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Fixing a field F of characteristic different from 2 and 3, we consider
pairs (A, V ) consisting of a degree 3 central simple F -algebra A
and a 3-dimensional vector subspace V of the reduced trace zero
elements of A which is totally isotropic for the trace quadratic
form. Each such pair gives rise to a cubic form mapping an element
of V to its cube; therefore we call it a cubic pair over F . Using
the Okubo product in the case where F contains a primitive cube
root of unity, and extending scalars otherwise, we give an explicit
description of all isomorphism classes of such pairs over F . We
deduce that a cubic form associated with an algebra in this manner
determines the algebra up to (anti-)isomorphism.
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Introduction

Consider a field F of characteristic different from 2. Let A be a quaternion algebra over F and let
A0 denote the subspace of reduced trace zero elements of A. Then for all x ∈ A0 we have x2 ∈ F . We
thus obtain a quadratic form on A0 mapping x to x2. Up to the sign, this quadratic form is the norm
form of the quaternion algebra restricted to A0. By Theorem 2.5, p. 57, in [4], this quadratic form
determines the quaternion algebra up to isomorphism.

In this paper we shall generalize this construction for algebras of degree 3. Consider a field F of
characteristic different from 2 and 3 and let A be a degree 3 central simple algebra over F . Again let
A0 denote the subspace of reduced trace zero elements of A. Then the cube of an arbitrary element
x ∈ A0 need not be in F in general. In fact, it is in F if and only if the reduced trace of x2 is equal
to zero. Let q : A0 → F be the trace quadratic form on A0 (mapping x to the reduced trace of x2).
Then the Witt index of q is equal to 4 if F contains a primitive cube root of unity and is equal
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to 3 otherwise (see Lemma 0.1). In both cases there exist 3-dimensional subspaces of A0 which are
totally isotropic for the trace quadratic form. Each such vector subspace V ⊂ A0 gives rise to a cubic
form. In this paper we shall prove that this cubic form determines the algebra up to isomorphism or
anti-isomorphism.

In the first two sections we shall give an explicit description of the pairs (A, V ) where A and V
are as above. In the first section we assume that the field F contains a primitive cube root of unity
and we use the fact that we may write V in terms of the Okubo product. In the second section we
assume that F does not contain a primitive cube root of unity, and we shall minimally extend the
field F to use the results of the previous case. In the last section we use these descriptions to prove
that a cubic form associated with a pair (A, V ) determines A up to (anti-)isomorphism.

Throughout the paper, we denote by F a field of characteristic different from 2 and 3, by Fs a
separable closure of F , and by Γ the absolute Galois group Gal(Fs/F ). We fix ω ∈ Fs a primitive
cube root of unity. We say that a pair (A, V ) is a cubic pair over F if A is a degree 3 central simple
F -algebra and V is a 3-dimensional subspace of A0 (= the subspace of reduced trace zero elements
of A) which is totally isotropic for the trace quadratic form. For a cubic pair (A, V ) over F we define
a cubic form

f A,V : V → F : x �→ x3.

We say that Θ : (A, V ) → (B, W ) is an isomorphism of cubic pairs over F if Θ : A → B is an F -algebra
isomorphism such that Θ(V ) = W . Note that if (A, V ) and (B, W ) are isomorphic then f A,V and f B,W

are isometric (i.e. there exists an F -vector space isomorphism Θ : V → W such that f A,V = f B,W ◦Θ).
For a field extension L over F we write AL (resp. V L ) for A ⊗F L (resp. V ⊗F L). Further we let TrdA

denote the reduced trace of A, and for an F -algebra K , we denote by TrK (resp. NK ) the trace (resp.
the norm) of K .

0. Some results on quadratic forms

Before we start the classification of cubic pairs, we need preliminary results on quadratic forms.
Let A be a degree 3 central simple algebra over F . First we shall compute the Witt index of the

trace quadratic form of A.

Lemma 0.1. Let q be the trace quadratic form on A0 . Then the Witt index of q is equal to 4 if F contains a
primitive cube root of unity and is equal to 3 otherwise.

Proof. There exists a splitting field L of A of odd degree over F . Indeed, we may choose L := F if A is
split and we choose a splitting field of degree 3 over F otherwise. Then straightforward computations
show that the class of the form qL : A0

L → L is equal to the class of 2〈1,3〉 in the Witt ring of L.
Hence, by Springer’s Theorem about odd degree extensions (see Theorem 2.7, p. 194, in [4]), the Witt
index of q is greater than or equal to 3 and it is 4 if and only if F contains a primitive cube root of
unity. �

Suppose that F contains a primitive cube root of unity.

Lemma 0.2. Let V be a 3-dimensional totally isotropic subspace of A0 . Then there exist exactly two maximal
totally isotropic subspaces W1, W2 of A0 containing V ; thus V = W1 ∩ W2 .

Proof. A more general fact is proved in III.1.11 of [2]: in a quadratic space with a Witt index equal
to n, all (n − 1)-dimensional totally isotropic subspaces are contained in exactly two maximal totally
isotropic subspaces. �
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1. Classification of cubic pairs over a field with a primitive cube root of unity

We assume that F contains a primitive cube root of unity.

1.1. Okubo product

Let A be a degree 3 central simple F -algebra. In [8] the Okubo product over A0 is defined as
follows:

x � y := μxy + (1 − μ)yx − 1

3
TrdA(xy) = 1

1 − ω
(yx − ωxy) − 1

3
TrdA(xy)

where μ := 1−ω
3 . Let q denote the trace quadratic form on A0. Because F contains a primitive cube

root of unity, the Witt index of q is equal to 4. In [5], Matzri interprets the results of van der Blij
and Springer [9] on triality, in the language of the Okubo product: he gives a description of the
4-dimensional subspaces of A which are totally isotropic for q, in terms of the Okubo product.

Theorem 1.1 (Matzri). Let u ∈ A0 \ {0} be such that TrdA(u2) = 0. Then u � A0 and A0 � u are 4-dimensional
totally isotropic subspaces of A0 . Moreover any 4-dimensional totally isotropic subspace is of this form.

We may also write the 3-dimensional totally isotropic subspaces of A0 in terms of the Okubo
product. By Lemma 0.2, the 3-dimensional totally isotropic subspaces of A0 are the intersections of
two subspaces of the form u � A0 or A0 � u. We can be more precise using the following:

Theorem 1.2 (Matzri). Let u, v ∈ A0 \ {0} be such that TrdA(u2) = 0 and TrdA(v2) = 0. Then

1. the dimension of u � A0 ∩ v � A0 is even;
2. if u � v �= 0, then dim(u � A0 ∩ A0 � v) = 1;
3. if u � v = 0, then dim(u � A0 ∩ A0 � v) = 3.

Note that the Okubo product depends on the choice of the primitive cube root of unity. If we set,
for a primitive cube root of unity ρ ,

x �ρ y := μρxy + (1 − μρ)yx − 1

3
TrdA(xy)

where μρ := 1−ρ
3 , then x �ω y = y �ω2 x. So by Theorem 1.2, the dimension of A0 � u ∩ A0 � v is also

even.

Corollary 1.3. Let (A, V ) be a cubic pair over F . Then there exist nonzero u, v ∈ A0 with TrdA(u2) = 0,
TrdA(v2) = 0 and u � v = 0 such that V = u � A0 ∩ A0 � v.

The vectors u and v are in fact uniquely determined up to scalars. We shall prove this as a part of
a more general statement:

Lemma 1.4. If (B, W ) is another cubic pair over F with W = r � B0 ∩ B0 � s as in Corollary 1.3, then an
F -algebra isomorphism Θ : A → B induces an isomorphism Θ : (A, V ) → (B, W ) of cubic pairs if and only if
Θ(u)F = r F and Θ(v)F = sF .

Proof. Assume that Θ : A → B is an F -algebra isomorphism. If Θ(V ) = W , then W = Θ(u) � B0 ∩
B0 � Θ(v) = r � B0 ∩ B0 � s. By Lemma 0.2, we have{

Θ(u) � B0, B0 � Θ(v)
} = {

r � B0, B0 � s
}
.
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If r � B0 = B0 � Θ(v), then W = Θ(u) � B0 ∩ r � B0 and by Theorem 1.2, the dimension of W is even.
Hence Θ(u) � B0 = r � B0 and B0 � Θ(v) = B0 � s. By Theorem 2.10 in [5], we then have Θ(u)F = r F
and Θ(v)F = sF . The converse is obvious. �
1.2. Classification

We shall describe a cubic pair (A, V ) over F up to isomorphism. By Corollary 1.3, there exist
nonzero u, v ∈ A0 such that TrdA(u2) = 0, TrdA(v2) = 0, u � v = 0 and V = u � A0 ∩ A0 � v . Since
TrdA(v) = TrdA(v2) = 0 we have v3 ∈ F , and similarly u3 ∈ F . Note that u � v = 0 implies that

vu = 1 − ω

3
TrdA(uv) + ωuv.

Set t := uv − 1
3 TrdA(uv). Then

tu = uvu − 1

3
TrdA(uv)u = 1 − ω

3
TrdA(uv)u + ωu2 v − 1

3
TrdA(uv)u = ωut

and similarly vt = ωtv . We deduce that t3 ∈ F . Indeed,

t2 = t

(
uv − 1

3
TrdA(uv)

)

= ωutv − 1

3
TrdA(uv)t

= ωu2 v2 + ω2

3
TrdA(uv)uv + 1

9
TrdA(uv)2

and thus

t3 = t2
(

uv − 1

3
TrdA(uv)

)

= ω2ut2 v − 1

3
TrdA(uv)t2

= u3 v3 − 1

27
TrdA(uv)3 ∈ F . (1)

This implies in particular that TrdA(t2) = 0, so TrdA(u2 v2) = 1
3 TrdA(uv)2.

We shall prove that t2, t2u, t2 v ∈ V . First we observe that

u � A0 = {
x ∈ A0

∣∣ x � u = 0
}
.

Indeed, by Proposition (34.19) in [8] we have (u � x) � u = 1
6 TrdA(u2)x = 0 for all x ∈ A0. Hence

u � A0 ⊂ {
x ∈ A0

∣∣ x � u = 0
} = ker(Ru)

where Ru : A0 → A0 : x �→ x � u. But dim ker(Ru)+ dim im(Ru) = 8, thus dim ker(Ru) = dim(u � A0) = 4.
Similarly,

A0 � v = {
x ∈ A0

∣∣ v � x = 0
}
.
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One can see that t2 ∈ V since ut2 = ωt2u and t2 v = ωvt2. Also u(ut2) = ω(ut2)u and (vt2)v =
ωv(vt2) imply (ut2) � u = 0 and v � (vt2) = 0. Now

v �
(
ut2) = 1

1 − ω

(
ut2 v − ωvut2) − 1

3
TrdA

(
ut2 v

)

= 1

1 − ω

(
ut2 v − ω

1 − ω

3
TrdA(uv)t2 − ω2uvt2

)
− 1

3
TrdA

(
ut2 v

)

= ut2 v − ω

3
TrdA(uv)t2 − 1

3
TrdA

(
ut2 v

)

= ω2

27
TrdA(uv)3 − ω2

9
TrdA(uv)TrdA

(
u2 v2)

= 0.

Since (vt2) � u = ω2 v � (ut2) = 0, we obtain that ut2, vt2 ∈ V . So t2, t2u, t2 v ∈ V because vt = ωtv
and tu = ωut .

To work out the classification of cubic pairs we shall distinguish different situations:

First case. We assume that u, v, t ∈ A× . Observe that t = 1
1−ω (uv − vu) �= 0, hence u and v are linearly

independent. Since TrdA(u) = TrdA(v) = 0, the vectors 1, u, v are also linearly independent. Therefore
t2, t2u, t2 v span V . Set ξ := t2, η := t2 v and λ := 1

3t3 TrdA(uv). Because t = uv − 1
3 TrdA(uv), we have

u = tv−1 + 1
3 TrdA(uv)v−1. One can check that

t2u = ω

v3t3

(
ξη2 + λξ2η2).

Finally A is the symbol algebra (a,b)ω,F generated by ξ and η such that ξ3 = a, η3 = b, ξη = ωηξ ,
and V is the vector subspace spanned by ξ , η and ξη2 + λξ2η2 where 1 + λ3a �= 0 since u3 �= 0. In
this basis of V , the cubic form f A,V takes the generalized Hesse normal form:

f A,V
(
xξ + yη + z

(
ξη2 + λξ2η2)) = ax3 + by3 + ab2(1 + λ3a

)
z3 − 3ω2abλxyz.

The form f A,V is nonsingular.
Conversely, suppose that B is the symbol algebra (a,b)ω,F generated by ξ,η such that ξ3 = a,

η3 = b, ξη = ωηξ , and W the vector subspace spanned by ξ , η, ξη2 + λξ2η2, for some a,b ∈ F × and
λ ∈ F such that 1 + λ3a �= 0. Then one can check that (B, W ) is a cubic pair over F such that f B,W is
nonsingular.

Second case. We suppose that u, v ∈ A× and t = 0. Then uv = 1
3 TrdA(uv) ∈ F × . Thus we may assume

that u = v2. We need the following:

Lemma 1.5. Let ξ ∈ A0 be such that ξ3 ∈ F × . Then there exists η ∈ A such that η3 ∈ F × and ξη = ωηξ .

Proof. Assume that ξ3 /∈ F ×3, then F (ξ) is a subfield of A. Let σ : F (ξ) → F (ξ) be the F -
automorphism defined by σ(ξ) = ω2ξ . By the Skolem–Noether Theorem, there exists η ∈ A× such
that ηxη−1 = σ(x) for all x ∈ F (ξ). In particular ξη = ωηξ . Because η = ωξ−1ηξ and η2 = ω2ξ−1η2ξ ,
we have TrdA(η) = 0, TrdA(η2) = 0; so η3 ∈ F × .

Now we suppose that ξ3 ∈ F ×3. Then we may assume that ξ3 = 1 and A = M3(F ). The minimal
polynomial of ξ divides t3 − 1, so ξ is diagonalizable and its eigenvalues are cube roots of unity.
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Hence we may assume that

ξ =
(

λ1 0 0
0 λ2 0
0 0 λ3

)

with λi ∈ {1,ω,ω2}. Since tr(ξ) = 0 we have {λ1, λ2, λ3} = {1,ω,ω2}. Conjugating by

(1 0 0
0 0 1
0 1 0

)

if necessary, we may assume that λ1 = 1, λ2 = ω, λ3 = ω2. Then

η :=
( 0 0 1

1 0 0
0 1 0

)

is such that η3 ∈ F × and ξη = ωηξ . �
Let w ∈ A be such that w3 ∈ F × and v w = ωw v . Then the subspace of the elements x in A such

that vx = ω2xv is spanned by w2, v w2, v2 w2, and it is contained in V ; therefore

V = {
x ∈ A

∣∣ vx = ω2xv
}
.

Set ξ := w2 and η := v w2, then A is the symbol algebra (a,b)ω,F generated by ξ and η such that
ξ3 = a, η3 = b and ξη = ωηξ , and V is the vector subspace spanned by ξ , η and ξ2η2. In this basis
of V , the form f A,V takes the generalized Hesse normal form:

f A,V
(
xξ + yη + zξ2η2) = ax3 + by3 + a2b2z3 − 3ω2abxyz.

The form f A,V is singular; more precisely, it is triangular, i.e., there exist linearly independent forms
ϕ1,ϕ2,ϕ3 ∈ (V ⊗F Fs)

� such that f A,V = ϕ1ϕ2ϕ3 as a cubic form over V ⊗F Fs .
Conversely, suppose that B is the symbol algebra (a,b)ω,F generated by ξ,η such that ξ3 = a,

η3 = b, ξη = ωηξ , and W is the vector subspace spanned by ξ , η, ξ2η2, for some a,b ∈ F × . Then
(B, W ) is a cubic pair over F and f B,W is triangular.

Third case. We suppose that either u /∈ A× , or v /∈ A× , or t /∈ A× and t �= 0. Then the algebra A is
split, so we may assume that A = M3(F ). This case is less interesting and thus we shall not give an
explicit description of the pair (A, V ), but we shall only prove that the cubic form f A,V is singular
and not triangular (it is possible to describe V by matrix computations distinguishing several cases;
details can be found in [6]).

To show that f A,V is not triangular, we first prove a more general lemma on triangular forms.

Lemma 1.6. Suppose that (B, W ) is any cubic pair over F such that f B,W is triangular. Then W = s2 � B0 ∩
B0 � s for some s ∈ B0 such that s is invertible.

Proof. We may assume that F = Fs and B = M3(F ). Let e1, e2, e3 ∈ W be such that

f B,W (x1e1 + x2e2 + x3e3) = x1x2x3
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for all x1, x2, x3 ∈ F . Observe that x3 = 1
3 tr(x3) for all x ∈ W , hence f B,W (x1e1 + x2e2 + x3e3) is equal

to

3∑
i=1

e3
i x3

i +
∑
i �= j

tr
(
e2

i e j
)
x2

i x j + tr(e1e2e3 + e2e1e3)x1x2x3

for all x1, x2, x3 ∈ F . We deduce that tr(e2
i e j) = 0 for all i, j. Set e2 = (xij) and e3 = (yij).

Suppose that e2
1 �= 0. Since e3

1 = 0, we may assume that

e1 =
(0 1 0

0 0 1
0 0 0

)
.

Because tr(e2) = 0, tr(e1e2) = 0 and tr(e2
1e2) = 0, we have

x33 = −x11 − x22, x32 = −x21, x31 = 0.

From tr(e1e2
2) = 0 we deduce that x21(2x11 +x22) = 0. If x21 = 0 then tr(e2

2) = 0 and e3
2 = 0 imply x11 =

x22 = 0. Then e1e2 + e2e1 = (x12 + x23)e2
1 and it contradicts the fact that tr(e2

1e3) = 0 and tr(e1e2e3 +
e2e1e3) = 1. If x22 = −2x11 then

e1e2 + e2e1 =
( x21 −x11 x12 + x23

0 0 −x11
0 0 −x21

)
.

By symmetry we know that

e3 =
( y11 y12 y13

y21 −2y11 y23
0 −y21 y11

)
,

thus tr(e1e2e3 + e2e1e3) = 1 is impossible.
Therefore e2

1 = 0 (by symmetry we also have e2
2 = 0, e2

3 = 0) and we may assume that

e1 =
(0 0 1

0 0 0
0 0 0

)
.

Since tr(e2) = 0 and tr(e1e2) = 0, we have x33 = −x11 − x22 and x31 = 0. Then e2
2 = 0 implies

x21x32 = 0. Observe that

e1e2 + e2e1 =
( 0 x32 −x22

0 0 x21
0 0 0

)
.

Because tr(e1e2e3 + e2e1e3) = 1 we have either x21 = 0 = y32 and x32, y21 �= 0 or x21, y32 �= 0 and
x32 = 0 = y21. Thus we may assume that x21 = 0 and x32 = 1. From e2

2 = 0 we deduce that

e2 =
(0 α −αβ

0 β −β2

)

0 1 −β
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for some α,β ∈ F . We may assume that α = β = 0 since the invertible matrix

m =
( 1 0 −α

0 1 −β

0 0 1

)

is such that me1m−1 = e1 and

me2m−1 =
(0 0 0

0 0 0
0 1 0

)
.

Similarly we see that

e3 =
(

α −α2 0
1 −α 0
0 0 0

)

for some α ∈ F . Again we may assume that α = 0 conjugating by

(1 −α 0
0 1 0
0 0 1

)

if necessary.
Then one can check that W = s2 � B0 ∩ B0 � s with

s =
(1 0 0

0 ω2 0
0 0 ω

)
. �

In our case, the subspace V is equal to u � A0 ∩ A0 � v where either u /∈ A× , or v /∈ A× , or t /∈ A×
and t �= 0. Observe that if u, v ∈ A× , then uF = v2 F if and only if t = 0. Thus, by the previous lemma,
the form f A,V is not triangular.

To prove that f A,V is singular we shall distinguish different cases.

1. Suppose that v /∈ A× .
If tr(uv) �= 0 then, by the relation (1), t is invertible; hence V is spanned by t2, t2u and t2 v . Since

tr(x(t2 v)2) = 0 for all x ∈ V , the point t2 v Fs of the projective plane PV (Fs) is a singular zero of f A,V .
If v2 �= 0 and tr(uv) = 0, then v2 ∈ V and v2 Fs is a singular zero of f A,V .
If v2 = 0, then we may assume that

v =
( 0 0 1

0 0 0
0 0 0

)
, so u =

(
ω2α1 α2 α3

0 ωα1 α4
0 0 α1

)

for some αi ∈ F . If α1 = 0 then v Fs is a singular zero of f A,V . If α1 �= 0 then V is spanned by

(
α1 0 −α3
0 ωα1 0
0 0 ω2α1

)
,

(0 (ω − 1)α1 α4
0 0 0
0 0 0

)
,

( 0 0 α2
0 0 (ω − ω2)α1
0 0 0

)

and the cubic curve associated with f A,V is a triple line.
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2. Suppose that u /∈ A× , then, by symmetry, we deduce that f A,V is also singular.

3. Suppose that u, v ∈ A× , t /∈ A× and t �= 0.
If t2 �= 0 then t2 Fs is a singular zero of f A,V .
If t2 = 0, we shall prove that there exists a nonzero s ∈ A such that s2 = 0, vs = ω2sv , s(tv−1) =

(tv−1)s = 0. Since u = tv−1 + 1
3 tr(uv)v−1, we then have s ∈ V and so sFs is a singular zero of f A,V .

Let w ∈ A be such that w3 ∈ F × and v w = ωw v . Since v(tv−1) = ω(tv−1)v and tv−1 �= 0, there
exist αi ∈ F not all zero such that tv−1 = α0 w + α1 v w + α2 v2 w . But (tv−1)2 = ω2t2 v−2 = 0, so
α0 �= 0, α2 = α2

1α
−1
0 and α3

0 = v3α3
1 . Hence v3 ∈ F ×3 and we may assume that v3 = 1. Replacing w

by α−1
0 w if necessary, we may assume that α0 = 1. Then α1 = 1, ω or ω2. Conjugating by w or w−1

if necessary, we may assume that tv−1 = w + v w + v2 w . Then we may choose s = w2 + v w2 + v2 w2.

We summarize the above classification in the following theorem.

Theorem 1.7. Suppose that F contains a primitive cube root of unity. Let (A, V ) be a cubic pair over F .

1. If f A,V is nonsingular, then

(A, V ) ∼= (
(a,b)ω,F , spanF

〈
ξ,η, ξη2 + λξ2η2〉)

for some a,b ∈ F × , λ ∈ F such that 1 + λ3a �= 0, where ξ,η are generators of the symbol algebra such
that ξ3 = a, η3 = b, ξη = ωηξ . Conversely, let a,b ∈ F × , λ ∈ F be such that 1 + λ3a �= 0. Let B be the
symbol algebra (a,b)ω,F generated by ξ,η such that ξ3 = a, η3 = b, ξη = ωηξ , and W the subspace
spanned by ξ , η, ξη2 + λξ2η2 . Then (B, W ) is a cubic pair over F and f B,W is nonsingular. In the basis
(ξ,η, ξη2 + λξ2η2), the form f B,W takes the generalized Hesse normal form:

(
xξ + yη + z

(
ξη2 + λξ2η2))3 = ax3 + by3 + ab2(1 + λ3a

)
z3 − 3ω2abλxyz.

2. If f A,V is triangular, then

(A, V ) ∼= (
(a,b)ω,F , spanF

〈
ξ,η, ξ2η2〉)

for some a,b ∈ F × , where ξ,η are generators of the symbol algebra such that ξ3 = a, η3 = b and ξη =
ωηξ . Conversely, let a,b ∈ F × , let B be the symbol algebra (a,b)ω,F generated by ξ,η such that ξ3 = a,
η3 = b, ξη = ωηξ , and W the subspace spanned by ξ , η, ξ2η2 . Then (B, W ) is a cubic pair over F and
f B,W is triangular. In the basis (ξ,η, ξ2η2), the form f B,W takes the generalized Hesse normal form:

(
xξ + yη + zξ2η2)3 = ax3 + by3 + a2b2z3 − 3ω2abxyz.

3. If f A,V is singular and not triangular, then A is split.

2. Classification of cubic pairs over a field without primitive cube root of unity

Suppose that F does not contain a primitive cube root of unity. We shall give the classification of
cubic pairs over F in the case where the associated cubic form is nonsingular or triangular. For the
remaining cases we know by Theorem 1.7 that the algebra is split and it is just a matter of matrix
computations to describe all the possible subspaces up to conjugacy (see [6] for details). We shall
extend the scalars to F (ω) to use the previous classification. To simplify notations, let T denote the
reduced trace of A F (ω) . Throughout this section, we denote by σ the F -automorphism of F (ω) such
that σ(ω) = ω2.



1812 M. Raczek / Journal of Algebra 322 (2009) 1803–1818
2.1. Nonsingular form

Let (A, V ) be a cubic pair over F such that f A,V is nonsingular. By Section 1.2, there exist nonzero
u, v ∈ A0

F (ω) such that T(u2) = 0, T(v2) = 0, u � v = 0 and

V F (ω) = (
u � A0

F (ω)

) ∩ (
A0

F (ω) � v
)

where u, v, t := uv − 1
3 T(uv) ∈ A×

F (ω) . Then V F (ω) is spanned by t2, t2 v and t2u.
We extend σ to an F -automorphism of A F (ω): for x ∈ A F (ω) and λ ∈ F (ω), define σ(x ⊗ λ) =

x ⊗ σ(λ). Then A (resp. V ) consists of the elements of A F (ω) (resp. V F (ω)) which are fixed under σ .
Note that σ(x � y) = σ(y) � σ (x) for all x, y ∈ A F (ω) . Since σ(V F (ω)) = V F (ω) , we have

(
σ(v) � A0

F (ω)

) ∩ (
A0

F (ω) � σ (u)
) = (

u � A0
F (ω)

) ∩ (
A0

F (ω) � v
)
.

Hence there exists λ ∈ F (ω)× such that σ(u) = λv . Replacing v by λv if necessary we may assume
that σ(u) = v and thus σ(v) = u. Recall that

vu = 1 − ω

3
T(uv) + ωuv,

hence we have

σ(t) = σ(uv) − 1

3
σ

(
T(uv)

)
= σ(u)σ (v) − 1

3
T
(
σ(uv)

)
= vu − 1

3
T(vu)

= ωt.

Therefore ω2t ∈ A and ωt2 ∈ V . Set e := ωt2, then V is spanned by e, e(v + u) and e(ωv + ω2u).
We shall find a Galois Z/3Z-algebra (L,ρ) such that L ⊂ A, the vector e and L generate A, and

ex = ρ(x)e for all x ∈ L. To do this we first construct an element η ∈ A F (ω) such that eη = ωηe,
η3 ∈ F (ω)× and σ(η)η ∈ F × . Recall that t3 = u3 v3 − 1

27 T(uv)3, vt = ωtv , tu = ωut and

t2 = ωu2 v2 + ω2

3
T(uv)uv + 1

9
T(uv)2.

Set

η := T(uv)

3
v + 1

t3
e2 v,

then eη = ωηe, η3 = u3 v6 and

σ(η)η = T(uv)2

9
uv − ωT(uv)

3
utv + ω2ut2 v

= u3 v3.

We set λ := u3 v3, so η + λη−1 is fixed under σ .
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If η3 /∈ F (ω)×3, then set L := F (η + λη−1) and let ρ : L → L be the F -automorphism defined by
ρ(η + λη−1) = ωη + ω2λη−1. Then L is a cyclic extension of degree 3 over F which is contained in
A and with a Galois group generated by ρ . Moreover ex = ρ(x)e for all x ∈ L.

If η3 ∈ F (ω)×3, then η3 = ν3 for some ν ∈ F (ω)× . Replacing η by ν−1η if necessary, we may
assume that η3 = 1 and σ(η)η = 1. Set

L := F · 1 + F · (η + η−1) + F · (ωη + ω2η−1)
and define ρ as the F -automorphism of L such that ρ(η+η−1) = ωη+ω2η−1 and ρ(ωη+ω2η−1) =
ω2η + ωη−1. Since (η + η−1)2 = η + η−1 + 2, the algebra L is isomorphic to F × F × F . Again (L,ρ)

is a Galois Z/3Z-algebra such that L ⊂ A and ex = ρ(x)e for all x ∈ L.
In both cases we obtain that A = ⊕2

i=0 Lei where the multiplication in A is determined by e3 =
a ∈ F × and ex = ρ(x)e for all x ∈ L.

To finish the description of the pair (A, V ), we shall write ev in function of e and η:

ev = e

(
T(uv)

3
+ 1

t3
e2

)−1

η

= 1

u3 v3

(
α + a−1α2e + e2)η

where α := −T(uv)t3/3. Hence V F (ω) is spanned by e, (α+a−1α2e+e2)η and (α+a−1α2e+e2)λη−1.
Note that α3 �= a2 since ev is invertible. We obtain that

V = spanF

〈
e,

(
α + a−1α2e + e2)θ,

(
α + a−1α2e + e2)ρ(θ)

〉
where θ = η + λη−1 ∈ L \ {0} is such that θ + ρ(θ) + ρ2(θ) = 0.

We shall prove that the cubic form f A,V is isometric to the form

TrK ,β − 3bNK : K → F : x �→ TrK
(
βx3) − 3bNK (x)

for K = F × F (ω) and, for some β ∈ K × and b ∈ F . We set

v1 := e, v2 := (
α + a−1α2e + e2)θ, v3 := (

α + a−1α2e + e2)ρ(θ)

so that V is the vector space spanned by v1, v2, v3. Then f A,V (xv1 + yv2 + zv3) is equal to

(
xu1 + (y + ωz)u2 + (

y + ω2z
)
u3

)3

where u1 := e, u2 := (α + a−1α2e + e2)η, u3 := (α + a−1α2e + e2)λη−1. But (xu1 + yu2 + zu3)
3 is

equal to

ax3 + η3(a−1α3 − a
)2

y3 + σ
(
η3)(a−1α3 − a

)2
z3 − 3λα

(
a−1α3 − a

)
xyz.

Therefore f A,V is isometric to the form TrK ,β − 3bNK where K := F × F (ω), β := (a, η3(a−1α3 − a)2)

and b := λα(a−1α3 − a).
Observe that if (L,ρ) is a Galois Z/3Z-algebra, then there exist λ ∈ F × and φ ∈ L ⊗F F (ω) such

that φ3 ∈ F (ω)× , φ /∈ F (ω), σ(φ3) = λ3φ−3 and

L = F · 1 + F · (φ + λφ−1) + F · (ωφ + ω2λφ−1).
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Indeed, suppose that (L,ρ) is not split, then L(ω) ∼= L ⊗F F (ω) is a Galois extension of F with a Galois
group isomorphic to Z/2Z × Z/3Z. Let σ̃ , τ be F -automorphisms of L(ω) such that L (resp. F (ω))
is the subfield of L(ω) which is fixed under σ̃ (resp. τ ). Let φ ∈ L(ω) be such that φ3 ∈ F (ω)× and
φ /∈ F (ω). Replacing φ by φ−1 if necessary, we may assume that τ (φ) = ωφ. Hence

τ σ̃ (φ) = σ̃ τ (φ) = σ̃ (ωφ) = ω2σ̃ (φ).

Thus σ̃ (φ) = λφ−1 for some λ ∈ F (ω)× . But

φ = σ̃
(
λφ−1) = σ̃ (λ)λ−1φ,

so σ̃ (λ) = λ and λ ∈ F × . Then we have L = F (φ + λφ−1) with

σ
(
φ3) = (

σ̃ (φ)
)3 = (

λφ−1)3 = λ3φ−3.

Suppose that L = F × F × F , then we may choose λ = 1 and φ = (1,ω,ω2).
Now let (L,ρ) be a Galois Z/3Z-algebra, a ∈ F × and α ∈ F such that α3 �= a2. Set

(B, W ) :=
(

2⊕
i=0

Lei, spanF

〈
e,

(
α + a−1α2e + e2)θ,

(
α + a−1α2e + e2)ρ(θ)

〉)
,

where the multiplication in B is defined by e3 = a, ex = ρ(x)e for all x ∈ L, and θ ∈ L \ {0} is such that
θ +ρ(θ)+ρ2(θ) = 0. Then one can check that (B, W ) is a cubic pair over F and f B,W is nonsingular.

We summarize this subsection by the following theorem:

Theorem 2.1. Suppose that F does not contain a primitive cube root of unity. Let (A, V ) be a cubic pair over F
such that f A,V is nonsingular. Then (A, V ) is isomorphic to

(
2⊕

i=0

Lei, spanF

〈
e,

(
α + a−1α2e + e2)θ,

(
α + a−1α2e + e2)ρ(θ)

〉)

for some Galois Z/3Z-algebra (L,ρ), a ∈ F × , α ∈ F such that α3 �= a2 , where e3 = a, ex = ρ(x)e for all x ∈ L
and θ ∈ L \ {0} is such that θ + ρ(θ) + ρ2(θ) = 0. Conversely, let (L,ρ) be a Galois Z/3Z-algebra, a ∈ F × ,
α ∈ F such that α3 �= a2 . Let B = ⊕2

i=0 Lei be the algebra with multiplication defined by e3 = a, ex = ρ(x)e
for all x ∈ L, and let W be the subspace spanned by e, (α + a−1α2e + e2)θ , (α + a−1α2e + e2)ρ(θ), where
θ ∈ L \ {0} is such that θ + ρ(θ) + ρ2(θ) = 0. Then (B, W ) is a cubic pair over F and f B,W is nonsingular.
Let φ ∈ L ⊗F F (ω) and λ ∈ F × be such that φ3 ∈ F (ω)× , φ /∈ F (ω), σ(φ3) = λφ−3 and 1, φ + λφ−1,ωφ +
ω2λφ−1 span L, where σ is the nontrivial F -automorphism of F (ω). Then f B,W is isometric to TrK ,β − 3bNK

where K = F × F (ω), β = (a, φ3(a−1α3 − a)2) and b = λα(a−1α3 − a).

2.2. Triangular form

Let (A, V ) be a cubic pair over F such that f A,V is triangular. By Section 1.2, there exists v ∈ A0
F (ω)

such that T(v2) = 0, v ∈ A×
F (ω)

and

V = (
v2 � A0

F (ω)

) ∩ (
A0

F (ω) � v
);
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then V = {x ∈ A F (ω) | vx = ω2xv}. Fix e ∈ V , then ev = ωve. We extend the F -automorphism σ of
F (ω) to A F (ω) . Then σ(v) = λv2 for some λ ∈ F (ω)× . Since

v = σ
(
λv2) = σ(λ)λ2 v4,

we deduce that σ(λ)λ2 v3 = 1. Hence

σ(λv) = σ(λ)σ (v) = λ−2 v−3λv2 = (λv)−1;

so we may assume that σ(v) = v−1. Set

L := F · 1 + F · (v + v−1) + F · (ωv + ω2 v−1)
and define ρ as the F -automorphism of L such that ρ(v + v−1) = ωv +ω2 v−1 and ρ(ωv +ω2 v−1) =
ω2 v +ωv−1. Then (L,ρ) is a Galois Z/3Z-algebra (note that (L,ρ) is split if and only if v3 ∈ F (ω)×3).
Moreover L ⊂ A, ex = ρ(x)e for all x ∈ L, A = ⊕2

i=0 Lei and V = eL. It is easy to check that f A,V is
isometric to aNL , where a := e3.

Conversely, let (L,ρ) be a Galois Z/3Z-algebra and a ∈ F × . Set

(B, W ) :=
(

2⊕
i=0

Lei, eL

)

where the multiplication in B is defined by e3 = a and ex = ρ(x)e for all x ∈ L. Then (B, W ) is a cubic
pair over F and f B,W is triangular.

Thus we obtain:

Theorem 2.2. Suppose that F does not contain a primitive cube root of unity. Let (A, V ) be a cubic pair over
F such that f A,V is triangular. Then (A, V ) is isomorphic to

(
2⊕

i=0

Lei, eL

)

for some Galois Z/3Z-algebra (L,ρ) and a ∈ F × , where e3 = a and ex = ρ(x)e for all x ∈ L. Conversely, let
(L,ρ) be a Galois Z/3Z-algebra and a ∈ F × . Let B = ⊕2

i=0 Lei be the algebra with multiplication defined by
e3 = a, ex = ρ(x)e for all x ∈ L, and set W := eL. Then (B, W ) is a cubic pair over F and f B,W is triangular.
Moreover f B,W is isometric to aNL .

3. The form determines the algebra

Let (A, V ) and (A′, V ′) be cubic pairs over F and suppose that f A,V and f A′,V ′ are isometric. In
this section we shall prove that A and A′ are either isomorphic or anti-isomorphic.

We may assume that F contains a primitive cube root of unity. Indeed, if A ⊗F F (ω) ∼= A′ ⊗F F (ω),
then A ∼= A′ since A and A′ are central simple algebras of degree 3 and F (ω)/F is an extension of
degree at most 2. We may also assume that A is division, because there is nothing to prove if A and
A′ are split. Therefore, by Theorem 1.7, the cubic form f A,V is either nonsingular or triangular.

First case. Suppose that f A,V is nonsingular, then so is f A′,V ′ . By Theorem 1.7, there exist ai,a′
i ∈ F × ,

λ,λ′ ∈ F such that 1 + λ3a1,1 + λ′ 3a′
1 �= 0 and
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A = (a1,a2)ω,F , V = spanF

〈
ξ1, ξ2, ξ1ξ

2
2 + λξ2

1 ξ2
2

〉
,

A′ = (
a′

1,a′
2

)
ω,F , V ′ = spanF

〈
ξ ′

1, ξ
′
2, ξ

′
1ξ

′2
2 + λ′ξ ′2

1 ξ ′2
2

〉
where A (resp. A′) is generated by ξ1, ξ2 such that ξ3

i = ai and ξ1ξ2 = ωξ2ξ1 (resp. ξ ′
1, ξ

′
2 such that

ξ ′ 3
i = a′

i and ξ ′
1ξ

′
2 = ωξ ′

2ξ
′
1). Set

ξ3 := ξ1ξ
2
2 + λξ2

1 ξ2
2 , a3 := ξ3

3 , ξ ′
3 := ξ ′

1ξ
′2
2 + λ′ξ ′2

1 ξ ′2
2 , a′

3 := ξ ′3
3 .

We recall properties of nonsingular cubic forms and we refer to [1] or [3] for more details. A non-
singular cubic form f on a 3-dimensional vector space V has 9 inflexion points in the projective
plane PV (Fs). There are four triangles (i.e. cubic curves associated with triangular cubic forms) in
PV (Fs) with the property that each inflexion point is incident with one and only one line of the
triangle and each line of the triangle passes through exactly 3 inflexion points. These triangles are
called inflexional triangles of f . For a triangular cubic form g = ϕ1ϕ2ϕ3 over V , we denote by g = 0
the triangle formed by the zeros of the linear forms ϕi in PV (Fs).

The map V → K := F × F × F which sends ξ1, ξ2, ξ3 on the canonical basis of K is an F -vector
space isomorphism. Under this isomorphism, f A,V is isometric to the form

TrK ,α − 3bNK : K → F : x �→ TrK
(
αx3) − 3bNK (x)

where α = (a1,a2,a3) and b = ω2a1a2λ. The inflexional triangles of the form TrK ,α −3bNK are NK = 0
and TrK ,α − 3θNK = 0 for all θ ∈ Fs such that θ3 = NK (α). Let (ϕ1,ϕ2,ϕ3) denote the dual basis of
(ξ1, ξ2, ξ3), then under the previous isomorphism V → K , the form ϕ1ϕ2ϕ3 is isometric to NK . Hence
Γ acts trivially on the lines of the corresponding inflexional triangle. In fact, we have the following:

Lemma 3.1. There exists a unique inflexional triangle of f A,V whose lines are defined over F .

Proof. Suppose that Γ acts trivially on the lines of TrK ,α − 3θNK = 0, for some θ ∈ Fs such that
θ3 = NK (α). For x = (x1, x2, x3) ∈ K , TrK (αx3) − 3θNK (x) is equal to

(θ1x1 + θ2x2 + θ3x3)
(
θ1x1 + ωθ2x2 + ω2θ3x3

)(
θ1x1 + ω2θ2x2 + ωθ3x3

)
for some θi ∈ Fs such that θ3

i = ai and θ1θ2θ3 = θ . Since Γ acts trivially on the line θ1x1 + θ2x2 +
θ3x3 = 0, there exists a nonzero u ∈ F such that θ2 = uθ1. This implies that a2 = u3a1, which contra-
dicts the assumption that A is division. �

Let (ϕ′
1,ϕ

′
2,ϕ

′
3) be the dual basis of (ξ ′

1, ξ
′
2, ξ

′
3). Then ϕ′

1ϕ
′
2ϕ

′
3 = 0 is an inflexional triangle of

f A′,V ′ whose lines are defined over F . Let Θ : V → V ′ be an F -vector space isomorphism such that
f A,V = f A′,V ′ ◦ Θ , then

ϕ1ϕ2ϕ3 F = (
ϕ′

1ϕ
′
2ϕ

′
3 ◦ Θ

)
F .

Thus there exist λi ∈ F × and a permutation π of {1,2,3} such that

ϕ′
i ◦ Θ = λπ(i)ϕπ(i) for all i ∈ {1,2,3}.

For all i, j ∈ {1,2,3}, we have

ϕ′
i ◦ Θ(ξπ( j)) = λπ(i)ϕπ(i)(ξπ( j)) = δi jλπ(i),
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hence Θ(ξπ( j)) = λπ( j)ξ
′
j . We obtain that aπ( j) = λ3

π( j)a
′
j and b = λ1λ2λ3b′ where b′ = ω2a′

1a′
2λ

′ . But
a1 is the only scalar among the ai ’s such that

a1a2a3 − b3

a2
i

∈ F ×3.

Indeed a1a2a3 − b3 = a2
1a3

2, thus a−2
1 (a1a2a3 − b3) ∈ F ×3; if a−2

2 (a1a2a3 − b3) ∈ F ×3, then a1 F ×3 =
a2 F ×3 and it contradicts the assumption that A is division; similarly, a−2

3 (a1a2a3 − b3) /∈ F ×3. On the

other hand, we have a′−2
1 (a′

1a′
2a′

3 − b′ 3) ∈ F ×3 and

a1a2a3 − b3

aπ(1)2
=

(
λ1λ2λ3

λ2
π(1)

)3 a′
1a′

2a′
3 − b′3

a′2
1

∈ F ×3;

therefore π(1) = 1. If π(2) = 2, then

(
λiξ

′
i

)3 = ai and
(
λ1ξ

′
1

)(
λ2ξ

′
2

) = ω
(
λ2ξ

′
2

)(
λ1ξ

′
1

)
,

thus A′ ∼= A. If π(2) = 3, then

(
λ1ξ

′
1

)3 = a1,
(
λ2ξ

′
3

)3 = a2 and
(
λ1ξ

′
1

)(
λ2ξ

′
3

) = ω2(λ2ξ
′
3

)(
λ1ξ

′
1

)
,

thus A′ ∼= Aop .

Second case. Suppose that f A,V is triangular. Then there exist ai,a′
i ∈ F × such that

A = (a1,a2)ω,F , V = spanF

〈
ξ1, ξ2, ξ

2
1 ξ2

2

〉
,

A′ = (
a′

1,a′
2

)
ω,F , V ′ = spanF

〈
ξ ′

1, ξ
′
2, ξ

′2
1 ξ ′2

2

〉
where A (resp. A′) is generated by ξ1, ξ2 such that ξ3

i = ai and ξ1ξ2 = ωξ2ξ1 (resp. ξ ′
1, ξ

′
2 such that

ξ ′ 3
i = a′

i and ξ ′
1ξ

′
2 = ωξ ′

2ξ
′
1). Let θ ∈ Fs be a cube root of a−1

1 a2. Since A is division, θ /∈ F . We have

f A,V
(
x1ξ1 + x2ξ2 + x3ξ

2
1 ξ2

2

) = a1NF (θ)

(
x1 + x2θ + ω2a1x3θ

2).
Let θ ′ ∈ Fs be a cube root of a′−1

1 a′
2. Similarly, f A′,V ′(x1ξ

′
1 + x2ξ

′
2 + x3ξ

′ 2
1 ξ ′ 2

2 ) is equal to

a′
1

(
x1 + x2θ

′ + ω2a′
1x3θ

′2)(x1 + ωx2θ
′ + ωa′

1x3θ
′2)(x1 + ω2x2θ

′ + a′
1x3θ

′2).
Since f A,V ∼= f A′,V ′ , we have θ ′ /∈ F and, by Proposition 8 in [7], the fields F (θ) and F (θ ′) are isomor-
phic. We deduce that either θ ′ F = θ F or θ ′ F = θ2 F . Identifying θ with ξ−1

1 ξ2 (resp. θ ′ with ξ ′−1
1 ξ ′

2),
we have

A =
2⊕

i=0

F (θ)ξ i
1 and A′ =

2⊕
i=0

F (θ ′)ξ ′ i
1

where ξ1θ = ωθξ1 and ξ ′
1θ

′ = ωθ ′ξ ′
1. Because f A,V is isometric to f A′,V ′ , there exist ui ∈ F such that

a1NF (θ)

(
u1 + u2θ + u3θ

2) = a′
1.
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Set η1 := ξ1(u1 + u2θ + u3θ
2), then

η3
1 = a1NF (θ)

(
u1 + u2θ + u3θ

2) = a′
1 and η1θ = ωθη1.

Hence A = ⊕2
i=0 F (θ)ηi

1 with η3
1 = a′

1 and η1θ = ωθη1. So

A ∼=
{

A′ if θ ′ F = θ F ,

A′op if θ ′ F = θ2 F .

We thus obtain the following:

Theorem 3.2. Let (A, V ) and (A′, V ′) be cubic pairs over F . Suppose that f A,V and f A′,V ′ are isometric, then
the algebras A and A′ are either isomorphic or anti-isomorphic.
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