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We give several resolutions of the Steinberg representation Stn

for the general linear group over a principal ideal domain, in
particular over Z. We compare them, and use these results to
prove that the computations in Avner Ash et al. (2011) [AGM11]
are definitive. In particular, in Avner Ash et al. (2011) [AGM11]
we use two complexes to compute certain cohomology groups
of congruence subgroups of SL(4,Z). One complex is based on
Voronoi’s polyhedral decomposition of the symmetric space for
SL(n,R), whereas the other is a larger complex that has an action
of the Hecke operators. We prove that both complexes allow us
to compute the relevant cohomology groups, and that the use
of the Voronoi complex does not introduce any spurious Hecke
eigenclasses.

© 2011 Published by Elsevier Inc.

1. Introduction

In a series of papers [AGM02,AGM08,AGM10,AGM11] we computed the cohomology H5 with con-
stant coefficients of certain congruence subgroups Γ ⊂ SL(4,Z), with 5 being chosen since this is the
topmost degree that can contain classes corresponding to cuspidal automorphic forms [AGM02, §1].
We computed the action of the Hecke operators on the cohomology and studied connections with
representations of the absolute Galois group of Q.
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The main tool in our computations is the Steinberg module Stn , which is the dualizing module
of any torsionfree congruence subgroup of SL(n,Z) [BS73]. We used a variant of a resolution of the
Steinberg module for GL(4,Z) first published in [LS76]. This variant is called the sharbly complex. In
our previous papers, we only asserted that the sharbly complex is a resolution of Stn; in this paper,
we provide a proof.

When multiplication by 30 is not invertible in the coefficient module, our computations were not
definitive for the following reason. To compute the cohomology we use the Voronoi complex, which
is a chain complex built from an SL(n,Z)-equivariant polytopal tessellation of the symmetric space
SL(n,R)/SO(n). This tessellation is finite modulo SL(n,Z), and thus provides a convenient tool for
explicit computations. But to compute the action of the Hecke operators on cohomology, we must
use the sharbly complex instead of the Voronoi, since the Hecke operators act on the former and not
on the latter. There is a map from the Voronoi-based cohomology in degree 5 to the sharbly-based
cohomology in that degree that we thought we had to assume was injective for our results to be
meaningful. As far as we know, this map may fail to be injective. However, in this paper, we prove
that if n = 4, the Hecke eigenvalues we compute on H5 are meaningful. We show that they are Hecke
eigenvalues in the homology of Γ with coefficients in the sharbly complex. We prove a similar result
for n = 3.

Given any congruence subgroup Γ ⊂ SL(n,Z) and any ZΓ -module M , one can compute the ho-
mology of the sharbly complex with coefficients in M . If M is a vector space over Fp for a prime p
that is not a torsion prime of Γ , or over a field of characteristic zero, then the sharbly homology is
isomorphic to the group cohomology of Γ . For torsion primes, however, what one computes with the
sharbly complex is not so clear. Our main result in this direction (Corollary 8) is that if p is any odd
prime, then the sharbly homology is isomorphic to the Steinberg homology with coefficients in M; by
definition this is H∗(Γ, Stn ⊗Z M). Note that these latter groups are exactly the group cohomology
of Γ with coefficients in M if Γ is torsionfree. Furthermore, we prove in Corollary 12 that if n � 4
the Voronoi homology (Definition 10) is isomorphic to the Steinberg homology. This was left open
in [AGM11].

We remark that the key to making our results work in odd characteristics is to replace alternating
chains with ordered chains in the sharbly complex. Our result on the meaningfulness of our Hecke
eigenvalue computations depends on using Lee and Szczarba’s original resolution of the Steinberg
module.

2. The resolution of Lee and Szczarba of the Steinberg module

In this section we briefly review the relevant contents of [LS76, §3]. We phrase Lee and Szczarba’s
construction slightly differently, but equivalently, in a way that is more suitable for our purposes.

Let n � 1. For any ring A, let An denote the right GL(n, A)-module of row vectors. We say that
v ∈ An is unimodular if the entries of v generate the unit ideal in a. Let Ms,t(A) denote the set of
all s × t matrices with entries in A. For any set U , let Z(U ) denote the free abelian group generated
by U . All homology will be taken with Z coefficients unless otherwise indicated.

Now we assume A is a principal ideal domain. Let F be its field of fractions, and assume n � 2.
The Tits building Tn(A) is the simplicial complex whose vertices are the proper nonzero subspaces of
F n and whose simplices correspond to flags of subspaces. Note that Tn(A) depends only on F . By the
Solomon–Tits theorem Tn(A) has the homotopy type of a wedge of (n − 2)-dimensional spheres. It is
a right GL(n, F )-module and therefore so is its homology. We define the Steinberg module to be the
reduced homology of the Tits building:

Stn(A) = H̃n−2
(
Tn(A)

)
. (1)

For each hyperplane H of F n let S(H) be the subcomplex of Tn(A) consisting of all simplices of
Tn(A) with H as a vertex. The S(H) form an acyclic cover of Tn(A), and for all q � 0 the nerve Ñ of
this cover satisfies

Hq
(
Tn(A)

) = Hq(Ñ).
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For k � 0 let Sk ⊂ Mn+k,n(A) be the set of all matrices M with all rows unimodular. Let Pk ⊂ Sk
be the subset of matrices with rank < n. These sets have a natural right action by GL(n, A). We define
the boundary operator

∂ : Z(Sk) → Z(Sk−1)

by ∂M = ∑n+k
i=1 (−1)i Mi , where Mi is the matrix formed from M by deleting its ith row. Since ∂ takes

Z(Pk) to Z(Pk−1), we can form the quotient complex

Ck(A) := Z(Sk)/Z(Pk).

This is a complex of right GL(n, A)-modules.
Theorem 3.1 of [LS76] asserts that there is an epimorphism φ : C0(A) → Stn(A) such that

· · · → Ck(A) → Ck−1(A) → ·· · → C0(A) → Stn(A) → 0

is a free GL(n, A)-resolution of Stn(A). For the convenience of the reader, and since we will need to
use similar arguments in the sequel, we sketch the proof.

Let K be the simplicial complex whose vertices are the unimodular elements in An and whose
simplices are all finite nonempty subsets of vertices. Let L be the subcomplex of K consisting of those
simplices all of whose vertices lie in one and the same proper direct summand of An . The group
GL(n, A) acts on the right of K and L. Since K is acyclic, the exact sequence of the pair (K , L) implies
Hk(K , L) = H̃k−1(L) for all k � 0.

If M is a simplicial complex or a pair of such, let C∗(M) denote the ordered simplicial chain com-
plex on M [Spa81, §4.3]. The following is Lemma 3.2 of [LS76]:

Lemma 1. Hq(K , L) = 0 if q �= n − 1 and Hn−1(K , L) ≈ Stn(A).

Assume the lemma. The (n − 2)-skeletons of L and K are the same, so Cn+k−1(K , L) = 0 if k < 0.
We obtain an exact sequence

· · · → Cn+k(K , L) → Cn+k−1(K , L) → ·· · → Cn−1(K , L) → Stn(A) → 0.

We can map a simplex σ in K to the matrix whose rows consist of the vertices of σ , in order.
This gives us isomorphisms for k � 0:

Cn+k−1(K ) ≈ Z(Sk) and Cn+k−1(L) ≈ Z(Pk).

Therefore Cn+k−1(K , L) = Ck(A) and we have an exact sequence

· · · → Ck+1(A) → Ck(A) → ·· · → C0(A) → Stn(A) → 0.

It remains to prove Lemma 1.

Proof of Lemma 1. Let H be the set of direct summands of rank n − 1 in An . Since A is a PID, H
is isomorphic to An−1. For H ∈ H, let K H denote the subcomplex of L consisting of all simplices
whose vertices lie in H . For the same reason that K is contractible, so is K H . More generally, if
H1, . . . , Hq ∈ H, then H1 ∩ · · · ∩ Hq is isomorphic to An−q and K H1 ∩ · · · ∩ K Hq is contractible.

Therefore, {K H } is an acyclic cover of L. Letting N denote its nerve, we have for all q � 0

Hq(L) ≈ Hq(N).
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The map H 
→ H ⊗A F defines a simplicial isomorphism N → Ñ . We obtain a sequence of GL(n, A)-
equivariant isomorphisms:

Hq(K , L) ≈ H̃q−1(L) ≈ H̃q−1(N) ≈ H̃q−1(Ñ) ≈ H̃q−1
(
Tn(A)

)
.

By the Solomon–Tits theorem and (1), the proof is complete. �
It is easy to see that C∗ is free as a GL(n, A)-module.
In [AR79], to each matrix X in GL(n, F ) is associated the modular symbol � X � ∈ Stn(A), which is

the fundamental class of the apartment corresponding to X in the Tits building. The map φ : C0(A) →
Stn(A) may be taken to be M 
→ �M �, and we will do so in the sequel.

3. A variant resolution of the Steinberg module

In this section we present a variant of the construction of Lee and Szczarba and prove that it gives
a resolution of the Steinberg module as well. We keep the same notation as in the preceding section.

Let Pn−1(F ) be the set of lines in F n . Set S ′
k = (Pn−1(F ))n+k and let P ′

k be the subset of S ′
k where

the lines in the (n +k)-tuple do not span F n . The right GL(n, F )-action on F n induces an action on S ′
k

that preserves P ′
k .

There is an obvious GL(n, A)-equivariant quotient map θk : Sk → S ′
k that induces a map Pk → P ′

k .
The boundary operator ∂ induces a boundary operator that we also denote by ∂:

∂ : Z
(

S ′
k

) → Z
(

S ′
k−1

)
.

As before ∂ takes Z(P ′
k) to Z(P ′

k−1), and we can form the quotient GL(n, F )-complex

C′
k(A) := Z

(
S ′

k

)
/Z

(
P ′

k

)
.

Note that φ : C0(A) → Stn(A) is constant on the fibers of θ0 and therefore induces an epimorphism
φ′ : C′

0(A) → Stn(A).

Theorem 2. The exact sequence

· · · → C′
k(A) → C′

k−1(A) → ·· · → C′
0(A)

φ′
→ Stn(A) → 0 (2)

is a GL(n, F )-resolution of Stn(A).

We remark that (2) is not a free GL(n, A)-resolution if A has more than one unit.

Proof. Let K ′ be the simplicial complex whose vertices are the elements of Pn−1(F ) and whose sim-
plices are all finite nonempty subsets of vertices. Let L′ be the subcomplex of K ′ consisting of those
simplices all of whose vertices lie in one and the same proper direct summand of F n . The group
GL(n, F ) acts on the right of K ′ and L′ . Since K ′ is acyclic, we have Hk(K ′, L′) = H̃k−1(L′) for all k � 0
from the exact sequence of the pair (K ′, L′).

Lemma 3. Hq(K ′, L′) = 0 if q �= n − 1 and Hn−1(K ′, L′) ≈ Stn(A) via φ′ .

Proof. Let H′ be the set of direct summands of rank (n − 1) in F n . Since F is a field, any H ∈ H′
is isomorphic to F n−1. For H ∈ H′ , let K ′

H denote the subcomplex of L′ consisting of all simplices
whose vertices lie in H ′ . For the same reason that K ′ is contractible, so is K ′

H . More generally, if
H1, . . . , Hq ∈ H, then H1 ∩ · · · ∩ Hq is isomorphic to F n−q , and K ′

H ∩ · · · ∩ K ′
H is contractible.
1 q
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Therefore {K ′
H } is an acyclic cover of L′ . Letting N ′ denote its nerve, we have for all q � 0

Hq
(
L′) ≈ Hq

(
N ′).

The identity map H 
→ H defines a simplicial isomorphism N ′ → Ñ . We obtain a sequence of GL(n, F )-
equivariant isomorphisms

Hq
(

K ′, L′) ≈ H̃q−1
(
L′) ≈ H̃q−1

(
N ′) ≈ H̃q−1(Ñ) ≈ H̃q−1

(
Tn(A)

)
.

Let X ∈ GL(n, F ) be associated to the modular symbol � X � ∈ Stn(A) . The apartment corresponding
to X in the Tits building depends only on the lines in F n generated by the rows of X . Thus the map
φ′ behaves as claimed, and this proves the lemma. �

We return now to the proof of Theorem 2. The (n − 2)-skeletons of L′ and K ′ are the same, so
Cn+k−1(K ′, L′) = 0 if k < 0. We obtain an exact sequence

· · · → Cn+k
(

K ′, L′) → Cn+k−1
(

K ′, L′) → ·· · → Cn−1
(

K ′, L′) → Stn(A) → 0.

Clearly, for k � 0 we have isomorphisms

Cn+k−1
(

K ′) ≈ Z
(

S ′
k

)
and Cn+k−1

(
L′) ≈ Z

(
P ′

k

)
.

Therefore Cn+k−1(K ′, L′) = C′
k(A), and we have an exact sequence

· · · → C′
k+1(A) → C′

k(A) → ·· · → C′
0(A)

φ′
→ Stn(A) → 0.

This completes the proof of the theorem. �
4. The sharbly complex

For the purposes of computing Hecke operators, one needs to modify the construction of Lee
and Szczarba to obtain a resolution of Stn(A) by GL(n, F )-modules. One possibility is to take A = F
obtaining a free GL(n, F )-complex C(F ), thereby allowing in principle an easy formula for the action
of Hecke operators on the homology. However, this resolution is far too big to be used for practical
computation.

To make Lee and Szczarba’s complex “smaller”, we simultaneously antisymmetrize and factor out
the action of scalars on row vectors, even though in this way we sacrifice freeness. We obtain the
sharbly complex Sh∗ , which gives a resolution of the Steinberg module by GL(n, F )-modules. In Sec-
tion 5, we will introduce much smaller resolutions using Voronoi theory.

Let Γ be a subgroup of finite index in GL(n, A). The sharbly resolution is Γ -free if Γ is torsionfree,
but in general it is not even Γ -projective.

The sharbly complex was defined in [Ash94], in a slightly different form from the definition in
[AGM11]. It is straightforward to see that the two different definitions give naturally isomorphic
complexes of GL(n,Z)-modules. The advantage of the latter definition is that there is an obvious
GL(n,Q)-action on the complex. We give here the latter form, generalized from Z to an arbitrary
principal ideal domain.

We continue to use the notation of the preceding sections.

Definition 4. The sharbly complex Sh∗ = Sh∗(A) is the complex of ZGL(n, F )-modules defined as fol-
lows. As an abelian group, Shk(A) is generated by symbols [v1, . . . , vn+k], where the vi are nonzero
vectors in F n , modulo the submodule generated by the following relations:
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(i) [vσ(1), . . . , vσ(n+k)] − (−1)σ [v1, . . . , vn+k] for all permutations σ ;
(ii) [v1, . . . , vn+k] if v1, . . . , vn+k do not span all of F n; and
(iii) [v1, . . . , vn+k] − [av1, v2, . . . , vn+k] for all a ∈ F × .

The boundary map ∂ : Shk(A) → Shk−1(A) is given by

∂
([v1, . . . , vn+k]

) =
n+k∑
i=1

[v1, . . . , v̂ i, . . . , vn+k],

where as usual v̂ i means to delete vi .

Writing v1, . . . , vn as row vectors, we let X(v1, . . . , vn) denote the matrix with the vi as rows, and
put �v1, . . . , vn � = � X(v1, . . . , vn)� as in the proof of Lemma 3. The map [v1, . . . , vn] 
→ �v1, . . . , vn �
is constant on the cosets of the group generated by the relations (i)–(iii) and thus defines a surjective
GL(n, F )-equivariant map φSh : Sh0(A) → Stn(A).

For each line �i ∈ Pn−1(F ) choose a nonzero unimodular vector vi ∈ �i ∩ An . The map (�1, . . . ,

�n+k) 
→ [v1, . . . , vn+k] extends to a GL(n, F )-equivariant chain map f : C′∗(A) → Sh∗(A) and φ′ =
φSh ◦ f .

Theorem 5. The following is an exact sequence of GL(n, F )-modules:

· · · → Shk(A) → Shk−1(A) → ·· · → Sh0(A)
φSh→ Stn(A) → 0.

Proof. We interpret f geometrically as follows. Since the (n − 2)-skeletons of K ′ and L′ are the
same, C′∗(A) is naturally isomorphic to the complex of ordered chains of the pair of simplicial com-
plexes (K ′, L′) and the sharbly complex Sh∗(A) is naturally isomorphic to the complex of oriented
(antisymmetric) chains of (K ′, L′). A standard fact tells us that the complex of ordered chains on a
simplicial complex Y is homotopy equivalent to the complex of oriented chains on Y (cf. [Spa81,
Theorem 4.3.8]). We take the long exact sequence in ordered homology coming from the pair (K ′, L′)
with its natural map to the long exact sequence in oriented homology coming from (K ′, L′). Using
Theorem 2, applying the “standard fact” to the homology of K ′ and L′ respectively, plus repeated use
of the Five Lemma gives the result. �
Definition 6. Let Γ be a subgroup of GL(n, F ) and M a right ZΓ -module. Consider M to be a
complex concentrated in dimension 0. We define the Steinberg homology of Γ with coefficients in
M to be H∗(Γ, Stn(A) ⊗Z M). We define the sharbly homology of Γ with coefficients in M to be
H∗(Γ, Sh∗ ⊗Z M).

Note that if Γ is torsionfree, then Borel–Serre duality [BS73] implies that the Steinberg homology
is isomorphic to the group cohomology of Γ . Also, if P is a projective resolution of Z over ZΓ , then
by definition

H∗
(
Γ, Sh∗(A) ⊗Z M

) = H∗
(

P ⊗Γ

(
Sh∗(A) ⊗Z M

))

(well-defined up to canonical isomorphism). From Theorems 2 and 5 and from the standard spectral
sequences of a double complex (e.g. [Bro94, p. 169]), we obtain spectral sequences

E1
p,q = Hq(Γ, C p ⊗Z M) ⇒ H∗

(
Γ, Stn(A) ⊗Z M

)
,

where C∗ = C′∗(A) or Sh∗(A).
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Theorem 7. Assume that A× is finite of order o and let d be the product of all m such that Γ has a subgroup
of order m. Assume that d is finite. Suppose that multiplication by the greatest common divisor gcd(o,d) is
invertible on M. Then we have isomorphisms

H∗(Γ, C∗ ⊗Z M) ≈ H∗
(
Γ, Stn(A) ⊗Z M

)

where C∗ = C′∗(A) or Sh∗(A).

Proof. The chain map C′∗(A)
f→ Sh∗(A) is a weak equivalence. By [Bro94, Proposition VII.5.2], the map

f induces an isomorphism on the homology of Γ with those coefficients. So it suffices to prove the
theorem for C∗ = C′∗(A).

Use the notation of the proof of Theorem 5. A basis for C′
k(A) is given by tuples B = (�1, . . . , �n+k)

such that the span of the lines �1, . . . , �n+k is all of F n . Let StabB be the stabilizer in Γ of B and let
sB be its order. Naturally, sB divides d.

We claim that sB also divides oN for some sufficiently large integer N . Let γ ∈ StabB . Then �iγ = �i
for all i. Therefore, for each i there exists ai ∈ A× such that viγ = ai vi . The vi span F n . It follows that
γ o = 1. So any prime dividing the order of any element of StabB divides o and the claim follows.

The Γ -module C′
k(A) is a direct sum of induced representations, each induced from StabB for

some B . By Shapiro’s lemma, Hq(Γ, C′
p(A) ⊗ M) is a direct sum of groups equal to Hq(StabB , M) for

various B . Since sB is invertible on M , these groups vanish when q > 0. Thus the terms in the spectral
sequence are 0 except when q = 0, which implies that the spectral sequence degenerates at E2. This
completes the proof. �

Since Z× = {±1}, Theorem 7 yields the following:

Corollary 8. Let A = Z. For any Γ ⊂ GL(n,Z) and any coefficient module M in which 2 is invertible, the
sharbly homology is isomorphic to the Steinberg homology.

It follows from Corollary 8 that (a) and (d) of Conjecture 5 in [AGM11] are equivalent, if p �= 2.

5. The Voronoi complex and its variants

From now on, we put F = Q and A = Z. Let X0
n be the space of positive definite real n × n

symmetric matrices. It is an open cone in the vector space Y 0
n of all real n × n symmetric matrices.

For each nonzero subspace W of Rn defined over Q, set b(W ) to be the rational boundary component
of X0

n consisting of the cone of all positive semidefinite real n ×n symmetric matrices whose kernel is
W . The (minimal) Satake bordification (X0

n )∗ of X0
n is the union of X0

n with all the rational boundary
components. It is convex and hence contractible.

Lemma 9. Let n � 2. If k �= n − 1, H̃k(∂ X∗
n ) = 0 and H̃n−1(∂ X∗

n ) ≈ Stn(Z).

Proof. Let W be a nonzero, proper subspace of Qn , thus a vertex of the Tits building Tn(Z). Let
X(W ) is the subset of X∗

n consisting of all semidefinite symmetric matrices whose kernel contains
W ⊥ . Note that X(W ) is homeomorphic to X∗

dim W , and hence contractible. Then ∂ X∗
n is covered by

the set of X(H) where H runs over hyperplanes of Qn . Also, if H1, . . . , H j are hyperplanes, then
X(H1)∩· · ·∩ X(H j) is nonempty if and only if H1 ∩· · ·∩ H j �= {0}, in which case X(H1)∩· · ·∩ X(H j) =
XH1∩···∩H j . Thus, the X(H) form an acyclic covering of ∂ X∗

n whose nerve is Tn(Z). The result now
follows from the spectral sequence for a covering, see e.g. Theorem VII.4.4, p. 168 of [Bro94]. �

If n � 4, we will produce a resolution of Stn(Z) based on the Voronoi decomposition of (X0
n )∗ .

Expositions of the Voronoi decomposition are given in [AMRT10, II.6] and [Ste07, Appendix].
The positive real numbers R×+ act on (X0

n )∗ by homotheties. Set X∗
n = (X0

n )∗/R×+ .
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If v ∈ Zn is a unimodular row vector, then t v v is a rank 1 matrix in (X0
n )∗ and thus generates

a rational boundary component. If v1, . . . , vm are m such vectors, we let σ(v1, . . . , vm) denote the
image of the closed convex conical hull of t v1 v1, . . . ,

t vm vm in X∗
n .

The Voronoi decomposition of X∗
n is the cellulation of X∗

n by the cells σQ = σ(v1, . . . , vm), where
Q runs over all positive definite real n × n quadratic forms, and where the nonzero integral vectors
that minimize Q over all integral vectors are exactly ±v1, . . . ,±vm . This includes the cells in the
rational boundary components of X∗

n . There is a right action of GL(n,Z) on X∗
n induced by the action

on X0
n : x · γ = tγ xγ . The Voronoi decomposition is stable under this action.

A basic fact is that there are a finite number of Voronoi cells modulo SL(n,Z). We will later need to
refer to the representatives of the SL(n,Z)-orbits of some of the Voronoi cells for n = 3,4 as tabulated
in [McC91]. For n � 4, there is only one Voronoi cell (modulo SL(n,Z)) that is not a simplex, and that
occurs in the top dimension when n = 4.

Let Vn denote X∗
n considered as a cell complex, with the Voronoi cellulation. Denote by ZV∗ the

oriented chain complex of Vn . That is, we fix an orientation on each cell of Vn . Then (ZV )r is the free
abelian group generated by the oriented cells of dimension r, and the boundary map from (ZV )r to
(ZV )r−1 sends an oriented r-cell to the linear combination of the (r − 1)-cells on its boundary that
keeps track of the chosen orientations.

A Voronoi cell σ(v1, . . . , vk) lies in a boundary component of X∗
n if and only if v1, . . . , vk do not

span Qn . Let ∂ X∗
n denote the union of all the boundary components, and let ∂Vn denote ∂ X∗

n consid-
ered as a cell complex, with the Voronoi cellulation. Denote by Z∂V∗ the oriented chain complex of
∂Vn .

Let Vr = ZVr/Z∂Vr . Write ((v1, . . . , vk)) for the generator in V∗ corresponding to the cell
σ(v1, . . . , vk). The boundary maps in all these chain complexes are induced by the boundary maps
on the Voronoi cells.

Definition 10. For any coefficient module M and any subgroup Γ ⊂ GL(n,Z), the Voronoi homology of
Γ with coefficients in M is defined to be the homology H∗(Γ, V∗ ⊗Z M).

Now let n � 4. Then there is only one GL(n,Z)-orbit of (n − 1)-dimensional cells in Vn .
(See [McC91].) They are all of the form σ(w1, . . . , wn), where w1, . . . , wn is a Z-basis of Zn . We
define a linear map φ : Vn−1 → Stn(Z) by sending

φ
(
(w1, . . . , wn)

) 
→ � w1, . . . , wn �. (3)

This is clearly GL(n,Z)-equivariant.

Theorem 11. Let n � 4. Then

0 → Vn(n+1)/2−1 → ·· · → Vk → Vk−1 → ·· · → Vn−1
φ→ Stn(Z) → 0 (4)

is an exact sequence of GL(n,Z)-modules.

Proof. By Lemma 9 we know that H̃k(∂ X∗
n ) ≈ Stn(Z) for k = n − 1 and vanishes in all other degrees.

Thus, the exact homology sequence of the pair (X∗
n , ∂ X∗

n ) and the contractibility of X∗
n imply that

H̃k(V∗) ≈ H̃k(∂ X∗
n ) for all k. The (n−2)-skeleton of X∗

n lies in ∂ X∗
n . Therefore Vk = 0 for k � n−2. Thus

all of Vn−1 consists of cycles, and its quotient by the image of the differential from Vn is isomorphic
to H̃n−1(∂ X∗

n ) ≈ Stn(Z).
Let (e1, . . . , en) be the standard basis of Qn . Following out the isomorphisms in the paragraph

above, we see that ((e1, . . . , en)) ∈ Vn−1 is sent to the class of the submanifold of positive semidefinite
diagonal matrices in ∂ X∗

n , which goes to the modular symbol � In � in Stn(Z). Therefore, using GL(n,Z)-
equivariance, the composite is the map φ from (3) as desired.

Since H̃k(∂ X∗
n ) vanishes for k � n, the rest of the sequence (4) is exact. �
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Corollary 12. Let n � 4 and Γ ⊂ GL(n,Z). Let d be the greatest common divisor of the orders of the finite
subgroups of Γ . For any coefficient module M on which multiplication by d is invertible, we have isomorphisms

H∗(Γ, V∗ ⊗Z M) ≈ H∗
(
Γ, Stn(Z) ⊗Z M

)
.

Proof. The proof runs along the same lines as the proof of Theorem 7. �
6. Voronoi sharbly homology classes and Hecke eigenvalues

For the remainder of this article, we take n = 3 or 4. We set m = 3 if n = 3 and m = 5 if n = 4.
Then every Voronoi cell of dimension � m is a simplex. To simplify notation, we regrade the Voronoi
complex and put Wk = Vk+n−1. We also drop the Z from the notation for C′ , Sh and Stn and omit
subscripts for complexes.

For 0 � k � m, define the map of Z[GL(n,Z)]-modules

θk : Wk → Shk

as follows: if σ(v1, . . . , vk+n) is a Voronoi cell, it is in fact a simplex, and we set θk((v1, . . . , vk+n)) =
[v1, . . . , vk+n]. Note that θ0 commutes with the maps to Stn .

In [AGM11], where n = 4, we wished to compute the homology H1(Sh) (as a Hecke module) of the
complex

Sh2 ⊗Z[Γ ] M → Sh1 ⊗Z[Γ ] M → Sh0 ⊗Z[Γ ] M

with Γ a congruence subgroup of SL(4,Z) and M = Z with trivial Γ -action. Similar computations are
anticipated for n = 3 in the near future.

What we actually computed in [AGM11] was the homology H1(W ) of

W2 ⊗Z[Γ ] M → W1 ⊗Z[Γ ] M → W0 ⊗Z[Γ ] M.

Let T be a Hecke operator and {xi} a basis of H1(W ). Using the algorithm in [Gun00], we found
elements yi in H1(W ) homologous in H1(Sh) to θ1,∗(xi). Then we found the eigenvalues of the linear
map that sends xi to yi . We did this because we do not have a good way to compute the action of T
directly on the Voronoi homology. The reason is that a direct computation of T would require acting
by integral matrices with determinant greater than 1, and such matrices do not stabilize the Voronoi
decomposition. See [AGM11] for more details.

In [AGM11, §5], we stated that there would be a problem if θ1,∗ is not injective, for then some
of the Hecke “eigenvalues” we computed would be meaningless. However, this was not accurate. As
far as we know now, θ1,∗ could fail to be injective. (It would be interesting to decide this point.)
Nevertheless, the Hecke eigenvalues we computed in [AGM11, §5] are in fact actual eigenvalues in
the sharbly homology as defined in Definition 7. The rest of this section is devoted to proving this
fact.

We refer to Lemma I.7.4 in [Bro94] as FLHA, or the fundamental lemma of homological algebra.
Let A be a ring and M a right A[Γ ]-module. Let K stand for one of the complexes C , W or Sh.

Each of these is a resolution of St. We give K ⊗Z M the diagonal Γ -action. Let F be a resolution of Z

by free Γ -modules. Form the double complex

D(A) := F ⊗Z[Γ ] (K ⊗Z M).

It is an A-module through the A-action on M . We have D pq(K ) = Fq ⊗Z[Γ ] (K p ⊗Z M). The boundary
maps are denoted as ∂1 : D pq(K ) → D p−1,q(K ) and ∂2 : D pq(K ) → D p,q−1(K ). The total differential ∂

on D pq(K ) is given by ∂ = ∂1 + (−1)p∂2. Then H(K ) := H(Γ, K ⊗Z M) is the total homology of D(K ).
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Referring for example to Section 5 of Chapter VII of [Bro94], we have two spectral sequences that
both abut to H(K ). We will refer to the “first spectral sequence” as the one whose E2 page is

I E2
pq(K ) = Hq

(
Γ, H p(K )

) ⇒ H p+q(K ),

and to the “second spectral sequence” as the one whose E1 page is

II E1
pq(K ) = Hq

(
Γ, C p(K )

) ⇒ H p+q(K ).

Let S be a subsemigroup of GL(n,Q) such that (Γ, S) is a Hecke pair. From now on we assume
that M is a right S-module and that F is a resolution of Z consisting of S-modules. Consider s ∈ S
and T the Hecke operator Γ sΓ . Then the action of T on H(K ) can be computed on the chain level
as follows.

Write Γ sΓ = ∐
siΓ as a finite disjoint union of single cosets, with si ∈ S . If x is a cycle in

(D(K ), ∂), denote the class in H(K ) that it represents by [x]. Then [∑ xsi] = [x]T . This gives us a
non-canonical lifting of T to the chain level. In other words, write s = ∑

si and view it as an operator
on the right on D(K ). Then s commutes with the boundary operators and [x]T = [xs] for any cycle x.

Let τm K be the truncation of K at degree m, i.e. the complex Km → Km−1 → ·· · → K0. The maps
θk above define a map of complexes θ :τm W → τm Sh. Since C consists of free Z[Γ ]-modules, the
FLHA gives us a map of Z[Γ ]-complexes φW : C → W that commutes with the augmentation maps to
St. We obtain the map of Z[Γ ]-complexes θ ◦ φW :τm C → τm Sh. Using the FLHA, we can extend this
to a map of Z[Γ ]-complexes φSh : C → Sh so that (φSh)k = θ ◦ (φW )k if k � m. Again, φSh commutes
with the augmentation maps to St.

It follows that φW and φSh are weak equivalences of Γ -chain complexes. Therefore, by Proposi-
tion VII.5.2 in [Bro94] (which uses the first spectral sequence), they induce isomorphisms H(C)

∼→
H(W ) and H(C)

∼→ H(Sh) respectively.

Theorem 13. Let x ∈ D1,0(W ) be a chain such that ∂1(x) = 0 and [x] ∈ II E2
1,0(W ) − {0}. Let T be a Hecke

operator, a ∈ K and assume that [θ(x)]T = a[θ(x)]. Then there exists ξ ∈ D0,1(Sh) such that (i) ξ + θ(x) is a
cycle in D1(Sh) representing a nonzero class z ∈ H1(Sh), and (ii) zT = az.

Proof. Since II E2
1,0(W ) = II E∞

1,0(W ), we know that [x] persists nonzero to II E∞(W ). In other words
there exists η ∈ D0,1(W ) such that η + x is a cycle in D1(W ) and represents a nonzero class in
H1(W ). By the paragraph preceding the theorem, we obtain that θ∗(η + x) = φSh,∗ ◦ φ−1

W ,∗(η + x) is a
cycle in D1(Sh) and represents a nonzero class in H1(Sh).

We take ξ = θ∗(η). Then ξ + θ(x) is a cycle in D1(Sh) and it represents a nonzero class in H1(Sh).
This proves assertion (i). Letting z denote this class, we compute zT on the chain level. It may help
to refer to the following diagrams. In D(W ) we have our cycle

η •

• x •

so that ∂2η = −∂1x. Mapping this to D(Sh) we have the cycle

ξ •

• θ(x) •

so that ∂2ξ = −∂1θ(x).
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By hypothesis, there exists u ∈ D11(Sh) and y ∈ D20(Sh) such that

∂1 y + θ(x)s − ∂2u = aθ(x)

on the chain level. It follows that

∂2(aξ) = −a∂1θ(x) = −∂1θ(x)s + ∂1∂2u = ∂2ξs + ∂2∂1u.

Since the columns of D are exact, there exists w ∈ D02(Sh) such that

aξ = ξs + ∂1u + ∂2 w.

In pictures,

w

ξs u

• θ(x)s y

shows that (ξ + θ(x))s is homologous to a(ξ + θ(x)) in H1(Sh). This proves (ii) and completes the
proof of the theorem. �
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