (BQ1 ∩· · ·∩BQn,φ(BQ1 ∩· · ·∩BQn)).
Therefore, Theorem 4.2 implies that this is the only minimal prime ideal of SP . This finishes the
proof of the sufficiency of the conditions.

To prove the necessity, assume K[S] is a maximal order. Let P = (M,φ(M)) be a minimal
prime ideal of S. Theorem 1.2 yields that SP has a unique minimal prime. Furthermore, since
Ak is G-invariant, Lemma 2.5 in [14] yields that (M,φ(M)) ∩ Ak = M ∩ Ak is G-invariant.
Consequently, M is G-invariant and Theorem 4.2 yields that M is the intersection of a full G-
orbit of minimal primes. This finishes the proof. �
Remark 4.5. Let S = {(a,φ(a)) | a ∈ A} ⊆ A � G be a monoid of IG-type. Suppose that
the abelian monoid A is finitely generated and a maximal order. If the minimal primes of the
monoid S are as stated in the sufficient condition of Theorem 4.4 then S is a maximal order. (The
assumption SS−1 is torsion-free, is not needed in the proof of this part of the result.)

As an application of Theorem 4.4 we give two examples.

Example 4.6. Let S be the monoid of IG-type considered in Example 3.4. The semigroup S is
a maximal order and P1 = (Q1 ∩ Q4, φ(Q1 ∩ Q4)) and P2 = (Q2 ∩ Q3, φ(Q2 ∩ Q3)) are its
minimal prime ideals. Furthermore, K[S] is a maximal order for any field K .

Proof. From Example 3.4 (and its proof) we know that A is a finitely generated maximal order
with four minimal primes: Q1 = (u1, u3), Q2 = (u1, u4), Q3 = (u2, u3) and Q4 = (u2, u4).
Because SS−1 is torsion-free, Theorem 4.2 yields a description of the prime ideals of S. Clearly,
aφ(a)(Pi) ⊆ Pi , for i ∈ {1,2}. Hence because of Theorem 4.4, to prove that P1 and P2 are the
only minimal primes of S, it is now sufficient to note that for every Qi , there exists an a ∈ A such
that aφ(a)(Qi) � Qi . Indeed, u2(12)(34)Q1 � Q1, u2(12)(34)Q2 � Q2,, u4(12)(34)Q3 � Q3,
and u3(12)(34)Q4 � Q4. �
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Example 4.7. Let S be the monoid of IG-type defined in Example 3.5. Then K[S] is a maximal
order for any field K .

Proof. It is readily verified that the minimal primes of S are of the form as required in Theo-
rem 4.4. �

We finish this paper with an example of a monoid of IG-type that is not a maximal order.

Example 4.8. Let A = 〈u1, u2, u3, u4 | u1u2u3 = u2
4〉. Then A is a maximal order (in its torsion-

free group of quotients) with minimal prime ideals Q1 = (u1, u4), Q2 = (u2, u4) and Q3 =
(u3, u4). Let S = {(a,φ(a)) | a ∈ A}, with φ(a) = 1 if a ∈ A has even degree in u4, otherwise,
φ(a) = (12) (the transposition interchanging u1 with u2). Then, S ⊆ A � Z2 is a monoid of IG-
type which is not a maximal order and the group of quotients SS−1 is torsion-free. Thus, K[S] is
not a maximal order for any field K . The minimal prime ideals of S are Pi = (Qi,φ(Qi)) with
1 � i � 3.

Proof. Clearly, AA−1 = gr(u1, u2, u4) is a free abelian group of rank 4. Furthermore, every
element of AA−1 has a unique presentation of the form ui

1u
j

2u
k
3u

m
4 , with m ∈ {0,1} and i, j, k ∈

Z; elements of A are those with i, j, k non-negative. It is easily seen that Q1,Q2 and Q3 are
the minimal primes of A and the localizations of A with respect to these prime ideals are AQ1 =
A〈u−1

2 , u−1
3 〉, AQ2 = A〈u−1

1 , u−1
3 〉 and AQ3 = A〈u−1

1 , u−1
2 〉. Furthermore, AQ1 ∩AQ2 ∩AQ3 = A

and each AQi
is a maximal order with unique minimal prime ideal u4AQi

. It follows that A is a
maximal order. As Z2 = gr((12)) induces a faithful action on the finitely generated monoid A =
〈u1, u2, u3, u4 | u1u2u3 = u2

4〉, we thus get that S ⊆ A � Z2 is a monoid of IG-type.
Suppose that there exists a non-trivial periodic element in the group of quotients SS−1. Such

an element must be of the form (u
α1
1 u

α2
2 u

α4
4 , (12)), with αi ∈ Z and α4 odd. Then, by Theorem 3.2

(see also the remarks stated after its proof), (α1, α2, α4) + (12)(α′
1, α

′
2, α

′
4) = (α′

1, α
′
2, α

′
4), for

some α′
1, α

′
2, α

′
4 ∈ R. Hence α4 + α′

4 = α′
4 and thus α4 = 0, a contradiction. So, SS−1 indeed is

torsion-free.
Let I be the ideal generated by ((u1,1), (u4, (12))). Then (u1u3u

−1
4 , (12))I ⊆ I and thus S

is not a maximal order.
As an immediate consequence of Theorem 4.4 one sees that P1 = (Q1, φ(Q1)), P2 =

(Q2, φ(Q2)) and P3 = (Q3, φ(Q3)) are the minimal prime ideals of S. Clearly Q1 and Q2
are not Z2-invariant, as corresponds with Remark 4.5. �
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