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This article delves into the relation between the deformation
theory of finite morphisms to projective space and the existence
of ropes, embedded in projective space, with certain invariants.
We focus on the case of canonical double covers X of a minimal
rational surface Y , embedded in PN by a complete linear series,
and carpets on Y , canonically embedded in PN . We prove that
these canonical double covers always deform to double covers and
that canonically embedded carpets on Y do not exist. This fact
parallels the results known for hyperelliptic canonical morphisms
of curves and canonical ribbons, and the results for K 3 double
covers of surfaces of minimal degree and Enriques surfaces and K 3
carpets. That canonical double covers of minimal rational surfaces
should deform to double covers is not a priori obvious, for the
invariants of most of these surfaces lie on or above the Castelnuovo
line; thus, in principle, deformations of such covers could have
birational canonical maps. In fact, many canonical double covers
of non-minimal rational surfaces do deform to birational canonical
morphisms.
We also map the region of the geography of surfaces of general
type corresponding to the surfaces X and we compute the
dimension of the irreducible moduli component containing [X].
In certain cases we exhibit some interesting moduli components
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parameterizing surfaces S with the same invariants as X but with
birational canonical map, unlike X .

© 2012 Elsevier Inc. All rights reserved.

Introduction

In this paper we delve into the relation between double covers and multiplicity 2 ropes or, more
precisely, into the relation between the deformation theory of double covers and the existence or
non-existence of multiplicity 2 ropes. To do so we will focus on the case of surfaces of general type
that are canonical double covers of a surface Y in PN , which is either P2 or a Hirzebruch surface, and
canonically embedded carpets. This relation has been previously studied for the case of the canonical
morphism of hyperelliptic curves and canonical ribbons (see [Fon93]) or for the case of K 3 double
covers of surfaces of minimal degree and Enriques surfaces and K 3 carpets (see [GP97] and [GGP08]).
In all of these cases, the following correlation occurs: whenever a double cover X appears as limit
of projective embeddings (for example, when X is a hyperelliptic curve of genus g � 3 or a K 3
double cover of a rational normal scroll or an Enriques surface), then a multiplicity 2 rope with same
invariants as X appears (in the previous examples, a canonical ribbon or a K 3 carpet), so as to bear
witness to the event of an embedding degenerating to a degree 2 morphism. On the contrary, when
the double cover cannot be obtained as limit of embeddings, as is the case of hyperelliptic morphisms
of genus 2 curves or K 3 double covers of the Veronese surface, no multiplicity 2 ropes come into
being.

Deep understanding of the relation between the deformation theory of morphisms to projective
space and embedded ropes was gained in [Gon06, Proposition 3.7 and Theorem 3.8]. Because of it, we
see that in our case looking at a single cohomology group on Y suffices to understand both the nature
of deformations of the canonical double cover and the existence of canonical carpets. As it turns out
(see Theorem 1.9), canonical double covers of P2 or a Hirzebruch surface deform always to another
canonical double cover and, giving further evidence of the above-mentioned correlation, there do not
exist carpets on P2 or on a Hirzebruch surface which are canonically embedded (see Definition 1.3
and Theorem 1.12). “Abstract”, analytic deformations of double covers were previously studied in gen-
eral in [Wav68] and [Weh86] and, when the double covers are of Hirzebruch surfaces, in [Kon85]
(as a matter of fact, part of Theorem 1.9 can be proved using results in [Kon85] and [Weh86]; see
Remark 1.11). In contrast, Theorem 1.9 deals with algebraic deformations of morphisms to projective
space and, in this sense, fits in the general framework given by [GGP10, Proposition 1.3 and Theo-
rems 1.4 and 2.6].

Theorem 1.9 is interesting because the invariants of the canonical double covers ϕ under consid-
eration do not indicate ϕ should necessarily deform to a double cover. In fact the invariants of many
of the surfaces X of Theorem 1.9 lie on or above Castelnuovo’s line c2

1 = 3pg − 7, so the existence
of deformations of ϕ to degree 1 morphisms would be plausible in these cases (for instance, Exam-
ples 2.8 and 2.9 show the existence of surfaces of general type with very ample canonical divisors and
having the same invariants as certain canonical double covers of minimal rational surfaces). Moreover,
if we consider canonical double covers of non-minimal rational surfaces, there exist cases for which
the canonical morphism can be deformed to a morphism of degree 1 (see [AK90, 4.5] and [GGP10,
Theorem 3.14]). In contrast, Theorem 1.9 can be rephrased in terms of the moduli space in the fol-
lowing way: the irreducible moduli component of [X] parameterizes surfaces whose canonical map
is a finite, degree 2 morphism. Therefore Theorem 1.9 generalizes the behavior of the deformations
of canonical covers of surfaces of minimal degree (see [Hor76]). This variety of behaviors shows how
different and complicated the moduli spaces of these surfaces of general type can be when compared
with, for instance, the moduli of curves or moduli spaces of surfaces of lower Kodaira dimension such
as a K 3 or Enriques surfaces.

Finite covers of rational surfaces have interesting implications for the geography and the moduli of
surfaces of general type (see e.g. [Cat84] or [Hor76]). In Section 2 we chart the region in the geography
covered by the canonical double covers X of Theorem 1.9. This is done in Propositions 2.1 and 2.2 and
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in Remark 2.4. The Chern quotient
c2

1
c2

of our surfaces approaches 1
2 ; on the other hand, our region is

not contained but goes well inside the region above Castelnuovo’s line. We also explore the moduli
space of [X]. First, in Proposition 2.6, we compute the dimension of the irreducible moduli component
of [X], which is 2d2 + 15d + 19 if Y is P2 embedded by |OP2(d)| and (2a + 5)(2b − ae + 5) − 7 if Y
is Fe embedded by an arbitrary very ample linear series |OY (aC0 + bf )|. Finally we go a bit further in
studying the complexity of some of these moduli spaces. We find examples of moduli spaces having
two kind of components: components parameterizing surfaces which can be canonically embedded
and components parameterizing surfaces whose canonical map is a degree 2 morphism.

Convention. We will work over an algebraically closed field k of characteristic 0.

1. Deformations of canonical double covers of Hirzebruch surfaces and P2 and the non-existence of
carpets

In this section we link two themes: on the one hand, the deformation theory of double covers ϕ
of a smooth variety Y , embedded in the projective space PN and, on the other hand, the existence or
non-existence of carpets supported on Y , also embedded in PN . We will focus on the case of canonical
double covers (see Definition 1.2) and canonically embedded carpets (see Definition 1.3) and restrict our
attention to when Y is either P2 or a Hirzebruch surface. The study of both themes will be addressed
by looking at the same cohomology group on Y , namely H0(NY ,PN ⊗ ωY (−1)). To start seeing the
reason for this relation between double covers and carpets, consider a morphism ϕ from a smooth
irreducible surface X to PN such that ϕ factors as ϕ = i ◦ π , where π is a finite, double cover of Y
and i embeds Y in PN . The morphism π is flat and its trace-zero module E is a line bundle. We then
focus on the group H0(Nϕ), which parameterizes first order infinitesimal deformations of ϕ , and on
the group H0(Ni(Y ),PN ⊗ E ) which, according to [Gon06, Proposition 2.1], parameterizes pairs (Ỹ , ĩ),

where Ỹ is a rope on Y with conormal bundle E and ĩ is a morphism from Y to PN extending i.
The relation between these two groups, which is the relation that links the deformation theory of ϕ
with the existence or non-existence of carpets, is given by the following result, which holds in wider
generality (it holds for X and Y smooth irreducible projective varieties of arbitrary dimension and π
finite morphism of any degree n � 2 with trace-zero module E of rank n − 1):

Proposition 1.1. (See [Gon06, Proposition 3.7].) Let X be a smooth irreducible variety and let ϕ be a morphism
from X to PN that factors as ϕ = i ◦ π , where π is a finite cover of smooth variety Y and i embeds Y in PN .
Let E be the trace-zero module of π and let I be the ideal sheaf of i(Y ) in PN . There exists a homomorphism

H0(Nϕ)
Ψ−→ Hom

(
π∗(I /I 2),OX

)
,

that appears when taking cohomology on the commutative diagram [Gon06, (3.3.2)]. Since

Hom
(
π∗(I /I 2),OX

) = Hom
(
I /I 2,π∗OX

) = Hom
(
I /I 2,OY

) ⊕ Hom
(
I /I 2,E

)
the homomorphism Ψ has two components

H0(Nϕ)
Ψ1−→ Hom

(
I /I 2,OY

)
,

H0(Nϕ)
Ψ2−→ Hom

(
I /I 2,E

)
.

Now we define canonical double covers and canonically embedded carpets and set up the notation
for the remaining of the paper:
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Definition 1.2. Let Y be a smooth, irreducible, projective surface and let i : Y ↪→ PN be an embedding
induced by a complete linear series on Y . Let X be a smooth, irreducible surface of general type with
ample and base-point-free canonical divisor and let ϕ be the canonical map of X . If there exists a
finite cover π : X −→ Y of degree 2 such that ϕ = i ◦π , we say that π : X −→ Y (or, for short, X ) is a
canonical double cover of Y and that the canonical map ϕ of X factors through the canonical double
cover π .

Definition 1.3. Let Y be a smooth, irreducible, projective surface and let i : Y ↪→ PN be an embedding
of Y in PN . Let Ỹ a scheme such that

(a) (Ỹ )red = Y ;
(b) I 2

Y ,Ỹ
= 0; and

(c) IY ,Ỹ is a line bundle on Y (i.e., Ỹ is a rope of multiplicity 2 on Y ), called the conormal bundle

of Ỹ .

Let ĩ : Ỹ ↪→ PN be an embedding of Ỹ in PN that extends i. We say that Ỹ is canonically embedded
by ĩ or, for short, that ĩ(Ỹ ) is a canonical carpet, if the dualizing sheaf ωỸ of Ỹ is very ample and ĩ is
induced by the complete linear series of ωỸ .

Throughout the remaining of this article we will use the following

Notation 1.4.

(1) We will denote by Fe the Hirzebruch surface whose minimal section C0 has self-intersection
C2

0 = −e.
(2) Y will be either P2 or the Hirzebruch surface Fe , whose minimal section C0 has self-intersection

C2
0 = −e; we will denote by f the fiber of the projection of Fe onto P1.

(3) i will denote a projective embedding i : Y ↪→ PN induced by a complete linear series on Y . In this
case, I will denote the ideal sheaf of i(Y ) in PN . Likewise, we will often abridge i∗OPN (1) as
OY (1).

Our next goal is to characterize canonical double covers of Y and canonical carpets on Y . For
this, we characterize the trace-zero modules of canonical double covers and the conormal bundles of
canonical carpets. In doing so we begin to unfold the relation between canonical double covers and
canonical carpets:

Lemma 1.5. Let X be a smooth, irreducible surface of general type and let ϕ : X −→ PN factor through a
canonical cover π of Y . Let Ỹ be a carpet on Y , canonically embedded in PN by an embedding ĩ extending i.
Let E be either

(a) the trace-zero module of π ; or
(b) the conormal bundle of Ỹ .

Then E is isomorphic to ωY (−1).

Proof. Part (a) follows from relative duality, having in account that, on Y , numerical equivalence is
the same as linear equivalence. Part (b) follows from [GGP08, (1.4.2)]. �

Lemma 1.5 allows us to tell exactly for what embeddings i of Y there exists a canonical double
cover of i(Y ):
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Lemma 1.6. Let i be induced by the complete linear series of a very ample divisor D on Y (if Y is the Hirzebruch
surface Fe , then D = aC0 + bf with b − ae � 1 and a � 1). There exist a smooth surface of general type X and
a canonical double cover π : X −→ Y such that the canonical map ϕ of X factors as ϕ = i ◦ π if and only if

(1) Y = P2; or
(2) Y is a Hirzebruch surface Fe such that

(a) e � 3, or
(b) b − ae � e − 2 or b − ae = 1

2 e − 2, if e � 4.

Proof. Assume first that X is a smooth surface of general type such that its canonical map ϕ factors
through a canonical double cover π of Y . Lemma 1.5 tells us that the trace-zero module of π is
ωY (−1), so the branch divisor of π belongs to |ω−2

Y (2)|. Since X is smooth, |ω−2
Y (2)| contains a

smooth member. If Y = P2 and OY (D) = OP2 (d), then

ω−2
Y (2) = OP2(2d + 6), (1.6.1)

so |ω−2
Y (2)| containing a smooth member implies 2d + 6 � 0, which does not impose any extra

condition on i, since d � 1. If Y = Fe and |ω−2
Y (2)| contains a smooth member but ω−2

Y (2) is not
base-point-free, then C0 is the fixed part of |ω−2

Y (2)| and does not intersect the mobile (base-point-
free) part of |ω−2

Y (2)|. This happens if and only if b − ae = 1
2 e − 2. On the other hand ω−2

Y (2) is
base-point-free if and only if b − ae � e − 2, which always holds if 0 � e � 3, since b − ae � 1.

Now let us prove that under Conditions (1) and (2) we can construct a canonical double cover
of Y . If Y = P2, since d � 1, (1.6.1) implies that ω−2

Y (2) is very ample, so |ω−2
Y (2)| contains smooth

members. If Y = Fe and b − ae � e − 2, as mentioned before, ω−2
Y (2) is base-point-free and obvi-

ously non-trivial, so |ω−2
Y (2)| contains smooth members. If b − ae = 1

2 e − 2, then C0 is the fixed

part of |ω−2
Y (2)| and does not intersect the mobile (base-point-free) part of |ω−2

Y (2)|, so |ω−2
Y (2)|

contains smooth (non-connected) members. Thus in all cases we can choose a smooth divisor
B ∈ |ω−2

Y (2)|. Let π : X −→ Y be the double cover of Y branched along B . Since B is smooth,
so is X . Since B ∈ |ω−2

Y (2)|, ramification formula implies that ωX = π∗(OY (1)). Since pg(Y ) = 0,
H0(ωX ) = π∗H0(OY (1)), so ϕ factors through π . �

According to Proposition 1.1 the map Ψ2 seems central at explaining the relation between defor-
mations of double covers and carpets. Because of that, we go on studying the target of Ψ2 in the next
result:

Proposition 1.7. Hom(I /I 2,ωY (−1)) = 0.

Proof. First we argue when Y is a Hirzebruch surface. Let OY (1) = OY (aC0 + bf ). Since OY (aC0 + bf )
is very ample, we have

b − ae � 1. (1.7.1)

We can apply [GGP10, Lemma 3.9]; indeed, pg(Y ) = 0, h1(OY (1)) = 0, q(Y ) = 0 and h2(OY (1)) = 0.
Then, [GGP10, Lemma 3.9] says that it suffices to see that Ext1(ΩY ,ωY (−1)) = 0. For this, ap-
ply [Har77, Proposition II.8.11] to the fibration of Y to P1 (see also the proof of [GP97, Proposition 1.7])
and get the sequence

0 −→ OY (−2 f ) −→ ΩY −→ OY (−2C0 − ef ) −→ 0. (1.7.2)
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Then, applying Hom(−,ωY (−1)) we get

Ext1(OY (−2C0 − ef ),ωY (−1)
) −→ Ext1(ΩY ,ωY (−1)

) −→ Ext1(OY (−2 f ),ωY (−1)
)
.

Now Ext1(OY (−2C0 − ef ),ωY (−1)) = H1(OY ((a −2)C0 + (b − e) f ))∨ = 0 (by pushing down to P1 and
because of (1.7.1)). Also Ext1(OY (−2 f ),ωY (−1)) = H1(OY (aC0 + (b − 2) f ))∨ = 0 (again by pushing
down to P1 and because of (1.7.1)), so

Ext1(ΩY ,ωY (−1)
) = 0. (1.7.3)

Then, by [GGP10, Lemma 3.9], it follows that Hom(I /I 2,ωY (−1)) = 0.
Now we prove the proposition for Y = P2 embedded by OY (1) = OP2(d). Also in this occasion

pg(Y ) = 0, h1(OY (1)) = 0, q(Y ) = 0 and h2(OY (1)) = 0, so by [GGP10, Lemma 3.9] it suffices to see
that Ext1(ΩY ,ωY (−1)) = 0. For this we use the Euler sequence of P2

0 −→ ΩP2 −→ H0(OP2(1)
) ⊗ OP2(−1) −→ OP2 −→ 0. (1.7.4)

To the sequence (1.7.4) we apply the functor Hom(−,ωY (−1)) to obtain the exact sequence

0 −→ Ext1(ΩP2 ,ωY (−1)
) −→ Ext2(OP2 ,ωY (−1)

) −→ Ext2(H0(OP2(1)
) ⊗ OP2(−1),ωY (−1)

)
.

Dualizing we get

H0(OP2(d − 1)
) ⊗ H0(OP2(1)

) α−−→ H0(OP2(d)
) −→ Ext1(ΩP2 ,ωY (−1)

)∨ −→ 0.

Now the multiplication map α is surjective if d � 1, so

Ext1(ΩP2 ,ωY (−1)
) = 0 (1.7.5)

and, by [GGP10, Lemma 3.9], so does Hom(I /I 2,ωY (−1)). �
In the remaining of this section we will use Proposition 1.7 to extract consequences for both

the deformations of canonical double covers (Theorem 1.9) and the existence or non-existence of
canonical carpets (Theorem 1.12). In order to prove part of Theorem 1.9 we need first the following:

Lemma 1.8. H1(Ni(Y )/PN ) = 0; in particular, i(Y ) is unobstructed in PN .

Proof. Recall that H1(Ni(Y )/PN ) = Ext1(I /I 2,OY ), which fits into the exact sequence

Ext1(ΩPN |Y ,OY ) −→ Ext1(I /I 2,OY
) −→ Ext2(ΩY ,OY ). (1.8.1)

We want to see that both Ext1(ΩPN |Y ,OY ) and Ext2(ΩY ,OY ) vanish. To handle the vanishing of
Ext1(ΩPN |Y ,OY ), consider the sequence

Ext1(ON+1
Y (−1),OY

) −→ Ext1(ΩPN |Y ,OY ) −→ Ext2(OY ,OY ). (1.8.2)

It is clear that Ext1(ON+1
Y (−1),OY ) and Ext2(OY ,OY ) both vanish because h1(OY (1)) = 0 and

pg(Y ) = 0. To prove the vanishing of Ext2(ΩY ,OY ) we argue for P2 and for Hirzebruch surfaces
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separately. If Y = P2, after applying Hom(−,OY ) to (1.7.4) we see that Ext2(ΩP2 ,OP2 ) fits into the
exact sequence

Ext2(OP2(−1),OP2

)⊕3 −→ Ext2(ΩP2 ,OP2) −→ Ext3(OP2 ,OP2),

so Ext2(ΩY ,OY ) = 0. Now, if Y is a Hirzebruch surface we apply Hom(−,OY ) to (1.7.2) and get

Ext2(OY (−2C0 − ef ),OY
) −→ Ext2(ΩY ,OY ) −→ Ext2(OY (−2 f ),OY

)
.

Then Ext2(ΩY ,OY ) = 0 because H2(OY (2C0 + ef )) = H2(OY (2 f )) = 0. Thus H1(Ni(Y )/PN ) = 0, and
by [Ser06, Corollary 3.2.7], i(Y ) is unobstructed in PN . �
Theorem 1.9. Let X be a smooth surface of general type with ample and base-point-free canonical line bundle
and let ϕ be its canonical map. Let i be induced by the complete linear series of a very ample divisor D on Y (if
Y is a Hirzebruch surface, then D = aC0 + bf with b − ae � 1 and a � 1). Assume furthermore that ϕ factors
through a canonical double cover π of Y . Then:

(a) Any deformation of ϕ is a canonical 2 : 1 morphism; therefore, the canonical map of a surface correspond-
ing to a general point of the moduli component of X is a finite morphism of degree 2.

(b) If, in the case when Y is a Hirzebruch surface, we assume in addition that ω−2
Y (2) is base-point-free (that

is, b − ae � e − 2), then X and ϕ are unobstructed.

Proof. To prove Part (a), suppose the contrary, that is, suppose there exists a deformation of ϕ
which is not 2 : 1 onto its image. Then, in particular, there would exist an analytic deformation of
X which is not a double cover of any analytic deformation of Y . Lemma 1.5(a), (1.7.3) and (1.7.5) yield
H1(TY ⊗ E ) = 0, but this contradicts [Weh86, Corollary 1.11].

To prove Part (b) we will use [GGP10, Theorem 2.6]. Its hypotheses hold because Y is regu-
lar, pg(Y ) = 0, h1(OY (1)) = 0, h1(ω−2

Y (2)) = 0 (this is clear in the case when Y = P2 and, in the
case when Y is a Hirzebruch surface, true by the assumption that ω−2

Y (2) is base-point-free), Lem-
mas 1.5(a) and 1.8 and Propositions 1.1 and 1.7. �

The assumption made in Theorem 1.9(b) asking ω−2
Y (2) to be base-point-free if Y is a Hirzebruch

surface is only needed if e � 6 and even, in which case it is not a very strong assumption:

Remark 1.10. Let Y = Fe and assume that X , Y , π and ϕ are as in Theorem 1.9. Then ω−2
Y (2) is

base-point-free unless e is even, e � 6 and b − ae = 1
2 e − 2.

Proof. Lemma 1.5 implies that the branch locus of π is a divisor in |ω−2
Y (2)|. If ω−2

Y (2) is not base-
point-free, as we argued in the proof of Lemma 1.6, Y = P2 and b − ae < e − 2. Since b − ae � 1, this
only may happen when e � 4. However, since X is smooth, should have a smooth member. This is
only possible the fixed part of |ω−2

Y (2)| is C0 and does not meet the mobile part of |ω−2
Y (2)|. As seen

in the proof of Lemma 1.6 this only happens if

b − ae = 1

2
e − 2. (1.10.1)

Obviously, (1.10.1) is only possible if e is even and, since b − ae � 1, if e � 6. �
Remark 1.11. Theorem 1.9 can be partly proved using alternate arguments, that use [GGP10, Theo-
rem 2.6] or [Kon85, Theorems 4.6 and 4.7]. Indeed, if Y = P2 or if Y is a Hirzebruch surface with
ω−2

Y (2) base-point-free, Part (a) can be also deduced from Proposition 1.7 and [GGP10, Theorem 2.6].
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On the other hand, if Y = Fe and b − ae � e − 1, Theorem 1.9 can be proved using [Kon85, Theo-
rems 4.6 and 4.7] (be aware of the differences between the notation of [Kon85] and ours!). Note also
that Theorem 1.9(b) covers infinitely many cases that cannot be proved using Konno’s results.

Finally we apply Proposition 1.7 to prove the non-existence of canonical double structures on either
P2 or a Hirzebruch surface. This result contrasts with the results of [GP97] where the existence of
double structures on smooth rational normal scrolls having the same invariants of smooth K 3 surfaces
is shown.

Theorem 1.12. Let Y and i be as in Notation 1.4. There are no double structures inside PN , supported on i(Y ),
canonically embedded in PN .

Proof. The result follows Lemma 1.5(b) and [Gon06, Proposition 2.1]. �
Remark 1.13. Let X be a surface of general type with ample and base-point-free canonical divisor,
and let ϕ be the canonical map of X . Assume that ϕ factors as ϕ = i ◦ π , where π finite cover of Y ,
non-necessarily of degree n. Let E be the trace-zero module of π . It is easy to see that ωY (−1) is a
direct summand of E . Then, the same arguments used in the proof of Theorem 1.12 show that

(1) Hom(I /I 2,E ) does not contain surjective homomorphisms;
(2) there are no multiple structures inside PN , supported on i(Y ) with conormal bundle E ; and
(3) there are no double structures inside PN , supported on i(Y ) whose conormal bundle is a subsheaf

of E .

2. Consequences for geography and moduli

In this section we compute the invariants of the surfaces of general type that appear in Sec-
tion 1 (see Lemma 1.6). In this way we find the region of the geography of surfaces of general type
they reside in. In addition, we compute the dimension of the moduli components parameterizing our
surfaces. Finally we show two examples of moduli spaces having components of different nature:
components parameterizing canonically embedded surfaces and components parameterizing surfaces
whose canonical map is a finite morphism of degree 2.

Proposition 2.1. Let Y = P2 embedded by |OP2(d)| and let X be a canonical double cover of Y as the ones
appearing in Lemma 1.6. The surface X has the following invariants:

pg = 1

2
d2 + 3

2
d + 1,

q = 0,

χ = 1

2
d2 + 3

2
d + 2,

c2
1 = 2d2,

c2
1

c2
= d2

2d2 + 9d + 12
. (2.1.1)

Proof. In our situation pg = h0(OP2 (d)). Since h1(OX ) = h1(OY ) + h1(ωY (−1)) and q(Y ) =
h1(OY (1)) = 0, q(X) = 0. The values of c2

1 are obvious, since ϕ has degree 2 onto Y . Finally, the

values of
c2

1
c2

follow from Noether’s formula. �
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Proposition 2.2. Let Y be a Hirzebruch surface Y = Fe embedded by a very ample linear system |aC0 + bf |
and let X be a canonical double cover of Y as the ones appearing in Lemma 1.6. Then X has the following
invariants:

pg = (a + 1)

(
b + 1 − ae

2

)
,

q = 0,

χ = (a + 1)

(
b + 1 − ae

2

)
+ 1,

c2
1 = 2a(2b − ae),

c2
1

c2
= 2ab − a2e

4ab − 2a2e + 6a − 3ae + 6b + 12
. (2.2.1)

Proof. Since ϕ factors through the canonical double cover π , pg(X) is the dimension of H0(OY (aC0 +
bf )), which is well known. By the construction of X , h1(OX ) = h1(OY )+ h1(ωY (−1)). Again we know
that q(Y ) and h1(OY (1)) are both 0, so q(X) = 0 and then the values stated for χ are obvious. The
values of c2

1 follow also from the construction and properties of X and ϕ; indeed, ωX = π∗OY (1) and

π has degree 2. Finally, the values of
c2

1
c2

follow from Noether’s formula. �

Remark 2.3. For any of the surfaces X in Propositions 2.1 and 2.2,
c2

1
c2

< 1
2 but there exist surfaces X

as in Proposition 2.1 and surfaces X as in Proposition 2.2 for which
c2

1
c2

is arbitrarily close to 1
2 .

Proof. If X is as in Propositions 2.1 and 2.2, the claim is clear. If X is as in Proposition 2.2, note that

c2
1

c2
= 2ab − a2e

4ab − 2a2e + 6a − 3ae + 6b + 12
= a(2b − ae)

2a(2b − ae) + 6a + 3b + 3(b − ae) + 12
.

The very ampleness of OY (aC0 + bf ) implies b −ae � 1, so 6a + 3b + 3(b −ae)+ 12 > 0 and the claim
is also clear in this case. �
Remark 2.4. We now present the information given in Proposition 2.2 more graphically, by displaying
on a plane the pairs (x, y) = (χ, c2

1) of the covers of ruled surfaces appearing in Lemma 1.6. If we
fix an integer a � 1, then the points (x, y) corresponding to the covers of ruled surfaces appearing
in Lemma 1.6 are points (with integer coordinates) lying on the line la passing through the point
(a + 2,0) with slope 4a

a+1 , i.e., the line of equation

y = 4a

a + 1
(x − a − 2). (2.4.1)

More precisely, for each a � 1, the invariants form an unbounded set consisting of all the integer
points on the semiline of la including and up and to the right of the point (2a + 3,4a). Note that each
two distinct lines la and la′ described above meet at the point with x = aa′ + a + a′ + 2. Note also that
l1 is obviously the Noether’s line y − 2x + 6 = 0; the reason for this is that if a = 1, Y is embedded
as a surface of minimal degree. Note also that the limiting points of the semilines described above
lie on Noether’s line y − 2x + 6 = 0 (as should be, since in this case the limiting point (2a + 3,4a) is
obtained when considering canonical double covers of F0 embedded by |aC0 + f |, which are surfaces
of minimal degree).
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Fig. 1. Solid lines, from less steep to more steep, are l1 (which is also Noether’s line) to l4. The dashed line is Castelnuovo’s line.
The points marked are the integer points lying on l1 with first coordinate x � 5 and the integer points lying on l2, l3 and l4
and above l1.

Note that as a goes to infinity, the slopes of the lines la approaches 4. This means that Chern ratio
c2

1
c2

approaches 1
2 . Note also that, if a � 4, when x is sufficiently large, the line la goes into the region

y � 3x − 10, bounded by the Castelnuovo line y = 3x − 10.

We will illustrate Remark 2.4 with Figs. 1 and 2. In Fig. 1 low values of (χ, c2
1) appear while Fig. 2

zooms out in order to display larger values (in these figures, we will keep denoting χ by x and c2
1

by y).
Next we remark that the surfaces constructed in Theorem 1.9(b) are not only regular, but also

simply connected:

Remark 2.5. The surfaces of general type X that appear in Theorem 1.9(b) are simply connected.

Proof. Let Y be either a minimal rational surface or F1. The fundamental group of Y is well known
to be 0. The morphism π is a double cover of Y branched along a divisor in |ω−2

Y (2)|. If Y is P2 this
branch divisor is obviously base-point-free and if Y is a Hirzebruch surface, the branch divisor is also
base-point-free by the hypothesis of Theorem 1.9(b). Then the fundamental group of X is the same as
the fundamental group of Y by [Nor83, Corollary 2.7] (note that the ampleness hypothesis required
there can be relaxed to big and nefness), so X is simply connected. Then, consider the families of
surfaces associated to the deformations of X given in Theorem 1.9. All the smooth fibers in such



F.J. Gallego et al. / Journal of Algebra 374 (2013) 231–244 241
Fig. 2. Solid lines, from less steep to more steep, are l1 (which is also Noether’s line) to l6; the dashed line is Castelnuovo’s line.

families are diffeomorphic to each other, hence they are also simply connected. Thus the surfaces
appearing in Theorem 1.9(b) are simply connected. �

In the second part of this section we compute the dimension of the components of the moduli
parameterizing the surfaces of general type appearing in Theorem 1.9(b):

Proposition 2.6. Let X be a surface of general type as in Theorem 1.9(b). Then there is only one irreducible
component of the moduli containing [X] and its dimension is

(1) μ = 2d2 + 15d + 19, if Y = P2;
(2) μ = (2a + 5)(2b − ae + 5) − 7, if Y is a Hirzebruch surface.
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Proof. Part (b) of Theorem 1.9 implies that the base of the formal semiuniversal deformation space
of X is smooth, so in particular [X] belongs to a unique irreducible component of the moduli. Note
that [GGP10, Lemma 4.4] holds also under our hypothesis. Then

μ = h0(Nπ ) − h1(Nπ ) + h1(TY ) − h0(TY ) + dim Ext1(ΩY ,ωY (−1)
)
. (2.6.1)

Thus, we will compute now the dimensions of the cohomology groups that appear in (2.6.1). First
recall that in (1.7.3) and (1.7.5) we obtained Ext1(ΩY ,ωY (−1)) = 0.

Now we prove that h1(Nπ ) = 0. Recall (see e.g. [Hor75, Lemma 10]) that h1(Nπ ) = h1(OB(B)),
where B is the branch divisor of π . The divisor B is a smooth member of |ω−2

Y (2)|. Recall also that
we showed in the proof of Theorem 1.9 that H1(ω−2

Y (2)) = 0. Then the sequence

H1(OY ) −→ H1(OY (B)
) −→ H1(OB(B)

) −→ H2(OY ) (2.6.2)

and the fact that pg(Y ) = 0 imply the vanishing of H1(Nπ ).
Next we compute the number h0(TY ) − h1(TY ). If Y = P2, since h2(TY ) = 0, then

h0(TY ) − h1(TY ) = χ(TY ) = 8. (2.6.3)

Now if Y is a Hirzebruch surface, dualizing and taking global sections on (1.7.2) yields

0 −→ H0(OY (2C0 + ef )
) −→ H0(TY ) −→ H0(OY (2 f )

)
−→ H1(OY (2C0 + ef )

) −→ H1(TY ) −→ 0. (2.6.4)

Then h0(TY ) − h1(TY ) = 6.
Now, to complete the computation we find h0(Nπ ). Again by [Hor75, Lemma 10] we have

h0(Nπ ) = h0(OB(B)) = h0(OY (B)) − 1, because Y is regular. If Y = P2, embedded by |OP2(d)|, then
h0(Nπ ) = 2d2 +15d+27 and if Y is a Hirzebruch surface Fe as in Theorem 1.9, then by Riemann–Roch
h0(Nπ ) = (2a + 5)(2b − ae + 5) − 1 (recall that ω−2

Y (2) is base-point-free and that for a Hirzebruch
surface Y this implies the vanishing of H1(ω−2

Y (2))). Plugging all this in (2.6.1) yields the result. �
Remark 2.7. If X is a surface of general type as in Theorem 1.9(b), Y = Fe , i is induced by the complete
linear series of a very ample divisor aC0 + bf and we require in addition that b − ae � e − 1, then
Proposition 2.6 can be proved using [Kon85, Proposition 2.7] (note however the misprint in [Kon85,
(4.6.4)] where i = 2 should be written instead of i = 0; note also that our Proposition 2.6 covers
infinitely many cases that cannot be proved using [Kon85, Proposition 2.7]).

Some of the surfaces constructed in Theorem 1.9 provide examples of moduli spaces with inter-
esting properties:

Example 2.8. The moduli space M(39,0,110) parameterizing surfaces of general type with pg = 39,
q = 0 and c2

1 = 110 has one component M1 whose general point corresponds to a surface S as
in [GGP10, Lemma 4.10] and another component M2 whose general point corresponds to a surface
X as in Lemma 1.6. In particular, a general point of M1 corresponds to a surface that can be canon-
ically embedded whereas a general point of M2 corresponds to a surface whose canonical map is a
degree 2, finite morphism.

Proof. For instance, the linear system |4H + 10F | of S(1,1,1) has smooth members S which are
surfaces like those of [GGP10, Lemma 4.10] and with (pg(S), c2

1(S)) = (39,110) (H is the tautological
divisor of S(1,1,1) and F is a fiber over P1). On the other hand, canonical double covers X of F1
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embedded by |5C0 + 8 f | are surfaces like those in Lemma 1.6 and have (pg(X), c2
1(X)) = (39,110).

Since by Theorem 1.9(a) the canonical map of X deforms to a finite morphism of degree 2, S and X
belong to different components of M(39,0,110) . �
Example 2.9. The moduli space M(45,0,128) parameterizing surfaces of general type with pg = 45,
q = 0 and c2

1 = 128 has at least three components M1, M2 and M3. A general point of M1 corre-
sponds to a surface S as in [GGP10, Lemma 4.10], while general points of M2 and M3 correspond to
surfaces X as in Lemma 1.6. In particular, a general point of M1 corresponds to a surface that can be
canonically embedded whereas general points of M2 and M3 correspond to surfaces whose canonical
map is a degree 2, finite morphism.

Proof. For instance, the linear system |4H + 12F | of S(1,1,1) has smooth members S which are
surfaces like those of [GGP10, Lemma 4.10] and with (pg(S), c2

1(S)) = (45,128) (recall that H is the
tautological divisor of S(1,1,1) and F is a fiber over P1). On the other hand, canonical double cov-
ers of P2 embedded by octics are surfaces X2 as in Lemma 1.6 having (pg(X2), c2

1(X2)) = (45,128)

(see (2.1.1)). In addition, canonical double covers of F0 embedded by |4C0 + 8 f | are also surfaces
X3 as in Lemma 1.6 having (pg(X3), c2

1(X3)) = (45,128) (see (2.2.1)). Now recall that the point in the
moduli space corresponding to X2 belongs to only one component of M(45,0,128) (see Proposition 2.6),
which we will call M2. Likewise, the point in the moduli space corresponding to X3 belongs to only
one component of M(45,0,128) , which we will call M3. Then M2 and M3 are different for their di-
mensions are: indeed, applying Proposition 2.6 we get that the dimension of M2 is 267 whereas the
dimension of M3 is 266. �
Remark 2.10. For any integer m, m � 4, let Ξm be the set of values (x′, y) for which there exist a
smooth surface X as in Lemma 1.6 with (pg(X), c2

1(X)) = (x′, y) and a smooth surface S as in [GGP10,
Lemma 4.10] with (pg(S), c2

1(S)) = (x′, y).

(1) The set Ξm is finite (and possibly empty) for every m � 4. In particular, Ξ4 = {(39,110),
(45,128)} and Ξ5 = Ξ6 = ∅.

(2) There are no surfaces X with Y = P2 such that (pg(X), c2
1(X)) ∈ Ξ4 ∪Ξ5 ∪· · · , except the surfaces

X2 appearing in Example 2.9.

Proof. The remark follows from elementary although somehow involved computations, once we take
in account [GGP10, (3.17.1)], the hypothesis of [GGP10, Lemma 4.10], (2.1.1), (2.2.1), (2.4.1) and the
fact that if S is as in [GGP10, Lemma 4.10], then (pg(S), c2

1(S)) = (x′, y) satisfies the equation

y = 6
m − 3

m − 2
x′ − (m − 3)(m + 3) (2.10.1)

(see [GGP10, (3.17.2)]). �
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