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1. Introduction

Fix a prime p € Z. Given a profinite group G, let A(G) denote the Z,-Iwasawa algebra of G, which
is the completed group ring

A(G) =Zp[G] =1imZ,[G /U],
U

Here, the projective limit runs over all open normal subgroups U of G. Note that the elements of A(G)
can be viewed in a natural way as Zy-valued measures on G. Let E be an elliptic curve defined over
Q of conductor N. Hence E is modular by fundamental work of Wiles [47], Taylor and Wiles [41],
and Breuil, et al. [3], with Hasse-Weil L-function L(E,s) given by that of a cuspidal newform f €
S2(Io(N)).

Let k be an imaginary quadratic field. The Hasse-Weil L-function L(E/k,s) of E over k is given by
the Rankin-Selberg L-function L(f x @, s), where @y is the theta series associated to k by a classical
construction (as described for instance in [11]). Let ko, denote the compositum of all Z,-extensions
of k, which by class field theory is a Zf,-extension. Let G denote the Galois group Gal(ks/k). The
complex conjugation automorphism of Gal(k/Q) acts on G with eigenvalues +1. Let k¢ denote the
Z,-extension associated to the +1-eigenspace, which is the cyclotomic Zp-extension of k. Let Dy
denote the Zj-extension associated to the —1-eigenspace, which is the dihedral or anticyclotomic Z-
extension of k. Let I denote the cyclotomic Galois group Gal(k?¢/k), and let £2 denote the dihedral
or anticyclotomic Galois group Gal(Doo/k). Let H denote the Galois group Gal(keo/k™), which is
naturally isomorphic to 2 =Z,. Let X(E/ks) denote the Pontryagin dual of the p*-Selmer group
of E over koo, which has the natural structure of a compact A(G)-module. The subject of this note
is the following conjecture, made in the spirit of Iwasawa (but often attributed to Greenberg and
Mazur), known as the two-variable main conjecture of lIwasawa theory for elliptic curves:

Conjecture 1.1. Let E be an elliptic curve defined over Q, and p a prime where E has either good ordinary or
multiplicative reduction.

(i) There is a unique element L,(E/ks) € A(G) that interpolates p-adically the central values
L(E/k,W,1)/825. Here, L(E/k, W, s) is the Hasse-Weil L-function of E over k twisted by a finite or-
der character VW of G, and $2y is a suitable complex period for which the quotient L(E /k, W, 1)/82y lies
in Q (and hence in Q, via any fixed embedding Q —> Qp).

(ii) The dual Selmer group X(E/keo) is A(G)-torsion, hence has a A(G)-characteristic power series
char sy X(E /koo).

(iii) The equality of ideals (L, (E /koo)) = (char sy X(E /kxo)) holds in A(G).

In the setting where E has complex multiplication by k, much is known about this conjecture
thanks to work of Rubin [35] (see also [36]), building on previous work of Coates and Wiles [6] and
Yager [48]. Here, we consider the somewhat more mysterious setting where E does not have complex
multiplication, and in particular what can be deduced from known Iwasawa theoretic results for the
one-variable cases corresponding to the Galois groups I" and §2.

We start with the construction of p-adic L-functions, (i). Given a finite order character WV of G,
let W(L) denote the specialization to WV of an element A € A(G). That is, writing dA to denote the
measure associated to A, let

W) = / W(g) - dr(g).
G

Fix a cuspidal Hecke eigenform f € S,(Ip(N)) of weight 2, level N, and trivial Nebentypus. Such an
eigenform f € S,(Io(N)) is said to be p-ordinary if its T,-eigenvalue is a p-adic unit with respect to
any embedding Q — Q,. Let
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o v = [ |f12 dxdy
TIo(N)\$

denote the Petersson inner product of f with itself. Let L(f x ® (W), s) denote the Rankin-Selberg
L-function of f times the theta series ® (V) associated to V, normalized to have central value at
s =1. The ratio

L(f xOW), 1)
87 2(f, fin

lies in Q by an important theorem of Shimura [39]. Using this fact, along with the constructions of
Hida [14] and Perrin-Riou [32], we obtain the following result.

Theorem 1.2 (Theorem 2.9). Fix an embedding Q —> Qp Let f € So(Io(N)) be a p-ordinary eigenform of
weight 2, level N, and trivial Nebentypus. Assume that N is prime to the discriminant of k, and that p > 5.
There exists an element (15 € A(G) whose specialization to any finite order character VW of G satisfies the
interpolation formula

L(f xOOWV), 1)~
W(Mf)=’7'm €Qp,

where n =n(f, W) is a certain explicit (nonvanishing) algebraic number.

Hence, we obtain a p-adic L-function L,(E/ks) = Lp(f/ks) € A(G) associated to this mea-
sure [if.

Remark. The two-variable p-adic L-function L,(f/ks) corresponding to dus also satisfies a func-
tional equation, as described in Corollary 2.10 below.

We now consider the Iwasawa module structure theory of (ii), using standard techniques. Recall
that we let H denote the Galois group Gal(keo/k®¢), which is naturally isomorphic to the dihedral or
anticyclotomic Galois group §2 = Z;. If E has good ordinary reduction at p, then an important the-
orem of Kato [23] with a nonvanishing theorem of Rohrlich [34] implies that the dual Selmer group
X(E/kY) is A(I')-torsion. To be more precise, the construction of Kato [23] with the nonvanish-
ing theorem of Rohrlich [34] show that the dual Selmer group X(E/Q%Y¢) is A(Gal(Q¥/Q))-torsion,
where Q9 denotes the cyclotomic Z,-extension of Q. It then follows from a simple restriction argu-
ment, using Artin formalism for abelian L-functions, that the analogous structure theorem holds for E
in the cyclotomic Z,-extension of any abelian number field. In particular, X(E/k%¢) is A(I")-torsion,
and hence has a A(I')-characteristic power series with associated cyclotomic Iwasawa invariants
WEMK) = pacry(X(E/kY9)) and Ag(k) = A a¢ry (X(E/kYC)). Using this result, we then deduce the fol-
lowing structure theorem for the dual Selmer group X(E/kx).

Theorem 1.3. Let E/Q be an elliptic curve with good ordinary reduction at each prime above p in k.

(i) (Theorem 3.8) The dual Selmer group X(E /keo) is A(G)-torsion, hence has a A(G)-characteristic power
series char oGy X (E /koo).
(ii) (Theorem 3.13) If the cyclotomic invariant wg(k) vanishes, then the two-variable invariant
M AG)(X(E/kso)) also vanishes.
(iii) (Theorem 3.11) Let char () X(E/ks)(0) denote the image of the characteristic power series
char s () X(E /kx) under the augmentation map A(G) — Zp. If p > 5 and the p®>-Selmer group
Sel(E /k) is finite, then
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|E (k) poe |2 [1levlp
h X(E/kso)(0)| = : T '
|char 4(6) X (E/koo)(0)], IIIE/K)(P) - TTyp [Ev (k) (D)1

Here, LLI(E /k)(p) denotes the p-primary part of the Tate-Shafarevich group ILI(E /k) of E over k, E (k) p
the p-primary part of the Mordell-Weil group E (k), k', the residue field at v, E, the reduction of E over k,
and ¢y = [E(ky) : Eo(ky)] the local Tamagawa factor at a prime v C O.

(iv) (Theorem 3.12) If u (k) = 0, then there is an isomorphism of A(H)-modules X (E /kso) = A(H)*E®).

We also obtain from this the following application to Tate-Shafarevich ranks. Consider the short
exact descent sequence of discrete A(H)-modules

0 —> E(koo) ® Qp/Zp —> Sel(E /koo) —> LL(E /koo)(p) —> 0.

Here, E(k~,) denotes the Mordell-Weil group of E over ko, and II(E /k~)(p) denotes the p-primary
part of the Tate-Shafarevich group of E over k.

Proposition 1.4 (Proposition 3.14). Assume that p is odd, and moreover that p does not divide the class number
of k if the root number € (E /k, 1) equals —1. If E has good ordinary reduction at p with wg (k) =0, then

Mg (k) ife(E/k, 1) =+1
corank 4 gy HI(E /keo) (p) = i)»E(k) 1 ife(E/k1) = —1.
Example. Consider the elliptic curve E =53a: y% +xy +y =x3 —x? at p =5 over k= Q(~/—31). The
discriminant of k is —31, which is prime to both 5 and the conductor 53 of E. A simple calculation
shows that the root number €(E/k, 1) is +1. Moreover, the mod 5 Galois representation associated to
E is surjective, as shown by the calculations in Serre [37, § 5.4]. Computations of Pollack [30] show
that pg(k) =0 with Ap(k) =9 (and moreover that the Mordell-Weil rank of E(k) is 1), from which
we deduce that II(E /ks)(5) has A(H)-corank 9. In particular, HI(E /k~)(5) contains infinitely many
copies of Qs/Zs.

Finally, we establish the following criterion for one divisibility of (iii) in terms of specializations to
cyclotomic characters, following a suggestion of Ralph Greenberg. To be more precise, let ¥ denote
the set of finite order characters of the Galois group I" = Gal(k®¥/k). Given a character v € ¥, let us
write Oy to denote the ring obtained from adjoining to Z, the values of . Let L, (E/ky)| denote
the image of the two-variable p-adic L-function L, (E/ks) in the Iwasawa algebra A(£2).

Theorem 1.5 (Corollary 4.2). Assume that p does not divide L, (E /koo)| 2, and that for each character € ¥,
we have the inclusion of ideals

(¥ (Lp(E/kso))) S (¥ (charac) X(E/kso))) in Oy [G]. (1)

Then, we have the inclusion of ideals

(Lp(E/koo)) € (charp) X(E/kso))  in A(G). (2)

We deduce from this the following result. Let K be any finite extension of k contained in the
cyclotomic Z,-extension kY€, Let 2 denote the Galois group Gal(KDs/k), which is topologically
isomorphic to Z,. Let L, (E /ks)| 2 denote the image of the two-variable p adic L-function Ly (E/kxo)
in the Iwasawa algebra A($2k). Let ¥k denote the set of characters of order [K : k] of the Galois group
Gal(K /k). Let us consider as well the following condition(s), so that we can invoke the recent work
of Pollack and Weston [31].
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Hypothesis 1.6. Let €(E/k, 1) € {1} denote the root number of the complex L-function L(E/k,s) =
L(f x 6,s). We assume that:

(i) The mod p Galois representation pr associated to E is surjective.

(ii) If €(E/k,1) =41, then p > 5 and the conductor N is prime to the discriminant of k. This latter
condition determines an integer factorization N = N*N~ of N, where Nt is divisible only by
primes that split in k, and N~ is divisible only by primes that remain inert in k; we then assume
that N~ is the squarefree product of an odd number of primes.

We obtain the following main result.

Proposition 1.7 (Proposition 4.3). Assume that the root number € (E /k, 1) of L(E/k, 1) is +1. Assume addi-
tionally that for a finite extension K of k contained in the cyclotomic Z,-extension k¢, we have the inclusion
of ideals

(Lp(E/koo) 2 ) € (charagey X(E/KDoo)) in A(R25), 3)

with equality for K = k. Then, there exists a nontrivial character v € W such that the specialization divisibility
(1) holds. In particular, if Hypothesis 1.6 (i) and (ii) hold, then we obtain the inclusion of ideals

(Lp(E/koo)) € (char a(cy X(E/koo)) in A(G).

Though we do not discuss the issue here, the equality condition for k = K would follow from
the nonvanishing criterion of Howard [17, Theorem 3.2.3(c)] for dihedral/anticyclotomic p-adic L-
functions, as explained in [43, §5]. Hence, by Proposition 4.3, this criterion would also imply one
divisibility of the two-variable main conjecture in the setting where the root number €(E/k, 1) is 1.

2. Two-variable p-adic L-functions

We start with the proof of Theorem 2.9, following closely the constructions of Hida [14] and
Perrin-Riou [32]. Both of the these constructions depend in an essential way on the bounded linear
form defined in [14], which we review below.

Remark. The results described below hold more generally for f any p-ordinary eigenform of weight
[ > 2 and nontrivial Nebentypus, following the same methods described below with [32, Théoréme B].
We have restricted to the setting of eigenforms associated to modular elliptic curves for simplicity of
exposition.

Hida’s bounded linear form. We follow Hida [14, §4], using the same notations for spaces of modu-
lar forms and Hecke algebras used there. Suppose we have a modular form

f@ =) an(f)e*™™ e M|(I(M), £: Lo).

n>0

with I and M positive integers, « =0 or 1, & a Dirichlet character mod M, and Lo = Q(an(f))n>0
the extension of Q generated by the Fourier coefficients of f. We define a norm |-, on f e
M(I'«(M), &; Lo) by letting

|f|p=sgp}an(f)|p.
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Let L denote the closure of Ly in Qp with respect to a fixed embedding Q —> (_lp Let My(Ix(M),&;L)
denote the completion of the space M;(I'.(M),&;Lo) with respect to |- |p. Let O = O;. Define a
subspace of integral forms

M(T(M),§: 0) = | f € M(I(M). & L): [fl, <1}.

Let us write T(M, &; L) to denote the algebra of Hecke operators acting on M;(I'x(M), &; L), as defined
in [14, p. 171]. Hence, T(M, &; L) denotes the L-subalgebra of the ring of all L-linear endomorphisms
of Mj(I'x(M),&; L) generated by Hecke operators. If given integers n > m > 0, then the restriction
T(Mp", &; O) of T(Mp", &; L) to M;(I'x«(Mp™), &; O) defines an (¥-algebra homomorphism

M(I(Mp"), &; ©) — My(I(Mp™), §; O).

We define the extended Hecke algebra by passage to the inverse limit with respect to these homomor-
phisms,

T(M, &; 0) =limT(Mp", &, 0).

n

Let us now fix a p-ordinary eigenform

f@ =) an(f)e*™™ e Sy(IH(N))

n>1

of weight 2, level N, and trivial Nebentypus. Let ¥ denote the principal or trivial character modulo N
(hence y(p) =1 if p does not divide p, and ¥ (p) =0 otherwise). Let o, (f) denote the p-adic unit
root of the polynomial

X —ap(FHx+ py(p),

and Bp(f) the non-unit root. Let fo denote p-stabilization of f, which is the unique ordinary form
associated to f by Hida [14, Lemma 3.3]. That is, let

f@ ifp|N

fO(Z):{f(Z)—ﬁp(f)f(PZ) ifpiN.

This eigenform fy has level Ng, where

Np ifptN
No= .
N ifp|N.

Its Fourier coefficients a,(fo) satisfy the relations

ap(f) if(n,p)=1

an(fo) {ocp(f) ifn=p.

We now recall briefly the definition of idempotent operators in extended Hecke algebras, following
[14, pp. 171-172]. That is, let T(Np™) = T(Ip(Np™); O) denote the (O-algebra generated by Hecke
operators acting on the space of cusp forms S, (I'g(Np™); O), with T, = T,(Np™) denoting the Hecke
operator at p. Let T, denote the image of T, in the quotient T(Np™)/p. This reduction T, can be
decomposed uniquely into semisimple and nilpotent parts. Since T(Np™)/p is a finitely-generated,
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— r —_ T
commutative Fp-algebra, it follows that Tpp is semisimple for r sufficiently large. Hence, T;',p is

idempotent for some integer u. Let e denote the unique lift to T(Np™) of T}F ". Note that this lift
does not depend on the choice of integer u.

Definition. The idempotent e in the extended Hecke algebra T(N) = LianT(Npm) is defined to be the
projective limit e = @mem.

Proposition 2.1 (Hida). Let f € Sy(I9(N)) be a p-ordinary eigenform, with fy its associated ordinary form.
There is a decomposition T(N; L) = A & L induced by the split exact sequence

0— A®L— T(N; L)Lff’))T(o)(N;L)—>O. (4)

Here, ¢ (fo) is the map that sends T, —> an(fo), with TO(N; L) = L the direct summand of T(N; L) through
which this map factors, and A the complementary direct summand.

Proof. See [14, Proposition 4.4 and (4.5)]. O
We now use this result to define the following operator.

Definition. Let f € Sy(/9(N)) be a p-ordinary eigenform with associated ordinary form fy. We let
1, denote the component of the idempotent e corresponding to the summand TO(N) in the spit
exact sequence (4) above.

Definition. Let f € Sy(Ip(N)) be a p-ordinary eigenform with associated ordinary form fy. Let m >0
be an integer. Hida’s bounded linear form s, of level Np™ is then given by the map

lfo: M2(T(Np™). 65L) — L, g+ a1(gleo1y),

in other words by the map that sends a modular form g € My(I'x(Np™),&; L) to the first Fourier
coefficient of its image under the operation eo1g,.

Proposition 2.2 (Hida). The linear form ls, : Ma(I'\(Np™),&; L) —> L is given explicitly on any g €
My (I'«(Np™), &; L) by the map

(hm s g)Npm

gr—oap(fo) " -p- . foing

Here, h = fo(2)l> ( o ‘01) with Fo(2) = fo(—2). and hy(z) = h(p™2).
Proof. See [14, Proposition 4.5]. O
Lemma 2.3. The linear form I 5, sends M (I'.(Np™), &; O) to O.

Proof. Fix g € Ma(I'.(Np™), &; O). We know that oty (f)|p = |ap(fo)lp = 1. On the other hand, the
operator ¢ (fo) in the split exact sequence (4) sends T,(Np™) — ap(fo) for each m > 0. It follows
that ¢ (fo) sends the idempotent e = @mem to the unit defined by lim, ap(fo)Pr = lim, ocp(fg)l’r.
Now, the action of T(N) maps the space M2 (Ix(Np™); O) to itself for any m > 0, as explained for
instance in [14, §4]. Thus if |g]p, <1, then g\eolfo = (gle)|1f0 has the property that |a; (g|eo1f0)|p <1.
The result follows. O
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Some p-adic convolution measures. We now give a sketch of Perrin-Riou’s construction of the mea-
sure du g, [32], starting with the setup described above. This construction is made up of several
constituent measures that a priori take values in the spaces M;(I'x(M), &; L), but can be seen to take
values in the integral subspaces M;(I'x(M), &; O), as we show in Proposition 2.8.

Let us fix throughout a finite order character W of G. We commit an abuse of notation in viewing
W as a character on the ideals of k via class field theory. Observe that we can always write such a
character W as the product of characters px o N, where p is a character of G that factors though
the dihedral Zj-extension D, of k, and x o N a character of G that factors though the cyclotomic
Zp-extension kY of k. Here, the cyclotomic character x o N is given by the composition with the
norm homomorphism N on ideals of k with some Dirichlet character x that factors through the
cyclotomic Z,-extension of Q. Hence, we fix a finite order character WV of G with dihedral/cyclotomic
factorization

W=pxoN. (5)

Let c¢(WW) denote the conductor of W, with c(p) the conductor of the dihedral or anticyclotomic
part p. Let D = Dy/q denote the discriminant of k. Let @ = wy/q denote the quadratic character
associated to k. A classical construction associates to the WV a theta series of weight 1, level A =
A(W) = |D|Nc(W)?, and Nebentypus wy?2. To be more precise, let Oc(p) =Z+ c(p)Oy denote the
Z-order of conductor c(p) in Ok. Fix an element of the class group A € Pic O¢(,). Fix a representative
a € A. We then define a x-twisted theta series associated to A,

1 N 27Ny 1 (02 1 '

Na
Xea n>1

Here, x runs over points in the lattice defined by a, u = 2|(9kx| is twice the number of units of k , and
ra(n) is the number of ideals of norm n in A. This series does not depend on choice of representative
a e A. It is seen to lie in M;(I5(A), wx?) by a standard application of Poisson summation. Taking the
p-twisted sum over classes A € Pic Oy, it gives rise to a modular form

O @ =Y p(AOa(X)(2) € Mi(To(A), wx?)
A

associated to W. We refer the reader to [11,14] or [15] for proofs of these facts. In what follows,
we fix a finite order character W of G having the decomposition (5) above. We fix a ring class
A € PicO¢(p). We then construct a measure associated to the underlying Dirichlet character x in
the decomposition (5). In fact, to follow [32], we shall suppose more generally that x is any finite
order character of Z. Taking the p-twisted sum over classes A € PicOc(p) then gives the appropriate
measure in O[G] whose specialization to WV interpolates the value

L(f xOW),1) =
872(f, fin
up to some algebraic factor (which can be made explicit). We give only a sketch of this construc-
tion, referring the reader to [32] for proofs and calculations. We start with the following constituent

constructions.

Theta series measures. Fix an integer m > 1. Consider the series defined by

Nk (X) Zm'Nk/Q(x)z
Or00@pM@= Y x(% e N
N xea a
’]ﬁl/(%()x) =amod p"
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Let d®4(x) denote the measure on Z; given by the rule
| des0=esnm.
a+p™Z,
Lemma 2.4. The measure d®, (x) takes values in the space M1(Io(A), wx?; ©O) if p > 5.
Proof. The result follows plainly from the g-expansion of @4(x)(z). O

Remark. We impose the condition p > 5 to deal with the % term in the g-expansion of ®@4(x)(z),
since we could in exceptional cases have u =4 or u =6.

Eisenstein series measures. Let & be an odd Dirichlet character modulo an integer M > 2. Let Ep (&)
denote the Eisenstein series of weight 1 given by

L(,0 ;
En ()@ = 6 )+Z(Zs<d))e2”””.

2
n>1 " d>0
din

Here,

L s)=Y &mn*

n>1

is the standard Dirichlet L-series associated to &. The series Ep(€)(2) lies in M1 (Ip(M), &), as shown
for instance in [16]. Fix an integer m > 1. Let M = Np™. Consider the series defined by

L(,0 ,
E(§)(a, M)(2) = (52 )+Z< )3 é__(d)>82mnz'

n>1 d>0,d|n
d=amod M

Fix an integer C > 1 prime to M. Let C~' denote the inverse class of C modulo M. Consider the
difference defined by

E€(€)(a, M)(2) = E(€)(a, M)(2) — CE(¥)(C™'a, M)(2).

It is well known that E€(&)(a, M)(z) is a bounded distribution on the product Z;J‘ X (Z/N)* (see [14,
24] or [25]). Let dE€(£)(a, M) denote the measure on Z; x (Z/N)* given by the rule
/ dEC(£)(a, M) = ES(§)(a, Np™) (2).
a+Np™Z;

Note that this measure takes values in certain spaces of Eisenstein series. To be more precise, we have
the following result.

Lemma 2.5. The measure dE€ (¢)(a, M) takes values in the space M1 (I'o(M), £; O).



282 J. Van Order / Journal of Algebra 350 (2012) 273-299

Proof. The result follows from the Key Lemma of Katz [24, 1.2.1, Key Lemma for I"(N)], which shows
that the Eisenstein measure takes p-integral values at an elliptic curve with level structure defined
over a p-integral ring. Note also that dEC(¢)(a, M) arises from a one-dimensional part of the Eisen-
stein pseudo-distribution 2H@P) given in [24, §3.4] (i.e. with a = C). This pseudo-distribution can be
shown to take integral values by [24, Key Lemma 1.2.1], e.g. by the proof given in [24, Theorem 3.3.3]
(cf. also [24, §3.5,(3.5.5)]). O

Convolution measures. Fix a class A € PicOc(y). Fix integers a,m > 1. Fix an integer C > 1 prime to
pND. Consider the series defined by

P00 M@= > Oat0(e?a, p")(NDE (wx*) (@, NA)(2).
ae(Z/NA)*

The function q§/§(a, p™)(2) can be seen to define a bounded distribution on Z; (see [32, Lemme 4]).
Let dtbg(x) denote the measure on Z; given by this function.

Lemma 2.6. The measure dq)g () = cbf;(a, p™)(2) takes values in the space My (Ip(NA), wx?; ©), at least
ifp>5.

Proof. The function ®,(a, p™)(z) lies in Ma(I5(NA), wx?) (see [32, Lemme 5]). We then deduce
from Lemmas 2.4 and 2.5 that it lies in My (Ig(NA), u)xz; 0). O

Trace operators. Keep the setup used to define the convolution measure d(Dg(x) above. Fix

a set representatives R for the space Ip(NA) \ I'p(N). We define the trace operator Tr%A:
M2(Ip(NA), §) —> My (Io(N), &) by the rule

h2)— ) £@y)-hlzy, yz(“V by).

c, d
yeR y Gy

Lemma 2.7. The composition function TrN® o®$ (x)(a, p™)(2) takes values in the space M (I'p(N), wx%; O),
at leastif p > 5.

Proof. Given the result of Lemma 2.7, the assertion can be deduced from explicit computations of the
Fourier series expansion of the trace form. If N and D are both prime, then the result follows from
the computation given in Gross [10, Proposition 9.3, 2)]. In the more general case with (N, D) =1, it
follows from the computation of the coefficients given in Gross and Zagier [11, IV§2 Proposition (2.4)
and §3, Proposition (3.2)]. O

Fundamental measures. Keep the setup from above. Recall that we let fp denote the p-stabilization
of f, which is the unique ordinary form associated to f by Hida [14, Lemma 3.3]. Let

Iy, M3 (Ip(N), wx?: L) — L denote Hida's bounded linear form, as defined above. Let L denote

the closure of the field of values Ly = Q(a)xz(n))n>0 in Qp Let dd)g(x) denote the measure on Z;
given by the rule

[ dssoo =10t 00§00 M @
a+p"Zy
Proposition 2.8. The measure d¢g( X) takes values in the ring O = Oy, at least if p > 5.

Proof. The result follows from Lemmas 2.4, 2.5, 2.6, 2.7 and 2.3. O

We can now at last define the two-variable measures that gives rise to du .
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Definition. Keep the notations above, with C > 1 an integer prime to pND. Let L(p) denote the
closure of the field of values Lo(0(A))acpic 0., in Qp. Let O = Oy(p). Let du? denote the O-valued
function on G defined by the rule

c(p)

[wus= ¥ pwdssoo.
G

AePic Oc(p)

This function is seen easily to be a well-defined distribution on G (see [32, § 5]), and hence (by
Proposition 2.8) a measure on G. That is, the distribution is seen easily to be bounded for any choice
of p, and integral for any choice p > 5. It is also seen to be integral for any choice of p if p #1 (in
which case the twisted sum of theta series ), p(A)®a(x)(2) is cuspidal).

Interpolation properties and functional equation. Let us keep all of the notations above, with C > 1
an integer prime to pND. The two-variable measure dufr satisfies the following interpolation prop-
erty. Let T()V) denote the Artin root number of L(W, s). Recall that A = A(WV) denotes the level of
the theta series ® (W)(z). Let ¢ denote the principal character modulo N as above (hence, ¥ (p) =1
if p does not divide N and zero otherwise). Recall as well that we let o, denote the unique p-adic
unit root of the polynomial X? — ap(f)X — py(p). Given an integer r > 1, let us write o,r to denote
alf,. Let us also write N’ to denote the prime-to-p part of N. Let 8 denote the p-primary component
of the level A of ® (V). Finally, let us commit an abuse of notation in using the same notations used
to denote the measures defined on Z; above to denote the induced measures defined on Z,.

Theorem 2.9. There exists for each integer C > 1 prime to pND an O-valued measure du? on G such that
for any finite order character VW of G,

-1 -1 —
[ =(1- L2 (14 242) l_[<1 W) wt/x(Np)(p))
G

p? p? plp N ONp
x o(—N)W(N')(1 - Cw(C)V_V(C))j—ZT(W)
ph

L(f xOW), 1)
87 2(f. fin

Here, the product runs over all primes p of Oy that divide p.

Proof. See Perrin-Riou [32, Théoréme A], along with Proposition 2.8 above. That is, fix a finite order
character W of G having the decomposition (5). Fix an integer C > 1 prime to pND. A simple argu-
ment shows that d,u,jg is a well-defined distribution on G (see [32, § 5]). On the other hand, we know

that du? takes values in O = Oy, (by Proposition 2.8). Hence, d,u? is an O-valued measure on G,

corresponding to an element of the completed group ring O[G]. The calculation of the interpolation
value is given in [32, § 4]. O

We may now define the two-variable p-adic L-function associated to a p-ordinary eigenform f €
S2(I'p(N)) in the tower ko /k, following Perrin-Riou [32]. Observe that this definition does not depend
on the choice of auxiliary integer C > 1 prime to pND thanks to Theorem 2.9.

Definition. Let 1 : G — Z;; be a continuous character. Let © denote the different of k. Let C > 1 be
any integer prime to pND. The two-variable p-adic L-function L, (f,k)(n) of f in ke /k is then defined
to be
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Lot = (1- L2 (1.4 PL2))

p Up2

x " (@'N')(1 = Ca(C)n~ ()

x / n(g)du(g).
G

Here, ©’ and N’ denote the prime to p parts of © and N respectively.

Corollary 2.10. The function Ly(f,k) is an Iwasawa function on G with coefficients in Z,. Moreover, the
Iwasawa function defined by

Ap(F, 10 =107 (N)n(D') Ly (f, k) ()

satisfies the functional equation

Ap(f I (n7") = —o(N') Ap(f, k) ().
Proof. See [32, Corollaire, Théoréme A] or [32, Corollaire, Théoréme B]. O

3. Iwasawa module structure theory

We now describe the Iwasawa module structure theory of the dual Selmer group of E over koo,
along with that of the p-primary component of the associated Tate-Shafarevich group. We follow
closely many of the arguments of Coates, Sujatha, and Schneider [7], as well as the refinements of
those given by Hachimori and Venjakob [13] for the somewhat analogous setting of the false Tate
curve extension.

Some definitions. Fix S a finite set of primes of k containing both the primes above p and the
primes where E has bad reduction. Let k% denote the maximal Galois extension of k that is unramified
outside of S and the archimedean primes of k. Note that since ko, is unramified outside of primes
above p, we have the inclusion ks, C k5. Given L any finite extension of k contained in koo, let Gs(L)
denote the Galois group Gal(kS/L). The p>-Selmer group Sel(E/L) of E over L is defined classically
as the kernel of the localization map,

Sel(E/L) = ker(AE(L) H'(Gs(L), Ep=) — €P jv(L)>.
ves

Here, Epo = E(I(S)poo denotes the p-power torsion: Epe = Un>0 Epn where Epn = ker([p"]: E — E).
We also write

Jy() =@ H (Lw, ELw))(p),

wlv

where the sum runs over all primes w above v in L. Note that this group fits into the classical short
exact descent sequence

0 — E(L) ® Qp/Zp —> Sel(E/L) —> II(E/L)(p) —> O,
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where HI(E/L)(p) denotes the p-primary component of the Tate-Shafarevich group HI(E/L) of E
over L. Let Lo, be any infinite extension of k contained in k... We then define the Selmer group of E
over Lo, to be the inductive limit

Sel(E/Lso) = lim Sel(E/L).

lim
—
L

Here, the limit is taken over all finite extensions L of k contained in L., with respect to the natural
restriction maps on cohomology. We write

X(E /L) =Hom(Sel(E /L), Qp/Zp)
to denote the Pontryagin dual of Sel(E/Ly).

A(I')-module structure. Let us first review the cyclotomic structure theory implied by work of Kato
and Rohrlich.

Theorem 3.1 (Kato-Rohrlich). If E /Q has good ordinary reduction at each prime above p in k, then the dual
Selmer group X(E /kY°) is A(I")-torsion.

Proof. The result follows from the Euler system method of Kato [23, Theorems 14.2 and 17.4], which
requires for nontriviality the nonvanishing theorem of Rohrlich [34]. O

We may then invoke the structure theory of finitely generated torsion A(I")-modules ([2, Chap-
ter VII, §4.5]) to obtain a A(I")-module pseudoisomorphism

r N
X(E/kY) — @D A /p™ & @ A /v (6)
i=1 j=1
Here, the indices r, s, m; and n; are all positive integers, and each y; can be viewed as an irreducible

monic distinguished polynomial y;(T) (with respect to a fixed isomorphism A(I") =Z,[T]). The
A(I')-characteristic power series

char 5y X (E/kY€) l_[pm’ l—[ y]
i=1
is defined uniquely up to unit in A(I"). One defines from it the A(I")-module invariants
r
tacry(X(E/KY) =Y "mi and  Aacr)(X(E/KYS)) =) n;-deg(y;).
i=1 j=1

We shall often for simplicity denote these by

pe®) = pacry(X(E/kYC)) and  Ap(k) = Aacry (X (E/KY)).

respectively. We refer the reader to the monograph of Coates and Sujatha [8] for further discussion,
for instance on how to compute the (finite) G-Euler characteristic of Sel(E/k%°), or equivalently how
to compute |charA(p)X(E/k°y°)(0)|;1, where char sy X(E/kY)(0) denotes the image of the charac-
teristic power series char sy X(E/kY°) under the natural augmentation map A(I") — Z,.
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A(G)-module structure. We now use the A(I")-module structure of X(E/kY¢) to study the A(G)-
module structure of X(E/ks), following the main ideas of [7] and [13]. Let us first consider the
following standard result. Let &G(E/L) denote the compactified Selmer group of E over any finite
extension L of k contained in ko, which is defined as the projective limit

S(E/L) = @l(er(Hl (Gs(), Epn) — P JV(L))

taken with respect to the natural maps E i1 —> Epn induced by multiplication by p. Given any
infinite extension Lo, of k contained in ko, we then define

G(E/Leo) =lim&(E/L)
L

to be the projective limit over all finite extensions L of k contained in L., taken with respect to the
natural corestriction maps.

Proposition 3.2. Let £2 = Gal(Lo/k) be any infinite pro-p group. If E(L)pee is finite, then there is a A(£2)-
module injection

S(E/Lso) —> Homy(2) (X(E/Lxo), A(R2)).
Proof. See for instance [13, Theorem 7.1]. O
We use this to deduce the following result.

Theorem 3.3. If E has good ordinary reduction at each prime above p in k, then the cohomology group
H2(G s (kYS), E pec) vanishes. In particular, the localization map

As(KYE) : H' (Gs(KY), Epe) — @D Jo (k%)
veSs
is surjective, and hence we have a short exact sequence of A(I")-modules
0 —> Sel(E/kY) —> H'(Gs (kY°), Epo) — €D Jv (k¥) —> 0. (7)
veS
Proof. Consider the Cassels-Poitou-Tate exact sequence

0 —> Sel(E/kY) — H'(Gs (k). Eps) — P Jv (k¥)

veS
— &(E/KY)" — H?(Gs(kY°), Epe) —> O.
Here, G(E/kY°)" is the Pontryagin dual of G(E/kY). Now, the p-power torsion subgroup E(kYC),e
is finite by Imai's theorem [21]. Hence, we can invoke Proposition 3.2 to obtain an injection

G(E/kY) — Hom () (X(E/kYC), A(I")). Now, by the main result of Kato [23], the dual Selmer
group X(E/kY%) is A(I")-torsion. Hence, we have a A(I")-module injection

S (E/kYC) < Homu(ry (X (E/kYS), A(IN)) = 0.
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It follows that G(E/k%Y°)V =0, and hence that H?(Gg(kY°), Ep=) =0. See also the argument of Kato
[23, §813, 14] for this latter vanishing. O

Let us now consider invariants under the Galois group H = Gal(kso/kY¢). Note that by Serre’s
refinement [38] of Lazard’s theorem [26], a p-adic Lie group with no element of order p has p-
cohomological dimension cd, equal to its dimension as a p-adic Lie group. Since G has no element
of order p, we can and will invoke this characterization throughout. Hence (for instance), cd,(G) =2
with c¢d,(H) = cdp(I") = 1. To show the main result of this paragraph, we first establish the following
standard lemmas.

Lemma 3.4. If E has good ordinary reduction at each prime above p in k, then there is a short exact sequence

0 —  Sel(E/koo)! — H'(Gs(koo), Epoo)"!
2 @Y Jy ko) — 0.

veS

Here, ns (ko) is the map induced by localization map

hs(koo) : H' (Gs (kao), Ep) —> @B Jv (koo).
S

Proof. See [7, Lemma 2.3]. That is, consider the fundamental diagram

N5 (Koo)
0 — Sel(E /koo)! ——= H'(Gs(kao), Epo)H > @, .5 Ju(koo)"

T

As (KYC)
0 ——= Sel(E/kY) ——= H1(Gs(KY), Epe) ——> @yes Jv (k).

Here, the horizontal rows are exact, and the vertical arrows are induced by restriction on cohomology.
We have that

coker(ys (kY€)) = @ coker(yw (kY°)),

wlveS
with w ranging over places in k¢ above v € S. Note that only finitely many such primes exist, as no
finite prime splits completely in k¢ (see for instance [46, Theorem 2.13]). Given a prime w above

Vv in ke, let 2y, denote the decomposition subgroup of H at w. Note that cdp(£2y) < 1, and so
H%(2w, Epe)=0.If w{p, then standard arguments (see for instance [4, Lemma 3.7]) show that

coker(yw (k%)) = H? (2w, Ep=) =0.
If w | p, then the main result of Coates and Greenberg [5] shows that
coker(yw (k¥€)) = H2(2w, Ew, p) = 0.

Here, Ey p~ denotes the image under reduction modulo w of Ep~. Hence, we find that
coker(yy (k%)) = 0 for each prime w above v in k. It follows that ys(k%¢) is surjective. Since
the map As(kY°) is also surjective by (7), it follows that ns(keo) is surjective as required. O
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Lemma 3.5. If E has good ordinary reduction at each prime above p in k, then for all i > 1,
H'(H, H' (Gs(ke), Ep)) =0.

Proof. See [7, Lemma 2.4]. The same proof works here, using Theorem 3.3 with the fact that
cdpy(H)=1. O

Lemma 3.6. If E has good ordinary reduction at each prime above p in k, then H' (H, Sel(E /kso)) = 0.

Proof. See [7, Lemma 2.5]. Let Ay, = Im(As(ks)). Lemma 3.5 with i =1 gives the exact sequence
0 —> Sel(E /koo)" —> H'(Gs(koo), E,,oc)” — AH — H'(H, Sel(E ko)) —> 0. (8)

Recall that the map 7s(koo) : H' (Gs(koo), Ep) — Al is surjective by Lemma 3.4. Now,

AL =P Jv k)",

ves
and so it follows that H'(H, S(E/kso)) =0. O
Lemma 3.7. If E has good ordinary reduction at each prime above p in k, then H! (H, D, cs Jvks)) =0.
Proof. See [7, Lemma 2.8]. The same proof works here, using the fact that cd,(H) =1. O
We may now deduce the following result.
Theorem 3.8. If E has good ordinary reduction at each prime above p in k, then X(E /k~) is A(G)-torsion.

Proof. See the arguments of [13, Theorem 2.8, and Corollary 2.9], following [7, Proposition 2.9].
A standard deduction, as given for instance in [13, §2, Remark 2.5], reduces the claim to showing
the surjectivity of the localization map

As(koo) : H' (Gs (kao), Ep) —> @D Jv (keo)-
So, let Ago =im(As(koo)). Taking the H-cohomology of the exact sequence
0 —> Sel(E /kog) —> H'(Gs(koo), Ep) —> Aso —> 0,
we obtain from Lemma 3.5 the identification
H'(H, Acc) = H*(H, Sel(E /koo)).

Note that since cdp(H) = 1, we have that H2(H, Sel(E /koo)) =0, and hence that H!(H, Ass) = 0. Let
Boo = coker(As(kso)). By Lemma (3.7),

H! (H, b j.,(koo)> =0.

vesS

Taking H-cohomology of the exact sequence
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0—> Ay —> @]v(kw)—> Boo —> 0,

vesS

we deduce from Lemma 3.4 that

B = H'(H, Ax) =0.

Since H is pro-p, and B, a discrete p-primary H-module, it follows that B, itself must vanish.
Hence As(ks) is surjective. O

When X(E/ks) is A(G)-torsion, the structure theory of torsion A(G)-modules [2, Chapter VII,
§4.5] gives a pseudoisomorphism

t u
X(Efkse) — @D AG)/p" & P AG) /8. (9)

i=1 j=1

Here, the indices s, t, a; and b; are all positive integers, and each g; can be viewed as an irreducible
monic distinguished polynomial g;(T1, T2) (with respect to a fixed isomorphism A(G) =Z,[T1, T2]).
The characteristic power series

t u
: b;
charac) X(E/keo) = [ [ 0% - [ ] &/
i=1 j=1

is again well defined up to unit in A(G). As in the cyclotomic setting, one uses it to define the
A(G)-module invariants

t

i) (X(E/ks)) = Zai and  Aac)(X(E/kso)) = ij -deg(gj).
i—1 =1

The invariant p,)(X(E/ks)). Let us now review what is known about the invariant
M AG) (X(E/kx)). Suppose more generally that G is any pro-p group, and Y any finitely-generated
torsion A(G)-module. The structure theory of A(G) modules shown in [2, Chapter VII, §4.5]) again
gives a pseudoisomorphism analogous to (9), and so we may define the associated invariant () (Y).
Let Y(p) denote the submodule of elements of Y annihilated by some power of p. It is well known
(see for instance [20]) that the cohomology groups H!(G,Y) are finitely-generated Z,-modules for
all i >0, and hence that the cohomology groups H!(G, Y(p)) are finite for all i > 0. The invariant
1 a)(Y) is then seen to be given by the formula

plLA(G)(Y) — H}Hl(cv Y(p))|(—1)' _ X(G’ Y(p)), (10)
i=0

where x (G, Y(p)) is by definition the finite G-Euler characteristic of Y (p). Given L any extension of k
contained in k.o, let us write

X(E/L) = X(E/L)/X(E/L)(p).

Proposition 3.9. If E has good ordinary reduction at p, and X(E ko) is finitely-generated over A(H), then
1 aG)(X(E/ko)) = e (k).
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Proof. See [7, Proposition 2.9], we give a sketch of the proof. Note that we have X(E/koo)y =
Ho(H, X(E/kso)). Note as well that Hi(H, X(E/ks)) =0 by Lemma 3.6. Taking H-homology of the
short exact sequence

0 —> X(E/koo)(p) —> X(E /koo) —> X(E /kog) —> O,

we obtain a short exact sequence of A(I")-modules

0 —> H1(H,X(E/keo)) —> Ho(H, X(E /koo) (D))
—> Ho(H, X(E/koo)) —> Ho(H, X(E /ka)) —> 0.

Following [20, Proposition 1.9], we then show that the alternating sum of p4(ry-invariants along
this sequence vanishes. Moreover, the p 4(r)-invariants of the two central terms can be computed as
follows. For Ho(H, X(E /kso)) = X(E /kso)H, it is well known (see the proof of Theorem 3.12 below for
instance) that restriction on cohomology induces a A(I")-homomorphism

o X(E/koc)i —> X(E/KYC)

with ker(a) finitely-generated over Z, and coker(a) finite. We deduce that

wary(X(E/koo)n) = acry (X(E/kYC)) = g (k).

For Ho(H, X(E /kso)(p)), consider the Hochschild-Serre spectral sequence

0 — Ho(I", Hi(H, X(E/koo)(p)) — Hi(G. X(E/keo)(D))
— Hi(I'", Hi—1(H, X(E /kso)(p)) —> 0.

We deduce that

1 .
X (G. X(E/kso)() = [ x (I Hi(H. X(E /o) (p)) ™",
i=0

and so
] .
@) (X(E/ks)) = Z(—l)lﬂA(r)(Hi(H, X(E/kso)(D)))-
i=0
Putting terms together from the first (alternating sum) sequence above, we find that

1

14 (X(E/koo)) = pe®) + Y (=)™ puacr) (Hi(H, X(E/koo)))
i=0

1
+ ) (=D'acr) (Hi(H, X(E/koo)(D))).-
i=0

Recall that H;(H, X(E/ks)) =0 for all i > 0 by Lemma 3.6. Taking H-cohomology of the short exact
sequence

0 — X(E/kso)(p) —> X(E/koo) — X(E/koo) —> O,
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obtain that Hi(H, X(E/kx))(p) = H2(H, X(E /kso)) = 0. Deduce that

1

146 (X(E/koo)) = we®) + Y (=1 pwacry (Hi(H, X(E/kso))).
i=0

Since we assume that X(E/ks) is finitely-generated over A(H), it follows that X(E/keo)y is finitely-
generated over Z,. Thus,

war) (Hi(H, X(E/koo))) =
In particular, @ 4(G)(X(E/kso)) = e (k) as claimed. O

The G-Euler characteristic of Sel(E/k.,). We now give a formula for the G-Euler characteristic
of Sel(E /kso),

x(G.Sel(E/ky)) = [ J|H'(G. Sel(E/koo))|(’1)i,
i>0

which in the setup described above is well defined (i.e. finite). Note that this invariant is related to
the characteristic power series char 4y X(E/ks) by the formula

X (G, Sel(E /koo)) = |char a(c) X(E/koo)(O)|;1,

where char () X(E/ks)(0) denotes the image of char,(g) X(E/kx) under the natural augmentation
map A(G) —> Z,. We must first establish the following result.

Lemma 3.10. If E has good ordinary reduction at each prime above p in k, then the p-primary torsion subgroup
E(koo) po< s finite.

Proof. See the argument of [13][Lemma 3.12]. We present the following alternative proof. Fix a ra-
tional prime v that remains inert in k and does not equal p. Write k, to denote the localization of k
at the prime above v. Write k§'° to denote the cyclotomic Z,-extension of k,. By Imai’s theorem [21]
(cf. [8, A.2.7]), the p-primary subgroup of E(kcyc) is finite. On the other hand, the prime above v in
k splits completely in D, by class field theory. Hence, writing Do,y to denote the union of all com-
pletions of Do, at primes above v, we have an isomorphism of local fields Do, w = ky. This induces
an isomorphism of Mordell-Weil groups E(Doo,w) = E(ky). Hence, writing ko to denote the union
of all completions of k., at primes above v, we have the identifications

E(koo,m) = E(Doo.w - kv') = E (k7).

Hence, the p-primary part of E(keo,w) is seen to be finite by Imai’s theorem. Since E(ks)poe injects
into the p-primary part of E (koo 1), the result follows. 0O

Theorem 3.11. Assume that E has good ordinary reduction at all primes above p in k, that p > 5, and that
Sel(E/k) is finite. Then, the G-Euler characteristic of Sel(E /k«o) is well defined, and given by the formula

|HI(E/1<)(P)|
X (G, Sel(E /kn)) = E@? ]_[}E ) ()| ]_[Icvlp :
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Here, ILI(E /k)(p) denotes the p-primary part of LI(E/K), E(k)pe the p-primary part of E(k), k the residue
field at v, E, the reduction of E over k, and ¢, = [E(ky) : Eg(ky)] the local Tamagawa factor at a prime
v C O.

Proof. See for instance [13][Theorem 4.1] The proof is a standard computation, using the facts that (i)
X(E/koo) is A(G)-torsion (by Theorem 3.8 above), (ii) E(kxo)p is finite (by Lemma 3.10 above), and
(iii) p is totally ramified in k. O

A(H)-module structure. Let us assume now that wg (k) = 0. We obtain the following A(H)-module
structure theory for X(E/kso).

Theorem 3.12. Suppose that E has good ordinary reduction at p, with g (k) = 0. Then, there is a A(H)-
module isomorphism X (E /keo) = A(H)E®),

Proof. By Nakayama’s lemma, X(E/ks) is finitely generated over A(H) if and only if X(E/keo)y is
finitely generated over Zp, hence by duality if and only if S(E/kso)! is co-finitely generated over Zy.
Given n >0 an integer, let D, denote the degree-p" extension of k contained in Do, with DY its
cyclotomic Zp-extension. Let H, = Gal(koo/Dy”*). Note that cdp(Hy) < 1. Consider the diagram

00— S(E/koo)H" - Hl(GS(koo)a Ep"C)H" — @vgs Jv(koo)Hn

Tan Tﬂn Tyn

0 — S(E/Dy) — H'(Gs(Dy¥), Ep) —— @5 Jv (D).

Here, the horizontal rows are exact sequences, and the vertical maps are induced by restriction on
cohomology. We have by inflation-restriction that coker(8,) = H?(H,, Ep~) =0 and that ker(B,) =
H'(Hp, Ep~). Note that H'(Hp, Ep~) has cardinality equal to that of E(D;’)p~, which is finite by
Imai’s theorem [21]. Given v € S, fix a place w above v in ko,. We can then write the local restriction
map as

Yn= @Vﬂ,w,
w

where the direct sum ranges over the primes above each v € S in D;. Let £2, , denote the decom-
position group of H, at w. We argue as in the proof of Lemma 3.3 that coker(y,) = 0. Following [4,
Lemma 3.7] also find that

coker(Yn.w) = H?(2n.w, Ep=) =0 and  ker(Ynw) = H'(2n.w, Ep=).

In particular, since the latter group is known to be finite, it follows that ker(yn) = @,, ker(yn,w) is fi-
nite. It then follows from the snake lemma that ker(c;) and coker(c;) must be finite. Now, recall that
X(E/kY%) is A(I")-torsion by Theorem 3.1. Matsuno’s theorem [28] then implies that X(E/k%¢) has
no nontrivial finite A(/")-submodule. On the other hand, since wg(k) =0, Hachimori and Matsuno’s
analogue of Kida’s formula [12] implies that X(E/Dy) is A(I})-torsion with I}, = Gal(DY¢/D,) and
cyclotomic Iwasawa invariants

Ag(Dn) =[Dn:k]-Ap(k) and pg(Dn) = pe(k) =0.
Since D, is not totally real, it follows from Proposition 7.5 of Matsuno [28] that X(E/D7) has no
nontrivial finite A(/3;)-submodule. In particular, since pg(Dy) =0 for each n > 0, Matsuno’s theorem
implies that X(E/Dy) has no nontrivial finite Z,-submodule for any n > 0. This makes the inverse
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limit X(E/kso) = l(iLnnX(E/D,c,yc) Z,-torsionfree, from which it follows that ker(o;) = coker(o;) =0
for any n > 0. Thus, we find an isomorphism of Z,-modules ag : X(E /koo)Hy = X (E/kYC). Let us now
put r = Ag(k). Let xq1,...,x, denote a lift to X(E/ky) of a fixed Zp-basis of X(E/ks)n. Let I(H)
denote the augmentation ideal of H in A(H). Note that X(E/keo)y = X(E/koo)/I(H). Let Y denote
the A(H)-submodule of X(E/k~) generated by x1, ..., x;. Observe that

I(H)(X(E/ko)/Y) = (ICH)X(E/koo) + Y) /Y = X(E /koo) /Y,

and so X(E/k~) =Y by Nakayama’s lemma. In particular, this gives an isomorphism of A(H)-modules

X(E/koo) ZAHY, > aixi— Y aei,

where eq,...,e; is a standard A(H)-basis of A(H)". Observe now that X(E/k~) has no nontrivial
finite A(H)-submodule, thus making it A(H)-torsionfree. 0O

Corollary 3.13. Suppose that E has good ordinary reduction at each prime above p in k, with wg (k) = 0. Then,
a6y (X(E/koo)) = g (k) = 0.

Proof. The result follows from argument of Theorem 3.12 above, namely by using Matsuno’s theorem
[28] and the main result of Hachimori-Matsuno [12] to deduce that X(E/ks) is A(H)-torsionfree. 0O

We also deduce from Theorem 3.12 the following consequence for the A(H)-corank of the p-
primary parts of the Tate-Shafarevich group II(E/k,). That is, recall that we consider the short
exact descent sequence of A(H)-modules

0 — E(koo) ® Qp/Zp —> Sel(E /koo) —> I(E /koo)(p) —> O,

as well as the dual exact sequence

0 —> XK(E /koo) —> X(E /koo) —> E(E /koo) —> 0. (11)

Here, 2K(E/kso) is the Pontryagin dual of III(E /kso)(p), and E(E /keo) is that of E(ke) ® Qp/Zp. Re-
call that we let €(E/k,1) = €(f/k, 1) denote the root number of the complex L-function L(E/k,s) =
L(f x 6, s).

Proposition 3.14. Assume that p is odd, and moreover that p does not divide the class number of k if the root
number € (E/k, 1) equals —1. If E has good ordinary reduction at each prime above p in k with (g (k) =0,
then

. Mg (k) ife(E/k, 1) =+1
rkacn AK(E/koo) = {AE(k) —1 ife(E/k,1)=—1.

Proof. Observe that (11) is a short exact sequence of finitely generated A(H)-modules. We know by
Theorem 3.12 that the A(H)-rank of X(E/keo) is Ag(k). On the other hand, we claim that

0 ife(E/k,1)=+1
“<A<H>5(E/"°°):il ;fEEEjk 1;=J—r1- "

To see why this is so, let K be any finite extension of k contained in k. A simple exercise shows
that K is a totally imaginary quadratic extension of its maximal totally real subfield F. Let Dgc denote
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the compositum extension KD, with Galois group 2 = Gal(D’go/K). We claim that for any such K,
we have the rank formula

K 0 ife(E/k,1)=+1
tkacy €(E/Doc) = { 1 ife(E/k,1)=—1.
Indeed, in the first case with €(E/k, 1) = 41, the formula follows from the relevant nonvanishing
theorem of Cornut and Vatsal [9, Theorem 1.4] over F plus the relevant rank theorem(s) of Nekovar
[29, Theorem B, Theorem B’, and Corollary]. In the second case with €(E/k, 1) = —1, the formula
follows form the relevant nonvanishing theorem of Cornut and Vatsal [9, Theorem 1.5] over F plus
the relevent rank theorem of Howard [19, Theorem B (a)]. Note that to invoke the result of Howard
[19] in the latter setting, we have used the classical result due to Iwasawa [22] that if p does not
divide the class number of k, then p does not divide the class number of any finite extension K.
Taking the inductive limit over all finite extensions K of k contained in k°, we obtain the stated
formula (12). The result then follows immediately from the exactness of (11). O

4. Divisibility criteria

We now discuss various divisibility criteria for the two-variable main conjecture (Conjecture 1.1(iii)
above). In particular, granted suitable hypotheses, we prove one divisibility of the two-variable main
conjecture.

Greenberg’s criterion. The following criterion was suggested to the author by Ralph Greenberg. It
reduces one divisibility of the two-variable main conjecture (Conjecture 1.1(iii)) to a certain special-
ization criterion for finite order characters of the Galois group I' = Gal(k%“/k). Let us first fix an
isomorphism

AG)=Zp[T1. 2], .y — (Ti+1, T2+ D). (13)

Here, we have fixed a topological generator y; of I', as well as a topological generator y, of §2. Fix
f € S2(Ip(N)) a p-ordinary eigenform, as required for the construction of the p-adic L-function of
Theorem 2.9. Recall that we write X(f/ko) to denote the Pontryagin dual of the p°-Selmer group
associated to f in ko /k. If f is the eigenform associated to an elliptic curve E defined over Q, then
a standard argument allows us to make the identification X(f/kso) = X(E/koo). In what follows, we
shall fix an elliptic curve E over Q of conductor N as described in the introduction, with f the
eigenform associated to E by modularity. We shall then make the identification X(f/koo) = X(E /koo)
implicitly in what follows.

Let g(T1, T2) denote the A(G)-characteristic power series of X(f/koo), or rather its image under
the fixed isomorphism (13). (We take this to be zero if X(f/k~) is not A(G)-torsion.) Let L(T1, T2) =
Ly(f,k)(T1,T2) denote the image under (13) of the two-variable p-adic L-function Ly(f, k) € A(G)
associated to f by Theorem 2.9. Recall that we write ¥ to denote the set of finite order characters
of I' = Gal(k%¥“/k). Given an element A € A(G) with associated power series A(T1, T2) € Z,[T1, T2],
we can and will invoke the usual Weierstrass preparation theorem for A(T1, T2) as an element of
the one-variable power series ring R[T;] with R =Z,[T,]. We refer the reader to the discussion
in Venjakob [45, Example 2.4, Theorem 3.1, and Corollary 3.2] for a more general account of the
situation.

Theorem 4.1. Suppose that p does not divide the specialization g(T1,0). Assume that for each character
¥ € ¥, we have the inclusion of ideals

(L(T1,¥(T2))) € (g(T1, ¥ (T2))) in Oy [Ty, T2]. (14)

Then, we have the inclusion of ideals

(L(T1,T2)) € (g(T1, T2)) inZy[Ty, T2].
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Proof. Observe that we may write
00 .
g(T1, ) =Y ai(Ty) - T},
i=0

with a;(T2) € Z,[T,]. Since we assume that p { g(T1,0), it follows that for some minimal positive
integer m,

m
g(T1.0)=> a;(0)- T},
i=0
with a;(0) € Zg. We claim it then follows that
L(T1,T2) =h(T1, T2) - g(T1, T2) +1(T1, T2),

with h(Tq, T2) a polynomial in Z, [Ty, T2], and (T, T2) a remainder polynomial in Z,[T,] of degree
less than m. Now, the remainder term is given by

m—1
r(T1, Ty =Y cj(T) - Ty,
j=0

with ¢;(T2) € Zy[T]. Granted the inclusion (22) for each v € ¥, we have that

r(T1, ¥(T2)) =0
for each ¢ € ¥. It then follows from the Weierstrass preparation theorem that
cj(¥(T2) =0
for each v € ¥ and j €{0,...,m — 1}. Hence, we conclude that r(T1,T2) =0. O
We obtain the following immediate consequence.

Corollary 4.2. Assume Hypothesis 1.6 (i) and (ii). Suppose that for each character i € ¥, we have the inclusion
of ideals

(L(T1, ¥ (T2))) S (g(T1. ¥ (T2))) in Oy [T1, T2]. (15)

Then, we have the inclusion of ideals

(L(T1,T2)) € (g(T1.T2)) inZp[T1, T2].

Proof. Theorem 4.1 requires that p does not divide the specialization of the characteristic power
series g(T1,0), equivalently that the dihedral or anticyclotomic w-invariant associated to f in the
tower D /k vanishes. Assuming Hypothesis 1.6 (i) and (ii), the main result of Pollack and Weston
[31] shows that this is always the case if the underlying eigenform f is p-ordinary. O
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Abasechange criterion. Let K be any finite extension of k contained in the cyclotomic extension k¢,
Let DX denote the compositum extension KD, with £2x = Gal(DX /K) the corresponding Galois
group. Note that £y is topologically isomorphic to Z,. Let ¥k denote the set of (primitive) characters
of order [K : k] of the Galois group Gal(K/k). Hence, we have the decomposition

U= U .

kCKCkeye

Recall that given a character ¢ € ¥, we write Oy, to denote the ring of integers obtained from Z, by
adding the values of . Let us also write Oy, to denote the ring of integers obtained by adding to
Z,, the values of each of the characters in the set Wx. Given a polynomial f(T1, T2) € Z,[T1, T2], let
us write

F(T, 1) = T F(T1,v(T2) (16)

yevk

to denote the product of specializations of f(Tq, T2) to the characters of the set ¥g. Note that this
specialization product f(Tq, Tf) lies in the polynomial ring Z, [T+, Tﬂ = Oy [T1]. Note as well that
we have the identifications

F(T1,T5) = f(T1,1(T2)) = f(T1,0) € Zp[T1].
Proposition 4.3. Assume that for any finite extension K of k contained in k¢, we have the inclusion of ideals

(L. TH) < (8(T1. TS)) Oy, [Ti]. (17)

Assume additionally that the root number of the central value L(f /k, 1) is +1, and moreover that we have a
nontrivial equality of ideals for K =k,

(L(T1,0)) = (g(T1,0)) inZy[T4]. (18)

Then, for each character € W, we have the inclusion of ideals

(L(T1, ¥(T2)) < (g(T1, ¥(T2))) in Oy [T1].

Proof. Since we assume that the root number €(f/k, 1) is equal to +1, we know for instance by the
nonvanishing theorems of Vatsal [44] and more generally Cornut-Vatsal [9] that the p-adic L-function
L(T1,0) does not vanish identically. Let K be any finite extension of k contained in k“°. Using the
equality (18), we may then divide each side of (17) by the corresponding ideals in (18) to obtain for
each extension K the inclusion of ideals

(L(Tl’ T§>> c (gm, )
L(T1.0) ) =\ g(T1.0)

) in Oq/K [[T]]]. (19)
Now, the divisibility (17) implies that we have for each extension K the relation
g(T1. T3) = f(T1. T3) - L(T1, T3) +7(T1, T5).

Here, f(T1, TX) denotes some polynomial in Z, [T1, TX] = Oy, [T1], and r(Ty, TX) the corresponding
remainder term. It then follows from (19) that

[] r(1i. x(T2))=0.

Yevk
Y#1
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Hence, we deduce that for each finite extension K of k contained in k%€, there exists a nontrivial
character ¥ € ¥k such that

(L(T1, ¥(T2))) € (g(T1. ¥(T2))) in Oy [T1]. (20)

We now argue that if the divisibility (20) holds for one (nontrivial) character in ¥y, then it holds for
all (nontrivial) characters in Wg. To see why this is, let L(E/k, W, 1) = L(f x ©®(W), 1) denote the
value

L(f xoW), 1)

8m(f. f) 1
where VW is any finite order character of the Galois group G. Recall that the value (21) is alge-
braic by Shimura’s theorem [39]. In particular, for any finite order character p of £2, the values
L(f x ©(py¥),1) with ¥ € ¥x are Galois conjugate by Shimura’s theorem. Hence, by uniqueness
of interpolation series, we deduce that the specializations L(T, ¥ (T2)) with i € ¥k are Galois con-
jugate. We can then deduce that if the divisibility (20) holds for one character v € ¥, then it holds
for all characters ¢ € ¥. Taking the union of all finite extensions K of k contained in k%, the result
follows. O

Corollary 4.4. Keep the hypotheses of Proposition 4.3 above. If p does not divide the specialization g(T1, 0),
then there is an inclusion of ideals

(L(T1,¥(T2)) € (g(T1. ¥(T2))) in Oy [Ty, T2]. (22)
Proof. Apply Theorem 4.1 to Proposition 4.3 above. O

Some remarks on further reductions. A simple argument shows that each finite extension K of k
contained in k%€ is a totally imaginary quadratic extension of its maximal totally real subfield F.
Each such totally real field F is abelian. Hence, we can associate to f a Hilbert modular eigenform
f over F via the theory of cyclic basechange. It is then simple to see (via Artin formalism for in-
stance) that the root number of the complex Rankin-Selberg L-function L(f x @, s) is equal to that
of L(E/k,s) = L(f x ©,s). In particular, the divisibilities (17) of Proposition 4.3 would follow from
the dihedral/anticyclotomic main conjectures for f in the dihedral/anticyclotomic Zf,—extension of K,
where d = [F : Q]. For results in this direction, see for instance the generalizations to totally real fields
of work of Bertolini and Darmon [1] (as well as Pollack and Weston [31]) by Longo [27] and the
author [42]. For the equality condition (18) of Proposition 4.3, see the result of Howard [17, Theo-
rem 3.2.3] with the main result of Pollack and Weston [31]. These works combined show that the in-
clusion (L(T1,0)) C (g(T1,0)) often holds, in which case the reverse inclusion (g(T1,0)) C (L(T1, 0))
can be reduced by Howard [17, Theorem 3.2.3(c)] to a certain nonvanishing criterion for the associated
p-adic L-functions L(T1, 0) € A(£2).

Some remarks on the setting of root number minus one. In the setting where the root number
€(f/k,1) of L(f/k,1) is equal to —1, then we know that L(Tq, T;) = 0 by the functional equation
for L(Tq, Ty) given in Corollary 2.10 (derived from the fact that the complex central value L(f/k, 1)
vanishes). It follows that L(T1, Tf) =0 for all finite extensions K of k contained in k*. Hence in
this setting, the hypotheses of Proposition 4.3 do not hold. Indeed, consider the basechange setup
described in the remark above, where f is the basechange Hilbert modular eigenform defined over
the maximal totally real subfield F of K. The formulation of the analogous dihedral/anticyclotomic
main conjecture in this setting asserts that each dual Selmer group X(f/Dé‘o) has A(£2g)-rank one,
and moreover that there is an equality of ideals

(char s (X (£/D5) ors)) = (characey (X(£/D5.)))  in A(L2s).



298 J. Van Order / Journal of Algebra 350 (2012) 273-299

Here, X(f/DX )ors denotes the A($2k)-torsion submodule of X(f/DK), and X(f/DX) is the A(£2x)-
torsion submodule defined by &(f/DX))/H(f/DX.), where &(f/DX ) is the compactified Selmer group
of f over Dgc, and H(f/D&) is the so-called Heegner submodule generated by CM points (defined on
an associated quaternionic Shimura curve). We refer the reader to Howard [19, Theorem B] or Perrin-
Riou [33] for more details on this formulation. Anyhow, the dual Selmer group X(f/D&) does not
have a A(£2k) characteristic power series in this setting. If we adopt the standard convention of taking
the characteristic power series to be 0 in this case, then we obtain for each extension K the trivial
equality of ideals (L(Ty, TX)) = (g(T1, TX)) in Oy, [T1]. It therefore seems unlikely that we can do
any better than Theorem 4.2 for determining a two-variable divisibility criterion by considering main
conjecture divisibilities via basechange. This is especially apparent after noting of the shape of the
two-variable main conjecture in this case, as described for instance in Howard [18]. To be somewhat
more precise, recall that we fixed a topological generator y, of I for our fixed isomorphism (13).
The two-variable p-adic L-function L, (f,ks) can then be written as a power series

Lr=Lio+Lf1-(V2—1)+---+€A(G),

with coefficients L, € Z,[£2]. In the case where the root number €(f/k, 1) is —1, we know by
the associated functional equation(s) that £ o = 0. Another result of Howard (proving one divisibility
of a conjecture made by Perrin-Riou in [33]) shows that the second term Ly can be expressed
as a certain twisted sum of images under any appropriate p-adic height pairing of some associated
regularized Heegner points (see [18, Theorem A]). If p does not divide the level N of f, then we
know by Theorem 3.8 that char () X(f/ks) eXists, equivalently that g(T1, T2) # 0. Now, two-variable
characteristic power series char4(gy X(f/koo) can be written as a power series

gr=GrotGr1-(2—1D+---+€ AG),

with coefficients Gy , € Z, [£2]. Hence, if we know that g(T,0) =0, then we find that Gy o = 0. This
would reduce our task to showing Gy | L in A(G), where both Gy and Ly correspond under the
fixed isomorphism (13) to power series that vanish at T, = 0. It is then apparent from this fact that
comparing the products of specializations to characters i € ¥k of these power series alone will not
give much more information, as ¥ contains the trivial character.
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