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This article is to study relations between an elliptic Lie algebra g of
type F (2,2)

4 and the F -fixed point algebra A F of a tubular algebra A
of type T(3,3,3) under a Frobenius morphism F . Using the explicit
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prove that the elliptic Lie algebra g of type F (2,2)

4 is isomorphic to
the Ringel–Hall Lie algebra of the root category of the F -fixed point
algebra A F .
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1. Introduction

1.1. In order to describe singularities on surfaces and their deformations, K. Saito in [Sa] introduced
one kind of extended affine root systems. In particular, he intensively studied 2-extended affine root
systems using Dynkin diagrams with markings (also called elliptic Dynkin diagrams). A 2-extended
affine root system is, by definition, a root system belonging to a positive semi-definite quadratic form
whose radical has rank 2. It corresponds to the lattice of an elliptic curve. In addition, a rank 1
subspace of the radical, called a marking, corresponds to a choice of a primitive form. So Saito also
called it an elliptic root system provided a marking has been given.
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1.2. Various attempts have been made to construct Lie algebras whose non-isotropic roots form
elliptic root systems. Among them are intersection matrix Lie algebras, vertex algebras, toroidal Lie
algebras, extended affine Lie algebras in general sense, and toral type extended affine Lie algebras.

In 2000, K. Saito and D. Yoshii [SY] constructed certain Lie algebras by using the Borcherds lattice
vertex, called them simply-laced elliptic Lie algebras. They also gave two other equivalent definitions
for the Lie algebras. One uses an amalgamation of an affine Kac–Moody algebra and a Heisenberg
algebra; this was generalized by D. Yoshii [Yo] in order to define Lie algebras associated with the
reduced elliptic root systems, and he called them elliptic Lie algebras. The other uses Chevalley gen-
erators and generalized Serre relations attached to the elliptic Dynkin diagram; this was generalized
by [Ya] and [AYY]. In [Yo] D. Yoshii gave a root space decomposition of any elliptic Lie algebra and
pointed out the dimension of any real root space is one (see also [Ya]). Recently, the dimensions of
all imaginary root spaces were determined in [AYY].

1.3. The close relation between the Kac–Moody algebras and the representation theory of finite
dimensional algebras was discovered in the past twenty years by using the Ringel–Hall algebra ap-
proach. Let A be an associative algebra over a finite field and M , N and L finite A-modules. Let F L

M,N
be the number of submodules V of L such that V � N and L/V � M . By definition in [Rin4], the
Ringel–Hall algebra of A is an associative ring with a Z-basis, indexed by the isoclasses [M] of all
finite A-modules M , and the multiplication: [M] · [N] = ∑

[L] F L
M,N [L]. In case A is hereditary of finite

type, C.M. Ringel [Rin3,Rin4,Rin5] showed that the subring of the degenerate Ringel–Hall algebra with
a Z-basis indexed by isoclasses of all indecomposable A-modules is a Lie subalgebra under the Lie
multiplication of commutators, and over complex numbers it is isomorphic to the positive part of
the corresponding complex semisimple Lie algebras such that the isoclasses of all indecomposable A-
modules correspond to a Chevalley basis. Such Lie subalgebra is called the Ringel–Hall Lie algebra. To
realize the whole (not only the positive part) of a Kac–Moody Lie algebra, the Ringel–Hall Lie algebras
of 2-period triangulated categories have been constructed in [PX1,PX2]. Here the Ringel–Hall numbers
are related to triangles instead of short exact sequences. Then any symmetrizable Kac–Moody Lie alge-
bra can be realized by the Ringel–Hall Lie algebra of the root category of the corresponding hereditary
algebra A. Here the root category is the orbit category R(A) = Db(A)/T 2, where Db(A) is the derived
category of A and T is the shift functor (called the translation). On the other hand, a geometric set-
ting of Ringel–Hall algebras is also used to construct Lie algebra (see [Rie,FMV,DXX]). In [XXZ] Xiao,
Xu and Zhang gave a geometric realization of the generalized Kac–Moody Lie algebra arising from the
2-period version of the derived category, which is a generalization of the earlier work [PX2].

Furthermore, significant research has been done to realize some simply-laced elliptic Lie algebras
by using the Ringel–Hall algebra approach. Lin and Peng [LP] proved that the elliptic Lie algebra
of type D(1,1)

4 , E(1,1)
6 , E(1,1)

7 , E(1,1)
8 is isomorphic to the Ringel–Hall Lie algebra of the root category

of the tubular algebra with type T(2,2,2,2),T(3,3,3),T(4,4,2),T(6,3,2). Independently, O. Schiff-
mann [Sc] considered the quantum version and proved that the Ringel–Hall algebra of the category
of coherent sheaves on a weighted projective line of tubular type is isomorphic to the quantized
enveloping algebra of the ‘half ’ of the above elliptic Lie algebras.

1.4. In 2006, Deng and Du [DD1] introduced Frobenius morphisms F on algebras A and their
modules over the algebraic closure Fq of the finite field Fq of q elements, and proved that the module
category mod A F of the F -fixed point algebra A F over Fq is equivalent to the subcategory of finite
dimensional F -stable A-modules, and the Auslander–Reiten (modulated) quiver of A F is obtained by
‘folding’ the Auslander–Reiten quiver of A. Moreover, Deng and Du [DD2] showed that a Frobenius
morphism F on an algebra A induces naturally a functor F on the (bounded) derived category Db(A)

of mod A, and proved that the derived category Db(A F ) of mod A F is naturally imbedded as the
triangulated subcategory Db(A)F of F -stable objects in Db(A), and the AR-quiver of Db(A F ) can be
obtained by ‘folding’ the AR-quiver of Db(A). In [DD2], they also extend this relation to the root
categories R(A F ) of A F and R(A) of A, and showed that, when A is hereditary, this folding relation
over the indecomposable objects in R(A F ) and R(A) results in a folding relation between the root
system of a non-simply-laced Kac–Moody algebra and that of the corresponding simply-laced Kac–
Moody algebra.
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1.5. In this paper, inspired by the results [DD1] and [DD2] of Deng and Du, we consider realizing
a non-simply-laced elliptic Lie algebra of type F (2,2)

4 via a Frobenius morphism on a tubular algebra.

Here the elliptic Lie algebra of type F (2,2)
4 is related to the following elliptic Dynkin diagram:

1

5

3

0

2

4

����

����

�����

����

�����

����

22

It has been showed in [Sa] that the above elliptic Dynkin diagram can be obtained by a folding of the
diagram of type E(1,1)

6 , and in [LP] that the elliptic Lie algebra of type E(1,1)
6 related to the diagram

of type E(1,1)
6 can be realized by the Ringel–Hall algebra of the root category of the tubular algebra A

of type T(3,3,3). Using a Frobenius morphism F on the above tubular algebra A, we prove that the
elliptic Lie algebra of type F (2,2)

4 is isomorphic to the Ringel–Hall Lie algebra of the root category of
the F -fixed point algebra A F of A under F .

1.6. Let us give a brief view on the content of this article. In Section 2, we recall a definition
of the elliptic Lie algebra of type F (2,2)

4 and its grading spaces. In Section 3, we define a Frobenius
morphism F on a tubular algebra A of type T(3,3,3), and characterize the corresponding fixed point
subalgebra A F . In Section 4, we give structures and properties of the root category R(A F ) of A F for
later use. In Section 5, we state our main theorem. There we define a map Φ from the elliptic Lie
algebra g of type F (2,2)

4 to the Ringel–Hall Lie algebra g′ of R(A F ). The main theorem claims that Φ

is an isomorphism. Then we give a simple proof for the first step, that is, such Φ is a well-defined
morphism and surjective. In Section 6, we prove that Φ is injective and so Φ is an isomorphism. In
Section 7, we point out a Chevalley basis of the elliptic Lie algebra of type F (2,2)

4 .

2. An elliptic Lie algebra of type F (2,2)
4

In this section, we recall some basic facts about definitions and root spaces of elliptic Lie algebras
of type F (2,2)

4 .

2.1. We first recall some concepts about elliptic root systems of type F (2,2)
4 , which come from [Ya].

Let εaf be an 6-dimensional C-vector space and Πaf = {α0,α1, . . . ,α4} be a set of linearly indepen-
dent 5 elements of εaf . Let I : εaf × εaf → C be a non-degenerate symmetric bilinear form satisfying
I(αi,α j) = (Naf )i j , where

Naf =

⎛⎜⎜⎜⎝
2 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −2 0
0 0 −2 4 −2
0 0 0 −2 4

⎞⎟⎟⎟⎠ .

It is easy to see that {v ∈ Z5+ | Naf v = 0} = Z+x, where x = (x0, x1, x2, x3, x4)
T = (1,2,3,2,1)T . The

pair (εaf ,Πaf ) is called the affine datum of type E(2)
6 . The element δ := α0 + 2α1 + 3α2 + 2α3 + α4 is
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called the lowest positive null root. Let Πfi = {α1,α2,α3,α4}, εfi := ⊕4
i=1 Cαi . Then εaf = εfi ⊕Cδ⊕CΛδ ,

where Λδ ∈ εaf is such that I(Λδ, εfi) = {0}, I(Λδ, δ) = 1 and I(Λδ,Λδ) = 0.

We define the C-vector space ε
�

af := εaf ⊕ Ca ⊕ CΛa , and extend the symmetric bilinear form

I(−,−) on εaf to the one on ε
�

af by I(Ca ⊕ CΛa, εaf ) = {0}, I(Λa,Λa) = I(a,a) = 0, I(a,Λa) = 1.
Let k : Πaf ∪ (−Πaf ) → {1,2} be a function such that k(±α0) = k(±α1) = k(±α2) = 1, k(±α3) =
k(±α4) = 2. The triple (ε

�

af ,Πaf ,k) is called a reduced marked elliptic datum of type F (2,2)
4 .

If αi ∈ Πaf , let mαi := I(αi,αi)xi/k(αi). Let mmax := max{mα | α ∈ Πaf } and Πmax := {α ∈ Πaf |
mα = mmax}. Then mmax = mα2 ,Πmax = {α2}. Let α∗

2 := α2 + k(α2)a = α2 + a, Π∗
max = {α∗

2}. For conve-
nience, we set

α5 = α∗
2, Π := Πaf ∪ Π∗

max = {α0, . . . ,α4,α5}.

The elliptic Dynkin diagram of the datum (ε
�

af ,Πaf ,k) of type F (2,2)
4 is the following:

α1

α5

α3

α0

α2

α4

����

����

�����

����

�����

����

22

For x ∈ ε
�

af with I(x, x) 	= 0, let x∨ := 2x
I(x,x) and define ωx ∈ GL(ε�

af ) by ωx(y) = y − I(x∨, y)x. Denote
by W the Weyl group generated by ωα , α ∈ Π . Let Rre = W Π . Let Waf be the subgroup of W
generated by {ωα | α ∈ Πaf }. Then, by [Sa, Assertion 6.1], we have

Rre :=
⋃

ω∈Waf

⋃
α∈Πaf

(
ω(α) + Zk(α)a

)
,

and Rre is an elliptic root system of type F (2,2)
4 . Any element in Rre is called a real root.

2.2. In this subsection, we recall some facts about elliptic Lie algebras of type F (2,2)
4 .

Inspired by [Yo, Definition 3], Yamane equivalently defined elliptic Lie algebras of all types by
using generators and relations, which are expressed by means of the elliptic Dynkin diagrams (see
[Ya, Definition 4.1]). Also Yamane gave root space decomposition of the above elliptic Lie algebras
and explained that their real roots form an elliptic root system in the sense of [Sa]. Recently, Azam,
Yamane and Yousofzadeh determined the dimensions of the imaginary root spaces of all elliptic Lie
algebras in [AYY, Theorem 6.1]. The main purpose of this article is to realize the derived algebra of
the elliptic Lie algebra of type F (2,2)

4 in [Ya, Definition 4.1]. So we will give explicit descriptions about
the above derived algebra, including its generators and relations, its root space decomposition and the
dimensions of its root spaces.

Definition. Let g be the Lie algebra presented by Chevalley generators and generalized Serre relations
as follows.

(1) Generators: {hi, ei, f i | i = 0,1, . . . ,5}.
(2) Relations: Let
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N =

⎛⎜⎜⎜⎜⎜⎝
2 −1 0 0 0 0

−1 2 −1 0 0 −1
0 −1 2 −2 0 2
0 0 −2 4 −2 −2
0 0 0 −2 4 0
0 −1 2 −2 0 2

⎞⎟⎟⎟⎟⎟⎠ ,

and I R(−,−) be a symmetric bilinear form on H = ⊕5
i=0 Cαi such that I R(αi,α j) = Nij . The

generators satisfy the following relations:

O.

[hi,h j] = 0, i = 0,1, . . . ,5;

I.

[ei, f i] = 2hi

I R(αi,αi)
, i = 0,1, . . . ,5;

II1.

[hi, e j] = I R(αi,α j)e j, [hi, f j] = −I R(αi,α j) f j, for i, j = 0,1, . . . ,5.

II2.

(ad ei)
max{1,1−I R (α∨

i ,α j)}e j = 0, (ad f i)
max{1,1−I R (α∨

i ,α j)} f j = 0, for i, j = 0,1, . . . ,5.

III.
[[e2, e1], e5] = 0

[[ f2, f1], f5] = 0
for α1

α2

α5

����

�
�

��

IV.

[[e2, e3], e5] = 0

[[ f2, f3], f5] = 0
for α3

α2

α5

2

2
�����

�
�

���

V.
[[e2, e1], [e5, [e5, e3]]] = 0

[[ f2, f1], [ f5, [ f5, f3]]] = 0
for

α1 α2

α5α3

2

2

�	
	

	
		
�

�
�
��
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It is easy to see that g is the derived algebra of the elliptic Lie algebra gΓ of type F (2,2)
4 defined

in [Ya, Definition 4.1] (equivalently, gω in [AYY, Definition 5.1]). Naturally g has a grading similar to
that of gΓ as follows:

g =
⊕
α∈Q

gα

such that deg(ei) = αi , deg( f i) = −αi and deg(hi) = 0, 0 � i � 5, where Q = ZΠ . It is easy to see that
g has the same root spaces gα with that of gΓ (or gω) except α = 0, and g0 = CΠ . So

g =
( ⊕

α∈Rre

gα

)
⊕

( ⊕
m,n∈Z

gmδ+na

)
.

Let

M := Zδ ⊕ Za.

Let Lsh , Llg be the subsets of M such that α2 + Lsh = Rre ∩ (α2 + M), α3 + Llg = Rre ∩ (α3 + M). Then
Lsh = M, Llg = 2M. Recalling the dimensions of the real (resp., imaginary) root spaces of gΓ in [Ya,
Proposition 3.3] (resp., gω in [AYY, Theorem 6.1(3)]), we have

dimC gα =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
6, if α = 0;
1, if α ∈ Rre;
5, if α ∈ 2M\{0};
3, if α ∈ M\2M;
0, otherwise.

3. The F -fixed point subalgebra A F of a tubular algebra A under a Frobenius morphism F

Let Fq be a finite field of q elements, i.e., q = |Fq|, and Fq is the algebraic closure of Fq . Let
char Fq = p, where p is a prime integer. Then Fq = ⋃

i�1 Fpi . For a finite dimensional algebra B , all
B-modules are finite dimensional left modules.

3.1. In this subsection, we introduce a Frobenius morphism on a tubular algebra of type T(3,3,3),
and characterize the fixed point subalgebra under the Frobenius morphism.

In this remainder of this article, we always assume that A is the tubular algebra of type T(3,3,3)

over the field Fq with A = Fq Q /〈I〉, where Q = (Q 0, Q 1) is the following quiver, Fq Q is the path
algebra of the quiver Q over Fq and 〈I〉 is the ideal generated by the relations I .

Q = (Q 0, Q 1): 2 53′

3

1
4′

4

0

������






�
������

�

������

������
������

������

�

α1

α2

α3

β1

β2

β3

γ1

γ2

γ3

I: α1β1 + α2β2 = 0,

α1β1 + α3β3 = 0.
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Note that different tubular algebras of the same type are tilting–cotilting equivalent, so their derived
categories are the same [H]. Thus A is derived equivalent to a canonical algebra of type T(3,3,3). It
is easy to see that A has the identity 1 = ∑

i∈Q 0
ei , where ei is the idempotent corresponding to the

vertex i. Let σ be an automorphism of the above admissible quiver Q defined by σ(3) = 3′ , σ(3′) = 3,
σ(4) = 4′ , σ(4′) = 4, σ(α2) = α3, σ(α3) = α2, σ(β2) = β3, σ(β3) = β2, σ(γ2) = γ3, σ(γ3) = γ2, and
σ leaves the other vertices and arrows invariant. So σ 2 = id. By [DD1,DD2], the relations I are σ -
admissible and so σ induces a Frobenius morphism

F = F Q ,σ : A → A;
∑

s

xs ps �→
∑

s

xq
sσ(ps),

where
∑

s xs ps is a Fq-linear combination of path ps , σ(ps) = σ(ρt) · · ·σ(ρ2)σ (ρ1) if ps = ρt · · ·ρ2ρ1
for arrows ρ1,ρ2, . . . , ρt in Q 1, and σ(ei) = eσ(i) for i ∈ Q 0. Let

A F = {
a ∈ A

∣∣ F (a) = a
}

be the set of F -fixed elements. Then A F is an Fq-subalgebra of A and A = A F ⊗Fq Fq . Let D1 =
{0,1,2,5}, D2 = {3,4}; G1 = {α1, β1, γ1,α1β1,α1γ1}, G2 = {α2, β2, γ2,α2γ2}. For i ∈ D1, we define
A F

i := {xei | xq = x, x ∈ Fq} = Fqei ; for j ∈ D2, A F
j := {xe j + xqeσ( j) | xq2 = x, x ∈ Fq}; for ξ ∈ G1,

A F
ξ := {xξ | xq = x, x ∈ Fq} = Fqξ ; for ξ ∈ G2, A F

ξ := {xξ + xqσ(ξ) | xq2 = x, x ∈ Fq}. Obviously, A F
α2γ2

=
A F

α2
· A F

γ2
, A F

α1β1
= A F

α1
· A F

β1
, A F

α1γ1
= A F

α1
· A F

γ1
. Then the subalgebra A F is the Fq-space (

⊕5
i=0 A F

i ) ⊕
(
⊕

ξ∈G1∪G2
A F

ξ ). By [CR, Section 8.16], gl.dim A F = gl.dim A = 2.

The complete set of primitive orthogonal idempotents of A F is {eF
i | 0 � i � 5}, where eF

i = ei for
i = 0,1,2,5, eF

3 = e3 +e3′ , and eF
4 = e4 +e4′ . For a A F -module N , the dimension vector of N is defined

by dim N = (dimFq eF
i N)0�i�5, where dimFq eF

i N denotes the dimension of eF
i N as a Fq-vector space.

For simple A F -module S(i), 0 � i � 5, we have dim S(i) = εi , where εi is the standard unit vector.
Now we recall the modulated quiver of A F in the sense of [DD1, Section 6]. Note that there is a

small difference from that in [DD1], since we add a relation to the quiver here. Define

gi =
{

1, i ∈ D1;
2, i ∈ D2,

gρ =
{

1, ρ ∈ G1;
2, ρ ∈ G2,

dρ = gρ

gt(ρ)

, d′
ρ = gρ

gh(ρ)

,

Γ0 = D1 ∪ D2, Γ1 = G1 ∪ G2,

where h(ρ) (resp., t(ρ) ) is the head (resp., tail) of the arrow ρ . Then the quiver Γ = (Γ0,Γ1) together
with the valuation ({gi}i∈Γ0 , {(dρ,d′

ρ)}ρ∈Γ1 ) defines a valued quiver of A F , and with the relation IΓ :
2α1β1 + α2β2 = 0. Denote the quiver Γ = (Γ0,Γ1) with the relation IΓ as follows:

Γ = (Γ0,Γ1): 2 5

3

1

4

0

������

������

������

������
������

������ α1

α2

β1

β2

γ1

γ2

IΓ : 2α1β1 + α2β2 = 0.
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And the valuation on Γ is the following:

1 1

2

1

2

1

������

������

������

������
������

������ (1,1)

(1,2)

(1,1)

(2,1)

(1,1)

(1,1)

Let M = ({A F
i }i∈Γ0 , {A F

ρ}ρ∈Γ1). Then the Fq-modulated quiver (or Fq-species in [Rin1]) of A F is

(Γ,M) with the relation IΓ . For i ∈ D1, let Fi = {x | xei ∈ A F
i }; for i ∈ D2, let Fi = {x | xei + xqeσ(i) ∈

A F
i }. Then Fi are field, 0 � i � 5, and Fi � Fq (resp., Fq2 ) is a field isomorphism if i ∈ D1 (resp., D2).

Note that dimFh(ρ)
A F

ρ = d′
ρ , dimFt(ρ)

A F
ρ = dρ .

A representation (V i,ϕρ) of the Fq-modulated quiver (Γ,M) is given by Fi -vector spaces V i ,
i ∈ Γ0, and Ft(ρ)-linear mappings ϕρ : Vh(ρ) ⊗Fh(ρ)

A F
ρ → Vt(ρ) , ρ ∈ Γ1, with the condition that

2(ϕα1 ⊗ A F
β1

)ϕβ1 + (ϕα2 ⊗ A F
β2

)ϕβ2 = 0. Such a representation is called finite dimensional provided that
all the V i are finite dimensional vector spaces. A homomorphism f = ( f i)i∈Γ0 : (V i,ϕρ) → (V ′

i ,ϕ
′
ρ) is

given by Fi -linear mappings f i : V i → V ′
i , i ∈ Γ0, such that ft(ρ)ϕρ = ϕ′

ρ( fh(ρ) ⊗ 1) for any ρ ∈ Γ1.
We denote by (Γ,M)-rep the category of all finite dimensional representations of (Γ,M). There is a
categorical equivalence

�̃ : A F -mod → (Γ,M)-rep.

For a finite dimensional representation (V i,ϕρ) of A F , we define its dimension vector dim(V i,ϕρ) by
(dim(V i,ϕρ))k = dimFk Vk for any k ∈ Γ0.

3.2. In this subsection, we recall some facts about Frobenius maps on mod A shown in [DD1].
Let V be a Fq-space. If there is an Fq-linear isomorphism F : V → V satisfying

(a) F (λv) = λq F (v) for all v ∈ V and λ ∈ Fq;
(b) for any v ∈ V , F n(v) = v for some n > 0,

then F is called a Frobenius map. Let V F = {v ∈ V | F (v) = v}. Then V = V F ⊗Fq Fq .

Assume that F = F Q ,σ be the Frobenius morphism on the Fq-algebra A defined in Section 3.1. For
any given A-module M together with a Frobenius map F M on M , we define a new A-module M[1]
such that M[1] = M as vector spaces with F -twist action:

a ∗ m := F M
(

F −1
A (a)F −1

M (m)
)
, ∀a ∈ A, m ∈ M.

We call M[1] the F M -twist of M . If M is isomorphic to M[1] as A-modules, then M is said to
be F -stable. Let Rep(Q , I) be the representation category of Q satisfying the relations I , and
Θ : Rep(Q , I) → mod A be the categorical equivalent. A representation V = (V i, φρ) ∈ Rep(Q , I) is
called F -stable representation, if Φ(V ) is an F -stable A-module. Let (Rep(Q , I))F (resp., (A-mod)F ) be
the category of F -stable representations (resp., F -stable modules). So there is an induced categorical
equivalence

Θ : (Rep(Q , I)
)F → (A-mod)F .
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Let V = (V i, φα) ∈ Rep(Q , I) as follows,

V 2 V 5V 3′

V 3

V 1V 4′

V 4

V 0

�����
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�����
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�����

�����
�����

�����

�

φα1

φα2

φα3

φβ1

φβ2

φβ3

φγ1

φγ2

φγ3

where φα = (aij) denotes a dim Vh(α) × dim Vt(α) matrix for any arrow α ∈ Q 1. The twist representa-
tion V [1] of V is defined to be the following representation:

V 2 V 5V 3

V 3′

V 1V 4

V 4′

V 0

�����
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φ
[1]
α1

φ
[1]
α3

φ
[1]
α2

φ
[1]
β1

φ
[1]
β3

φ
[1]
β2

φ
[1]
γ1

φ
[1]
γ3

φ
[1]
γ2

where φ[1] := (aq
i j) for φ = (aij). If V is F -stable, then V is isomorphic to V [1] . So for any i ∈ Γ0, there

is an isomorphism ψi: V i ∼= Vσ(i) between the Fq-linear spaces, and so dim
Fq

V i = dim
Fq

Vσ(i) .

4. The root category R(A F ) of A F

4.1. In this subsection, we recall some facts about the root category R(A) of the tubular algebra A
shown in Section 3.1.

Let C be an abelian category, and let Kb(C) be the homotopy category associated with the category
of bounded complexes over C and Db(C) the bounded derived category of Kb(C) by localization
with quasi-isomorphisms. Denote by T the shift functor of complexes in Db(C). If C is the module
category mod B of a finite dimensional algebra B , we denote Db(mod B) by Db(B). Given a finite
dimensional algebra B , the orbit category R(B) = Db(B)/T 2 is called the root category of B , and
the Galois covering functor F : Db(B) → R(B) is dense. Furthermore, if Db(B) � Db(A) for some
hereditary abelian category A, then using a proof similar to [LP, Theorem 3.3], we can prove that
R(B) is a triangulated category.

Denote by K0(C) the Grothendieck group of an abelian category C , that is the free abelian group on
isomorphism classes [M] of objects in C modulo the relations [M] = [N] + [L] for any exact sequence
0 → N → M → L → 0. Similarly, K0(Db(C)) is defined as the free abelian group on isomorphism
classes [X] of complexes in Db(C) modulo the relations [X] = [Y ] + [Z ] for any distinguished triangle
Y → X → Z → T Y . It has been shown in [H, Lemma III.1.2] that we can identify K0(mod B) and the
Grothendieck group K0(Db(B)). Given an object X in Db(B), we denote by dim X the corresponding
element in K0(Db(B)) = K0(mod B). Note that there is a canonical embedding of mod B into Db(B)

(as the full subcategory of complexes concentrated in degree zero), and the restriction of dim to this
full subcategory mod B coincides with the usual dimension vector function. Also, for any complex
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X = (Xi,di) in Db(B), we have

dim X :=
∑
i∈Z

(−1)idim Xi .

Let K0(R(B)) be the Grothendieck group of R(B). Then K0(R(B)) = K0(Db(B)), and this identifica-
tion is made so that for any X ∈ Db(B), dim X in K0(Db(B)) coincides with dim F X in K0(R(B)).

For an object X̃ in the root category R(A) of the tubular algebra A, define a function χ :
K0(R(A)) → Z by

χ(dim X̃) = dim
Fq

HomR(A)( X̃, X̃) − dim
Fq

HomR(A)( X̃, T X̃).

By [LP, Theorem 8.6], for an indecomposable object X̃ in R(A), χ(dim X̃) = 0 or 1, and dim X̃ =
k0δ

′
0 + k1δ

′
1 or α̇ + k0δ

′
0 + k1δ

′
1, where k0,k1 ∈ Z,

δ′
0 = (1,2,3,2,1,2,1,0), δ′

1 = (0,0,−1,0,0,0,0,1),

α̇ = (0, c1, c2, c3, c4, c3′ , c4′ ,0) with χ(α̇) = 1. We call X̃ a real (resp., an imaginary) object if
χ(dim X̃) = 1 (resp., 0), and dim X̃ a real (resp., an imaginary) root correspondingly. Call an imagi-
nary root δ′ minimal if for any imaginary root δ′′ ∈ Qδ′ , there exists an integer s such that δ′′ = sδ′ .
Let Υ ′ be the set of the minimal imaginary roots of R(A).

From [LP, Section 9.2], the AR-quiver ΓR(A) of the root category R(A) can be described as

ΓR(A) =
⋃

δ′∈Υ ′
T

(
δ′),

where each T (δ′) is a stable tubular family in which there are three non-homogeneous tubes with
rank 3, and the others are homogeneous tubes. According to [LP, Section 9.2], each tubular family
T (δ′) is determined by a minimal imaginary root, and for any indecomposable imaginary object X̃ in
T (δ′), there is a positive integer s such that dim X̃ = sδ′ . Let τ be the AR-translation of the AR-quiver
of R(A).

4.2. In this subsection, using some results in [DD2] about the Frobenius map F on the root cat-
egory, we give explicit actions of a Frobenius map F on the indecomposable objects of R(A) of the
above tubular algebra A.

For an bounded complex X = (Xi,di) in the derived category Db(A), there is a Frobenius twist
complex X [1] defined by

X [1] := (
Xi[1],di[1]),

where Xi[1] , di[1] are defined in Section 3.2. By construction, the Frobenius functor ( )[1] : Db(A) →
Db(A); X �→ X [1] , commutes with the shift functor T , and so ( )[1] induces a functor ( )[1] on R(A),
X̃ �→ X̃ [1] , where X̃ [1] = X̃ [1] for each X ∈ Db(A). An object M̃ in R(A) is said to be F -stable if
M̃ ∼= (M̃)[1] , and is said to be F -periodic if M̃ ∼= (M̃)[r] for some integer r � 1. Call the minimal r with
M̃ ∼= (M̃)[r] the F -period of M̃ .

For abbreviation, an object X̃ in R(A) is denoted by X in the remainder of this article. The action
of σ on Q 0 induces an isomorphism σ̂ of order 2 on the additive group K0(R(A)):

σ̂

( ∑
i∈Q

ciεi

)
=

∑
i∈Q

ciεσ(i).
0 0
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Then dim X [1] = ∑
i∈Z

(−1)idim Xi[1] = ∑
i∈Z

(−1)i σ̂ (dim Xi) = σ̂ (dim X). If X is an F -stable object in
R(A), dim X = ∑

i∈Q 0
ciεi , then σ̂ (dim X) = dim X , and so c3 = c3′ , c4 = c4′ .

Lemma.

(1) Let X be an indecomposable real object in R(A). Then X is of F -period 1 or 2. Moreover, if σ̂ (dim X) =
dim X, then X is F -stable; if σ̂ (dim X) 	= dim X, then X is of F -period 2, and X ⊕ X [1] is F -stable.

(2) Let X be an indecomposable imaginary object of F -period r in R(A), r � 1. Then
⊕r−1

i=0 X [i] is F -stable,
where X [0] = X.

Proof. (1) X [2] is a real object satisfying that dim X [2] = σ̂ 2(dim X) = dim X . By [LP, Theorem 8.6(2)],
X [2] ∼= X . Therefore X is of F -period 1 or 2.

If σ̂ (dim X) = dim X , then dim X [1] = dim X , and so X [1] ∼= X . Or equivalently, X is F -stable. If
σ̂ (dim X) 	= dim X , then X [1] � X , and so X is of F -period 2 and X ⊕ X [1] is F -stable.

(2) Obviously. �
Proposition. Let A be a tubular algebra of type T(3,3,3) and F the Frobenius morphism shown in Section 3.1,
( )[1] is the functor on the root category of R(A) induced by F . Let T (δ′) be a tubular family determined by a
minimal imaginary root δ′ .

(1) For any indecomposable object X in the tubular family T (δ′), X [1] is still in the same tubular family T (δ′).
(2) The functor ( )[1] commutes with the AR-translation τ .
(3) For an indecomposable object X on a tube J of T (δ′), X and X [1] have the same quasi-length and τ -

period. Moreover, either X is F -stable, or X [1] lies on some different tube J ′ .
(4) For any tube J of T (δ′), all indecomposable objects Y on J have a common F -period r. Therefore, for

any homogeneous (resp., non-homogeneous) tube J of T (δ′), the image

J [1] = {
X [1] ∣∣ X is an indecomposable object on J

}
is some homogeneous (resp., non-homogeneous) tube.

(5) There exists a unique non-homogeneous tube J1 such that any indecomposable object X in J1 is F -stable,
and for the other two non-homogeneous tubes J2 , J3 , we have J [1]

2 = J3 , J [1]
3 = J2 .

(6) There exists at least one homogeneous tube whose mouth object is an F -stable object with dimension
vector δ′ .

Proof. (1) Let X be an imaginary object with the dimension vector dim X = δ′ . We can write it as
dim X = b1δ

′
0 +b2δ

′
1, where b1,b2 ∈ Z. Then dim X [1] = σ̂ (dim X) = b1σ̂ (δ′

0)+b2σ̂ (δ′
1) = b1δ

′
0 +b2δ

′
1 =

dim X . Since any stable tubular family is determined by a unique minimal imaginary root, then X [1]
is still in the tubular family T (δ′). So (1) holds.

(2) By [DD2, Lemma 6.5], a distinguished triangle N
f→ L

g→ M
h→ T N is an AR-triangle if and

only if so is N[1] f [1]
→ L[1] g[1]

→ M[1] h[1]→ T (N[1]). Thus τ (N[1]) ∼= (τ N)[1] , i.e., the functor ( )[1] commutes
with τ .

(3) By (2), X and X [1] have the same τ -period. It is easy to see that f : X → Y is an irreducible
map if and only if f [1] : X [1] → Y [1] is an irreducible map. Thus X and X [1] have the same quasi-
length.

Assume that X belongs to a homogeneous tube. Since X and X [1] have the same quasi-length,
then X � X [1] , or X [1] belongs to another tube. So (3) holds in this case. Next, in case that X is not
F -stable and lying on a non-homogeneous tube J , we prove that X [1] does not lie on J by induction
on the quasi-length of X .

Assume that X is of quasi-length 1, i.e., a mouth object on the tube J . Assume that X and X [1] lie
on the same tube J . By (2), X [1] is also a mouth object on J . Since J is a non-homogeneous tube
of rank 3, then X [1] ∼= τ X or X [1] ∼= τ− X . For each case, we can obtain a contradiction. We only prove
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it in the case that X [1] ∼= τ X . Assume that X [1] ∼= τ X . There is an AR-triangle X [1] → Z → X → T X [1] ,
and so X [2] → Z [1] → X [1] → T X [2] is also an AR-triangle. Since X is a real object, then X ∼= X [2] ∼=
τ (X [1]) ∼= τ (τ X) ∼= τ 2(X), which contradicts the fact that X is of τ -period 3. Therefore X and X [1] do
not lie on a same tube.

Let X be an indecomposable object of quasi-length l on the tube J , and X1
f1

↪→ X2
f2

↪→ ·· · fl−1
↪→

Xl = X is a series of irreducible maps such that f i,1 � i � l − 1, are monomorphisms on the tube
J and X1, X2/X1, . . . , Xl/Xl−1 are isomorphic to mouth objects on J . Assume that X1 is F -stable.
Then (τ X1)

[1] ∼= τ (X [1]
1 ) ∼= τ X1, and so τ X1 is also F -stable. Moreover, since τ and ( )[1] commute,

then all mouth objects on J are F -stable, and so all indecomposable objects on J are F -stable,
a contradiction to that X is not F -stable. So we obtain that X1 is not F -stable. By the above proof,

X [1]
1 lies on some tube J ′ different from J . Since X [1]

1

f [1]
1

↪→ X [1]
2

f [1]
2

↪→ ·· ·
f [1]
l−1
↪→ X [1]

l = X [1] is also a series
of irreducible maps, then X [1] also lies on the tube J ′ . Thus X and X [1] lie on different tubes, and so
(3) holds.

(4) We only need to prove that if a mouth object S on J has F -period r, then any indecomposable
object Y on J has the same F -period r, where r � 1. We prove it by induction on the quasi-length
l of Y . Since (τ Y )[s] = τ (Y [s]) for any s � 1, then Y [s] � Y if and only if (τ Y )[s] � τ Y for any s � 1.
Therefore any mouth object on J has the F -period r, i.e., it holds when l = 1. Assume that any
indecomposable object with quasi-length l � k − 1 on J is of F -period r. We will prove that any
indecomposable object Y with quasi-length l = k on J is also of F -period r. There is an AR-triangle
Y ′ → Y → X → T Y ′ such that Y ′ is of quasi-length k − 1 and X is a mouth object. By induction,
Y ′ and X are of F -period r, so Y is of F -period r. Thus (4) holds.

(5) Let J j , j = 1,2,3, be the three non-homogeneous tubes in the tubular family T (δ′), V the
sublattice of K0(R(A)) generated by the dimension vectors dim M with M ∈ T (δ′). Since K0(R(A)) =
K0(A), we have the rank of V is greater than 7 by [Rin2, Corollary 5.3(2′)]. Assume that the dimension
vector dim X = ∑

i∈Q 0
ciεi of any indecomposable object X on the non-homogeneous tubes satisfies

c0 = c4 = c4′ and c1 = c3 = c3′ . Then the rank of V is less than 5, a contradiction. Therefore there
exists at least one indecomposable object X which is not F -stable on some non-homogeneous tube,
denoted by J2. Then we can find at least one mouth object Y which is not F -stable on J2. By (3),
Y [1] is a mouth object on a different non-homogeneous tube, denoted by J3. By (4), J [1]

2 = J3.
Since Y is of F -period 2, then any indecomposable object on J2 is of F -period 2 by (4). Therefore,
J [2]

2 = J2 and J [1]
3 = J2.

We denote by J1 the unique non-homogeneous tube different from J2 and J3. Then J [1]
1 is also

a non-homogeneous tube different from J2 and J3, and so J [1]
1 = J1. For any mouth object X in J1,

X [1] must be F -stable by (3). Then any indecomposable object in J1 is F -stable by (4).
(6) We recall some facts about the repetitive algebra Â and the Frobenius morphism F on Â

induced by the Frobenius morphism F on A.
Let D(−) = Hom

Fq
(−,Fq). The repetitive algebra Â, introduced by Hughes and Waschbüsch [HW],

is the doubly infinite matrix algebra, without identity,

Â =

⎛⎜⎜⎜⎝
· · · · · · 0
· · · A(i − 1) D A(i)

A(i) D A(i + 1)

A(i + 1) · · ·
0 · · · · · ·

⎞⎟⎟⎟⎠
in which matrices have only finitely non-zero entries, A(i) = A are placed on the main diagonal,
D A(i) = D A on the upper next diagonal, for i ∈ Z, all the remaining entries are zero, and the mul-
tiplication is induced from the canonical maps A ⊗A D A → D A, D A ⊗A A → D A and the zero map
D A ⊗A D A → 0. There is a triangle-equivalence Ξ : dim Â � Db(A) (see [HR] and [H]). The vertices
of the ordinary quiver � of Â can be denoted by i( j) , i ∈ Q 0, j ∈ Z, such that for each j the full
subquiver of � consisting of {i( j) | i ∈ Q 0} coincides with the ordinary quiver of A with the same
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numbering vertices as in Section 3.1. Ignoring the relations of arrows, we denote the quiver � of Â
as follows:

2(0)

5(0)3′ (0)

3(0)

1(0)

4′ (0)

4(0)

0(0)
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Let A−1, A0, A1 be the convex projective idempotent subalgebras (see [LP, Section 8.5]) determined
by the set of vertices {5(−1), i(0) | i ∈ Q 0\{5}}, {i(0) | i ∈ Q 0}, {1(0),3′ (0),3(0),5(0),0(1),4(1),2(1),4′ (1)}.

By [DW], the Frobenius morphism F on A induces a Frobenius morphism on Â, and the Frobenius
twist functor ( )[1] : X �→ X [1] on mod A can be lifted to a Frobenius twist functor ( )[1] on the
module category mod Â and the stable module category mod Â. The elements of Â will be denoted
by (ai,ϕi)i , where ai ∈ A, ϕi ∈ D A with almost all ai , ϕi being zero. We recall some main facts
in [DW]. Define F ((ai,ϕi)i) = (F (ai),ϕ

[1]
i )i for all (ai,ϕi)i ∈ Â. Then F is a Frobenius morphism on Â.

It is easy to see that F (ei( j) ) = e(σ (i))( j) for any i ∈ Q 0, j ∈ Z, where ei( j) is the orthogonal idempotent

element in Â related to the vertex i( j) in the quiver of Â. Moreover, the finite dimensional Â-modules
identify with M = (Mi, f i), where Mi are A-modules, all but finitely many being zero, and f i : Mi →
HomA(D A, Mi+1) are A-module homomorphisms satisfying HomA(D A, f i+1) · f i = 0 for all i ∈ Z. For
an Â-module M = (Mi, f i), define M[1] = (M[1]

i , f̂ [1]
i ), where f̂ [1]

i is shown in [DW, p. 173]. Then

( )[1] : M �→ M[1] is a Frobenius map on mod Â. Since an Â-module M is injective if and only if its
Frobenius twist M[1] is injective, then the Frobenius twist functor ( )[1] on mod Â induces a Frobenius
map F on mod Â : mod Â → mod Â, M �→ M[1] .

By [LP, Lemma 8.6], for any tubular family T in R(A), there is a convex projective idempotent
subalgebra A′ ∈ {A−1, A0, A1} such that Â′ = Â and there is a tubular family T ′ in mod A′ such that
all homogeneous tubes in T ′ coincide with all those in T . By the symmetry of mod Â′ , there is
an F -stable Â′-module M on some homogeneous tube J of T ′ . Correspondingly, there is an F -stable
indecomposable object Ξ(M) on some homogeneous tube Ξ(J ) of the derived categories Db(A), and

so there is an F -stable indecomposable object Ξ̃(M) on some homogeneous tube Ξ̃(J ) of R(A). �
4.3. In this subsection, we give an explicit description of the structure of the root category R(A F )

of A F .
For an object X in R(A F ), we define a function χ : K0(R(A F )) → Z by

χ(dim X) = dimFq HomR(A F )(X, X) − dimFq HomR(A F )(X, T X).

We call X a real (resp., an imaginary) object if χ(dim X) 	= 0 (resp., = 0), and dim X a real (resp., an
imaginary) root correspondingly. We denote by Rre (resp., Rim) the set of all real (resp., imaginary)
roots of R(A F ). Let Υ be the set of the minimal imaginary roots of R(A F ).

We define the category R(A)F consisting of F -stable objects in R(A) and Hom-spaces
HomR(A)F (M, N) := HomR(A)(M, N)F . By [DD2, Theorem 8.5], there is a triangulated category equiv-
alence

F̃ : R(A)F ∼= R
(

A F )
.

Under the functor F̃ , simple A-module S(i) ∈ R(A)F is mapped to simple A F -module S(i) for i =
0,1,2,5, and the indecomposable object S(i) ⊕ S(i′) ∈ R(A)F is mapped to simple A F -module S(i)
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for i = 3,4. So for X ∈ R(A)F , dim X = ∑
i∈Q 0

ciεi , we have dim F̃ (X) = ∑5
i=0 ciεi . By Lemma 4.2, we

have the following lemma.

Lemma. An F -stable object Y in R(A)F is indecomposable if and only if Y is of one form in the following three
forms:

(1) Y is an indecomposable real object of F -period 1 in R(A);
(2) Y = X ⊕ X [1] , where X is an indecomposable real object of F -period 2 in R(A);
(3) Y = ⊕r−1

i=0 X [i] , where X is an indecomposable imaginary object of F -period r in R(A).

By [DD2, Theorem 7.2], the AR-quiver of the root category R(A F ) can be obtained by folding the
AR-quiver of the root category R(A). So we have the following proposition:

Proposition.

(1)

ΓR(A F ) =
⋃
δ′∈Υ

T
(
δ′),

where each T (δ′) is a stable tubular family in which there are two non-homogeneous tubes and the others
are homogeneous.

(2) Given a tubular family T in R(A F ), we put

C = 〈
T ′ ∣∣ T ′ a tubular family such that T ′ 	= T T and HomR(A F )

(
T ′, T

) 	= 0
〉
.

Then
(i) R(A F ) = C ∪ T C and HomR(A F )(C, T C) = 0;

(ii) C is a hereditary abelian Fq-category with finite dimensional Hom-spaces and Ext-spaces;
(iii) C has a Serre duality, in other words, there is an equivalence τ : C → C such that D Ext1

C (X, Y ) =
HomC (Y , τ X) for X, Y ∈ C ;

(iv) for X, Y , Z ∈ C , 0 → X
f→ Y

g→ Z → 0 is exact in C if and only if there is a triangle X
f→ Y

g→ Z
h→

T X in R(A F );

(v) C is closed under extension in R(A F ), that is, for a triangle X
f→ Y

g→ Z
h→ T X, if X, Z ∈ C , then

Y ∈ C ;
(vi) R(A F ) ∼= Db(C)/T 2 .

4.4. In this subsection, we show that Db(A F ) is in fact equivalent to a derived category of coherent
sheaves of an exceptional curve over Fq .

Denote by T0 the tubular family containing the indecomposable object T S(5) in the root category
R(A F ). Let

C0 = 〈
T ′ ∣∣ T ′ a tubular family such that T ′ 	= T T0 and HomR(A F )

(
T ′, T0

) 	= 0
〉
.

By Proposition 4.3, C0 is a hereditary abelian Fq-category. It is easy to know that S(i) ∈ C0 for any
0 � i � 4.

An object X in C0 is called exceptional if X is indecomposable and Ext1
C0

(X, X) = 0. A pair (X, Y )

of exceptional objects in C0 is called exceptional if HomC0 (Y , X) = 0 and Ext1
C0

(Y , X) = 0. A sequence
X = (E1, E2, . . . , Er) of exceptional objects in C0 is called an exceptional sequence of length r provided
that each pair (Ei, E j) with i < j is an exceptional pair. An exceptional sequence X = (E1, E2, . . . , Er)
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in C0 is called complete if in the derived category Db(C0) the minimal full triangulated subcategory
containing the objects E1, E2, . . . , Er coincides with Db(C0).

Lemma. A sequence

S = (
T S(5), S(1), S(3), S(0), S(4), S(2)

)
is a complete exceptional sequence in C0 .

Proof. It is easily checked that all objects T S(5), S(i), 0 � i � 4, are exceptional objects and S is an
exceptional sequence in C0. In Db(C0), we consider the minimal triangulated subcategory D′ contain-
ing T S(5), S(i), 0 � i � 4. For any i ∈ Z, T i(mod A F ) ⊆ D′ , which implies that Db(A F ) ⊆ D′ . Since
D′ ⊆ Db(C0) and Db(A F ) = Db(C0), then Db(C0) = D′ . Thus the lemma holds. �

Following [L, Section 2.5], an exceptional curve X over a field k is defined by the following requests
on its associated category coh(X) of coherent sheaves:

(1) coh(X) is a connected small abelian k-category with morphism spaces that are finite dimensional
over k;

(2) coh(X) is hereditary and noetherian and there exists an equivalence τ : coh(X) → coh(X) such
that Serre duality D Ext1(X, Y ) � Hom(Y , τ X) holds;

(3) coh(X) admits a complete exceptional sequence.

By Proposition 4.3 and Lemma 4.4, we have the following important proposition.

Proposition.

(1) The category C0 is a category of coherent sheaves corresponding to an exceptional curve, denoted by X0 ,
over a finite field Fq.

(2) The derived category Db(A F ) is isomorphic to the derived category of the category of coherent sheaves
corresponding to X0 over Fq.

Remark. It is easy to compute that the genus, defined in [L, Section 2.5], of the above exceptional
curve X0 is 1, i.e., X0 is of tubular type.

4.5. In this subsection, we give an explicit description of the real and imaginary roots of the root
category R(A F ).

Theorem.

(1) For any indecomposable object Z in R(A F ), χ(dim Z) = 0, 1 or 2. Moreover, set

δ = (1,2,3,2,1,0) and a = (0,0,−1,0,0,1),

we have that χ(dim Z) = 0 if and only if dim Z = k1δ + k2a, where k1,k2 ∈ Z and at least one of k1 ,
k2 is not equal to zero; and χ(dim Z) = 1 or 2 if and only if dim Z = α̇ + χ(α̇)k1δ + χ(α̇)k2a, where
α̇ = (0, c1, c2, c3, c4,0) with χ(α̇) = 1 or 2.

(2) Let 0 	= α ∈ K0(R(A F )) with χ(α) = 0. Then there exists at least one homogeneous tube J which con-
tains an object Z with dim Z = α in some tubular family T of the AR-quiver of R(A F ). Moreover, if
α ∈ 2Rim\{0}, then any one of the two non-homogeneous tubes in the above tubular family T contains
an indecomposable object Z such that dim Z = α, and if α ∈ Rim\2Rim, then only one of the two non-
homogeneous tubes in T contains an object Z with dim Z = α.
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Proof. (1) By Lemma 4.3, the indecomposable F -stable object F̃ −1(Z) in R(A)F belongs to one of the
following three cases.

Case 1. F̃ −1(Z) is an indecomposable real object X of F -period 1 in R(A).
In this case, χ(dim Z) = dimFq HomR(A F )(Z , Z) − dimFq HomR(A F )(Z , T Z) = dim

Fq
HomR(A)(X,

X)−dim
Fq

HomR(A)(X, T X) = 1. Set dim X = (c1ε1 +c2ε2 +c3ε3 +c4ε4 +c3′ε3′ +c4′ε4′ )+k1δ
′
0 +k2δ

′
1.

Then dim Z = dim F̃ (X) = ∑4
i=1 ciεi + k1δ + k2a, where χ(

∑4
i=1 ciεi) = χ(dim Z) = 1.

Case 2. F̃ −1(Z) = X ⊕ X [1] , where X is an indecomposable real object of F -period 2 in R(A).
By Proposition 4.2(3), X and X [1] lie on two different tubes in a same tubular family, then

χ(dim Z) = dim
Fq

HomR(A)(X ⊕ X [1], X ⊕ X [1])−dim
Fq

HomR(A)(X ⊕ X [1], T (X ⊕ X [1])) = χ(dim X)+
χ(dim X [1]) = 2. Set dim X = c1ε1 + c2ε2 + c3ε3 + c4ε4 + c3′ε3′ + c4′ε4′ + k1δ

′
0 + k2δ

′
1. Then dim Z =

dim F̃ (X ⊕ X [1]) = (2c1ε1 + 2c2ε2 + (c3 + c3′ )ε3 + (c4 + c4′ )ε4)+ 2k1δ + 2k2a, where χ(2c1ε1 + 2c2ε2 +
(c3 + c3′)ε3 + (c4 + c4′)ε4) = χ(dim Z) = 2.

Case 3. F̃ −1(Z) = ⊕r−1
i=0 X [i] , where X is an indecomposable imaginary object of F -period r in

R(A).
By Proposition 4.2(3), for i 	= j, X [i] and X [ j] lie on two different tubes. Then χ(dim Z) =

dim
Fq

HomR(A)(
⊕r−1

i=0 X [i],
⊕r−1

i=0 X [i]) − dim
Fq

HomR(A)(
⊕r−1

i=0 X [i],
⊕r−1

i=0 T X [i]) = 0. Set dim X =
k1δ

′
0 +k2δ

′
1, where k1,k2 ∈ Z. Then dim X [i] = dim X = k1δ

′
0 +k2δ

′
1, and so dim Z = dim F̃ (

⊕r−1
i=0 X [i]) =

r(k1δ + k2a).
(2) By conditions, α is an imaginary root of K0(R(A F )). There exists a unique minimal imaginary

root δ′ ∈ K0(R(A F )) such that Nδ′ = Q+α ∩ Z6. We set α = sδ′ , s ∈ N, and δ′ = k1δ + k2a, where
k1,k2 ∈ Z. So α ∈ 2Rim\{0} (resp., α ∈ Rim\2Rim) if and only if s is a positive even (resp., odd) integer.
There exists a tubular family T determined by the imaginary root k1δ + k2a in the AR-quiver of
R(A F ). By Proposition 4.2(6), in the AR-quiver of R(A), there exists a homogeneous tube of T ′ =
F̃ −1(T ) containing an F -stable indecomposable object X with the dimension vector s(k1δ

′
0 + k2δ

′
1).

Then F̃ (X) is an indecomposable object with dimension vector α and on some homogeneous tube of
the tubular family T in the AR-quiver of R(A F ).

In the tubular family T ′ of the AR-quiver ΓR(A) , there exists a non-homogeneous tube J1 whose

indecomposable objects are F -stable and for the other two homogeneous tubes J2 and J3, J [1]
2 =

J3 and J [1]
3 = J2, where J1, J2, J3 are the same to those in Proposition 4.2(5). For any positive

integer s, there exists an F -stable indecomposable object X1 with dimension vector s(k1δ
′
0 + k2δ

′
1)

on J1, and so there exists an indecomposable object F̃ (X1) with dimension vector α on the non-
homogeneous tube F̃ (J1) of the above tubular family T . Moreover, if s is even, then there exists
another indecomposable F -stable object X2 ⊕ X [1]

2 with dimension vector s(k1δ
′
0 + k2δ

′
1), where X2

is an indecomposable object on J2, and so there exists an indecomposable object F̃ (X2 ⊕ X [1]
2 ) with

dimension vector α on a non-homogeneous tube different from F̃ (J1). Thus (2) holds. �
4.6. In this subsection, we describe basic facts about exceptional sequences in R(A F ), which will

be used in Section 6.
An indecomposable object in R(A F ) is called exceptional, if HomR(A F )(X, T X) = 0. A pair (X, Y ) of

exceptional objects in R(A F ) is called exceptional if HomR(A F )(Y , X) = 0 and HomR(A F )(Y , T X) = 0.
By [KM, Lemma 3.2], we have the following proposition, which is similar to [LP, Proposition 7.2].

Lemma. Let (X, Y ) be an exceptional pair in R(A F ), HomR(A F )(X, Y ) 	= 0. Put m = dimEnd(X) HomR(A F )(X,

Y ). Let

T Y
f→ Z

g→ X (m) can.→ Y

be the triangle induced by the canonical morphism X (m) can.→ Y . Then
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(1) Z is an exceptional object and (Z , X) is an exceptional pair;

(2) if there exists a triangle T Y
f ′
→ Z ′ g′

→ X (m) h′→ Y such that Z ′ is indecomposable, then Z ′ ∼= Z .

Dually, put n = dimEnd(Y ) HomR(A F )(X, Y ). Let

X
can.→ Y (n) g→ W

h→ T X

be the triangle induced by the canonical morphism X
can.→ Y (n) . Then

(1′) W is an exceptional object and (Y , W ) is an exceptional pair;

(2′) if there exists a triangle X
f ′
→ Y (n) g′

→ W ′ h′→ T X such that W ′ is indecomposable, then W ′ ∼= W .

In the above proposition, Z is said to be the left mutation of Y by X , denoted by L X Y ; W is said
to be the right mutation of X by Y , denoted by R X Y .

A sequence X = (X1, X2, . . . , Xr) in R(A F ) is called an exceptional sequence of length r, if any
pair (Xi, X j) is exceptional for any i < j. An exceptional sequence X = (X1, X2, . . . , Xr) in R(A F )

is called complete if the minimal full triangulated subcategory containing the objects X1, X2, . . . , Xr

coincides with R(A F ). Since K0(R(A F )) ∼= Z6, then by Lemma 4.4, an exceptional sequence X =
(X1, X2, . . . , Xr) is complete if and only if r = 6.

Given an exceptional pair (X, Y ) in R(A F ), we can define two exceptional pairs (L X Y , X), (Y , RY X)

as follows.

(1) If HomR(A F )(X, Y ) = 0, then L X Y = T Y and RY X = T X .
(2) If HomR(A F )(X, Y ) 	= 0, then L X Y and R X Y are determined by the above triangles as in Lem-

ma 4.6.

Recall the braid group B6 is generated by generators σ1, σ2, . . . , σ5 with relations σiσi+1σi =
σi+1σiσi+1 for i = 1,2,3,4 and σiσ j = σ jσi for j � i + 2. Denote by Z6

2 the free module over Z2

with basis γ1, γ2, . . . , γ6. Let Z6
2 � B6 be the semidirect product of groups Z6

2 and B6. For a given
complete exceptional sequence X = (X1, X2, . . . , X6), we define

σi(X1, X2, . . . , X6) = (X1, . . . , Xi−1, Xi+1, R Xi+1 Xi, Xi+2, . . . , X6),

σ−1
i (X1, X2, . . . , X6) = (X1, . . . , Xi−1, L Xi Xi+1, Xi, Xi+2, . . . , X6),

for i = 1,2, . . . ,5 and

γi(X1, X2, . . . , X6) = (X1, . . . , Xi−1, T Xi, Xi+1, . . . , X6)

for i = 1,2, . . . ,6. In this way, we obtain an action of Z6
2 � B6 on the set of the complete exceptional

sequences in R(A F ).
Since R(A F ) is the root category of the category of coherent sheaves on an exceptional curve X0

by Proposition 4.4, we have the following result by a proof similar to that of [LP, Proposition 8.2].

Proposition.

(1) Any exceptional object in R(A F ) can be extended to a complete exceptional sequence in R(A F ).
(2) The action of Z6

2 � B6 on the set of the complete exceptional sequences in R(A F ) is transitive.
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5. The Ringel–Hall Lie algebra of the root category R(A F )

5.1. In this subsection, following [PX2], we recall the definition of the Ringel–Hall Lie algebras of
the root category of A F . The definition is also seen in [LP, Section 5].

Given X, Y , L ∈ R(A F ), consider

W (X, Y ; L) = {
( f , g,h) ∈ Hom(X, L) × Hom(L, Y ) × Hom(Y , T X)

∣∣
X

f→ L
g→ Y

h→ T X is a triangle
}
.

Applying Aut(X) × Aut(Y ) for acting on W (X, Y ; L) defined by

(a, c) ◦ ( f , g,h) = (
af , gc−1, ch(T a)−1)

for (a, c) ∈ Aut(X)×Aut(Y ), ( f , g,h) ∈ W (X, Y ; L), we get the Ringel–Hall number F L
Y X = |W (X, Y ; L)/

Aut(X) × Aut(Y )|.
For any M ∈ R(A F ), we denote by hM := dim M the canonical image of [M] in K0(R(A F )). Denote

by ind R(A F ) the set of representatives of isoclasses of the indecomposable objects in R(A F ). And
denote by h′ the subgroup of K0(R(A F )) ⊗Z C generated by hM

d(M)
, M ∈ ind R(A F ), where d(M) =

dimFq (End M/Rad(End M)).
We define a symmetric Euler bilinear function I R(A F )(−,−) on h′ × h′ determined by

I R(A F )(hX ,hY ) = dimFq HomR(A F )(X, Y ) − dimFq HomR(A F )(X, T Y )

+ dimFq HomR(A F )(Y , X) − dimFq HomR(A F )(Y , T X)

for any X, Y ∈ R(A F ).
Let n be the free abelian group with a basis {u X | X ∈ ind R(A F )}. Let

g
(

R
(

A F )) = h′ ⊕ n,

a direct sum of Z-modules. We shall consider the quotient group

g
(

R
(

A F ))
(q−1)

= g
(

R
(

A F ))
/(q − 1)g

(
R

(
A F ))

.

We still use uM , hM to denote the corresponding residue classes for M ∈ R(A F ).
Then by [PX2], g(R(A F ))(q−1) is a Lie algebra over Z/(q − 1)Z with the Lie operation [−,−] as

follows.

(1) For any two indecomposable objects X, Y ∈ R(A F ),

[u X , uY ] =
{∑

L∈ind R(A F )(F L
Y X − F L

XY )uL, if Y � T X;
− hX

d(X)
, if Y ∼= T X .

(2) For any objects X, Y ∈ R(A F ) with Y indecomposable,

[hX , uY ] = I R(A F )(hX ,hY )uY and [uY ,hX ] = −[hX , uY ].

(3) [h′,h′] = 0.
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Obviously, g(R(A F ))(q−1) has the canonical decomposition

g
(

R
(

A F ))
(q−1)

= h′ ⊕
⊕

α=dim X, X∈ind R(A F )

(
g
(

R
(

A F ))
(q−1)

)
α
,

where (g(R(A F ))(q−1))α is the Z/(q − 1)Z-submodule spanned by all u X with X ∈ ind R(A F ) and
dim X = α.

As in [LP, Section 5.2], we define the direct product
∏

E∈Ω g(R(A F )E )(|E|−1) of Lie algebras and
let L C(R(A F ))1 be the Lie subalgebra of

∏
E∈Ω g(R(A F )E )(|E|−1) generated by uSi = (uS E

i
)E∈Ω and

uT Si = (uT S E
i
)E∈Ω , i = 0,1, . . . ,5. Write

g′ = L C
(

R
(

A F ))
1 ⊗Z C,

then g′ is a Lie algebra over C, called the Ringel–Hall Lie algebra of the root category R(A F ). Naturally
g′ has the following grading

g′ =
⊕

α∈K0(R(A F ))

g′
α

such that deg(uSi ) = dim Si and deg(uT Si ) = dim T Si , where g′
0 is just h′ .

5.2. The following is the main theorem in this article, which gives a realization of the elliptic Lie
algebra of type F (2,2)

4 .

Theorem. Let A F be the F -fixed point subalgebra of the tubular algebra of type T(3,3,3) under the Frobenius
morphism F = F Q ,σ defined in Section 3.1, R(A F ) = Db(A F )/T 2 the root category of A F , g′ the Ringel–Hall

Lie algebra over C of the root category R(A F ) in the sense of [PX2], g the elliptic Lie algebra of type F (2,2)
4

over C defined in Section 2.2. Then there is a Lie algebra isomorphism

Φ : g → g′

defined by Φ(hi) = hSi , Φ(ei) = uSi , Φ( f i) = −uT Si for any i = 0,1, . . . ,5.

The remainder of this article aims to prove it.

5.3.

Lemma. There exists a group isomorphism

Ψ : K0
(

R
(

A F )) → Q

defined by hSi �→ hi , 0 � i � 5. And under Ψ we have I R(A F )(−,−) = I R(−,−).

Proof. Since {hSi | 0 � i � 5} is a basis of K0(R(A F )) and {hi | 0 � i � 5} is a basis of Q, then Ψ

is a group isomorphism. Set aij = I R(A F )(hSi ,hS j ), 0 � i, j � 5. Then aij = dimFq HomR(A F )(Si, S j) −
dimFq HomR(A F )(Si, T S j) + dimFq HomR(A F )(S j, Si) − dimFq HomR(A F )(S j, T Si). By computation, the
matrix A = (aij)6×6 is equal to the matrix N in Section 2.2. Thus I R(A F )(−,−) = I R(−,−). �

From now on, we identify K0(R(A F )) with Q, and we can think that g′ is also graded by Q such
that deg(uSi ) = αi and deg(uT Si ) = −αi for i = 0,1, . . . ,5.
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5.4.

Lemma.

(1) Φ defined in Theorem 5.2 is a well-defined Lie morphism which is surjective and keeps the gradations.
(2) There is an isomorphism Φ|g0 : g0 → g′

0 .

Proof. (1) To prove that Φ is a well-defined map, we only need to check that the generators uSi , uT Si

and hSi , i = 0,1, . . . ,5, satisfy all relations in Section 2.2.
By definition, the relation O holds.
By easy computation, d(Si) = 1

2 I R(αi,αi) for any i = 0,1, . . . ,5, and so the relation I holds.
By Lemma 5.3, the relation II1 obviously holds.
To check the relation II2, for any i = 0,1, . . . ,5, we set α = αi + max{1,1 − I R(α∨

i ,α j)}α j . If
I R(α∨

i ,α j) > 0, i 	= j, then αi,α j ∈ {α2,α5}, and α = α2 + α5, which implies that I R(α,α) = 8.
Thus χ(α) = 1

2 I R(α,α) = 4. By Theorem 4.5(1), α is not a real root of R(A F ), then there is no
indecomposable object X in R((A F )E) for any E ∈ Ω such that dim X = α. Similar to [LP, Proposi-
tion 5.2], we have g′

α = 0. If I R(α∨
i ,α j) � 0, i 	= j, then α = αi + (1 − I R(α∨

i ,α j))α j . Since S(i), S( j)
lie in a representation-finite hereditary algebra, then following [Rin3], we have the Serre relations:
(ad uSi )

1−I R (α∨
i ,α j)uS j = 0 and (ad uT Si )

1−I R (α∨
i ,α j)uT S j = 0. Thus the relation II2 holds.

For α = ±(α2 +α1 +α5) or ±(α1 +α2 +α3 +2α5), it is easily computed that χ(α) = 1
2 I R(α,α) = 3,

and then by Theorem 4.5(1), α is not a real root of R(A F ). Thus there is no indecomposable object
X in R((A F )E ) for any E ∈ Ω such that dim X = α, which implies that the relations III and V hold.

For α = ±(α2 + α3 + α5), write it as α = ±[(2α2 + α3) + a], where χ(2α2 + α3) = χ(α) = 2. By
Theorem 4.5(1), there is no indecomposable object X in R((A F )E ) for any E ∈ Ω such that dim X = α.
So we have checked the relation IV.

Thus Φ is well defined, and obviously an epimorphism.
(2) By the definition of g′

0, hS0 ,hS1 , . . . ,hS5 are linearly independent in g′
0, and so dimC g′

0 � 6. By
Section 2.2, dimC g0 = 6. Thus Φ|g0 : g0 → g′

0 is isomorphic. �
6. Isomorphisms between root spaces

For any α ∈ Rre ∪ Rim , by Lemma 5.4, the map Φ defined in Section 5.2 is an epimorphism and
induces the surjective map Φ|gα : gα → g′

α . Moreover, the following Propositions 6.1 and 6.5 show
that Φ|gα is in fact an isomorphism.

6.1.

Proposition. For any α ∈ Rre, there is an isomorphism Φ|gα : gα → g′
α of linear spaces.

Proof. For i = 0,1, . . . ,5, uSi ∈ g′
αi

, and so 1 � dimC g′
αi

� dimC gαi = 1 by Lemma 5.4, then
dimC g′

αi
= 1. Obviously, ad uSi , ad uT Si are locally nilpotent. So the automorphism exp(ad(−uT Si ))×

exp(−ad uSi )exp(ad(−uT Si )) induces an isomorphism g′
α

∼= g′
ωαi (α) for any α ∈ Rre . Since Rre = W Π ,

then for any α ∈ Rre , there is some i ∈ {0,1, . . . ,5} such that dimC g′
α = dimC g′

αi
, and so dimC g′

α = 1.
By Section 2.2, dimC gα = 1. Thus Φ|gα : gα → g′

α is an isomorphism. �
The following Sections 6.2–6.5 aim to prove that Φ|gα is an isomorphism for any α ∈ Rim .

6.2. In this subsection, we show that the Ringel–Hall algebra g′ can be generated by the objects
and their shifts in any complete exceptional sequence of R(A F ).

Lemma. Let (X, Y ) be an exceptional pair in R(A F ), and HomR(A F )(X, Y ) 	= 0. Assume that m =
dimEnd(X) HomR(A F )(X, Y ). If T Y

f→ Z
g→ X (m) can.→ Y is the triangle induced by the canonical morphism,
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then in g(R(A F ))(q−1) , (−1)m(m!)u Z = (ad u X )muT Y . Dually, put n = dimEnd(Y ) HomR(A F )(X, Y ). If

X
can.→ Y (n) g→ W

h→ T Y is the triangle induced by the canonical morphism. Then (n!)uW = (ad uY )nuT X .

Proof. By Proposition 4.3, R(A F ) has properties similar to those of R(A), then we can take a process
similar to that in the proof of [LP, Proposition 7.3]. �

Let X = (X1, X2, . . . , X6) be a complete exceptional sequence in R(A F ), L(X , T X ) is the Lie sub-
algebra of

∏
E∈Ω g(R(A F )E )(|E|−1) generated by u Xi := (u X E

i
)E∈Ω and uT Xi := (uT X E

i
)E∈Ω , 1 � i � 6.

Proposition. Let X be a complete exceptional sequence in R(A F ). Then

(1) L(X , T X )⊗Z C = L(σi X , Tσi X )⊗Z C = L(γ j X , Tγ j X )⊗Z C, for any i = 1,2, . . . ,5, j = 1,2, . . . ,6.
(2) L(X , T X ) ⊗Z C = g′ .

Proof. (1) Let m = dimEnd(Xi) HomR(A F )(Xi, Xi+1), n = dimEnd(Xi+1) HomR(A F )(Xi, Xi+1). By Lem-
ma 6.2, (−1)m(m!)uL Xi Xi+1 = (ad u Xi )

muT Xi+1 , (n!)uR Xi+1 Xi = (ad u Xi+1 )
nuT Xi , then L(X , T X ) ⊗Z C =

L(σi X , Tσi X ) ⊗Z C. The equality L(X , T X ) ⊗Z C = L(γ j X , Tγ j X ) ⊗Z C is obvious.
(2) By Lemma 4.4, S = (T S(5), S(1), S(3), S(0), S(4), S(2)) is a complete exceptional sequence in

R(A F ). By the definition of g′ , L(S , T S) ⊗Z C = g′ . By the above (1) and Proposition 4.6(2), we have
L(X , T X ) ⊗Z C = g′ . �

6.3. The Ringel–Hall Lie algebra of R(A F ) is in nature a Lie algebra generated by uSi , uT Si ,
i = 0,1, . . . ,5. The following proposition shows that the real root objects lie in the Ringel–Hall Lie
algebra g′ .

Proposition. Let X be an indecomposable object in R(A F ). If dim X ∈ Rre, then u X ∈ g′ .

Proof. By the structure of the AR-quiver of R(A F ), X is an indecomposable object on some non-
homogeneous tube J in the AR-quiver of R(A F ). If X is an exceptional object, then by Proposi-
tion 4.6(1), X can be extended to a complete exceptional sequence X . By Proposition 6.2(2), u X ∈
L(X , T X ) ⊗Z C = g′ . Assume that X is not an exceptional object. Since the mouth objects T1, T2, T3
lying on the non-homogeneous tube J are exceptional, then u X = [· · · [[uTi1

, uTi2
], uTi3

], . . . , uTir
] ∈ g′ ,

where Tik ∈ {T1, T2, T3}, 1 � k � r. �
6.4.

Proposition. Given a tubular family T in R(A F ), there is a Kronecker algebra K with the corresponding
imbedding functor G : mod K → R(A F ) which satisfies the following two conditions:

(1) 0 → X → Y → Z → 0 is exact in mod K if and only if G X → GY → G Z → T G X is a triangle in R(A F ).
(2) Any homogeneous tube in T is an image of some homogeneous tube in mod K under the functor G.

Proof. By [DD2, Theorem 8.5], the AR-quiver of R(A F ) is ‘folded’ by the AR-quiver of R(A). Let the
tubular family T in R(A F ) be ‘folded’ by the tubular family T A in the AR-quiver of R(A). By [LP,
Lemma 8.6], there is a convex projective idempotent subalgebra A′ ∈ {A−1, A0, A1} and a tubular
family T ′

A over A′ satisfying that Db(A′) ∼= Db(A) and all homogeneous tubes in T ′
A coincide with all

those in T A . So we can see T A as a full subcategory of mod A′ . The Frobenius morphism on Â, which
is defined in the proof of Proposition 4.2(6), induces a Frobenius morphism F on its subalgebra A′ .
Let A′ F be the F -fixed point subalgebra of A′ . Then Db(A′ F ) ∼= Db(A′)F ∼= Db(A)F ∼= Db(A F ), and so
there is a tubular family T ′ in the AR-quiver of mod A′ F whose homogeneous tubes coincide with
the homogeneous tubes of T . We choose a partial tilting module M in mod A′ F which contains four
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pairwise different indecomposable direct summands lying on two non-homogeneous tubes of T ′ . By
Bongartz’s Lemma, there is a tilting A′ F -module M1 ⊕ M2 ⊕ M such that Mi is indecomposable and
either projective or satisfies HomA′ F (Mi, M) 	= 0 for i = 1,2. For any module X on a homogeneous
tube of T ′ , Ext1

A′ F (Mi, X) = D HomA′ F (τ− X, Mi) = 0 for i = 1,2. So X is generated by M1 ⊕M2, i.e., all

homogeneous tubes of T ′ are generated by M1 ⊕ M2. Let K = EndA′ F (M1 ⊕ M2). Since Db(End(M1 ⊕
M2 ⊕ M)) ∼= Db(A F ), it is easy to see that K is the Kronecker algebra with two simple modules and
mod K contains all homogeneous tubes in T ′ . We have naturally an embedding functor L : mod K →
R(A F ), as required. �

6.5.

Proposition. Let α ∈ Rim.

(1) If α ∈ Rim\2Rim, then dimC g′
α = 3.

(2) If α ∈ 2Rim\{0}, then dimC g′
α = 5.

As a consequence, Φ|gα is isomorphic.

Proof. (1) If α ∈ Rim\2Rim , then by Theorem 4.5(2), there exists one tubular family T of R(A F ) such
that there is only one non-homogeneous tube J1 in T containing indecomposable objects X1, X2, X3
with the same dimension vector α such that τ− X1 = X2, τ− X2 = X3, τ− X3 = X1, and there is one
homogeneous tube containing one indecomposable object Y with the dimension vector α. Note that
the mouth objects T1, T2, T3 on the non-homogeneous tube J1 are exceptional. By Proposition 6.3,
uTi ∈ g′ , i = 1,2,3. Then u X1 − u X2 , u X2 − u X3 lie in g′

α .
Let E be a finite field extension in Ω with |E| large enough and such that Y E is still inde-

composable. By Proposition 6.4, there is a Kronecker algebra K such that mod K E ⊆ R(A F )E and
Y E ∈ mod K E . By [LP, Lemma 8.7], there are exceptional modules E1, E2 in mod K such that F Y E

E E
1 ,E E

2
= 0

and |E| − 1 does not divide F Y E

E E
2 ,E E

1
. By Proposition 6.3, uE E

1
, uE E

2
∈ g′ , and so [uE E

1
, uE E

2
] ∈ g′

α , and

[uE E
1
, uE E

2
] = auY E + ∑

s bsu Zs such that a 	≡ 0 (mod |E| − 1), and uY E , u Zs is pairwise different in

g(R(A F )E )(|E|−1) . Thus [uE E
1
, uE E

2
] 	= 0. By the definition of g(R(A F )E )(|E|−1) , we know that [uE E

1
, uE E

2
],

u X E
1

− u X E
2

, u X E
2

− u X E
3

are linearly independent in g(R(A F )E )(|E|−1) , and so [uE1 , uE2 ], u X1 − u X2 ,

u X2 − u X3 are linearly independent in g′ . Therefore, dimC g′
α � 3. On the other hand, by Section 2.2,

dimC gα = 3, and so dimC g′
α � dimC gα = 3 by Lemma 5.4. Therefore, dimC g′

α = dimC gα = 3. As a
consequence, Φ|gα is isomorphic.

(2) If α ∈ 2Rim\{0}, then by Theorem 4.5(2), there exists a tubular family T such that each one of
the two non-homogeneous tubes Ji , i = 1,2, of T contains three indecomposable objects with the
same dimension vector α. Similarly, we can prove that dimC g′

α = 5, and Φ|gα is isomorphic. �
Up to now, Theorem 5.2 is followed from Lemma 5.4, Propositions 6.1 and 6.5.

7. A Chevalley basis

In this section, we give a Chevalley basis of the elliptic Lie algebra of type F (2,2)
4 via the indecom-

posable objects of the root category R(A F ).
By Proposition 4.3,

ΓR(A F ) =
⋃
δ′∈Υ

T
(
δ′),

where each T (δ′) contains two non-homogeneous tubes, denoted by J (δ′,1), J (δ′,2) with rank 3.
Assume that any mouth object X on J (δ′,1) (resp., J (δ′,2)) satisfies that χ(dim X) = 1 (resp., 2).
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For the above non-homogeneous tube J (δ′, i), i = 1,2, its mouth contains three indecomposable
objects X(δ′,i,1,1), X(δ′,i,2,1), X(δ′,i,3,1) such that τ X(δ′,i, j,1) = X(δ′,i, j−1,1) , j = 1,2,3, where X(δ′,i,0,1) =
X(δ′,i,3,1). Denote by X(δ′,i, j,l) the unique indecomposable object in J (δ′, i) which has the filtration of
the form

0 ⊆ X(δ′,i, j,1) ⊆ X(δ′,i, j,2) ⊆ · · · ⊆ X(δ′,i, j,l)

such that X(δ′,i, j,h)/X(δ′,i, j,h−1)
∼= X(δ′,i, j′,1) , where j′ = 1,2,3, and j′ ≡ j + h − 1 (mod 3). Further-

more,

{
X(δ′,i, j,l)

∣∣ δ′ ∈ Υ, i = 1,2, j = 1,2,3, l ∈ N
}

is the complete set of the indecomposable non-homogeneous objects of R(A F ). In addition, from
Proposition 6.4 we know that there is a relatively simple injective object E(δ′,0) and a relatively
preprojective object E(δ′,s) in the Kronecker subcategory K(δ′) associated to the tubular family
T (δ′) such that dim E(δ′,0) + dim E(δ′,s) = sδ′ . By the proof of Theorem 5.2, we can see easily that
the set

B = {
u X(δ′,i, j,l+3s)

∣∣ δ′ ∈ Υ, i = 1,2, j = 1,2,3, l = 1,2, s ∈ N ∪ {0}}
∪ {

u X(δ′,i, j,3s)
− u X(δ′,i, j+1,3s)

∣∣ δ′ ∈ Υ, i = 1,2, j = 1,2, s ∈ N
}

∪ {[uE(δ′,0)
, uE(δ′,s) ]

∣∣ δ′ ∈ Υ, s ∈ N
} ∪ {hSi | 0 � i � 5}

is a Chevalley basis.

7.1.

Proposition. B is a Chevalley basis of the elliptic Lie algebra g′ of type F (2,2)
4 .

Remark. Elliptic Lie algebras of type G(3,3)
2 , G(1,3)

2 , or F (1,2)
4 can be realized by the Ringel–Hall ap-

proach in a way similar to that in this article. Our idea to realize an elliptic Lie algebra g of type
F (2,2)

4 is based on the observation that the elliptic Dynkin diagram of g can be obtained by ‘folding’
the quiver Q of the tubular algebra of type T(3,3,3) via an admissible automorphism σ of Q . Let
Q be the quiver, shown in [LP, Section 1.3], of the tubular algebra of type T(2,2,2,2), T(3,3,3)

or T(4,4,2). It is easy to see that there is an admissible automorphism σ of Q = (Q 0, Q 1) as fol-
lows:

(1) for type T(2,2,2,2), σ(2) = 3, σ(3) = 4, σ(4) = 2, σ(α1) = α2, σ(α2) = α3, σ(α3) = α1,
σ(β1) = β2, σ(β2) = β3, σ(β3) = β1, and σ leaves the other vertices and arrows invariant;

(2) for type T(3,3,3), σ(2) = 4, σ(4) = 6, σ(6) = 2, σ(3) = 5, σ(5) = 7, σ(7) = 3, σ(α1) = α2,
σ(α2) = α3, σ(α3) = α1, σ(β1) = β2, σ(β2) = β3, σ(β3) = β1, σ(γ1) = γ2, σ(γ2) = γ3,
σ(γ3) = γ1, and σ leaves the other vertices invariant;

(3) for type T(4,4,2), σ(3) = 6, σ(4) = 7, σ(5) = 8, σ(6) = 3, σ(7) = 4, σ(8) = 5, σ(α1) = α3,
σ(α3) = α1, σ(γ1) = γ3, σ(γ2) = γ4, σ(γ3) = γ1, σ(γ4) = γ2, and σ leaves the other vertices and
arrows invariant.

So the above quiver Q can be ‘folded’ to be the following elliptic Dynkin diagram of the elliptic Lie
algebra of type G(3,3)

2 , G(1,3)
2 , or F (1,2)

4 :
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◦

◦

◦

◦

����� �����

������

������
33

G(3,3)
2

◦

◦

◦

◦�����
������

������

3 3

G(1,3)
2

◦

◦ ◦

◦

◦◦

����� �����

�����

������

������
2 2

F (1,2)
4

Thus elliptic Lie algebras of type G(3,3)
2 , G(1,3)

2 , or F (1,2)
4 can be realized by the Ringel–Hall approach

similarly.
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