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1. Introduction

Let C be a cyclic group of order p", where p is a prime and v > 1, and let K be a field of
characteristic p. It is well known that there are, up to isomorphism, exactly p” indecomposable KC-
modules, and these can be written as V¢, Va,..., Vpv, where V; has dimension r, for r=1,..., p".
The exterior powers A"(V,) and symmetric powers S"(V;) have been studied intermittently for more
than thirty years. Some of the main contributions have been by Almkvist and Fossum [2], Kouwen-
hoven [10], Hughes and Kemper [8], Gow and Laffey [6] and Symonds [19]. The main aim has been
to describe A™(V;) and S™(V,), up to isomorphism, as direct sums of indecomposable modules. An
explicit formula is probably not feasible, but one can look for a recursive description, so that, for ex-
ample, A™(V;) is described in terms of exterior powers A™(V;) where m <n or j <r. The case v=1
was settled in [2], although further information was provided by a number of people in subsequent
papers. However, for v > 1, the problem remains open in general.

It is helpful to work in the Green ring (or representation ring) Rygc. This consists of all formal Z-
linear combinations of V1, Va,..., V,v, with addition defined in the obvious way and multiplication
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coming from the decomposition of tensor products into indecomposables. Finite-dimensional KC-
modules may be regarded, up to isomorphism, as elements of Rgc. This ring was first studied in
detail by Green [7] in 1962, and he gave recursive formulae that implicitly describe multiplication
in Rgc. Improved formulae and algorithms were subsequently given by several other people: see, for
example, [15-18].

In this paper we study the Adams operations '} and v, for n > 1, following the treatment of
these in [4]. Both ¥ and ¢ are Z-linear maps from Ric to Ric. Furthermore, A™(V;) is given in

Q ®z Rkc as a polynomial in w}\(v,), .., ¥ (V). For example,

1

AX(Vy) = 5(whvaz —Y3(V), (11)

where w}‘(vr) = V,. Similarly, S"(V;) is given as a polynomial in w;(Vr), (V).

The main results of this paper determine v (V) and ¥{(V;) for n not divisible by p. Thus our
results could be used to determine A™(V;) and S"(V,) for n < p. For n not divisible by p, it is known
(see [4]) that 7 = . Thus, in this case, we write ", where ¢" = ¢} = ¢{. In Section 3 we
establish the periodicity of these Adams operations (namely, ¥" = ¥"t2P) and a symmetry property
(namely, y" = 2P~ forn=1,...,p — 1). We also prove a result (Proposition 3.6) that generalises
the “reciprocity theorem” of Gow and Laffey [6, Theorem 1]. Most of the results of Section 3 extend
work for v =1 by Almkvist [1] and Kouwenhoven [10].

Our first main result (Theorem 4.7) describes " (V) recursively in terms of the values y¥"(V;)
for j <r. This is a simple recursion that enables " (V;) to be calculated in a straightforward way by
elementary arithmetic, and (strangely enough) the recursion does not require any ability to multiply
within Rgc.

One can apply this result to find A%(V,) in the case where p is odd, by means of (1.1). Given
¥2(V,) it remains only to calculate V? by the methods available for multiplication in the Green ring.
This settles a problem left open by Gow and Laffey [6] who showed how to compute A2(V,) when
p=2.

Our second main result (Theorem 5.1) shows that " (V) has a strikingly simple form (unlike the
much more complicated form that one gets for A"(V,) or S"(V;)). Indeed, it turns out that

YV = Viy=Vj+Vjy—---£Vj,

where pY” > j1 > ja > --- > j; > 1. Thus the multiplicities of indecomposables in " (V;) are only 0, 1
and —1, and the non-zero multiplicities alternate in sign.

The importance of using Adams operations in the study of KC-modules was recognised by
Almkvist [1], who studied them in the case v = 1. An extremely useful contribution to the study
of A™(V}) in the general case (v > 1) was made by Kouwenhoven [10, Theorem 3.5], and his theorem
is a key ingredient of our work. By this theorem it is possible to calculate the values of ¥ (for all n)
on a generating set of Ric. However, for n not divisible by p, it is known (see [4]) that ¥" is an
endomorphism of Rgc. Thus, in this case, it becomes possible to calculate ¥" on an arbitrary ele-
ment of Rgc. Kouwenhoven studied Adams operations in his paper [10], and they also figure in his
subsequent papers [11-14], but his published results seem to be confined to the case where v =1.

Hughes and Kemper [8] exploited Kouwenhoven’s theorem and, indeed, the results of [8, Section 4]
provide, in principle, a method for calculating A"(V;) and S"(V;) for n < p. However, we believe that
our results on Adams operations give a simpler and more attractive approach.

In a further paper we shall study ¥ and ¢ on Ric for the general case where n may be divisible
by p. We shall prove periodicity results and show that the work of Symonds [19] may be attractively
formulated in terms of Adams operations.

2. Preliminaries

Let G be a group and K a field. We consider KG-modules, by which we always mean finite-
dimensional right KG-modules, and we write Rk for the associated Green ring (or representation
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ring). Thus Ry is spanned, over Z, by the isomorphism classes of KG-modules and has addition and
multiplication coming from direct sums and tensor products, respectively. In fact, Rgc has a Z-basis
consisting of the isomorphism classes of indecomposable KG-modules.

For any KG-module V, we also write V for the corresponding element of Rg¢. Thus, for KG-
modules V and W we have V =W in Rg¢ if and only if V = W. The elements V + W and VW
of Rk correspond to V @ W and V ®g W, respectively, and the identity element 1 of Rg¢ is the
1-dimensional KG-module on which G acts trivially. If V is a KG-module and n is a non-negative
integer, then we regard A™"(V) and S"(V) as elements of Rgg.

The Adams operations on Rg¢ are certain Z-linear maps from Rgg to Rgg. We follow the treat-
ment in [4]. For this purpose we need to extend Rk¢ to a ring QRgc where we allow coefficients
from Q: thus QRk¢ = Q ®z Rkg.

For any KG-module V, define elements of the power-series ring Rixc[[t]] by

AWV, =1+ AWt + A2V +- -,
S(V,t)=1+S' (W)t +S2(V)t?> +---.

(Since V is assumed to be finite-dimensional, A(V/, t) actually belongs to the polynomial ring Rk¢[t].)
Using the formal expansion of log(1 + x), we have elements log A(V,t) and logS(V,t) of QRkc¢[[t]].
Thus we define elements ¥/ (V) and y¢(V) of QRgg, for n=1,2,..., by the equations

1 1
VAWt = SYZ(VIE + 2y (VE — - =log AV, 1),
1 1
YsWt+ Y (VIE + 2Y3(V)E + - =log S(V, D). 1)
It is not difficult to prove (for more details see [4]) that ¢} (V), ¥¢(V) € Rkc and

YAV + W)=y (V) + Y (W), ¢V +W)=yg(V)+ yg(W),

for all n > 1 and all KG-modules V and W. It follows that the definitions of " and ¢ may be
extended to give Z-linear functions

¥’ : Rk = Rka. Ve Rike — Rk,
called the nth Adams operations on Rgg. It is easily verified that l”}x and w; are equal to the identity
map on Rgg.

For any element W of Rxc we may now define elements A(W,t) and S(W,t) of QRk¢[[t]] by
the equations

_ 1 1, 2, 1 3 3
AW, t) =exp| ¥, (W)t zwA(W)t +31//A(W)t s

_ 1 LIVE RRYVAN SRLIVE DRYVav SO
S(W,t)=exp| ys(W)t+ zl/fs WHte + 31/IS(W)t + .

Hence Eqgs. (2.1) hold if V is replaced by any element W of Rgg.
The following result is part of [4, Theorem 5.4].

Proposition 2.1. For every positive integer n not divisible by the characteristic of K, we have ¥}, = ¢¢ and
each of these maps is a ring endomorphism of Rk ¢. Furthermore, under composition of maps we have
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Yhoyh =y, yloyl =y,
for all positive integers n and n’ such that n is not divisible by char K.

We shall be mainly concerned with Adams operations ', and ¢ for n not divisible by charK.
For these operations we write 1", where ¥" = ¢} = y{. We also write § for the ‘dimension’ map
8 : Rgc — Z. This is the Z-linear map satisfying §(V) =dim V for every KG-module V.

If Gy is a group of order 1 then any KGi-module V may be written as §(V) -1 (where 1 is the
identity element of Rgg,) and it is easily verified that

AV, H=1+0Y, s, H=1-0"*W),

It follows that ¢} (V) = y¢(V) =V for all n. Thus each ¥} and each y{ is the identity map on Rgg,.

For an arbitrary group G we have homomorphisms G — G1 and G; — G giving ring homomor-
phisms « : Rgg, = Rk and B : Rkc — Rkg,, respectively. Here o is an embedding, 8 is given by
restriction of modules to the identity subgroup, and a(8(W)) =8§(W) -1 for all W € Rg¢ (where
1 is the identity element of Rg¢). The formation of exterior and symmetric powers commutes with
restriction: hence oy} =y o B and B o Y =y o B, giving

B(WR(W)) =B(¥E(W)) =BW),

for all W € Rk¢. On applying o we obtain an equality of ‘dimensions’:

S(YRW)) =8(vg(W)) =8(W), (2.2)

for all W € Rgg and all n > 1.

Now let p be a prime and K a field of characteristic p. Let v be a non-negative integer and
let C(p") denote a cyclic group of order p". It is well known that there are, up to isomorphism,
precisely p” indecomposable KC(p”)-modules, V1, V>,..., Vpv, where dimV, =r for r=1,...,p".
(For a proof of this fact see [2, Proposition 1.1.1] or [8, Proposition 2.1].) Here V; is the trivial 1-
dimensional KC(p")-module and Vv is the regular KC(p")-module.

If K" is an extension field of K there is an embedding Rxc(yv) = Rik/c(pv) given by extension of
scalars, and the image of V, is easily seen to be the indecomposable K’'C(p”)-module of dimension r.
Thus Ricpvy = Rirc(pv). Hence we regard Ryc(pvy as the same for all fields of characteristic p, and
write it as Rpv. The identity element of Rpv is sometimes written as 1 and sometimes V.

For each non-negative integer m, let C(p™) be a cyclic group of order p™ and choose a surjective
homomorphism C(p™*1) — C(p™). Thus, for j > m, the group C(p™) may be regarded as a factor
group of C(pY), and there is an injective homomorphism Rpm — R,j mapping the r-dimensional inde-
composable KC(p™)-module to the r-dimensional indecomposable KC(p?)-module, for r=1,..., p™.

Consequently we may take Rpo C Rp1 C--- C Rpv, where Rpm has Z-basis {Vy, ..., Vyn} for m =
0, ..., v. Throughout the paper we also write Vo=0and V_,=-V, forr=1,...,p".

Suppose that v > 1. For m=0,...,v — 1 we define X, € Rpm-H by

Xm = me+1 - Vp”"—]»

modifying slightly the notation of [2]. In particular Xo = V;. These elements were earlier considered
by Green [7] in a different notation.

Proposition 2.2. Let m € {0,1,...,v—1}andre€{0,...,(p — 1)p™}. Then

XV = Vg pm + Vypm.
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Proof. For 0 <r < (p — 1)p™ this is given directly by [7, (2.3a) and (2.3b)]. For r =0 it is trivial, and
for r=(p — 1)p™ it follows easily from [7, (2.3¢)]. O

By the remark immediately after [7, Theorem 3] or by [2, Proposition 1.1.6], the Green ring Rpv is
generated by the elements Xo, ..., X,_1.

Let m € {0, ..., v}. Because V,m is the regular KC(p™)-module, we have VpmV, =rVpm for r =
1,...,p™ (by [9, VIL7.19 Theorem], for example). Hence

Von W = 8(W)V pym, (2.3)

for all W € Rpnm. It follows that ZV,m is an ideal of R,m. For A, B € Rym we write A= B (mod Vpm)
to denote that A — B € ZV pm. In fact, such a congruence gives an equation, by consideration of di-
mension, namely A =B+ p~"8(A — B)Vpm.

Note that V,m is the only projective indecomposable KC(p™)-module. Also, for r € {1,..., p™}, it
is well known and easy to see that Vm_; is the Heller translate of V, as KC(p™)-module: we write

pm (Vi) =Vpm_;. (2.4)

(For general properties of the Heller translate see [3], for example.) We extend £2,m to a Z-linear map
£pm : Rpm — Rpm. Then, for all W € Rym, we have

2pm (2pm(W)) =W (mod Vpym). (2.5)
For KC(p™)-modules U and V, consideration of tensor products gives

pmUV)=2pmU)V  (mod Vym)
(see [3, Corollary 3.1.6]). Hence, for all A, B € Rym, we have

$2pm(AB) = 2pm(A)B  (mod Vm). (2.6)
3. Periodicity and symmetry

For the remainder of the paper, p is a prime and v is a positive integer. We consider the Green
ring Rpv for the cyclic group C(p”) and use the notation of Section 2. In particular, Xp = Vpmiq —

Vpm_q form=0,...,v—-1. R
As in [2, Section 1.1] and [8, Section 4.1], let R,v be extended to a ring R,v generated by Rpv and
eleglents Eo,..., Ey_1 satisfying E,Zn — XmEm+1=0form=0,...,v— 1. Thus each E,, is invertible

in Ryv and Xiy = Epy + E,;l. (Note that E;; is written as Wn in [2] and [8].)
By [10, Theorem 3.5], we have A(Xp,t) =1+ Xt +t2. Thus

AXm, ) =1+ (Em + Ep )t +t2 = (1 + Ent)(1+ E; 1),
and so, in (Q ®z 'ﬁpv)[[t]], we have
log A(Xm, t) = log(1 + Emt) + log(1 + Ep't)

1 1
= (Em+Ep')t — 5(Eﬁ1 +ERY) + g(E; +EZ)E—-
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Hence, by (2.1), we obtain

YU (Xm) =Ep + E;" foralln>1

2823

(3.1)

For the moment we fix m in the range 0 <m < v — 1 and write E = E,, and E®™ = E" + E~" for

all n > 0. Note that, forn > 1,
EMEN — pt1) | pln=1).
Write Z = Vym — Vpm_y. Thus Z2 =1, by [8, (4.4)], and, by [8, Theorem 4.2],
(ZE—1)((ZEY*»™' = (ZE)*P 2 +...+ ZE—1) =0.
Since Z2 =1, we obtain
E?P —27E?P~1 4 2F?P—2 _ ... _27ZE+1=0.
Lemma 3.1. We have E(P+1) = E(P—1),

Proof. Assume first that p is odd. Multiplying (3.3) by E~P we obtain

EP —2ZEP~ ' 4. .4 2E—2Z+42E 1 —... —2ZE~P"D L E7P =,

Hence

EP =2zEWP-1 _2pP=2 4 ... 2D 427

Therefore, by (3.2),

EPHD 4 =D —27EP) _ 2= 4 47EP=2) _ ... 4 47ED — 4.

(3.2)

(3.3)

(3.4)

Hence, by (3.4), EP+1D 4 E(P=1) = 2E{P—1) This gives E(P+1) = E{(P~1) a5 required. The proof is similar

forp=2. O
Proposition 3.2.

(i) For j=0,..., p, we have E®P—i = EU),
(i) Forall c >0, we have E(2P+¢) = E{©),

Proof. By Lemma 3.1, E{P*1) = EP~1) Multiplying by E{1 we get

E(P+2) L B _ E() 4 g(p-2)

and so E{Pt2) = E{P=2) Continuing in this way we obtain EP+) = E(P=J} for j=0,1,..., p. This
gives (i).
In particular we have E2P) = E{®) = 2. This gives (ii) in the case ¢ = 0. Multiplying the equation

E2P) =2 by E() we get E2P+1) 1 Ef 21’ 1 =2EM, Since E?P~1) = E(M by (i), we have E@P+1) = E{D),

This gives (ii) in the case ¢ = 1. Continuing in this way we get the result for all c. O

From now on we write " = v for all n not divisible by p. (Thus, in fact, y" =y} = ¢¢.)
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Theorem 3.3.For j=1,...,p — 1, we have ¥2P—i = y/J_ Also, if c is any positive integer not divisible by p,
we have y2P+¢ = €.

Proof. As noted in Section 2, R,v is generated by {Xp: 0 <m < v —1}. Let j and c¢ be as stated.
Then Proposition 3.2 and (3.1) give ¥2P~J(Xp) = ¥J(Xm) and 1//21’+‘(X ) = ¥ (Xp) for all me
{0, ..., v — 1}. However, by Proposition 2.1, ¥2P—4, yJ, 2P*+¢ and ¢ are endomorphisms of Rpv.
Thus the result follows. O

Let ¢ be any positive integer not divisible by p. Then it is easy to see that there is a unique
integer y (c) satisfying the conditions 1 < y(c) < p—1 and c==+y(c) (mod 2p). Theorem 3.3 has the
following immediate consequences.
Corollary 3.4. For c a positive integer not divisible by p, we have y¢ = ¥ ©.

Corollary 3.5. Suppose that p = 2. Then ¢ is the identity map for every positive integer c not divisible by p.

Let n be a positive integer not divisible by p, and let m € {1, ..., v}. Then

me 1= (pm _2)me +V]7

by [7, (2.5b)]. Hence

Vim

p

Vpm_1 (mod Vpm) ifnisodd,
= { P P (3.5)

V1 (mod Vpm) if n is even.

By [4, p. 362], there are KC(p”)-modules Yy, for each divisor d of n, such that

Vin_ 1= _¢(d)Yq, (3.6)

din

where ¢ is Euler’s function. Also, by [4, (4.4) and Theorem 5.4],

Y (Vpn_1) =) pudYa, (3.7)

dn

where p is the Mdbius function.
Note that ¢(d) =1 only if d =1 or d = 2. Suppose first that n is odd. Then (3.5) and (3.6) give
Y1 =Vpm_q (mod Vpm) and Y4 =0 (mod Vpm) for all d > 1. Thus, by (3.7),

W“(me_ﬂ = me_1 (mod me).
However, §(y¥"(Vpm_1)) =p™ —1 by (2.2). Hence ¢"(Vym_1) = Vpm_1.

Now suppose that n is even. By (3.5) and (3.6), there exists e € {1, 2} such that Y, = V1 (mod Vm)
and Y4 =0 (mod Vm) for all d # e. Hence, by (3.7),

Y"(Vpm_1) =%V (mod Vpm).

Since n is even, p # 2. Thus, using (2.2), we get " (Vpm_1) = Vym — V1.
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Therefore, for all n not divisible by p,

Vpm_q ifn is odd,

"V,om_q) = 3.8
v Vpm-) {me—V1 ifn is even. (3.8)
By similar, but much easier, arguments we obtain
Y (Vpm) = Vpm forall n not divisible by p. (3.9)
By [7, (2.5b)], we have

me,1 Vi=(— 1)me + me,r, (3.10)

forr=1,..., p™. (Recall that Vo =0.) Hence, by Proposition 2.1 and (3.9),
YV )Y (V) = (r = DV pn + " (Vpn ), (311)

for all n not divisible by p. Note that (3.8)-(3.11) hold, trivially, for m = 0. Thus they hold for all m €
{0,...,v}.

Proposition 3.6. Let n be an even positive integer not divisible by p (thus p is odd), and let m € {0, ..., v}.
Then, forr =1, ..., p™, we have

YV + Y (Vpn_p) = V.
Proof. By (3.8) and (3.11),
(Vpm — VDU (Ve) = (r = DV pm + 9" (V).
However, Vpmy"(V;) =rVpm by (2.2) and (2.3). This gives the required result. O
By (3.10) and (2.4) we have, for all W € Rpm,
Vpm W =2pm(W) (mod Vpym). (3.12)

Proposition 3.7. Let n be an odd positive integer not divisible by p, and let m € {0, ..., v}. Then, for r =
1,...,p™, we have

¢H(Vp’"—r) = Q2pm (Wn(vr)) (mod Vpm).

Proof. By (3.8), ¥"(Vpm_1) = Vpm_q. Hence, by (3.11),

me—lwn(vr) = —1DVpm+ Wn(vpm—r)~
Thus the result follows by (3.12). O

Propositions 3.6 and 3.7 are partial generalisations of [1, Propositions 5.4(d) and 5.4(e)]. Stronger
results will be given below in Corollary 5.2.

We conclude this section by showing that, when n = 2, Proposition 3.6 implies Gow and Laffey’s
“reciprocity theorem” [6, Theorem 1]. This may be stated in the Green ring as follows (after correction
of the obvious misprint in [6]).
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Corollary 3.8. Let p beodd and m € {1, ..., v}. Then, forr =1, ..., p™,

(i) A2(Vp) =@ — 2™ + 1) Vpm + S2(Vpm_y),
(ii) S2(V) = — (™ = 1) Vpm + A2(Vpm_y).

Proof. Since (i) and (ii) are essentially the same we prove only (i). It is well known that Sz(me,r) +
A2 (Vym_y) = Vﬁm,r. Thus

A2(Vp) = SP (V) = A* (Vi) + AP (Vn ) = Vi

re

By (1.1) (which follows from (2.1)), we have A%(V;) = 1(VZ—y2(V;)); and a similar statement holds
for A%(Vpm_,). Hence

1 1
A2V = S2(Vpm ) = (V7 = Viny) = S (W2 (V) + 92 (Vpn).

However, by (2.5), (2.6) and (2.4), we have

V2 = 2pn(2pm(V2)) = (2pn (V1)) = V2

pm—r

(mod Vpm),

so that V2 — V2

pm_r = (2r — p™)Vpm. Also, we have Y2V + 1//2(me4) = Vym, by Proposition 3.6.
Thus

1 1
A2(Vy) = S2(Vpm_y) = z(2r —p™)Vpm — SVom,
which gives the required result. O

4. Recursion

Define elements go(t), g1(t), ... of Z[t] by go(t) =2, g1(t) =t and, for n > 2,

gn(t) =tgn—1(t) — gn—2(H). (4.1)

The g,(t) can be seen to be Dickson polynomials of the first kind, and can be given by an explicit
formula, but we do not need this.

Proposition 4.1. Forn > 1and m € {0, ..., v — 1}, we have

W}x (Xm) = gn(Xm).

Proof. Clearly ¥} (Xm) = Xm and, by (3.1), ¥2(Xm) = X2 — 2. Hence the result holds for n < 2. It is
easy to check from (3.1) and (3.2) that, for n >3,

Y Xm) = Xy (Xim) — 1472 (Xim).-
Thus the result follows by induction and (4.1). O

For n < p, Proposition 4.1 can be deduced from (3.1) and [2, (1.1.4) and (1.1.5)]. Our next result is a
reformulation of [5, Lemma 4.2], but we give a proof for the convenience of the reader.
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Proposition4.2.letme {0,...,v—1}, re{1,...,p"},andi€{0,...,p — 1}. Then

gi(xm)vr = Vipm+r — Vipm—r~

Proof. The result is clear for i = 0 because, by convention, V_; denotes —V,. Since g1(Xy;) = Xm, the
result for i =1 is given by Proposition 2.2. Now suppose that 2 <i < p — 1 and the result holds for
i—1 and i — 2. Then, by (4.1) and the inductive hypothesis,

g Xm)Vr = Xm&i-1(Xm) Vi — gi2(Xm) Vr
= Xm(Vi—nypn+tr — Vi—1ypn—r) — (V(i—2)pm+r — V(i—2)pm—r)-

It is easy to verify that (i — 1)p™ +r and (i — 1)p™ — r belong to {0,...,(p — 1)p™}. Hence, by
Proposition 2.2,

EiXm)Vr = Vipnyr + Vii—ypmir) — Vipm ¢ + Vii—2ypm—r) — (V(i—2)pmyr — Vii—2)pm—r)
= Vipm+r - Vipm—r,
as required. O

For a positive integer ¢ not divisible by p, let y(c) be as defined in Section 3. Note that 1 < y(¢) <
p—1.

Corollary 4.3. Let m€ {0,...,v — 1}. Forr € {1, ..., p™} and c any positive integer not divisible by p, we
have

Y Xm)Vr = Vy©pm+r — Vy©pm—r.

Proof. By Corollary 3.4, ¥*(Xm) = ¥”©(Xn). Hence, by Proposition 4.1, ¥(Xm) = gy (c)(Xm). Thus
the result follows by Proposition 4.2. O

Forme{0,...,v—1}andie{l,...,p—1} let Oyym : Rpm — Rpm+1 be the Z-linear map defined by
eipm (Vp) = Vipnir — Vipn_r, (4.2)
forr=1,..., p™. Corollary 4.3 gives the following result.
Corollary 4.4. Let m € {0, ..., v — 1}. Let ¢ be any positive integer not divisible by p and let W € Rym. Then
WC(Xm)W = Qy(c)pm(w)~
Define elements f_1(t), fo(t), f1(t),... of Z[t] by f_1(t) =0, fo(t) =1, f1(t) =t and, for n > 2,

fn(t) = tfn—l(t) - fn—Z(t)- (4-3)

The f,(t) can be seen to be Dickson polynomials of the second kind, and can be given by an explicit
formula, but we do not need this. The following result is straightforward to prove by induction.
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Lemma 4.5. Foralln > 0,

_{gn+gn—2+~-~+g3+g1 ifnis odd,
" gn+8—2+--+8g&+1 ifniseven.

Our next result is essentially the same as [15, Lemma 6], but we give a proof for the convenience
of the reader.

Proposition 4.6. Let m € {0, ..., v — 1}. Then, forr € {1,...,p™}and k € {0, ..., p — 1}, we have

Vl<pm+r = fXm)Vr + fr—1 (Xm)vpm—r-
Proof. We use induction on k. The result is clear for k = 0. It is true for k =1 because Vpm , =
XmVr 4 Vpm_ by Proposition 2.2.

Now suppose that k € {2,..., p — 1} and that the result is true for k — 1 and k — 2. By (4.3), the
inductive hypothesis, and Proposition 2.2, we obtain

FeXm)Vr + fiet Xm)Vpm—r = Xim (fie1 Xin) Vi + fia(Xm) Vpm—r)
— (femaXm) Vi + fies(Xem) V)
=XmVk-1ypm+r — V=2 pmtr
= Vigmr,

as required. O

In the statement of the main result of this section it is convenient to extend the definition of y
by setting y (0) = 0. Recalling that ;m is defined by (4.2) for i € {1,..., p — 1}, we also define 6y to
be the identity map on Rpm.

Theorem 4.7.Letm € {0, ..., v — 1} and let n be a positive integer not divisible by p. Let s be a positive integer
satisfying p™ < s < p™*+1 and write s = kp™ +r, where 1 <r < p™ and 1 <k < p — 1. Then

VD= Y GG (W) D By (U (Ven).
j=k (mod 2) j#k (mod 2)

Proof. By Proposition 4.6, we have Vg = fi(Xin) V4 fi—1(Xm)Vpm_r. Suppose first that k is odd. Then,
by Lemma 4.5 and Proposition 4.1, we obtain

Vs= (" +¢* 24y X Vs
+ (TR ) Xin) Vpm e+ V.
By Proposition 2.1 it follows that
Y (Vo) = (W EP ey XY (V)
+ (w(k—l)n + w(k—3)n 4+t wzn)(xm)wn(vpm_r) + wn(vpm_r).

Therefore, by Corollary 4.4,
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W"(Vs) = (9)/(kn)pm + ey((k—Z)n)pm +oot Qy(n)p’")(wn(vr))
+ Oy (@e-1mpm + Oy (=3mppm + - + Oy @mypm +00) (" (Vpm ),
as required. The proof for even k is similar. O

Theorem 4.7 allows us to calculate " (V) for all s, and for all n not divisible by p, by elementary
arithmetic and without the need for multiplication in Rpv.

For example, take p =7 and v = 2. Let us calculate ¥#(V33). Thus n =4 and s = 23. In order to
apply Theorem 4.7 we take m =1 and write 23 =3-7 + 2. (Thus k=3 and r = 2.) It is easy to check
that y(4) =4, y(2-4) =6 and y (3 -4) = 2. Thus, by Theorem 4.7,

Y4 (Vas) = (Bag + 014) (V4 (V2)) + (B0 + 0a2) (¥ (V). (4.4)

We next calculate y#(V5), writing 2=1-1+1 in order to use Theorem 4.7. Thus

YA (V2) = 04(v* (V1)) + 60 (¥* (Vo)) = 04(V1) = V5 — V3.

We can calculate ¥#(Vs) in a similar way, or by means of Proposition 3.6, to obtain ¥*(Vs) = V; —
V5 + V3. Thus, by (4.4),
Y4 (Va3) = (28 + 614) (Vs — V3) + (0o + 042) (V7 — V5 + V3)
= (V33 = V23) + (V19 — Vg) = (V31 — V25) — (V17 — V11)
+V7+ (Vag = V35) = Vs — (Vg7 — V37) + V3 + (V45 — V39)
=V49 — Va7 + Va5 — V39 + V37 — V35 + V33 — V31 + Vo5

— Va3 +Vig—Viz+ Vi1 = Vo + V7 - Vs 4+ Vs,

We see that the indecomposables occurring have all subscripts of the same parity and have multi-
plicities that alternate between +1 and —1, in decreasing order of subscript. It turns out that these
statements hold in general. We shall prove them in Theorem 5.1 in the next section.

5. The form of " (V)

Theorem 5.1. Let n be a positive integer not divisible by p, and let s € {1, ..., pV}. Write A(s) for the smallest
non-negative integer such that s < p*®.

(i) There are integers ji, ..., ji such that p*® > j; > jo > ---> jy>1and
Y(Vs) = Vip =V +Vjy—-- £V
(ii) Ifnis even (so that p is odd) then ji, ..., jy are odd. If n is odd then j1, ..., j; have the same parity as s.

Before giving the proof we derive an improvement of Propositions 3.6 and 3.7.
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Corollary 5.2. Let n be a positive integer not divisible by p, and lets € {1, ..., p™}, wherem € {0, ..., v}.

(i) Ifn is even then one of ¥" (V) and " (V pm_s) has the form

Vig = Vj, +-- £V,

and the other has the form

Vpm =Vj +Vj, = FVj,

where ji, ..., jiareodd and p™ > j1 > jo > - > ji > 1.
(ii) Ifn is odd then ¥" (V) and Y™ (V ym_s) have the forms

Y(Vs) = Viip=Vj, +Vjy —---+ ij’
w"(me,s) =Vpm_jy =+ Vpm_jy = Vpm_j, + Vpm_j;,
where lis odd, ji, ..., j; have the parity of s, and p™ > j1 > jo > --- > j; = 0.

Proof. (i) This is immediate from Theorem 5.1 and Proposition 3.6.

(ii) If p =2 then ¢" is the identity map, by Corollary 3.5, and the result is clear. Thus we may
assume that p is odd. We argue according to the parity of s.

Suppose first that s is odd. By Theorem 5.1 we may write

YV =Vj = Vj, + Vi — £V,

where ji,..., j; are odd and p™ > j1 > j, > --- > ji > 1. By (2.2),

8(Vj1 — ij +~--:|:le)25.

Since s is odd it follows that | must be odd, and so ¥"(Vs) has the required form. By Theorem 5.1,
Y"(Vpm_s) is a linear combination of terms V; where i has the parity of p™ —s; so ¥"(Vpm_s) does
not involve Vpum. Thus, by Proposition 3.7,

Y (Vpmos) = Vpm_j — -+ Vpm_js = Vpm_j, + Vpm_j,.

(Note here that we may have p™ — j; = 0.) Thus the result holds for s odd. If s is even then p™ —s is
odd and we may interchange the roles of Vs and Vpm_s in the above argument. O

Proof of Theorem 5.1. For each integer a let [a] denote the congruence class of a modulo 2 and
let R[a] denote the additive subgroup of R,v spanned by all V; with [i] = [a]. Thus R[a] = R[O] or
R[a] = R[1]. Observe that (i) and (ii) of Theorem 5.1 are equivalent to (i) and the statement that
Yy (Vs) € R[ns +n +1].

To prove the theorem we use induction on m, where m = A(s). Since ¥" (V1) = V1, statements (i)
and (ii) are trivial for m = 0. Let m < v and assume that (i) and (ii) hold for all s with A(s) < m.
Now take s such that A(s) =m + 1. We shall prove that (i) and (ii) hold for V. Write q = p™, so that
pq = p™t1. Also, write s =kq +r, where 1 <r<qand 1<k<p—1, as in Theorem 4.7. Thus ¥"(V;)
and " (V4_r) are covered by the inductive hypothesis.

For each non-negative integer a define U, by

_{xp”(vr) if [a] = [k],
T YNV if[a] # K]
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Then, by Theorem 4.7,

k

YVs) =Y Oy (jmq(U)). (5.1)

j=0

We have ¢"(V;) € R[nr+n+1] and ¢"(V4—r) € R[n(q — ) +n+ 1], by the inductive hypothesis. It
follows easily that U;j € R[nr+n+1+(j+k)nq] for j=0,..., k. By the definition of 6y, (jn)q (see (4.2)),
we obtain

Oy (imq(Uj) € R[nr +n+ 1+ (j + kng + y (jn)q].

However, [y (jn)] = [jn]. Thus

Oy (imq(Uj) € R[n(kq+ 1) +n+1]=Rins+n+1].

Hence, by (5.1), we have " (V) € R[ns +n + 1]. Thus it remains only to prove that (i) holds. We deal
separately with the cases where n is even and n is odd.

Suppose first that n is even, so that p is odd. Clearly A(pq —s) < m + 1. Also, by Proposition 3.6,
Y (Vs) + ¥ (Vpg—s) = Vpq. It follows that if (i) holds for V,q_s then it holds for V;. Thus, by the in-
ductive hypothesis, we may assume that A(pq—s) =m+ 1. Either s < %pq or pq—s < %pq. Therefore,
without loss of generality, we may assume that s < %pq.

Since s =kq+r1 < %pq. we have k < %(p — 1). Suppose that y(sin) = y(syn), where s1,s, €
{1,...,k}. Then syn = +syn (mod 2p). Since p tn we obtain s; = +s; (mod p). Hence s; Fs2 =
0 (mod p). However, s1,s2 € {1, ..., %(p — 1)} because k < %(p —1). Therefore s; =s,. Thus the num-
bers y (n), y (2n), ..., y (kn) are distinct. They are even, since n is even. Hence we may write

{ym,y@n),....ykn)} ={ay,02. ..., a4},

where the a; are even and p —1>a; >a > -+ > a; > 2. Also, set a1 =0.
By (5.1) we have

W‘(Vs) = 9a1q(W1) +---+ Qakq(Wk) + Qak+1q(wk+1)» (5-2)

where W; e {y"(V;), y"(Vq—p)} for each j.
For integers a and b with pq >a>b > 0, let M[a, b] denote the set of all elements Y of R, that
can be written in the form

Y=Vi, = Vi, + Vi —--+ Vi, = Vi,

where h is even and a > i1 > iy > --- > i, > b. To prove (i) it suffices to show that ¥"(Vs) € M[pgq, 0],
for then we obtain the required expression for (V) by cancellation and by removal of terms V.
Suppose that pqg > ¢y > ¢ > --- > cg41 >0 and Yj € M[cj,cjyq] for j=1,...,d. Then, clearly,
Yi+Yy+---+Yq€Mlcr, ca1]
By the inductive hypothesis, each W; belongs to M[gq, 0], since we may introduce a term Vg if
necessary to give even length to the expression for Wj. It follows easily that 65,q(W ;) belongs to
M[(aj + 1)q, (aj — 1)q], for j=1,... k. Hence

ba,q(W ) € M[(aj + 1)q. (aj+1 + 1)q].

for j=1,...,k because aj > aj;1 + 2. Also,
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Oy 1g(Wis1) = W1 € M[gq, 0] = M[(ag41 + 1)g, 0].
Therefore, by (5.2), we have ¥"(Vs) € M[(a; + 1)q, 0] € M[pq, 0], as required.
We now turn to the remaining case, and assume that n is odd.

Since Theorem 5.1 holds for V; and Vq_,, by the inductive hypothesis, Corollary 5.2(ii) holds for
V; and Vg4_. Thus we may write

YV =Vj = Vi + Vi — 4V, (53)
V' (Vgr) =Vojy =+ Vagjs = Vg—jo + Vg, (54)

where [ is odd and g > j1 > j2 > --- > j; > 0.
Suppose that y(sin) = y(sn), where s1,s2 € {1,...,k}. Then we have s;n = +spn (mod 2p).
Since n is coprime to 2p we obtain s; = +s; (mod 2p). Hence s; Fs; =0 (mod 2p). Since

s1,82 € {1,...,p — 1}, it follows that s; = s,. Consequently, the numbers y (n), y (2n), ...,y (kn) are
distinct and we may write

vy, y@en),....ykn)} ={a1,a2, ..., 4},

where p—1>a; >az >--->ag > 1. Also, set a1 =0.
Since n is odd, we have [y (jn)] =[j], and (5.1) may be written

Wn(vs) = 901q(Ua1) + 9a2q(Uaz) +- gakq(Uak) + Qak+1q(Uak+1 ) (55)
With ji,..., jj as in (5.3) and (5.4), define Ty, for each a e {0,...,p —1}, by
Tag = { Vagtji = Vagtj, T+ + Vagtjy if [a] = [k],
7 Vagra—ii =+ = Vagrg—io + Vageq—jr  if [l # K]

Then it can be checked that 6,q(Ug) = Taq — T(a—1)q for alla € {1, ..., p—1}. Also, 6oq(Ug) = Toq. Thus,
by (5.5),

" (Vs) = Tayg — T@-1)g + Tazg — Ta—1yg + - + Targ = Ta—1)g + Tapsaq-

If aj —1=ajyq for some je{1,...,k} then we may cancel two adjacent terms in this expression.
After all such cancellations we obtain

1,”n(vs) = Tb1q - szq + = de,lq + deq’ (5-6)
where d is odd and p—1>by > by > --- > bg > 0.

For integers a and b where pqg>a>b > 0, let N[a, b] denote the set of all elements Y of Rpq that
can be written in the form

Y=Vi = Vi, +- = Vi, + Vi,
where h is odd and a >i; > iy > --- > i > b. To prove (i) it suffices to show that ¥"(V;) € N[pq, 0].

By the definition of T,y we see that Thiq € N[(bj + 1)q,bjq] for j=1,...,d. However, b;jq >
(bjy1+ 1q, for j <d— 1. Therefore, by (5.6),

¥"(Vs) € N[(b1 + 1)q, baq] < N[pg. 0],

as required. 0O
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