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1. Introduction

Quasihereditary algebras were introduced in [4] by Cline, Parshall and Scott, in order 
to deal with highest weight categories arising in the representation theory of Lie algebras 
and algebraic groups. This notion was extensively studied by Dlab and Ringel ([8,6,9],
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[11, Appendix]). Since the introduction of quasihereditary algebras, many classes of al-
gebras arising naturally were shown to be quasihereditary.

A prototype for quasihereditary algebras are the Schur algebras, whose highest weight 
theory is that of general linear groups. They are the endomorphism algebras of certain 
modules over the group algebra of a symmetric group, and the algebra of the symmetric 
group can be seen as an idempotent subalgebra of the Schur algebra.

Thus it seemed natural that one can study an algebra A by realising it as (ξRξ, ξ)
with R quasihereditary and ξ an idempotent in R. In [2], Auslander gave an explicit 
construction of an algebra R̃A and an idempotent ξ ∈ R̃A for every Artin algebra A, 
such that R̃A has finite global dimension, and A is isomorphic to (ξR̃Aξ, ξ). In [6], Dlab 
and Ringel showed that this algebra R̃A is in fact quasihereditary. This may be rephrased 
by saying that any such A has an associated highest weight theory.

In this paper, we study the basic algebra RA of R̃A, where A is a finite-dimensional 
algebra over some field. We propose to call RA the Auslander–Dlab–Ringel algebra (ADR 
algebra) of A. We show that RA satisfies the following two properties:

(A1) Rad Δ (i) is either a standard module, or is zero;
(A2) if Rad Δ (i) = 0 then the corresponding indecomposable injective module Qi has a 

filtration by standard modules (in other words, Qi is tilting).

This motivates the following definition. Let B be a quasihereditary algebra with respect 
to a poset (Φ,�). We say that B is ultra strongly quasihereditary if it satisfies (A1) and 
(A2). This class of algebras is closed under Morita equivalence of quasihereditary alge-
bras, since axioms (A1) and (A2) are expressed in terms of highest weight structures and 
of internal categorical constructions. By a result of Dlab and Ringel ([7]), condition (A1) 
implies that the category of modules with a Δ-filtration is closed under submodules, and 
the algebras with this property were named “strongly quasihereditary algebras” ([14]).

We prove several properties for algebras satisfying (A1) and (A2), and for their Ringel 
duals. In particular, we show that one can label the simple modules in a natural way by 
pairs (i, j) so that Δ (i, j) has radical Δ (i, j + 1) for 1 ≤ j < li and Δ (i, li) is simple. 
As a main contribution of Section 5, we will prove the following (which corresponds to 
Theorem 5.5 and Proposition 5.8).

Theorem. Let B be an ultra strongly quasihereditary algebra. The injective hull Qi,li of 
the simple B-module with label (i, li) has both a Δ- and a ∇-filtration. Moreover, the 
chain of inclusions

0 ⊂ T (i, li) ⊂ · · · ⊂ T (i, j) ⊂ · · · ⊂ T (i, 1) = Qi,li ,

where T (i, j) is the tilting module corresponding to the label (i, j), is the unique 
∇-filtration of Qi,li . For 1 ≤ j < li, the injective hull Qi,j of the simple module with 
label (i, j) is isomorphic to Qi,li/T (i, j + 1).
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The layout of the paper is the following. Section 2 contains background on quasiheredi-
tary algebras and on the ADR algebra. In Section 3, we study the standard RA-modules 
corresponding to the quasihereditary order (Λ,�) of [6]. We prove that the uniserial 
projective RA-modules described by Smalø in [17] are indeed standard modules with 
respect to (Λ,�). In Section 4, we show that the algebra RA is quasihereditary with re-
spect to (Λ,�) – our proof is different from that in [6]. Section 5 introduces ultra strongly 
quasihereditary algebras. We prove the result on the labelling described previously, we 
construct the injective modules for these algebras and we prove Theorem 5.5. Denote the 
Ringel dual of a quasihereditary algebra B by R (B). In Section 6 we show that R (B) op

is ultra strongly quasihereditary whenever the algebra B is an ultra strongly quasihered-
itary algebra. In Section 7 we determine a presentation of RA by quiver and relations 
when A is a certain Brauer tree algebra, which occurs for example in the representation 
theory of the symmetric group.

2. Preliminaries

Throughout this paper the word ‘algebra’ will mean finite-dimensional K-algebra, 
where K is some fixed field. Furthermore, all modules will be finite-dimensional left 
modules.

2.1. The ADR algebra of A

Fix an algebra A. Given a module M , we shall denote its Loewy length by LL(M), that 
is, LL(M) is the minimal natural number such that RadLL(M) M = 0. Let A have Loewy 
length L (as a left module). We want to study the basic version of the endomorphism 
algebra of

L⊕
j=1

A/ (RadA)j .

This will have multiplicities in general.
Let {P1, . . . , Pn} be a complete irredundant set of projective indecomposable 

A-modules and let li be the Loewy length of Pi. Define

G :=
n⊕

i=1

li⊕
j=1

Pi/Radj Pi.

The modules Pi/ Radj Pi are indecomposable and pairwise non-isomorphic, and these 
are precisely the indecomposable summands of 

⊕L
j=1 A/(RadA)j (up to isomorphism).

The algebra

R = RA := EndA (G) op,
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which we call the ADR algebra of A, is then a basic algebra of

R̃A := EndA(
L⊕

j=1
A/ (RadA)j)op.

The projective indecomposable R-modules are given by

Pi,j := HomA

(
G,Pi/Radj Pi

)
,

for 1 ≤ i ≤ n, 1 ≤ j ≤ li. Let ξ ∈ R be the idempotent corresponding to the summand ⊕n
i=1 Pi,li of R. Notice that ξRξ is a basic algebra of A.
Denote the simple quotient of Pi,j by Li,j and define

Λ := {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li},

so that Λ labels the simple R-modules.
The notation modA will be used for the category of (finite-dimensional) A-modules 

and, for every M in modA, addM will denote the full subcategory of modA whose 
objects are the summands of finite direct sums of copies of M . We say that a set of 
modules (or a single module) Θ in modA generates a module M , if M is the image 
of some map f whose domain is a (finite) direct sum of modules in Θ. The notion of 
cogeneration is defined dually.

Since G generates A, the functor HomA (G,−) has rather nice properties. Indeed, the 
functor

HomA (G,−) : modA −→ modR

is fully faithful and it is right adjoint to the exact functor HomR (HomA (G,A) ,−). This 
implies that HomA (G,−) preserves injectives. Moreover, the restriction of HomA (G,−)
to addG yields an equivalence between the categories addG and addR. A detailed 
account of the properties of this adjunction can be found in [2, §8–§10].

2.2. Quasihereditary algebras

Given an algebra B and a partial order (Φ,�) labelling the simple B-modules, one 
defines the standard module Δ(i), i ∈ Φ, to be the largest quotient of Pi with all com-
position factors of the form Lj , where j � i. Here Li denotes the simple B-module with 
label i ∈ Φ, and Pi represents the projective B-module with top Li. Let Qi be the injec-
tive B-module with socle Li. The costandard module ∇(i) is defined dually, by replacing 
‘quotient’ by ‘submodule’, and Pi by Qi. The set of standard B-modules (resp. costan-
dard B-modules) is denoted by Δ (resp. ∇). Following [9], we say that the poset (Φ,�)
is adapted to B if the following holds: for every module M with simple top Li and simple 
socle Lj , where i and j are incomparable in (Φ,�), there is k ∈ Φ such that k � i or 
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k � j, and [M : Lk] �= 0. Here [M : L] denotes the Jordan–Hölder multiplicity of a 
simple module L in M .

Any set of modules, Θ, gives rise to the extension closed category F (Θ) of all modules 
having a Θ-filtration, i.e. a filtration whose factors lie in Θ (up to isomorphism). The 
categories F (Δ) and F (∇) are of central interest.

There are different equivalent ways of defining a quasihereditary algebra. We shall 
adopt the module theoretic perspective of [9].

Definition 2.1. The algebra B is quasihereditary with respect to (Φ,�) provided that:

(1) (Φ,�) is adapted to B;
(2) the multiplicity of Li in Δ(i) is one for all i ∈ Φ;
(3) the projective modules lie in F (Δ).

In this case we may write (B, Φ, �). If (B, Φ, �) is quasihereditary the dual of (3) also 
holds: the injective B-modules lie in F (∇).

Given a quasihereditary algebra (B,Φ,�) and a module M in F (Δ), denote the 
multiplicity of Δ (i) in a Δ-filtration of M by (M : Δ (i)). This number is independent 
of a choice of a Δ-filtration, thus it is well defined. Quasihereditary algebras satisfy a 
Brauer–Humphreys type of reciprocity, which reduces to the identities (Pi : Δ (j)) =
[∇ (j) : Li] and (Qi : ∇ (j)) = [Δ (j) : Li] when the field K is algebraically closed ([9, 
Lemma 2.5]). More generally, we have the following well-known result, which follows 
from [9, Lemma 2.4].

Lemma 2.2. Let (B,Φ,�) be a quasihereditary algebra. Let M and N be B-modules, 
with M ∈ F (Δ) and N ∈ F (∇). Then, for i ∈ Φ,

(M : Δ (i)) = dimEndB(∇(i)) HomB (M,∇ (i)),

(N : ∇ (i)) = dimEndB(Δ(i))op HomB (Δ (i) , N).

3. The standard modules

Following the notation introduced in Subsection 2.1, recall that the set Λ = {(i, j) :
1 ≤ i ≤ n, 1 ≤ j ≤ li} labels the simple modules over the ADR algebra R. Define a 
partial order, �, on Λ by

(i, j) � (k, l) ⇔ j > l.

We shall see, in Section 4, that the ADR algebra R is quasihereditary with respect 
to (Λ,�). In this section, we describe the standard R-modules Δ (i, j) with respect to 
(Λ,�). For this, two ingredients are needed. The following result, due to Smalø, is crucial.
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Proposition 3.1 ( [17, Proposition 2.1]). The modules P1,1, . . . , Pn,1 form a complete 
irredundant list of projective R-modules without proper projective submodules. Each pro-
jective Pi,1 is uniserial with Loewy length li and, for every (i, j) in Λ, we have the 
following short exact sequences

0 HomA

(
G,RadPi/Radj Pi

)
Pi,j Radj−1 Pi,1 0 .

Corollary 3.2. For 1 ≤ j ≤ li, the module Radj−1 Pi,1 is uniserial and has composition 
factors Li,j , · · · , Li,li , labelled from the top to the socle.

Proof. By Proposition 3.1, the projective indecomposable module Pi,1 has Loewy length 
li and is uniserial. Thus, the module Radj−1 Pi,1 is also uniserial and has Loewy length 
li−j+1. Note that Radk(Radj−1 Pi,j) = Radk+j−1 Pi,j . By Proposition 3.1, this module 
has a simple top isomorphic to Li,k+j , for 0 ≤ k ≤ li − j. �

The next lemma will also be used to determine the structure of the standard 
R-modules. Its proof can be found in [2], within the proof of Proposition 10.2.

Lemma 3.3. Let M be in modA. There is an epic ε : X0 −→ M , with X0 in addG sat-
isfying LL(X0) = LL(M), such that HomA (G, ε) is the projective cover of HomA (G,M)
in modR.

Given a set of modules (or a single module) Θ and a module M in modA, define the 
trace of Θ in M , Tr (Θ,M), to be the largest submodule of M generated by Θ (see [1, 
§8]). If B is an algebra endowed with a labelling poset (Φ,�) (as in Subsection 2.2), then 
Δ (i) = Pi/ Tr(

⊕
j:j ��i Pj , Pi) (see [9, Lemma 1.1]).

Proposition 3.4. The standard R-modules are uniserial. In fact,

Δ (i, j) ∼= Radj−1 Pi,1,

for every (i, j) in Λ.

Proof. By Proposition 3.1 and Corollary 3.2, the module Radj−1 Pi,1 is a quotient of 
Pi,j , and it has composition factors Li,j , . . . , Li,li (ordered from top to socle). So, by 
the definition of standard module, there must be an epic f from Δ (i, j) to Radj−1 Pi,1. 
Therefore we have the following commutative diagram

0 Tr
(⊕

(k,l):(k,l) ��(i,j) Pk,l, Pi,j

)
Pi,j Δ (i, j) 0

0 HomA

(
G,RadPi/Radj Pi

)
Pi,j Radj−1 Pi,1 0

∃ g f .
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Further, since LL(RadPi/ Radj Pi) = j − 1, it follows from Lemma 3.3 that 
HomA

(
G,RadPi/Radj Pi

)
is generated by projectives Pk,l, such that l < j (so 

(k, l) � (i, j)). By the definition of trace, the inclusion map is an injection of 
HomA

(
G,RadPi/Radj Pi

)
into Tr(

⊕
(k,l):(k,l) ��(i,j) Pk,l, Pi,j). Hence the composite of 

g with this is one-to-one. But then the monic g must be an isomorphism. Note that 
Ker f ∼= Coker g, so the epic f must be an isomorphism as well. �

Observe that

Rad Δ (i, j) = Rad
(
Radj−1 Pi,1

)
=

{
Δ (i, j + 1) if j < li,

0 if j = li.
(3.1)

Therefore RadΔ (i, j), which is the unique maximal submodule of Δ (i, j), belongs to 
F (Δ) for all (i, j) in Λ.

The next lemma can be found in [7, Lemma 2]. We state it for the convenience of the 
reader.

Lemma 3.5. Let Θ be a set of modules. Assume that for any M in Θ, every maximal 
submodule of M has a Θ-filtration. Then the category F (Θ) is closed under submodules.

By Lemma 3.5 and by the identity (3.1), the subcategory F (Δ) of modR is closed 
under submodules. This suggests that there are many R-modules having a Δ-filtration. 
In fact, the category F (Δ) is at least as large as modA.

Lemma 3.6. Let M be in modA. The R-module HomA (G,M) belongs to F (Δ).

Proof. By Proposition 3.4, the result holds if LL(M) = 1. Assume the claim holds 
for modules with Loewy length l − 1 and let M have Loewy length l. The functor 
HomA (G,−) maps the short exact sequence

0 RadM M M/RadM 0

to

0 HomA (G,RadM) HomA (G,M) HomA (G,M/RadM)

HomA (G,M) /HomA (G,RadM)

.

By induction, HomA (G,RadM) lies in F (Δ), and by the initial case, the module 
HomA (G,M/RadM) belongs to F (Δ) as well. According to Lemma 3.5, F (Δ) is closed 
under submodules, so
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HomA (G,M) /HomA (G,RadM) ∈ F (Δ) .

The result follows from the fact that F (Δ) is closed under extensions. �
4. The ADR algebra is quasihereditary

The ADR algebra is quasihereditary with respect to the heredity chain constructed 
by Dlab and Ringel in [6]. The underlying order in [6] can be shown to be the same as 
our partial order (Λ,�). Instead of going into details about heredity chains, we give a 
different prove that R is quasihereditary with respect to (Λ,�).

Lemma 4.1. The partial order (Λ,�) for the simple R-modules is an adapted order for R.

Proof. Let N be an indecomposable R-module. Suppose that TopN = Li,j and SocN =
Lk,l, with (i, j) and (k, l) incomparable with respect to �, i.e. with j = l and i �= k. 
There is a nonzero morphism f and a commutative diagram

Pk,l

Pi,l N

∃ t∗
f .

Now t∗ = HomA (G, t) for some t : Pk/ Radl Pk −→ Pi/ Radl Pi. The map t must be a 
non-isomorphism since k �= i. So Im t is generated by a module in

C = add

⎛
⎝ ⊕

(x,y):y≤l−1

Px/Rady Px

⎞
⎠ .

By the projectivity of Pk/ Radl Pk in mod(A/ (RadA)l), we conclude that t factors 
through a module in C. Hence t∗ factors through a module in

add

⎛
⎝ ⊕

(x,y):y≤l−1

Px,y

⎞
⎠ .

But then N must have a composition factor of the form Lx,y for some x and some y < l, 
i.e. for some pair (x, y) such that (x, y) � (k, l). �
Theorem 4.2. The algebra R is quasihereditary with respect to (Λ,�).

Proof. We check that (R,Λ,�) satisfies conditions (1) to (3) in Definition 2.1. By 
Lemma 4.1, the poset (Λ,�) is adapted to R. Proposition 3.4 and Corollary 3.2 im-



T. Conde / Journal of Algebra 460 (2016) 181–202 189
ply that [Δ (i, j) : Li,j ] = 1. Finally, recall that Pi,j = HomA

(
G,Pi/Radj Pi

)
. By 

Lemma 3.6, the projective indecomposable R-modules lie in F (Δ). �
The next result, due to Dlab and Ringel ([7], [9, Lemma 4.1*]), is stated for complete-

ness.

Theorem 4.3. Let (B,Φ,�) be a quasihereditary algebra. The following assertions are 
equivalent:

(1) Rad Δ (i) ∈ F (Δ) for all i ∈ Φ;
(2) F (Δ) is closed under submodules;
(3) for all i in Φ the module ∇ (i) has injective dimension at most one;
(4) every module in F (∇) has injective dimension at most one;
(5) every torsionless module (i.e. every module cogenerated by projectives) belongs to 

F (Δ).

Consequently, assertions (1)–(4) hold for the quasihereditary structure of R, or, stated 
equivalently, R is a right strongly quasihereditary algebra (see [14]). Compare this state-
ment with Observation (2) in [14] – there the algebra Γ is obtained by applying Iyama’s 
construction to the regular module.

From now onwards denote the simple quotient of the A-module Pi by Li and let Qi

be the injective A-module with socle Li. Similarly, let Qi,j be the injective R-module 
with socle Li,j . We claim that the R-modules Qi,li have a Δ-filtration.

Lemma 4.4. The functor HomA (G,−) preserves indecomposable modules. In particular, 
Qi,li = HomA (G,Qi), and HomA (G,−) preserves injective hulls.

Proof. The first assertion follows from the fact that HomA (G,−) is a fully faithful 
functor. Observe that HomA (G,−) also preserves injectives and note that the inclusion 
of Li in Qi induces a monic from Pi,1 (whose socle is Li,li) to HomA (G,Qi). So indeed 
Qi,li = HomA (G,Qi). Let now M be in modA and suppose SocM =

⊕
j∈J Lxj

. Then ⊕
j∈J Pxj ,1 (whose socle is 

⊕
j∈J Lxj ,lxj

) is contained in HomA (G,M). Moreover, the 
functor HomA (G,−) maps the injective hull of M to a monic from HomA (G,M) to ⊕

j∈J Qxj ,lxj
, so the statement follows. �

5. Costandard, injectives and tilting modules

Let B be a quasihereditary algebra with respect to (Φ, �). It was proved by Ringel 
in [13] (see also Donkin, [10]) that for every i ∈ Φ there is a unique indecomposable 
B-module T (i) (up to isomorphism) which has both a Δ- and a ∇-filtration, with one 
composition factor labelled by i, and all the other composition factors labelled by j, 
j � i.
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It is now standard to refer to a module in F (Δ) ∩ F (∇) as a tilting module. Let T
be the direct sum of the modules T (i), i ∈ Φ. This module is called the characteristic 
module in [13], and it is such that addT = F (Δ) ∩ F (∇).

Lemmas 3.6 and 4.4 imply that the R-modules Qi,li belong to F (Δ)∩F (∇) = addT . 
Consequently, every module Qi,li is a direct summand of T .

In this section we:

(I) introduce the class of ultra strongly quasihereditary algebras, which contains the 
ADR algebras;

(II) for B an ultra strongly quasihereditary algebra, investigate the injective and the 
tilting modules – our main results are Theorem 5.5 and Proposition 5.8.

So let (B, Φ, �) be an arbitrary quasihereditary algebra, as before. Additionally, sup-
pose that B satisfies the following two conditions:

(A1) Rad Δ (i) ∈ Δ ∪ {0} for all i ∈ Φ;
(A2) Qi ∈ F (Δ) for all i ∈ Φ such that RadΔ (i) = 0.

We call these algebras (right) ultra strongly quasihereditary algebras. Note that the con-
ditions in Theorem 4.3 hold for every ultra strongly quasihereditary algebra (B,Φ,�). 
Moreover, the algebra RA is ultra strongly quasihereditary for every choice of A. However, 
notice that there are ultra strongly quasihereditary algebras which are not isomorphic 
to RA for any A.

Example 5.1. Consider the path algebra B = KQ, where Q is the quiver

n◦ n−1◦ · · · 1◦ .

The algebra B is quasihereditary with respect to the natural ordering. Besides, B satisfies 
(A1) and (A2). Yet B is isomorphic to the quasihereditary algebra RA for some A if and 
only if n = 1.

Let us start by stating some fundamental properties of the standard modules over an 
ultra strongly quasihereditary algebra.

Lemma 5.2. Let (B,Φ,�) be an ultra strongly quasihereditary algebra. The standard 
B-modules are uniserial. Moreover, if Lj is a composition factor of Δ (i), then Δ (j) is 
a submodule of Δ (i).

Proof. The first part of the statement is a consequence of (A1). For the second part, as 
Lj is a composition factor of Δ (i), there is a morphism f : Pj −→ Δ (i). So Im f is a 
submodule of Δ (i) with simple top Lj . Therefore, we must have Im f ∼= Δ (j). �



T. Conde / Journal of Algebra 460 (2016) 181–202 191
Given an ultra strongly quasihereditary algebra (B,Φ,�), we may define a new order 
� on Φ by

i � j ⇔ “Li is a composition factor of Δ (j) ”.

It follows from Lemma 5.2 that � is transitive and antisymmetric. Note that (Φ,�) is a 
refinement of (Φ,�), that is, i � j implies i � j, i, j ∈ Φ.

Proposition 5.3. Let (B,Φ,�) be an ultra strongly quasihereditary algebra. For each i
in Φ, let i∗ be the element in Φ such that SocΔ (i) = Li∗ . The following holds:

(1) Li∗ = Δ (i∗) and Qi∗ ∈ F (Δ);
(2) if i1 and i2 are two maximal elements in (Φ,�), and Δ (i1) and Δ (i2) have some 

composition factor in common, then i1 = i2;
(3) if i is a maximal element in (Φ,�) then Qi∗

∼= T (i).

Proof. By Lemma 5.2, every standard module B-module is uniserial. In particular, the 
modules Δ (i) have simple socle. For every i ∈ Φ, write i∗ for the label in Φ such that 
Li∗ = SocΔ (i). Denote by Φ∗ the set of all i∗.

Part (1) follows from Lemma 5.2 and from axiom (A2) in the definition of ultra 
strongly quasihereditary algebra.

For part (2) suppose, by contradiction, that i1 and i2 are two distinct maximal ele-
ments in (Φ,�) such that the modules Δ (i1) and Δ (i2) have some common composition 
factor. Then, by Lemma 5.2, we must have i1∗ = i2

∗ = j. By the injectivity of Qj and the 
uniseriality of Δ (i1) and Δ (i2), we get that the inclusion Lj −→ Qj can be extended to 
monomorphisms φx : Δ (ix) −→ Qj , x = 1, 2. As i1 and i2 are distinct and both maximal 
with respect to �, then

Imφ1 � Imφ2, Imφ2 � Imφ1. (5.1)

Now, by part (1), Qj lies in F (Δ), i.e. Qj has Δ-filtration. Let Δ (k) ⊆ Qj be such that 
Qj/Δ (k) ∈ F (Δ). Set N := Qj/Δ (k). Since F (Δ) is closed under submodules, SocN
must be a direct sum of simple modules Ly, with y ∈ Φ∗. We cannot have simultaneously 
Imφ1 ⊆ Δ (k) and Imφ2 ⊆ Δ (k): by (5.1), these two inclusions would produce two 
different composition series of Δ (k), which is impossible by Lemma 5.2. So suppose, 
without loss of generality, that Imφ1 � Δ (k). Then

Imφ1/ (Imφ1 ∩ Δ (k)) ∼= (Imφ1 + Δ (k)) /Δ (k) =: N ′

is a nonzero submodule of N . Since Lj ⊆ Imφ1 ∩ Δ (k) and Imφ1 ∼= Δ (i1), Lemma 5.2
implies that every composition factor Ly of Imφ1/ (Imφ1 ∩ Δ (k)) is such that y∗ =
j, but y �= j. In particular, SocN ′ = Lz, for some z /∈ Φ∗. This is impossible since 
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SocN ′ ⊆ SocN and all the summands of SocN are of the form Ly with y ∈ Φ∗. We get 
a contradiction.

We concluded that for every j ∈ Φ∗ there is exactly one maximal element i in (Φ,�)
such that i∗ = j. For part (3), consider the module Qi∗ , where i is a maximal element 
in (Φ,�). Note that Qi∗ lies in F (Δ) ∩ F (∇) = addT : this follows from part (1) and 
from the fact that B is a quasihereditary algebra. To conclude that Qi∗

∼= T (i) it is 
enough to show that [Qi∗ : Li] �= 0 and that all composition factors of Qi∗ are of the 
form Lx, with x � i. Since Qi∗ is the injective hull of Δ (i), we have [Qi∗ : Li] �= 0. By 
the Brauer–Humphreys reciprocity (Lemma 2.2), we get

(Qi∗ : ∇ (y)) = dimEndB(Δ(y))op HomB (Δ (y) , Qi∗).

So, for (Qi∗ : ∇ (y)) to be nonzero, we must have y∗ = i∗, or equivalently, y � i. Taking a 
∇-filtration of Qi∗ , we see that every composition factor Lx of Qi∗ must be a composition 
factor of some ∇ (y) with y � i. But for every composition factor Lx of ∇ (y) we have 
x � y. Thus, for every composition factor Lx of Qi∗ , there is y such that x � y and 
y � i. Therefore, x � i. �

Let (B,Φ,�) be an ultra strongly quasihereditary algebra. Suppose i is maximal with 
respect to (Φ,�). The module Δ (i) is uniserial. Assume Δ (i) has Loewy length li and, 
by analogy with R, let Li1 , . . . , Lili

be the composition factors of Δ (i), ordered from 
the top to the socle (so i1 = i and ili = i∗). We may relabel the simple B-modules 
as (i, j), where, for every maximal i in (Φ,�), the label i is replaced by (i, 1), and the 
remaining labels ij (as before) are replaced by (i, j). By the definition of the partial order 
(Φ,�), every simple B-module has been given such a label. Furthermore, Proposition 5.3
assures that this relabelling is well defined. Note that this relabelling is consistent with 
the labels chosen for the simple R-modules. From now onwards we will use this new 
labelling for the simple B-modules. I.e., we shall assume (unless otherwise stated) that 
(B, Φ, �) denotes an ultra strongly quasihereditary algebra and that

Φ = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ li}.

So Li,j , Pi,j , Qi,j , Δ (i, j), ∇ (i, j), T (i, j) and T will be the naturally expected 
B-modules.

Consider an injective B-module of type Qi,li . By Proposition 5.3, Qi,li is isomorphic 
to T (i, 1). As we shall see shortly, every T (i, j) may be determined recursively from 
T (i, 1). The next lemma will be useful when proving this claim.

Lemma 5.4. Let (B,Φ,�) be an arbitrary quasihereditary algebra. For i ∈ Φ consider 
the short exact sequence

0 Y (i) T (i) ∇ (i) 0ψ
, (5.2)
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as in [13, Section 5] (i.e. with ψ a right minimal F (Δ)-approximation of ∇ (i) and with 
Y (i) a module lying in F ({∇ (j) : j � i})). Then:

(1) Rad Δ (i) is a submodule of Y (i);
(2) for every morphism f : T (i) −→ ∇ (i), there is a map h in the division algebra 

EndB (∇ (i)) such that f = h ◦ ψ;
(3) if M ⊆ T (i), with M in F (∇) and T (i) /M a costandard module, then T (i) /M =

∇ (i) and M = Y (i).

Proof. There is an exact sequence

0 Δ (i) T (i) X (i) 0φ
, (5.3)

dual to (5.2) (see [13, Section 5]), where X (i) lies F ({Δ (j) : j � i}). So we may regard 
Δ (i) as a submodule of T (i). The image of Δ (i) under ψ must be the socle of ∇ (i), 
since Li occurs only once as a composition factor of T (i). This proves part (1).

Now apply the functor HomB (−,∇ (i)) to (5.3). We have HomB (X (i) ,∇ (i)) =
0, as Li is not a composition factor of X (i). Because of this, and also because 
Ext1B (F (Δ) ,F (∇)) = 0 (see [9, Theorem 1]), we get an isomorphism

HomB (T (i) ,∇ (i)) −→ HomB (Δ (i) ,∇ (i))

of S-modules, where S := EndB (∇ (i)) is a division algebra. As HomB (Δ (i) ,∇ (i)) is 
1-dimensional over S, part (2) follows.

For part (3), note that the epic f : T (i) −→ T (i) /M must be a right F (Δ)-approxi-
mation of T (i) /M , as Ext1B (F (Δ) ,M) = 0 (consult [3, pages 113, 114] for the definition 
of right approximation). Since T (i) is an indecomposable module, the map f is in-
deed a right minimal F (Δ)-approximation of T (i) /M (see [3, Proposition 1.1, (a)]). 
Suppose T (i) /M = ∇ (j). So both f and ψ : T (j) −→ ∇ (j) are right minimal 
F (Δ)-approximations of ∇ (j). As a consequence, T (j) and T (i) must be isomorphic 
(see [3, page 114]), so j = i. If we look at Y (i) as a submodule of T (i), then part (2) 
implies that ι = ι′ ◦ t, where t is an isomorphism and ι : Y (i) −→ T (i), ι′ : M −→ T (i)
are the inclusion maps. Thus M = Y (i). �

We are now in position of proving one of our main results.

Theorem 5.5. Let (B, Φ, �) be an ultra strongly quasihereditary algebra. Then Qi,li =
T (i, 1) and, for every (i, j) ∈ Φ, we have the following short exact sequence

0 T (i, j + 1) T (i, j) ∇ (i, j) 0ψ
, (5.4)

where T (i, li + 1) := 0. In particular,
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0 ⊂ T (i, li) ⊂ · · · ⊂ T (i, j) ⊂ · · · ⊂ T (i, 1) = Qi,li (5.5)

is the unique ∇-filtration of T (i, 1).

Proof. By Proposition 5.3, we must have Qi,li = T (i, 1). We will prove by induction on 
k, that there is a filtration

T (i, k) ⊂ T (i, k − 1) ⊂ · · · ⊂ T (i, 1) = Qi,li .

For k = 1 the claim is obvious. Suppose the claim holds for all k ≤ j. So assume that 
T (i, j) ⊆ T (i, 1), and consider the short exact sequence

0 Y (i, j) T (i, j) ∇ (i, j) 0ψ

(as in (5.2)). Suppose j �= li. Then ψ cannot be an isomorphism, as ∇ (i, j) is not in 
F (Δ). Since Y (i, j) ⊆ Qi,li and SocQi,li = Li,li is simple, we get that SocY (i, j) =
Li,li . Therefore Y (i, j) is indecomposable. As F (Δ) is closed under submodules (recall 
Theorem 4.3), we must have Y (i, j) ∈ F (Δ) ∩ F (∇). Thus Y (i, j) = T (i, l), for some 
1 ≤ l ≤ li (note that Δ (k, l) ⊆ T (k, l), so T (k, l) must have the summand Lk,lk in its 
socle). From Lemma 5.4, we also know that RadΔ (i, j) = Δ (i, j + 1) is contained in 
Y (i, j). Hence (i, j + 1) � (i, l), so j + 1 ≥ l. We cannot have l ≤ j, otherwise, as Δ (i, l)
is a submodule of Y (i, j), Li,j would be a composition factor of Y (i, j). Thus l = j + 1
and Y (i, j) = T (i, j + 1). Note that Y (i, li) = 0, otherwise Y (i, li) would have socle 
Li,li . Therefore we get a ∇-filtration as in (5.5), and part (3) of Lemma 5.4 assures its 
uniqueness. �
Remark 5.6. Let 1 ≤ j < j′ ≤ li. Then T (i, j′) is a submodule of T (i, j). We assert that 
T (i, j) /T (i, j′) must be an indecomposable R-module. First, note that T (i, j) /T (i, j′)
belongs to F (∇). Indeed, this module must have a unique ∇-filtration as this is the case 
of T (i, 1) (look at (5.5)). Since F (∇) is closed under direct summands, every module 
having a unique ∇-filtration must be indecomposable.

Given a set of modules (or a single module) Θ and a module M in modA, define the 
reject of Θ in M , Rej (M,Θ), to be the submodule N of M such that M/N is the largest 
factor module of M cogenerated by Θ (see [1, §8]). From the filtration (5.5) and by the 
properties of ∇-filtrations it is not difficult to conclude that

T (i, j) = Rej

⎛
⎝Qi,li ,

⊕
(k,l):(k,l)�(i,j)

Qk,l

⎞
⎠ = Rej

⎛
⎝Qi,li ,

⊕
(k,l):(k,l) ��(i,j)

Qk,l

⎞
⎠

Therefore, we have the following result.
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Lemma 5.7. Let (B, Φ, �) be an ultra strongly quasihereditary algebra. The module 
T (i, j), (i, j) ∈ Φ, is the largest submodule of Qi,li whose all composition factors are 
of the form Lk,l, (k, l) � (i, j).

We now claim that Qi,j/∇ (i, j) is isomorphic to Qi,j−1 for 1 < j ≤ li, and that 
Qi,1 ∼= ∇ (i, 1).

Proposition 5.8. Let (B, Φ, �) be an ultra strongly quasihereditary algebra. For every 
(i, j) ∈ Φ, we have the short exact sequences

0 ∇ (i, j) Qi,j Qi,j−1 0, (5.6)

0 T (i, j + 1) T (i, 1) Qi,j 0, (5.7)

where Qi,0 := 0. Moreover, the module Qi,j has a unique ∇-filtration.

Proof. By Theorem 5.5, we have the exact sequences

0 T (i, j) /T (i, j + 1) Qi,li/T (i, j + 1) Qi,li/T (i, j) 0 , (5.8)

where T (i, li + 1) = 0 and T (i, j) /T (i, j + 1) ∼= ∇ (i, j), 1 ≤ j ≤ li. By Theorem 4.3, 
the modules T (i, j), 1 ≤ j ≤ li, have injective dimension at most one. As Qi,li is 
the injective hull of T (i, j), we get that all Qi,li/T (i, j) are injective. The modules 
Qi,li/T (i, j + 1) have a unique ∇-filtration by Theorem 5.5, so they are indecomposable 
(see Remark 5.6). Therefore Qi,li/T (i, j + 1) is the injective hull of ∇ (i, j) for every 
1 ≤ j ≤ li, which shows that Qi,li/T (i, j + 1) = T (i, 1) /T (i, j + 1) is isomorphic to 
Qi,j . This produces the short exact sequence (5.7) in the statement of this proposition. 
Now (5.8) gives the exact sequence (5.6). �
6. The Ringel dual

In this section we start by summarising the general setup for the Ringel dual of a 
quasihereditary algebra. Then, we study the Ringel dual R (B) of an ultra strongly 
quasihereditary algebra B. The main goal of this section is to show that R (B) op is also 
ultra strongly quasihereditary.

For now suppose that (B, Φ, �) is an arbitrary quasihereditary algebra. Denote by Li, 
Qi, ∇ (i), T (i) and T , respectively, the simple B-modules, the injective indecomposables, 
etc., as naturally expected. The algebra EndB(T )op is quasihereditary with respect to 
the poset (Φ, � op). This endomorphism algebra, investigated by Ringel in [13], is known 
as the Ringel dual of B, and we shall denote it by R (B). It was shown in [13] that 
R (R (B)) ∼= B, for B basic.
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Denote by P ′
i the projective indecomposable R (B)-module HomB (T, T (i)) and let L′

i

be its top. Denote the standard, the costandard and the summands of the characteristic 
R (B)-module T ′ accordingly (with the prime symbol).

The restriction of the functor

HomB (T,−) : modB −→ modR (B)

to F (∇) yields an equivalence between the categories F (∇) and F (Δ′).
Since Ext1B (T,F (∇)) vanishes, then HomB (T,−) maps short exact sequences in 

modB with modules in F (∇) to short exact sequences in modR (B) with modules 
in F (Δ′).

The following holds

HomB (T, T (i)) = P ′
i ,

HomB (T,∇ (i)) = Δ′ (i) ,
HomB (T,Qi) = T ′ (i) .

6.1. Ringel dual of an ultra strongly quasihereditary algebra

Now we assume that (B, Φ, �) is an ultra strongly quasihereditary algebra and label 
the simple B-modules by (i, j), as described in Section 5. We want to show that R (B) op

is ultra strongly quasihereditary.
Let D be the standard duality. Then the standard modules over R (B) op are the 

modules D(∇′ (i, j)), and the indecomposable injectives are the modules D(P ′
i,j). To 

verify that (A1) and (A2) hold for R (B) op, we need that

(A1*) ∇′ (i, j) /L′
i,j is either a costandard module, or is zero;

(A2*) if ∇′ (i, j) is simple, then P ′
i,j has a ∇′-filtration (that is, it is a tilting module).

From the quasihereditary structure of B we can immediately deduce some properties 
of R (B).

(I) We have that P ′
i,1

∼= T ′ (i, li) since T (i, 1) is isomorphic to Qi,li .
(II) By applying the functor HomB (T,−) to the exact sequence (5.4) in the statement 

of Theorem 5.5, we get

0 P ′
i,j+1 P ′

i,j Δ′ (i, j) 0 ,

where P ′
i,li+1 := 0. In particular, the standard R (B)-modules have projective di-

mension at most one. By [9, Lemma 4.1], this is equivalent to the fact that F (∇′)
is closed under factor modules.
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(III) Using the functor HomB (T,−) we get from the filtration (5.5) that the module 
P ′
i,1

∼= T ′ (i, li) has a unique Δ′-filtration, given by

0 ⊂ P ′
i,li ⊂ · · · ⊂ P ′

i,j ⊂ · · · ⊂ P ′
i,1 = T ′ (i, li) .

The quotients are as described in (II).

Theorem 6.1. Using the notation introduced previously, we have:

(1) P ′
i,1

∼= T ′ (i, li);
(2) if 1 ≤ j < li, then T ′ (i, j) ∼= P ′

i,1/P
′
i,j+1;

(3) for (i, j) ∈ Φ, the costandard module ∇′ (i, j) has Loewy length j, is uniserial, and 
satisfies

∇′ (i, j − 1) ∼= ∇′ (i, j) /L′
i,j .

Proof. Part (1) is answered in (I) above. Part (2) follows by applying the functor 
HomB (T,−) to (5.7) in Proposition 5.8.

To prove part (3) apply Lemma 2.2 to (III). This yields

dimEndR(B)(∇′(i,j)) HomR(B)
(
P ′
k,l,∇′ (i, j)

)

= (P ′
k,l : Δ′ (i, j)) =

{
1 if k = i and l ≤ j,

0 otherwise.
(6.1)

As a consequence, the composition factors of ∇′ (i, j) are L′
i,1, . . . , L

′
i,j , with L′

i,j having 
multiplicity one in ∇′ (i, j). In particular, ∇′ (i, 1) ∼= L′

i,1. We prove that ∇′ (i, j) /L′
i,j

∼=
∇′ (i, j − 1) for 1 < j ≤ li. Let L be a direct summand of Top∇′ (i, j). Since F (∇′) is 
closed under taking quotients, then L must be a costandard module. By (6.1), we must 
have L ∼= ∇′ (i, 1) ∼= L′

i,1. Thus, there is an exact sequence

0 Kerπ ∇′ (i, j) ∇′ (i, 1) 0ι π .

We claim that [∇′ (i, j) : L′
i,1] = 1. For this, let M be a submodule of Kerπ generated 

by P ′
i,1 = T ′ (i, li). Since F (∇′) is closed under quotients, it follows that M ∈ F (∇′), 

but also ∇′ (i, j) /M ∈ F (∇′), i.e. there is an exact sequence

0 M ∇′ (i, j) ∇′ (i, j) /M 0 .

This is only possible if M = 0 or M = ∇′ (i, j). Since ι is a proper inclusion, then M = 0. 
This proves that [Kerπ : L′

i,1] = 0. Thus [∇′ (i, j) : L′
i,1] = 1 for all (i, j) ∈ Φ. Consider



198 T. Conde / Journal of Algebra 460 (2016) 181–202
now the module N := ∇′ (i, j) /L′
i,j , which lies in F (∇′) as this category is closed under 

quotients. By what we have seen previously, N has composition factors L′
i,1, . . . , L

′
i,j−1, 

with L′
i,1 having multiplicity one in N . The only possibility is that N is isomorphic to 

∇′ (i, j − 1), that is ∇′ (i, j) /L′
i,j

∼= ∇′ (i, j − 1). �
Remark 6.2. The proof of part (3) in Theorem 6.1 can be simplified if the underlying 
field K is algebraically closed.

Corollary 6.3. If (B,Φ,�) is an ultra strongly quasihereditary algebra, then the algebra 
(R (B) op,Φ,� op) is also ultra strongly quasihereditary.

Proof. By Theorem 6.1, it is clear that the quasihereditary algebra (R (B) ,Φ,� op)
satisfies axioms (A1*) and (A2*). �
7. The ADR algebra of a certain Brauer tree algebra

Brauer tree algebras are a class of algebras of finite representation type. They include 
all blocks of group algebras of finite type, and also all blocks of type A Hecke algebras 
of finite type ([12]). In this section we determine the quiver presentation of the ADR 
algebra RA of A, when A is the Brauer tree algebra KQ/I, with K an arbitrary field, 
Q the quiver

1◦ 2◦ · · · n−1◦ n◦
α1

β1

α2

β2

αn−2

βn−2

αn−1

βn−1

and I the admissible ideal of KQ generated by the relations

αi+1αi, βiβi+1, αiβi − βi+1αi+1, i = 1, . . . , n− 2.

The Brauer tree algebra A plays an important role in the representation theory of the 
symmetric group. Indeed, let Σm be the symmetric group on m letters. If K is a field 
of prime characteristic p, then any non-simple block of KΣm of finite type is Morita 
equivalent to the principal block of KΣp. Consider the algebra A defined above, with K
a field of prime characteristic p and with n = p − 1. In this case A is a basic algebra of 
the principal block of KΣp. Moreover, the vertex i in the quiver of A may be thought as 
corresponding to the simple KΣp-module labelled by the (hook) partition (p +1 −i, 1i−1)
of p. We refer to [15] for further details.

Since I is generated by monomial relations and by commutative relations between 
paths of the same length, the projective indecomposable A-modules may be represented
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by graphs in the following way

1

2

1

,

n

n− 1
n

,

i

i− 1 i + 1

i

, i = 2, . . . , n− 1.

Denote the projective A-module corresponding to vertex i by Pi.
By Section 3, the RA-modules Pi,1 = Δ (i, 1) are uniserial, with Loewy length 3, and 

with composition factors Li,1, Li,2, and Li,3, ordered from top to socle. Furthermore, 
these projectives determine all the standard RA-modules. Consider now (for 2 ≤ i ≤
n − 1) the short exact sequence

0 Li+1 ⊕ Li−1 Pi/Rad2 Pi Li 0π ,

and apply HomA (G,−) to it. We get the exact sequence

0 Δ (i + 1, 1) ⊕ Δ (i− 1, 1) Pi,2 Δ (i, 1)π∗ ,

and as π∗ �= 0, we must have Im π∗ = Δ (i, 2), since Δ (i, 2) is the unique submodule of 
Δ (i, 1) whose top is Li,2. Note that this is exactly what Propositions 3.1 and 3.4 are 
telling us. Similarly, we get

0 HomA (G,RadPi) Pi,3 Δ (i, 3) 0 ,

and as Δ (i, 3) = Li,3, it follows that HomA (G,RadPi) = RadPi,3.
We wish to obtain a quiver presentation KQ′/I ′ for RA. As before, denote by (i, j)

the vertex of Q′ corresponding to the simple RA-module Li,j .

Proposition 7.1. The algebra RA is isomorphic to KQ′/I ′, with Q′ the quiver

(1,1)◦ (2,1)◦ · · · (n−1,1)◦ (n,1)◦

(1,2)◦ (2,2)◦ · · · (n−1,2)◦ (n,2)◦

(1,3)◦ (2,3)◦ · · · (n−1,3)◦ (n,3)◦

t
(2)
1 t

(2)
2 t

(2)
n−1 t(2)n

t
(3)
1

α1
(1)

t
(3)
2

α2
(1)

β1
(1)

β2
(1)

αn−2
(1)

t
(3)
n−1

αn−1
(1)

βn−2
(1)

t(3)n

βn−1
(1)

α1
(2) α2

(2)

β1
(2)

β2
(2)

αn−2
(2) αn−1

(2)

βn−2
(2)

βn−1
(2)

and I ′ the admissible ideal generated by the relations
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α
(1)
i t

(2)
i , β

(1)
i t

(2)
i+1, α

(2)
i t

(3)
i − t

(2)
i+1α

(1)
i , β

(2)
i t

(3)
i+1 − t

(2)
i β

(1)
i , i = 1, . . . , n− 1,

αi+1
(1)αi

(2), βi
(1)βi+1

(2), αi
(1)βi

(2) − βi+1
(1)αi+1

(2), i = 1, . . . , n− 2.

Proof. The vertical arrows in the quiver above correspond to the structure of the uniserial 
projectives Pi,1. In fact, going back to [17], one sees that the arrows

(i,j−1)◦ (i,j)◦t
(j)
i

correspond to the canonical epics

Pi/Radj Pi Pi/Radj−1 Pi

in modA. Let Q′ be the ordinary quiver of RA. Note that there must be exactly one 
arrow coming out of the vertices (i, 1) of Q′. Consider now the vertices (i, 3) of Q′. 
Because Pi has Loewy length 3, it follows that

RadPi,3 = HomA (G,RadPi) .

It is not difficult to show directly that RadPi,3 has top Li−1,2 ⊕ Li+1,2, 2 ≤ i ≤ n − 1. 
This also follows from Theorem A in [5]. Consequently, there are exactly two arrows with 
source (i, 3) in Q′ (for 2 ≤ i ≤ n − 1), and they must be as depicted in the quiver above. 
Finally, let us analyse the vertices (i, 2) of Q′. By the structure of the modules Δ (i, 2), 
there cannot exist arrows from (i, 2) to a vertex (j, 2). For the same reason, there cannot 
exist arrows from (i, 2) to (j, 3), apart from the arrow t(3)i already mentioned. So any 
other arrow in Q′ having source (i, 2) (if any) must have sink (j, 1). That is, it must 
correspond to a map

Lj Pi/Rad2 Pi

in modA. Conversely, any monic as the one above must correspond to an arrow from 
(i, 2) to (j, 1) in Q′ because, by what we have seen so far, there cannot exist alternative 
paths from (i, 2) to (j, 1) in Q′. As a consequence, there must be two more arrows with 
source (i, 2) (if 2 ≤ i ≤ n − 1), namely

(i,2)◦ (i−1,1)◦
β

(1)
i−1

,
(i,2)◦ (i+1,1)◦α

(1)
i

This proves that Q′ coincides with the quiver in the statement of the proposition.
We have that RA

∼= KQ′/I ′, for a certain admissible ideal I ′. By the structure of Pi,1
the paths α(1)

i t
(2)
i , β(1)

i t
(2)
i+1 must be zero modulo I ′. Besides, α(2)

i t
(3)
i − t

(2)
i+1α

(1)
i must also 

be zero modulo I ′ as the underlying diagram
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Pi+1/Rad2 Pi+1 Pi/Rad3 Pi

Li+1 Pi/Rad2 Pi

�=0

commutes. Similarly, it follows that β(2)
i t

(3)
i+1−t

(2)
i β

(1)
i must be zero modulo I ′. In a similar 

fashion one checks that the remaining relations in the statement of the proposition are 
zero modulo I ′. Let Î be the ideal of KQ′ generated by the relations indicated in the 
statement of the proposition. There is an epic from KQ′/Î to RA. It is not difficult to 
check that RA has dimension 19n − 10 as a K-vector space. It is also easy to prove by 
induction on n that the dimension of KQ′/Î is given by the same expression. �

We conclude with some remarks about the algebra RA = KQ′/I ′.

Remark 7.2. Note that the arrows β(1)
i−1, α

(1)
i in Q′ correspond to irreducible maps in 

modA. Let M be a module in modA. It is clear that any irreducible map f : X −→ Y , 
with X, Y in addM , gives rise to a morphism f∗ = HomA (M, f) between projectives in 
mod(EndA(M)op), satisfying Im f∗ ⊆ Rad HomA (M,Y ), Im f∗ � Rad2 HomA (M,Y ).

Remark 7.3. Let A be as before. By Theorem 10.3 in [2], gl. dimRA ≤ 3. Proposition 
2 in [16] implies that gl. dimRA �= 2. Hence gl. dimRA = 3. Moreover, it follows from 
Theorem B in [5] that the Ringel dual of RA is isomorphic to (RA) op for every Brauer 
tree algebra A.
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