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The crystal B(∞)⊗Tλ is known to contain a copy of the irreducible
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ing the elements belonging to the mentioned sub-crystal, we
present two realizations of B(λ) that are based on two realizations
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of B(λ) is based on our new realization of B(∞) as the set of
all marginally large reverse tableaux and the second is based
on a previous realization of B(∞) as the set of all marginally
large tableaux. We further present two new Nakajima monomial
realizations of B(λ) that correspond naturally to our reverse
tableau and tableau realizations.
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1. Introduction

Quantum group Uq(g) is a q-deformation of the universal enveloping algebra U (g) over a Lie al-
gebra g, and the crystal base B(∞) reveals the structure of the negative part U−

q (g) of the quantum
group in a very simplified form [6,7]. This work provides explicit descriptions of the crystal B(λ),
associated with the irreducible highest weight module of highest weight λ, in terms of the elements
of B(∞), for the special linear Lie algebra type. This goal is achieved by first describing B(∞) explic-
itly and then using this description to express the crystal B(λ).

The first part of this article is devoted to introducing an explicit description of B(∞), for the
special linear Lie algebra type. The previous work [3] provided a description of B(∞) in terms of
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marginally large tableaux, and we follow their approach to present the set of marginally large reverse
tableaux as another realization for B(∞). Both of these descriptions are based on the presentation
of B(∞) as a union of highest weight crystals [4]. That is, if certain identifications are made within the
union

⋃
λ∈P+ B(λ), then the resulting set of equivalence classes

⋃
λ∈P+ B(λ)/∼ has a natural crystal

structure induced from those on each B(λ) and is crystal isomorphic to B(∞). A careful combination
of this theory with the reverse tableaux description [12] of the crystal B(λ) results in our reverse
tableau description of B(∞).

In the second part of this article, we provide two explicit realizations of B(λ) (essentially) as
subsets of the B(∞) realizations, i.e., as certain sets of tableaux and reverse tableaux. We also provide
two further descriptions of B(λ) given in terms of Nakajima monomials, each of which are in natural
correspondence with one of our two new tableau descriptions.

The two monomial descriptions of B(λ) that were just mentioned are not central to this work,
but let us briefly discuss them first. Kashiwara gave a crystal structure [10] to the set of Nakajima
monomials [15] and showed that certain connected components of the crystal are isomorphic to the
irreducible highest weight crystals B(λ). Many descriptions of B(λ) for the special linear Lie algebra
type that rely on this theorem have already appeared, and our two monomial realizations are no
different in that they are connected components containing certain maximal monomials. However,
our new monomial realizations have the characteristic that the distance of each element from the
maximal monomial, in terms of Kashiwara operator actions, is directly accessible from the expression
of the element itself.

Let us return to the discussion of our main result, which is the expression of B(λ) in terms of
elements from a realization of B(∞). The statement B(∞) ∼= ⋃

λ∈P+ B(λ)/∼, when interpreted cor-
rectly, implies that a copy of B(λ) exists within B(∞). Hence, to reach our goal, it suffices to specify
the correct elements and make this subset of B(∞), corresponding to B(λ), explicit. The approach
we took was to consider the distance, in terms of Kashiwara operator actions, of each element from
the highest weight element of B(∞), and to gather just the elements that are within the correct
distance bound. The two monomial realizations that were discussed above allowed us to see how far
the elements of B(λ) were from the highest weight element and this gave us the crucial insight as
to how our distance bounds had to be defined. Once the appropriate subsets of our two B(∞) real-
izations were explicitly written down, we could verify their correctness as two realizations of B(λ)

through a separate method. In technically more correct terms, our realizations of B(λ) are subsets of
B(∞) ⊗ Tλ , and the verification could be based on the fact, introduced by Nakashima [16], that the
connected component in the crystal B(∞)⊗Tλ containing the element b∞ ⊗ tλ is isomorphic to B(λ).

Let us mention two results that give explicit descriptions of B(λ) as subsets of B(∞) ⊗ Tλ , for
the special liner Lie algebra type. The first is a polyhedral realization [16] given by Nakashima. We
will not provide any details, but anyone with an understanding of both the polyhedral realization
and our marginally large reverse tableau realization of B(λ) will be able to write down a natural
correspondence between the two sets. Kashiwara and Saito1 also gave a matrix form description of
B(∞) and expressed the crystal B(λ) in terms of these matrices. Their expression involved certain
bounds on the values of ε∗

i .
The reader may have found it peculiar that we are presenting a (reverse) tableau realization of

B(λ) by treating it as a subset of B(∞), with B(∞) itself realized as a union of B(λ)’s, which are again
written as tableaux. Our two realizations of B(λ), consisting of marginally large (reverse) tableaux
satisfying certain conditions, are different from the original realizations of B(λ), consisting of semi-
standard (reverse) tableaux, so that our work is clearly not circular.

Additional value of this work lies in its position as the first step to analogous results for the finite
simple Lie algebra types other than the special linear case treated here. The realizations of B(∞) in
terms of marginally large tableaux already exist for all finite simple Lie algebra types [3,4]. Because
these were based on only the simplest B(λ) realizations available for each type, none of these involve
half-boxes or configurations, and are almost as simple as the B(∞) realization for the special linear
Lie algebra type. The results of this work allow us to expect such an approach for the remaining

1 Private communication with Y. Saito (August, 2010).
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finite simple Lie algebra types to return realizations of B(λ) that are simpler than the ones that are
available and to even create the first realizations for the currently nonexistent cases.

The rest of this paper is organized as follows. In Section 2, we recall how the crystal B(∞) may
be expressed in the form

⋃
λ∈P+ B(λ)/∼, and in Section 3, we recall the basic theory of Nakajima

monomials and the reverse tableau description of B(λ). In Section 4, we transfer the expression
B(∞) = ⋃

λ∈P+ B(λ)/∼ to an analogous statement for the reverse tableaux and collect an appropriate
set of representatives to be used as an explicit realization for B(∞). The section also reviews the
previous explicit (non-reverse) tableau realization of B(∞) from [3]. Our two monomial descriptions
of B(λ) are presented in Section 5. The final section contains our two descriptions of B(λ) as certain
sets of marginally large tableaux and marginally large reverse tableaux, and also illustrates how these
are related to our two monomial descriptions.

2. Crystal B(∞) as a union of crystals B(λ)

In this section, we recall how the crystal B(∞) may be seen as a union of the highest weight
crystals B(λ). The contents of this section are valid for all symmetrizable Kac–Moody algebras, but
we will restrict our discussion to the special linear Lie algebras.

The reader is assumed to be familiar with the basic theory of crystal bases. Standard notation, such
as those found in the textbook [2], will be used. In particular, we assume familiarity with the follow-
ing notions and notation: index set I = {1, . . . ,n}, simple root αi , coroot hi , fundamental weight Λi ,
set of dominant integral weights P+ , quantum group Uq(An), abstract crystal with associated Kashi-
wara operators ẽi , f̃ i and maps wt, εi , ϕi , irreducible highest weight crystal B(λ), tensor product rule,
negative part U−

q (An) of Uq(An), and crystal basis B(∞) of U−
q (An).

Theorem 5 of the work [7] states that, for every dominant integral weight λ ∈ P+ , there is a
surjective map π̄λ from B(∞) to B(λ) ∪ {0} satisfying

π̄λ( f̃ ik · · · f̃ i2 f̃ i1 b∞) = f̃ ik · · · f̃ i2 f̃ i1 bλ,

where b∞ and bλ are the highest weight elements, and that each of the mappings π̄λ is a bijection
between {b ∈ B(∞) | π̄λ(b) �= 0} and B(λ). That is, for every element of B(λ), there is a single naturally
corresponding element of B(∞).

Definition 2.1. Two elements from the disjoint union
⋃

λ∈P+ B(λ) are defined to be equivalent (
α∼) to

each other if they correspond to the same element of B(∞). This is clearly an equivalence relation.
We fix the notation B(∪) = ⋃

λ∈P+ B(λ)/
α∼ for the set of all such equivalence classes.

Let us now recall the crystal structure on B(∪) given in [4]. Note that any element of B(∪) can be
expressed in the form π̄λ(b), for some λ ∈ P+ and b ∈ B(∞).

• f̃ i(π̄λ(b)) = f̃ i(π̄μ(b)), using any μ ∈ P+ such that f̃ i(π̄μ(b)) is nonzero.

• ẽi(π̄λ(b)) = 0, if ẽiπ̄λ(b) = 0, and ẽi(π̄λ(b)) = ẽi(π̄λ(b)), if otherwise.
• wt(π̄λ(b)) = wt(π̄λ(b)) − λ, for any choice of λ ∈ P+ such that π̄λ(b) �= 0.
• εi(π̄λ(b)) = εi(π̄λ(b)), using any choice of λ ∈ P+ such that π̄λ(b) �= 0.
• ϕi(π̄λ(b)) = εi(π̄λ(b)) + wt(π̄λ(b))(hi).

This crystal structure is referred to as the crystal structure on B(∪) that has been induced from those
on B(λ). The next result may be found in [4,9].

Theorem 2.2. The set of equivalence classes B(∪) = ⋃
λ∈P+ B(λ)/

α∼ can be given a crystal structure induced
from those on each B(λ). When B(∪) is given this crystal structure, B(∪) ∼= B(∞) as crystals.
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The first goal of this paper is to express B(∞) in terms of reverse tableaux. This will be achieved
by combining the above result with the reverse tableau description of the crystal B(λ).

3. Nakajima monomials, reverse tableaux, and crystal B(λ)

In this section, we recall basic knowledge concerning the Nakajima monomials and the reverse
tableaux description of crystal B(λ), for the special linear Lie algebras.

Our exposition of the crystal structure on Nakajima monomials follows that of Kashiwara [10].
We denote by M the set of Nakajima monomials in the variables Yi(m), where i ∈ I and m ∈ Z. Each
monomial is of the form

∏
(i,m) Yi(m)yi(m) , with nonzero exponent yi(m) ∈ Z appearing at only finitely

many (i,m) ∈ I × Z. For each i ∈ I and m ∈ Z, the notation

Ui(m) = Yi(m)Yi(m + 1)Yi−1(m + 1)−1Yi+1(m)−1

is used, where we are setting Y0(k)±1 = Yn+1(k)±1 = 1.
Recall that the crystal structure on the set M is defined as follows. For every monomial M =∏

(i,m) Yi(m)yi(m) ∈M and i ∈ I , we set

• wt(M) = ∑
i∈I (

∑
m∈Z yi(m))Λi ,

• ϕi(M) = max{∑k�m yi(k) | m ∈ Z},
• εi(M) = max{−∑

k>m yi(k) | m ∈ Z}.

To prepare for the definition of the Kashiwara operator applications, we introduce the values

• m f = m f (M, i) = min{m | ϕi(M) = ∑
k�m yi(k)},

• me = me(M, i) = max{m | εi(M) = −∑
k>m yi(k)}.

The Kashiwara operator actions are given by

• f̃ i(M) = 0 if ϕi(M) = 0, and f̃ i(M) = Ui(m f )
−1 M if ϕi(M) > 0,

• ẽi(M) = 0 if εi(M) = 0, and ẽi(M) = Ui(me)M if εi(M) > 0.

The following theorem from [10] gives a realization of the irreducible highest weight crystal.

Theorem 3.1. For a highest weight element M ∈M, the connected component of the crystal M containing M
is isomorphic to B(wt(M)).

Kashiwara [10] gave multiple crystal structures on the set M and the above realization theorem
holds true for each of these crystal structures, but we will deal only with the crystal structure ex-
plained above.

In the rest of this section, we will recall a reverse tableau description [12] of the irreducible
highest weight crystal B(λ). Let us use R(λ) to denote the set of all semi-standard reverse tableaux
of shape λ ∈ P+ , with entries taken from the set {1, . . . ,n + 1}. A semi-standard reverse tableau
consists of a finite number of identically sized square boxes arranged in rows and columns. The rows
are right-justified and the count of boxes in each row must be weakly decreasing from bottom to
top. Also, the entries written to its boxes should be weakly increasing from left to right within each
row and strictly increasing from top to bottom within each column. A semi-standard reverse tableau
of shape λ = ∑

i∈I λ(hi)Λi is a semi-standard reverse tableau consisting of λ(hi)-many columns of
height i, for all i ∈ I .

Example 3.2. The followings four objects are semi-standard reverse tableaux of shapes λ = Λ1 +Λ2 +
Λ3 and λ′ = 3Λ1 + 2Λ2 + Λ3.
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.

The reverse tableaux Rλ and Rλ′ are the highest weight elements of the crystals R(λ) and R(λ′),
respectively.

The maps defining the crystal structure on the set R(λ) are very similar to those given to the
crystal T (λ) consisting of semi-standard tableaux, which is a very well known description of B(λ)

introduced by Kashiwara and Nakashima in [11]. Let us only briefly recall the Kashiwara operator
actions on the reverse tableaux. One first expands a reverse tableau into its tensor product form through
the far eastern reading, as exemplified below:

Then, the tensor product rule is used to apply f̃ i or ẽi to one of the boxes, after which the resulting
tensor product form is reconstructed into the shape of the original tableau.

The tensor product rule on multiple tensors can be applied through calculation of the i-signature.
This is done though the following steps.

1. Under each tensor component x, write down εi(x)-many 1’s followed by ϕi(x)-many 0’s. This
sequence is called the i-signature of x.

2. Then, from the long sequence of mixed 0’s and 1’s, successively cancel out every occurrence of
(0,1) pairs until we arrive at a sequence of 1’s followed by 0’s, reading from left to right. This is
called the i-signature of the whole tensor product form.

3. To apply f̃ i to the whole product, apply it to the single tensor component corresponding to the
leftmost 0 remaining in the i-signature. If no 0 remains, the result of the f̃ i action is set to zero.

4. Similarly, for ẽi , apply it to the component corresponding to the rightmost 1, or set it to zero
when no 1 remains.

In the next section, we obtain a description of B(∞) by combining the result of the previous
section with the reverse tableau description of B(λ).

4. Crystal R(∪) and the reverse tableau description of B(∞)

In this section, we construct a realization of B(∞) using reverse tableaux, for the special linear Lie
algebra types. The realization will be given as a subset of the union of the R(λ)’s. We will follow the
approach taken by [3], which provided a description of B(∞) in terms of tableaux. The approach will
rely on the identifications B(∪) ∼= B(∞) and R(λ) ∼= B(λ), reviewed in Sections 2 and 3, respectively.
At the end of this section, we will briefly recall the (usual) tableau description of B(∞) [3] for use in
the final section.

4.1. Crystal R(∪)

We will first fix a certain set of reverse tableaux and then identify some of its elements. The
resulting set of equivalence classes will become a realization for B(∞).

The bottom row of a reverse tableau shall be referred to as the first row throughout this work.

Definition 4.1.

1. For i ∈ I , a basic i-column is a single column of i-many boxes, with its k-th row box occupied by
the entry (i + 1 − k), for each 1 � k � i.
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2. A semi-standard reverse tableau of shape λ ∈ P+ is large if it contains at least one basic i-column,
for every i ∈ I .

3. The basic columns create a division of any large reverse tableau into n separate groups of boxes.
The boxes within each of these groups may further be separated in accordance to their row po-
sitions. This combination gives us a grouping of the non-basic column boxes into n(n+1)

2 separate
collections of boxes, some of which could be empty. Given a large reverse tableau, the collection
of boxes that is right-adjacent to an i-box from the basic column and is located on the m-th row
is defined to be the (i,m)-collection of boxes for the reverse tableau. We will mostly refer to these
simply as the (i,m)-collection. Note that, for each i ∈ I , we must have 1 � m � n + 1 − i.

4. We denote by R(λ)L , the set of all large reverse tableaux of shape λ. The collection of all large
reverse tableaux is written as R L = ⋃

λ∈P+ R(λ)L , where the right-hand side R(λ)L could be empty
for some λ.

Remark 4.2. An (i,m)-collection of a large reverse tableaux cannot contain boxes other than i-boxes
and (i + 1)-boxes. Furthermore, each (i,1)-collection consists only of (i + 1)-boxes.

Example 4.3. Any A3-type large reverse tableau is of the following form.

The parts without any shading are the basic columns. All three groups of boxes, each of nonzero
width, must be present. On the other hand, the shaded parts are optional, and each part may be
of arbitrary width. The group of shaded boxes , appearing in the second row, is the
(1,2)-collection of boxes, and the group of shaded boxes is the (2,2)-collection
for this large reverse tableau.

We now provide an equivalence relation among the large reverse tableaux.

Definition 4.4. Two reverse tableaux R1 and R2 are said to be equivalent, written as R1
β∼ R2, if what

remains of the two are identical after removal of all basic i-columns from them, for every i ∈ I . This

is clearly an equivalence relation. We fix the notation R(∪) := R L/
β∼ for the set of equivalence classes

of large reverse tableaux.

In Section 2, we reviewed the equivalence relation on
⋃

λ∈P+ B(λ) that relied on the correspon-

dences between B(∞) and B(λ). The equivalence relation
α∼, defined on the set

⋃
λ∈P+ B(λ), can be

carried over to that on R L ⊂ ⋃
λ∈P+ R(λ) through the identification B(λ) ∼= R(λ). That is, we have two

equivalence relations
α∼ and

β∼ on R L . We wish to show that the two equivalence relations
α∼ and

β∼
on R L are identical.

Lemma 4.5. Fix an i ∈ I and let R, R1 , and R2 be large reverse tableaux such that R1
β∼ R2 .

1. f̃ i R is never zero.
2. ẽi R is either zero or large.

3. f̃ i R1
β∼ f̃ i R2 .

4. Either ẽi R1 and ẽi R2 are both zero, or ẽi R1
β∼ ẽi R2 .

Proof. (1) The largeness of R guarantees the existence at least one basic i-column, and the bottom
row of any basic i-column is occupied by an i-box. The i-signature to be written under this i-box in
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the tensor product form of R is 0, and the semi-standard condition on R implies that the signature 0
will not be canceled out by signatures from boxes contained in any of the columns sitting to its left.
This is sufficient to guarantee f̃ i R to be nonzero.

(2) Let there be at least one 1 remaining in the i-signature for the tensor product form of R , after
all (0,1) pair cancelations, so that ẽi R is nonzero. Remark 4.2 implies that an (i + 1)-box can only
appear within some of the basic columns, (i,m)-collections, and (i + 1,m)-collections. Since no basic
column or (i + 1,m)-collection can contribute a 1 to the i-signature of R , the ẽi operator must act on
an (i + 1)-box appearing in an (i,m)-collection of R , for some m. Such an action will not affect any
basic column, so that ẽi R will remain large.

(3) Note that f̃ i must act on either the rightmost basic i-column or on an (i,m)-collection, for
some m, and that any (i,m)-collection is located to the right of all basic i-columns. Focusing on the
i-signatures for R1 and R2 coming from just the two parts, one can see that the equivalence of the
two reverse tableaux implies that f̃ i will acts on two corresponding i-boxes, and that the results of
the f̃ i actions will be equivalent.

(4) The discussion already given for items (2) and (3) implies that ẽi will act on an (i,m)-collection
that is located to the right of all basic i-columns. As before, equivalence of R1 and R2 forces actions
of ẽi on the two reverse tableaux to be both zero or to materialize on corresponding (i + 1)-boxes, so
that the results are equivalent. �

Let us consider two given large reverse tableaux R1 and R2. There are λ1, λ2 ∈ P+ , such that R1 ∈
R(λ1) and R2 ∈ R(λ2). If we assume R1

α∼ R2, we can write R1 = f̃ it · · · f̃ i1 Rλ1 and R2 = f̃ it · · · f̃ i1 Rλ2 ,
for some set of indices i1, . . . , it ∈ I . Here, Rλ1 and Rλ2 are the highest weight elements. Iterative
applications of Lemma 4.5(2) to R1 and R2 imply that both f̃ ik · · · f̃ i1 Rλ1 and f̃ ik · · · f̃ i1 Rλ2 are large,

for every 0 � k � t . Then, since we know Rλ1

β∼ Rλ2 , iterative applications of Lemma 4.5(3) imply

R1
β∼ R2.

Let us next assume R1
β∼ R2 to argue in the converse direction. For some sequence of indices

i1, . . . , it , we have ẽit · · · ẽi1 R1 = Rλ1 . Iterative applications of items (2) and (4) of Lemma 4.5 imply

that ẽit · · · ẽi1 R2
β∼ ẽit · · · ẽi1 R1. Since ẽi Rλ1 = 0 for all i ∈ I , Lemma 4.5(4) implies that ẽit · · · ẽi1 R2

must also be maximal, and we may write ẽit · · · ẽi1 R2 = Rλ2 . This shows that R1 = f̃ i1 · · · f̃ it Rλ1 and

R2 = f̃ i1 · · · f̃ it Rλ2 , so that R1
α∼ R2.

We have thus argued that the two equivalence relations
α∼ and

β∼ given to R L are identical.

Proposition 4.6. For large reverse tableaux R1 and R2 , R1
α∼ R2 if and only if R1

β∼ R2 .

Now, if we can locate at least one representative in R L = ⋃
λ∈P+ R(λ)L , for every equivalence class

of B(∪) = ⋃
λ∈P+ B(λ)/

α∼, then R(∪) = R L/
β∼ could be taken as another realization for B(∞). The

first item of the following lemma provides the representatives we need.

Lemma 4.7.

1. Given any b ∈ B(∞), there exists a λ ∈ P+ such that π̄λ(b) is a large reverse tableau. Here, the map π̄λ is
interpreted as sending elements of B(∞) to elements of R(λ) ∼= B(λ).

2. Given any element of R(∪), it is always possible to choose its representative R ∈ R L in such a way that
f̃ i R is large.

Proof. (1) The proof of this claim is identical to that of Lemma 3.2 appearing in [1], which our claim
is very similar to. Our requirement for large reverse tableau replaces the original claim’s requirement
for a certain semi-standard tableau.

(2) Given any representative R ′ ∈ R L of b ∈ R(∪), let us create a larger representative by inserting
one copy of the basic i-column into the correct position within R ′ . It is clear that this new large
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reverse tableau R is a representative for b. Since at most one basic i-column may be affected during
an f̃ i action, the largeness of f̃ i R will be ensured by the inserted basic i-column. �

We can now rightfully state that R(∪) is equal to B(∪) as sets, under the identification R(λ) ∼=
B(λ). Our next goal is to provide a crystal structure on R(∪) and compare it with that on B(∪).

Lemma 4.7(2) and Lemma 4.5(3) provide a natural definition for the Kashiwara operator f̃ i action
on R(∪). An analogous support for the ẽi operator is provided by Lemmas 4.5(2) and 4.5(4). Let us
quickly discuss the remaining maps that are needed to define a crystal structure. It is clear that, given
b ∈ R(∪), we may choose any representative R ∈ R(λ)L and define its weight to be wt(b) = wt(R)−λ.
Lemma 4.5(4) indicates that we may define εi(b) = εi(R) and ϕi(b) = εi(b) + wt(b)(hi). We have
introduced a crystal structure on R(∪) induced from the crystal structures of each R(λ).

Since the crystal structures on R(∪) and B(∪) were both derived from those on R(λ) and B(λ),
the two crystals R(∪) and B(∪) are isomorphic under the identification R(λ) ∼= B(λ) of crystals.

Theorem 4.8. The set of equivalence classes R(∪) = ⋃
λ∈P+ R(λ)L/

β∼ can be given a crystal structure induced
from those on each R(λ). This crystal R(∪) is isomorphic to B(∞) as a crystal.

4.2. Reverse tableau description of B(∞)

To achieve our goal of giving an explicit description of B(∞) in terms of reverse tableaux, it
suffices to provide an explicit set of representatives for R(∪) and translate the various maps on R(∪)

to those on the representative set. Let us first introduce a new definition.

Definition 4.9. A large reverse tableau is marginally large, if it contains exactly one basic i-column, for
each i ∈ I . We denote by R(∞), the set of all marginally large reverse tableaux.

Example 4.10. In the A3-type case, any marginally large reverse tableau takes the following form:

This has three basic columns. The parts without any shading are the basic columns, and exactly one
must exist for each i ∈ I . The shaded parts are optional and may be of arbitrary widths.

The simplest A3-type marginally large reverse tableau is the highest weight element

that consists of just the basic columns. This will serve as our representative for the highest weight el-
ement b∞ ∈ B(∞), and we will use R∞ to denote this highest weight element, viewed as an element
of R(∞).

Given any large reverse tableau, we can arrive at a marginally large reverse tableau by succes-
sively removing a suitable number of its basic columns. The definition of equivalence between reverse
tableaux implies that we will arrive at the same marginally large reverse tableau even if we started
from another equivalent large reverse tableau. This shows that every equivalence class of large re-
verse tableaux can be represented by a unique marginally large reverse tableaux. We can now state
the following result.

Theorem 4.11. The set R(∞) of marginally large reverse tableaux forms a set of representatives for R(∪). It
can be given a crystal structure with which it becomes crystal isomorphic to B(∞).
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Let us explain how the crystal structure on R(∪) may be carries over to that on R(∞). Given a
marginally large reverse tableau R , according to Lemma 4.7(2), one can choose an equivalent large
reverse tableau R ′ such that f̃ i R ′ is large. Then basic columns can be removed from the resulting
f̃ i R ′ , until we arrive at a marginally large reverse tableau. This process is the f̃ i action on the set of
marginally large reverse tableaux, but let us provide a more simplified version of this process.

Note that any given marginally large reverse tableau R is contained in a single R(λ) for some
λ ∈ P+ . The following steps are taken to compute the Kashiwara operator f̃ i on R ∈ R(∞).

1. If f̃ i R , computed as an element of the crystal R(λ), is marginally large, we are done.
2. If otherwise, then f̃ i must have acted on the i-box situated within the unique basic i-column.

Insert a single basic i-column at the appropriate position to obtain a marginally large reverse
tableau.

To apply ẽi to R ∈ R(∞), the following procedure is taken.

1. If ẽi R , computed as an element of R(λ), is either zero or marginally large, we are done.
2. If otherwise, then ẽi must have acted on the (i + 1)-box in the column sitting to the right of the

unique basic i-column. Remove the column containing the changed box, which will be a basic
i-column, to arrive at a marginally large reverse tableau.

Remark 4.12. Whenever Kashiwara operator acts on a marginally large reverse tableau, the f̃ i acts on
either an i-box in an (i,m)-collection for some m or the i-box in the basic i-column, and the ẽi acts
on an (i + 1)-box in an (i,m)-collection for some m.

Note that the disappearance of a basic i-column during an f̃ i action or the appearance of a new
basic i-column during an ẽi computation implies that the operator has acted on the first row.

As for the remaining maps wt, εi , and ϕi , it suffices to adopt the corresponding maps defined in
the previous subsection on R(∪).

Example 4.13. We illustrate the f̃ i actions on a marginally large reverse tableau, for the A3 type. In
order to apply f̃2 to R∞ , we first compute the action according to the crystal structure of R(λ), where
λ = Λ1 + Λ2 + Λ3. Since the result does not contain any basic 2-column, the reverse tableau is not
large. Thus, a basic 2-column is inserted during the f̃2 action.

R∞ = ��� ��� f̃2(R∞) = ��� f̃1
(

f̃2(R∞)
) =

The dark shaded boxes are the ones changed by direct application of the f̃ i operator, and the light
shadings indicate the columns inserted to preserve largeness.

In the final section, we will present a simple description of B(λ), using the elements of R(∞).

4.3. Review of the tableau description for B(∞)

In this section, we briefly recall the tableau description of B(∞) presented by [3]. This is given as
a subset of the union of tableau descriptions T (λ) for B(λ) introduced in [11].

In the remainder of this work, the top row of a (usual, non-reverse) tableau will be referred to as
its first row.

Definition 4.14. For i ∈ I , a basic i-column is a single column of i-many boxes, with the box at its k-th
row containing the entry k, for each 1 � k � i.

A semi-standard tableau with entries from {1, . . . ,n + 1} is marginally large, if it contains exactly
one basic i-column, for each i ∈ I . The set of all marginally large tableaux is denoted by T (∞).
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It may be inferred from the definition that, for each i ∈ I , the number of i-boxes appearing in
the i-th row of any marginally large tableaux is exactly one larger than the total number of boxes
appearing its (i + 1)-th row.

Example 4.15. The set T (∞), in the A3-type case, consists of all tableaux of the following form.

The non-shaded parts, which are basic columns, must exist, whereas the shaded parts are optional
and can be of arbitrary widths.

Theorem 4.16. The set T (∞) of all marginally large tableaux forms a crystal and is isomorphic to the crystal
B(∞).

Let us describe the crystal structure on this set. We start with the description of the Kashiwara
operator actions on T (∞). To apply f̃ i to a marginally large tableau, we go through the following
procedure.

1. Apply f̃ i to the tableau as usual. That is, write it in tensor product form, apply tensor product
rule, and assemble back into original tableau form.

2. If the result is a large tableau, it is automatically marginally large, and we are done.
3. If the result is not large, then f̃ i must have been applied to the i-box in the basic i-column. Insert

one basic i-column to the left of the box f̃ i acted on.

Analogous process for the ẽi operator is as follows.

1. Apply ẽi to the tableau as usual.
2. If the result is zero or a marginally large tableau, we are done.
3. Otherwise, the result is large, but not marginally large. The ẽi operator must have acted on the

box sitting to the right of the i-box in the basic i-column. Remove the column containing the
changed box, which must be a new basic i-column.

Any given marginally large tableau T is contained in exactly one T (λ) for some λ ∈ P+ . It is clear
that we can set the weight wt(T ) to be λ less than the weight of this tableau T in the crystal T (λ).
Furthermore, εi(T ) is set to the corresponding value computed for T as an element of T (λ), and
ϕi(T ) = εi(T ) + wt(T )(hi).

Example 4.17. The simplest marginally large tableau is T∞ , the first diagram given below, which
consists of just the basic columns. It corresponds to the highest weight element b∞ ∈ B(∞). We
illustrate the f̃2 action on T∞ and the f̃1 action on f̃2(T∞).

T∞ = ��� ��� = f̃2(T∞) ��� ��� = f̃1
(

f̃2(T∞)
)
.

The dark shaded boxes are the ones f̃ i has acted on, and the light shadings show columns inserted
to preserve largeness.

We remark that, even though both R(∞) and T (∞) are tableau descriptions of B(∞), it is easy to
verify that neither the Schützenberger sliding algorithm [18] nor the Schensted bumping algorithm [13,17]
can be used to make the isomorphism explicit.
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5. Monomial descriptions of B(λ)

There are multiple existing descriptions of the crystal B(λ), for the special linear Lie algebra types,
that are based on the Nakajima monomial theory. In this section, we present two more such descrip-
tions of B(λ). The two are the connected components from the crystal M that contain the highest
weight elements

∏
i∈I Y i(1)λ(hi ) and

∏
i∈I Y i(−i)λ(hi) , and both of these have already been described

before [5,14]. However, we will describe the two sets using different expressions that are more suit-
able for our needs.

One characteristic of our new description is that the expression for each element displays all the
Kashiwara operator actions that can be used to reach the element from the highest weight element.
This characteristic has helped us in formulating the descriptions of B(λ) in terms of elements from
R(∞) and T (∞), given in the final section.

5.1. Connected component of
∏

i∈I Y i(1)λ(hi )

Recall from Theorem 3.1 that, for a highest weight element M ∈ M, the connected component
of the crystal M containing M is isomorphic to B(wt(M)). In this section, we find the connected
component of M, containing the highest weight element Mλ = ∏

i∈I Y i(1)λ(hi) , which is of weight
λ = ∑

i∈I λ(hi)Λi .
Let M(λ) be the set of all monomials of the form

∏
i∈I

(
Yi(1)λ(hi) ·

∏
1�m�n+1−i

U i(m)−ui,m

)
, (5.1)

with the exponents satisfying

0 � ui,1 � ui−1,1 + λ(hi),

0 � ui,m � min
{

ui−1,m + λ(hi−1+m), ui+1,m−1
}
, for 2 � m � n + 1 − i,

(5.2)

for each i ∈ I , where we take u0,m = 0, for every m. The vector Mλ is contained in the set M(λ), as
can be seen by taking ui,m = 0, for every i and m.

Proposition 5.3. The set M(λ) is the connected component of crystal M, containing the vector Mλ =∏
i∈I Y i(1)λ(hi ) of weight λ, and M(λ) ∼= B(λ).

Proof. Since the final claim follows from Theorem 3.1, it suffices to show that the actions of the
Kashiwara operators on M(λ) satisfy the properties

f̃ i M(λ) ⊂ M(λ) ∪ {0}, ẽi M(λ) ⊂ M(λ) ∪ {0},

for all i ∈ I , and that every element of M(λ) is connected to the element Mλ , by Kashiwara operator
actions.

Fix any M ∈ M(λ) and i ∈ I , and let us suppose that f̃ i M /∈ M(λ) ∪ {0}. Then, since M ∈ M(λ) and
f̃ i M �= 0, we must have ϕi(M) > 0 and

f̃ i M = Ui(m)−1M,

for some 1 � m � n + 1 − i.
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Let us first assume m = 1 was used. Then, the fact m f (M, i) = m = 1 implies that the exponent
yi(1) = −ui,1 + ui−1,1 + λ(hi) of Yi(1) appearing in the monomial M is positive, so that we have

ui−1,1 + λ(hi) > ui,1.

On the other hand, since the assumption f̃ i M /∈ M(λ) can only be associated with the violation of the
first line of (5.2), we can state

ui,1 + 1 > ui−1,1 + λ(hi).

Since these two inequalities cannot be true simultaneously, we have a contradiction.
Let us next treat the m > 1 case. As before, the process of obtaining m = m f (M, i) implies that

yi(m) > 0, and we know

ui+1,m−1 − ui,m−1 + ui−1,m > ui,m.

On the other hand, assumption f̃ i M /∈ M(λ) implies

ui,m + 1 > min
{

ui−1,m + λ(hi−1+m), ui+1,m−1
}
.

A combination of the two inequalities implies

ui+1,m−1 − ui,m−1 + ui−1,m > min
{

ui−1,m + λ(hi−1+m), ui+1,m−1
}
,

so that at least one of

ui+1,m−1 > ui,m−1 + λ(hi−1+m),

ui−1,m > ui,m−1,

must be true. However, both of these contradict the assumption M ∈ M(λ). Verification of ẽi M(λ) ⊂
M(λ) ∪ {0} can be done similarly.

To show the connectedness of M(λ), it suffices to show that the only maximal element in M(λ)

is Mλ . Suppose M ∈ M(λ) is such that ẽi(M) = 0, for all i ∈ I , and suppose M �= Mλ . The latter
assumption is that there is at least one positive ui,m . We first locate the largest m for which there is
a positive ui,m and then choose the largest i for which ui,m is positive, with the m already fixed. For
such i and m, we know

yi(m + 1) = ui+1,m − ui,m − ui,m+1 + ui−1,m+1 = −ui,m < 0

and that yi(k) = 0 for all k > m + 1. This implies −∑
k>m yi(k) > 0, so that

εi(M) = max

{
−

∑
k> j

yi(k)
∣∣ j ∈ Z

}
> 0,

and this contradicts the assumption of M being a maximal element. �
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Example 5.4. For the A3-type case, the crystal M(λ) consists of all monomials of the form

Y1(1)λ(h1)Y2(1)λ(h2)Y3(1)λ(h3) · U1(1)−u1,1 U2(1)−u2,1 U3(1)−u3,1

U1(2)−u1,2 U2(2)−u2,2

U1(3)−u1,3

(5.5)

satisfying the following conditions:

0 � u1,1 � λ(h1), 0 � u2,1 � u1,1 + λ(h2), 0 � u3,1 � u2,1 + λ(h3),

0 � u1,2 � min
{
λ(h2), u2,1

}
, 0 � u2,2 � min

{
u1,2 + λ(h3), u3,1

}
,

0 � u1,3 � min
{
λ(h3), u2,2

}
.

The highest weight element of M(λ) is Mλ = Y1(1)λ(h1)Y2(1)λ(h2)Y3(1)λ(h3) , and the element given
by (5.5) can be reached from Mλ through applications of (u1,1 + u1,2 + u1,3)-many f̃1, (u2,1 +
u2,2)-many f̃2, and u3,1-many f̃3, in some order.

5.2. Connected component of
∏

i∈I Y i(−i)λ(hi)

In this section, we present the connected component of the crystal M, containing the highest
weight element Nλ = ∏

i∈I Y i(−i)λ(hi) of weight λ.
Let N(λ) be the set of all monomials of the form

∏
i∈I

(
Yi(−i)λ(hi) ·

∏
1�m�i

U i(−m)−ui,−m

)
, (5.6)

with the exponents satisfying

0 � ui,−m � min
{

ui+1,−(m+1) + λ(hm), ui−1,−m
}
, for 1 � m � i − 1,

0 � ui,−i � ui+1,−(i+1) + λ(hi),
(5.7)

for each i ∈ I , where we take un+1,−m = 0, for every m.
The proof of the following claim is similar to that of Proposition 5.3.

Proposition 5.8. The set N(λ) is the connected component of crystal M, containing the vector Nλ =∏
i∈I Y i(−i)λ(hi ) of weight λ, and N(λ) ∼= B(λ).

Example 5.9. In the A3-type case, the crystal N(λ) consists of all monomials of the form

Y1(−1)λ(h1)Y2(−2)λ(h2)Y3(−3)λ(h3) · U1(−1)−u1,−1 U2(−2)−u2,−2 U3(−3)−u3,−3

U2(−1)−u2,−1 U3(−2)−u3,−2

U3(−1)−u3,−1

(5.10)

satisfying the following conditions:
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0 � u1,−1 � u2,−2 + λ(h1), 0 � u2,−2 � u3,−3 + λ(h2), 0 � u3,−3 � λ(h3),

0 � u2,−1 � min
{

u3,−2 + λ(h1), u1,−1
}
, 0 � u3,−2 � min

{
λ(h2), u2,−2

}
,

0 � u3,−1 � min
{
λ(h1), u2,−1

}
.

The weight of the element given by (5.10) is

λ − (u1,−1)α1 − (u2,−1 + u2,−2)α2 − (u3,−1 + u3,−2 + u3,−3)α3.

6. Crystal B(λ) as a subset of B(∞)

Two descriptions of the crystal B(∞) were discussed in Section 4. These were the new reverse
tableau description R(∞) and the existing tableau description T (∞) from [3]. In this section, we de-
scribe the crystal B(λ) for the special linear Lie algebra types using elements from these two tableau
descriptions of B(∞).

We will base our realization on the fact [16] that the connected component in the crystal
B(∞) ⊗ Tλ containing the element b∞ ⊗ tλ is isomorphic to B(λ). Here, λ ∈ P+ , and the crystal Tλ is
the single-element set {tλ} with the following crystal structure:

wt(tλ) = λ, εi(tλ) = −λ(hi), ϕi(tλ) = 0, ẽi(tλ) = 0, f̃ i(tλ) = 0.

Our goal will be achieved by finding the connected components containing R∞ ⊗ tλ and T∞ ⊗ tλ
in R(∞) ⊗ Tλ and T (∞) ⊗ Tλ , respectively, where R∞ and T∞ denote the highest weight elements
of R(∞) and T (∞). After presenting the two sets that are isomorphic to B(λ), we will discuss how
each of them are in natural correspondence with one of the two monomial descriptions found in the
previous section.

6.1. Connected component of R∞ ⊗ tλ

Let us first work to find the connected component in R(∞) ⊗ Tλ containing R∞ ⊗ tλ . The reader
is asked to recall the notion of (i,m)-collection and Remark 4.2 from Section 4 before continuing.

Let us write ri,m to denote the number of (i + 1)-boxes that appear in the (i,m)-collection of
a given marginally large reverse tableau. We will not make the dependence of ri,m on the reverse
tableau explicit, as our use of this notation will always be in such a way that the reverse tableau
under consideration is unambiguous. For each λ ∈ P+ , let R(∞)λ be the set of all marginally large
reverse tableaux, such that the ri,m ’s satisfy the condition

0 � ri,m � ri−1,m + λ(hi−1+m), (6.1)

for every i ∈ I and 1 � m � n + 1 − i, where we take r0,m = 0, for all m. We also define the set
R(∞)λ = {R ⊗ tλ | R ∈ R(∞)λ}.

Example 6.2. In the A3-type case, the set R(∞)λ consists of all marginally large reverse tableaux, for
which the ri,m ’s satisfy the following conditions:

0 � r13 � λ(h3),

0 � r12 � λ(h2), 0 � r22 � r12 + λ(h3),

0 � r11 � λ(h1), 0 � r21 � r11 + λ(h2), 0 � r31 � r21 + λ(h3).

An element from the set R(∞)λ takes the following general form.



156 H. Lee / Journal of Algebra 400 (2014) 142–160
We have shaded the ri,m-many (i +1)-boxes appearing within each (i,m)-collection, for each 1 � i � 3
and 1 � m � 3 + 1 − i pair. For example, in the second row, the r1,2-many 2-boxes contained in the
(1,2)-collection and the r2,2-many 3-boxes appearing in the (2,2)-collection have been shaded.

The highest weight element

R∞ =

of R(∞) has ri,m = 0, for all i and m, and belongs to the set R(∞)λ , for any λ ∈ P+ .

The following claim is one of our main results.

Theorem 6.3. The set R(∞)λ is the connected component containing the element R∞ ⊗ tλ in the crystal
R(∞) ⊗ Tλ .

Proof. It suffices to prove that the actions of the Kashiwara operators on R(∞)λ satisfy the properties

f̃ i R(∞)λ ⊂ R(∞)λ ∪ {0}, ẽi R(∞)λ ⊂ R(∞)λ ∪ {0},

for all i ∈ I , and that every element of R(∞)λ is connected to the maximal element R∞ ⊗ tλ , by
Kashiwara operator actions.

Fix any i ∈ I and suppose that R ⊗ tλ ∈ R(∞)λ is such that f̃ i(R ⊗ tλ) is nonzero and not contained
in R(∞)λ . The assumption and tensor product rule imply that

ϕi(R) > εi(tλ) and f̃ i(R ⊗ tλ) = f̃ i(R) ⊗ tλ, (6.4)

and that f̃ i(R) is not contained in R(∞)λ . In other words, f̃ i(R) is a marginally large reverse tableau
which does not satisfy the condition (6.1).

Now, suppose that f̃ i has acted on the first row of R . In this case, the f̃ i action must materialize
as action on an i-box that is contained in the unique basic i-column of R , and a single basic i-column
must have been inserted into R during the f̃ i action. Since f̃ i(R) does not satisfy the condition (6.1),
we have

ri,1 + 1 > ri−1,1 + λ(hi),

and this contradicts the fact

ϕi(R) − εi(tλ) = −ri,1 + ri−1,1 + λ(hi) > 0,

which follows from (6.4).
Next, suppose that f̃ i has acted on a row of R other than the first. Then f̃ i must have acted on an

i-box located in an (i,m)-collection of R , where 2 � m � n + 1 − i, so that

(ri+1,m−1 − ri,m) − (ri,m−1 − ri−1,m) > 0. (6.5)
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On the other hand, since f̃ i(R) does not satisfy the condition (6.1), we have

ri,m + 1 > ri−1,m + λ(hi−1+m).

Thus, we obtain

ri,m = ri−1,m + λ(hi−1+m) (6.6)

from the condition (6.1), for R ∈ R(∞)λ . By substituting (6.6) into the inequality (6.5), we obtain

(ri+1,m−1 − ri,m) − (ri,m−1 − ri−1,m) = ri+1,m−1 − ri,m−1 − λ(hi−1+m) > 0.

This contradicts

ri+1,m−1 − ri,m−1 − λ(hi+m−1) � 0,

which is the condition (6.1) for R ∈ R(∞)λ . The ẽi R(∞)λ ⊂ R(∞)λ ∪ {0} claim may be verified simi-
larly.

It only remains to show that R∞ ⊗ tλ is the only maximal element of R(∞)λ . Let us assume a
fixed i ∈ I and take any R ⊗ tλ ∈ R(∞)λ . For R ∈ R(∞)λ , which is assumed to have its associated ri,m
satisfy condition (6.1), a careful computation through the definition ϕi(R) = εi(R) + wt(R)(hi) reveals
that

ϕi(R) = max

{ ∑
1�k� j

ri(k)

∣∣∣ j ∈ Z�n+1−i

}
,

where

ri(k) =
{−ri,1 + ri−1,1 for k = 1,

(ri+1,k−1 − ri,k) − (ri,k−1 − ri−1,k) for 2 � k � n + 1 − i.

Hence, we can state

ϕi(R) � ri(1) � −λ(hi) = εi(tλ), (6.7)

where the second inequality is implied by the condition (6.1). The tensor product rule now implies
that ẽi(R ⊗ tλ) = ẽi(R) ⊗ tλ . Unless R = R∞ , there will be an i such that ẽi(R) �= 0, so that no element
of R(∞)λ other than R∞ ⊗ tλ can be a maximal element. �

Given an element from our new description R(∞)λ of B(λ), one can directly recognize how many
f̃ i actions, for each i ∈ I , were required to arrive at the element from the highest weight element, and
hence also obtain its weight.

Reviewing Examples 5.4 and 6.2, focusing on the many inequality conditions, one can notice a sim-
ilarity between the two general elements from the A3-type crystals M(λ) and R(∞)λ . More generally,
we wish to show that there is a natural correspondence between the crystals M(λ) of Section 5.1 and
the crystal R(∞)λ of this section.

Recalling Remark 4.2, it is easy to see that a system of the ri,m ’s will uniquely identify an element
of R(∞). That is, a reverse tableau that contains ri,m-many (i + 1)-boxes in its (i,m)-collection may
not exist unless all meaningful inequalities ri,m � ri+1,m−1 are satisfied, but there will be at most one
such marginally large reverse tableau. Given any λ ∈ P+ , we define the map φ : M(λ) → R(∞)λ to
send the general monomial M of (5.1) satisfying (5.2) to R ⊗ tλ , where R is the unique marginally
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large reverse tableau such that ri,m = ui,m for all i ∈ I and 1 � m � n + 1 − i. The condition (5.2)
ensures that such a reverse tableau exists and that the condition (6.1) is satisfied.

Proposition 6.8. The map φ : M(λ) → R(∞)λ is a crystal isomorphism.

Proof. It is easy to see that the map φ is a bijection. We will focus our effort in showing that the
map φ commutes with the Kashiwara operators f̃ i . All other parts that need to be checked are either
similar or easy.

Let us assume a fixed i ∈ I throughout this proof. For a reverse tableau R ∈ R(∞)λ , which is
assumed to have its associated ri,m satisfy condition (6.1), we know from the inequality (6.7) that

ϕi(R) − εi(tλ) = max

{ ∑
1�k� j

ri(k)

∣∣∣ j ∈ Z�n+1−i

}
+ λ(hi) � ri(1) + λ(hi) � 0.

On the other hand, for the monomial M ∈ M(λ) of (5.1), we can write

ϕi(M) = max

{∑
k� j

yi(k)

∣∣∣ j ∈ Z
}

= max

{∑
k� j

yi(k)

∣∣∣ j ∈ Z�n+1−i

}
,

where

yi(k) =
⎧⎨
⎩

0 for k � 0,

−ui,1 + ui−1,1 + λ(hi) for k = 1,

ui+1,k−1 − ui,k−1 − ui,k + ui−1,k for 2 � k � n + 1 − i.

Now, let us take φ(M) = R ⊗ tλ , i.e., assume ui,m = ri,m , for all indices. Note that the discussion
given so far implies

ϕi(M) = ϕi(R) − εi(tλ).

When f̃ i M = 0, we have ϕi(M) = 0 and ϕi(R) − εi(tλ) = 0, so that

f̃ i(R ⊗ tλ) = R ⊗ f̃ i(tλ) = 0,

by the tensor product rule.
When f̃ i M �= 0, we can write f̃ i M = Ui(m)−1M , for some 1 � m � n + 1 − i. Since

ϕi(R) − εi(tλ) = ϕi(M) > 0,

the tensor product rule implies,

f̃ i(R ⊗ tλ) = f̃ i(R) ⊗ tλ.

In the m = 1 case, f̃ i acts on the i-box in a basic i-column of R , and in the 2 � m � n + 1 − i
case, f̃ i acts on an i-box in an (i,m)-collection of R . In both cases, the only (effective) difference
between R and f̃ i R is that their (i,m)-collections contain ri,m-many and (ri,m +1)-many (i +1)-boxes,
respectively. Since we already know through Theorem 6.3 that f̃ i R belongs to R(∞)λ , f̃ i(R)⊗ tλ must
be the image of Ui(m)−1M under φ. We have shown that the map φ commutes with the Kashiwara
operator f̃ i . �
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6.2. Connected component of T∞ ⊗ tλ

The connected component in T (∞) ⊗ Tλ containing T∞ ⊗ tλ is discussed now. All results of this
subsection may be proved as in the previous subsection, and we will not write down any of the
proofs.

Given a marginally large tableau, for each pair of indices 1 � m � n and m � i � n, define ti,−m
to be the combined number of all boxes labeled i + 1 through n + 1, appearing on the m-th row of
the tableau, and also set tn+1,−m = 0, for all m. Note that ti,−m − ti+1,−m becomes the number of
(i + 1)-boxes appearing on the m-th row. For each λ ∈ P+ , let T (∞)λ be the set of all marginally
large tableaux, such that

0 � ti,−m � ti+1,−(m+1) + λ(hm), (6.9)

for all possible indices, and let T (∞)λ = {T ⊗ tλ | T ∈ T (∞)λ}.

Example 6.10. In the A3-type case, the set T (∞)λ consists of all tableaux of the form

The shaded part of the bottom row consists of t3,−3-many 4-boxes. The shaded part of the second
row consists of t3,−2-many 4-boxes and (t2,−2 − t3,−2)-many 3-boxes. The ti,−m ’s satisfy the following
conditions:

0 � t1,−1 � λ(h1) + t2,−2, 0 � t2,−1 � λ(h1) + t3,−2, 0 � t3,−1 � λ(h1),

0 � t2,−2 � λ(h2) + t3,−3, 0 � t3,−2 � λ(h2),

0 � t3,−3 � λ(h3).

The smallest tableau

T∞ =

from T (∞) belongs to the set T (∞)λ , for any λ ∈ P+ , with all its associated ti,−m = 0.

Theorem 6.11. The set T (∞)λ is the connected component containing the element T∞ ⊗ tλ in the crystal
T (∞) ⊗ Tλ .

Analogous to the situation in the previous subsection, a system of the ti,−m ’s will uniquely identify
an element of T (∞), as long as ti,−m � ti−1,−m is satisfied by all applicable indices. Given any λ ∈ P+ ,
we define the map ψ : N(λ) → T (∞)λ , to send the monomial of (5.6) satisfying (5.7) to T ⊗ tλ ,
where T is the unique marginally large tableau such that ti,−m = ui,−m , for all applicable indices. The
condition (5.7) ensures that such a tableau exists and that the condition (6.9) is satisfied.

Proposition 6.12. The map ψ : N(λ) → T (∞)λ is a crystal isomorphism.

We remark that Kashiwara [8] and Nakashima [16] has shown the image of B(λ) ↪→ B(∞) ⊗ Tλ to
be

{
b ⊗ tλ ∈ B(∞) ⊗ Tλ

∣∣ ε∗
i (b) � 〈hi, λ〉 for any i ∈ I

}
,
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for all symmetrizable Kac–Moody algebras and any λ ∈ P+ . (The crystal Tλ used in [8] differs from
that commonly used by [16] and this paper, but this difference is not important.) Since our descrip-
tions R(∞)λ and T (∞)λ for B(λ) are explicit specifications, for An type, of exactly the same image
set, the conditions (6.1) and (6.9) should each be equivalent to appropriate translations of the condi-
tion ε∗

i (b) � 〈hi, λ〉 to the R(∞) and T (∞) situations.
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