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1. Introduction

In [36], Ringel introduced the Hall algebra H(Δn) of the cyclic quiver Δn with n
vertices and showed that its subalgebra generated by simple representations, called the 
composition algebra, is isomorphic to the positive part U+

v (ŝln) of the quantized envelop-
ing algebra Uv(ŝln). Schiffmann [37] further showed that H(Δn) is the tensor product 
of U+

v (ŝln) with a central subalgebra which is the polynomial ring in infinitely many 
indeterminates. Following the approach in [42], the double Ringel–Hall algebra D(Δn)
was defined in [6]. Based on [12,19] and an explicit description of central elements of 
H(Δn) in [18], it was shown in [6, Th. 2.3.3] that D(Δn) is isomorphic to the quantum 
affine algebra Uv(ĝln) defined by Drinfeld’s new presentation [10].

The q-deformed Fock space representation 
∧∞ of the quantized enveloping algebra 

Uv(ŝln) has been constructed by Hayashi [16], and its crystal basis was described by 
Misra and Miwa [32]. Further, by work of Kashiwara, Miwa, and Stern [24], the action 
of Uv(ŝln) on 

∧∞ is centralized by a Heisenberg algebra which arises from affine Hecke 
algebras. This yields a bimodule isomorphism from 

∧∞ to the tensor product of the basic 
representation of Uv(ŝln) and the Fock space representation of the Heisenberg algebra.

By defining a natural semilinear involution on 
∧∞, Leclerc and Thibon [26] obtained 

in an elementary way a canonical basis of 
∧∞. It was conjectured in [25,26] that for 

q = 1, the coefficients of the transition matrix of the canonical basis on the natural basis 
of 

∧∞ are equal to the decomposition numbers for Hecke algebras and quantum Schur 
algebras at roots of unity. These conjectures have been proved, respectively, by Ariki 
[1] and Varagnolo and Vasserot [43]. For the categorification of the Fock space, see, for 
example, [39,17,41].

In [43], Varagnolo and Vasserot extended the Uv(ŝln)-action on the Fock space 
∧∞

to that of the extended Ringel–Hall algebra D(Δn)�0 of the cyclic quiver Δn. They 
also showed that the canonical basis of the Ringel–Hall algebra H(Δn) in the sense of 
Lusztig induces a basis of 

∧∞ which conjecturally coincides with the canonical basis 
constructed by Leclerc and Thibon [26]. This conjecture was proved by Schiffmann [37]
by identifying the central subalgebra of H(Δn) with the ring of symmetric functions.

The main purpose of the present paper is to extend Varagnolo–Vasserot’s construction 
to obtain a D(Δn)-module structure on the Fock space 

∧∞ which is shown to be iso-
morphic to the basic representation L(Λ0) of D(Δn). Moreover, the central elements in 
the positive and negative parts of D(Δn) constructed by Hubery [18] give rise naturally 
to the operators introduced in [24] which generate the Heisenberg algebra. Furthermore, 
the structure of D(Δn) yields a decomposition of L(Λ0) which induces the Kashiwara–
Miwa–Stern decomposition of 

∧∞. This also provides a way to construct the canonical 
basis of 

∧∞ in [26] in terms of certain monomial basis elements of D(Δn).
The paper is organized as follows. In Section 2 we review the classification of (nilpo-

tent) representations of both infinite linear quiver Δ∞ and the cyclic quiver Δn with n
vertices and discuss their generic extensions. Section 3 recalls the definition of Ringel–
Hall algebras H(Δ∞) and H(Δn) of Δ∞ and Δn as well as the maps from the homo-
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geneous spaces of H(Δn) to those of H(Δ∞) introduced in [43]. The images of basis 
elements of H(Δn) under these maps are described. In Section 4 we first follow the 
approach in [42] to present the construction of double Ringel–Hall algebras of both Δ∞
and Δn and then study the irreducible highest weight D(Δn)-modules based on the 
results in [21]. Section 5 recalls from [16,32,43] the Fock space representation 

∧∞ over 
Uv(ŝl∞) (∼= D(Δ∞)) as well as over U+

v (ŝln). In Section 6 we define the D(Δn)-module 
structure on 

∧∞ based on [24,43]. It is shown in Section 7 that 
∧∞ is isomorphic to the 

basic representation of D(Δn). In the final section, we present a way to construct the 
canonical basis of 

∧∞ and interpret the “ladder method” construction of certain basis 
elements in 

∧∞ in terms of generic extensions of nilpotent representations of Δn.

2. Nilpotent representations and generic extensions

In this section we consider nilpotent representations of both a cyclic quiver Δ = Δn

with n vertices (n � 2) and the infinite quiver Δ = Δ∞ of type A∞
∞ and study their 

generic extensions. We show that the degeneration order of nilpotent representations of 
Δn induces the dominant order of partitions.

Let Δ∞ denote the infinite quiver of type A∞
∞

� � � � � � �

−2 −1 0 1 2

with vertex set I = I∞ = Z, and for n � 2, let Δn denote the cyclic quiver

� � � � �

�
0

1 2 3 n−2 n−1

with vertex set I = In = Z/nZ = {0, 1, . . . , n − 1}. For each i ∈ I∞ = Z, let ī denote 
its residue class in In = Z/nZ. We also simply write ī± 1 to denote the residue class of 
i ± 1 in Z/nZ.

Given a field k, we denote by Rep0 Δ the category of finite dimensional nilpotent 
representations of Δ (= Δ∞ or Δn) over k. (Note that each finite dimensional represen-
tation of Δ∞ is automatically nilpotent.) Given a representation V = (Vi, Vρ) ∈ Rep0 Δ, 
the vector dimV = (dimk Vi)i∈I is called the dimension vector of V . The Grothendieck 
group of Rep0 Δ is identified with the free abelian group ZI with basis I. Let {εi | i ∈ I}
denote the standard basis of ZI. Thus, elements in ZI will be written as d = (di)i∈I or 
d =

∑
i∈I diεi. In case I = Z/nZ, we sometimes write Zn for ZI.

The Euler form 〈−, −〉 : ZI × ZI → Z is defined by

〈dimM,dimN〉 = dimk HomkΔ(M,N) − dimk Ext1kΔ(M,N).



B. Deng, J. Xiao / Journal of Algebra 480 (2017) 168–208 171
Its symmetrization

(dimM,dimN) = 〈dimM,dimN〉 + 〈dimN,dimM〉

is called the symmetric Euler form.
It is well known that the isoclasses (isomorphism classes) of representations in Rep0 Δ

are parametrized by the set M consisting of all multisegments

m =
∑

i∈I, l�1

mi,l[i, l),

where all mi,l ∈ N but finitely many are zero. More precisely, the representation M(m) =
Mk(m) associated with m is defined by

M(m) =
⊕

i∈I,l�1

mi,lSi[l],

where Si[l] denotes the indecomposable representation of Δ with the simple top Si and 
length l. For each d ∈ NI, put

Md = {m ∈ M | dimM(m) = d}.

Furthermore, we will write M = M∞ (resp., M = Mn) if I = Z (resp., I = Z/nZ).
It is also known that there exist Auslander–Reiten sequences in Rep0 Δ, that is, for 

each M ∈ Rep0 Δ, there is an Auslander–Reiten sequence

0 −→ τM −→ E −→ M −→ 0,

where τM denotes the Auslander–Reiten translation of M . It is clear that τ induces 
an isomorphism τ : ZI → ZI such that τ(dimM) = dim τM . In particular, τ(εi) =
εi+1, ∀ i ∈ I. If Δ = Δn, then τ sn = id for all s ∈ Z. For m ∈ M, let τm be defined by 
M(τm) ∼= τM(m).

Given d ∈ NI, let V = ⊕i∈IVi be an I-graded vector space with dimension vector d. 
Consider

EV = {(xi) ∈
⊕
i∈I

Homk(Vi, Vi+1) | xn−1 · · ·x0 is nilpotent if Δ = Δn.}.

Then each element x ∈ EV defines a representation (V, x) of dimension vector d in 
Rep0 Δ. Moreover, the group

GV =
∏

GL(Vi)

i∈I
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acts on EV by conjugation, and there is a bijection between the GV -orbits and the 
isoclasses of representations in Rep0 Δ of dimension vector d. For each x ∈ EV , by Ox

we denote the GV -orbit of x. In case k is algebraically closed, we have the equalities

dimOx = dimGV − dim EndkΔ(V, x) =
∑
i∈I

d2
i − dim EndkΔ(V, x). (2.0.1)

By abuse of notation, for each M ∈ Rep0 Δ, we denote by OM the orbit of M .
Following [3,33,5], given two representations M, N in Rep0 Δ, there exists a unique 

(up to isomorphism) extension G of M by N such that dim EndkΔ(G) is minimal. The 
extension G is called the generic extension of M by N , denoted by M ∗ N . Moreover, 
generic extensions satisfy the associativity, i.e., for L, M, N ∈ Rep0 Δ,

L ∗ (M ∗N) ∼= (L ∗M) ∗N.

Let M(Δ) denote the set of isoclasses of representations in Rep0 Δ. Define a multiplica-
tion on M(Δ) by setting

[M ] ∗ [N ] = [M ∗N ].

Then M(Δ) is a monoid with identity [0], the isoclass of zero representation of Δ.
By [33,5], the generic extension M ∗N can be also characterized as the unique maximal 

element among all the extensions of M by N with respect to the degeneration order �deg
which is defined by setting M �deg N if dimM = dimN and

dimk HomkΔ(M,X) � dimk HomkΔ(N,X), for all X ∈ Rep0 Δ. (2.0.2)

If k is algebraically closed, then M �deg N if and only if OM ⊆ ON , where OM is 
the closure of OM . This defines a partial order relation on the set M(Δ) of isoclasses of 
representations in Rep0 Δ; see [44, Th. 2] or [5, Lem. 3.2]. By [33, 2.4], for M, N, M ′, N ′ ∈
Rep0 Δ,

M ′ �deg M,N ′ �deg N =⇒ M ′ ∗N ′ �deg M ∗N.

For m, m′ ∈ Mn (resp., M∞), we write m �deg m′ (resp., m �∞
deg m′) if M(m) �deg M(m′)

in Rep0 Δn (resp., Rep Δ∞).
By [4,13], there is a covering functor

F : Rep Δ∞ −→ Rep0 Δn

sending Si[l] to Sī[l] for i ∈ Z and l � 1. Moreover, F is dense and exact, and the Galois 
group of F is the infinite cyclic group G generated by τn, i.e., τn(Si[l]) = Si+n[l]. For 
m ∈ M∞, let F (m) ∈ Mn be such that M(F (m)) ∼= F (M(m)) ∈ Rep0 Δn. From (2.0.2)
we easily deduce that for M, N ∈ Rep Δ∞,
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M �deg N =⇒ F (M) �deg F (N). (2.0.3)

The following two classes of representations will play an important role later on. For 
each d = (di) ∈ NI, we set

Sd =
⊕
i∈I

diSi ∈ Rep0 Δ.

In other words, Sd is the unique semisimple representation of dimension vector d.
Let Π be the set of all partitions λ = (λ1, . . . , λt) (i.e., λ1 � · · · � λt � 1). For each 

λ ∈ Π, define

mλ =
t∑

s=1
[1 − s, λs) ∈ M.

Then

M(mλ) = S0[λ1] ⊕ S−1[λ2] ⊕ · · · ⊕ S1−t[λt] ∈ Rep0 Δ.

If Δ = Δ∞, then we sometimes write mλ = m∞
λ ∈ M∞ to make a distinction. It follows 

from the definition that F (m∞
λ ) = mλ for all λ ∈ Π.

Proposition 2.1. Let λ, μ ∈ Π.

(1) If Δ = Δ∞, then

dimM(m∞
μ ) = dimM(m∞

λ ) ⇐⇒ μ = λ.

In particular, for each m ∈ M∞, there exists at most one ν ∈ Π such that m = m∞
ν .

(2) If Δ = Δn, then

M(mμ) �deg M(mλ) =⇒ μ � λ,

where � is the dominance order on Π, i.e., μ � λ ⇐⇒
∑i

j=1 μj �
∑i

j=1 λj, ∀ i � 1.

Proof. (1) By definition, both the socles of M(m∞
λ ) and M(m∞

μ ) are multiplicity-free. 
Thus, comparing the socles of S0[λ1] and S0[μ1] gives λ1 = μ1. The lemma then follows 
from an inductive argument.

(2) Suppose M(mμ) �deg M(mλ). By viewing mλ and mμ as multipartitions in Mn, 
we obtain by [7, Prop. 2.7] that for each l � 1,

l∑
μ̃s �

l∑
λ̃s,
s=1 s=1
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where λ̃ = (λ̃1, ̃λ2, . . .) and μ̃ = (μ̃1, ̃μ2, . . .) are the dual partition of λ and μ, respectively, 
that is, μ̃ � λ̃. By [31, 1.1], μ � λ. �
3. Ringel–Hall algebra of the quiver Δ

In this section we introduce the Ringel–Hall algebra H(Δ) of Δ (= Δn or Δ∞) and 
the maps from homogeneous subspaces of H(Δn) to those of H(Δ∞) defined in [43, 6.1]. 
We also describe the images of basis elements of H(Δn) under these maps.

The cyclic quiver Δn gives the n × n Cartan matrix Cn = (aij)i,j∈I of type Ân−1, 
while Δ∞ defines the infinite Cartan matrix C∞ = (aij)i,j∈Z. Thus, we have the asso-
ciated quantum enveloping algebras Uv(ŝln) and Uv(sl∞) which are Q(v)-algebras with 
generators K±1

i , Ei, Fi, D±1 (i ∈ I = Z/nZ) and K±1
i , Ei, Fi (i ∈ Z), respectively, and 

the quantum Serre relations. In particular, the relations involving the generator D±1 in 
Uv(ŝln) are

DD−1 = 1 = D−1D, KiD = DKi, DEi = vδ0,iEiD, DFi = v−δ0,iFiD, ∀ i ∈ I;

see [2, Def. 3.16]. The subalgebra of Uv(ŝln) generated by K±1
i , Ei, Fi (i ∈ I = Z/nZ) is 

denoted by U′
v(ŝln); see [24, 1.1].

By [34,36,15], for p, m1, . . . , mt ∈ M, there is a polynomial ϕp
m1,...,mt

(q) ∈ Z[q] (called 
Hall polynomial) such that for each finite field k,

ϕp
m1,...,mt

(|k|) = F
Mk(p)
Mk(m1),...,Mk(mt),

which is by definition the number of the filtrations

Mk(p) = M0 ⊇ M1 ⊇ · · · ⊇ Mt−1 ⊇ Mt = 0

such that Ms−1/Ms
∼= Mk(ms) for all 1 ≤ s ≤ t. By [35, Sect. 2], for each m ∈ M, there 

is a polynomial am(q) ∈ Z[q] such that for each finite field k,

am(|k|) = |AutkΔ(Mk(m))|.

Let Z = Z[v, v−1] be the Laurent polynomial ring over Z in indeterminate v. By 
definition, the (twisted generic) Ringel–Hall algebra H(Δ) of Δ is the free Z-module 
with basis {um | m ∈ M} and multiplication given by

umum′ = v〈dim M(m),dimM(m′)〉
∑
p∈M

ϕp

m,m′(v2)up. (3.0.1)

In practice, we also write um = u[M(m)] in order to make certain calculations in terms of 
modules. Furthermore, for each d ∈ NI, we simply write ud = u[Sd].
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For each i ∈ I, set ui = u[Si]. We then denote by C(Δ) the subalgebra of H(Δ)
generated by the divided power u(t)

i = ut
i/[t]!, i ∈ I and t � 1, called the composition 

algebra of Δ, where

[t]! = [t][t− 1] · · · [1] with [m] = (vm − v−m)/(v − v−1). (3.0.2)

Moreover, both H(Δ) and C(Δ) are NI-graded:

H(Δ) =
⊕
d∈NI

H(Δ)d and C(Δ) =
⊕
d∈NI

C(Δ)d, (3.0.3)

where H(Δ)d is spanned by all um with m ∈ Md and C(Δ)d = C(Δ) ∩H(Δ)d. Since the 
Auslander–Reiten translate τ : Rep0 Δ → Rep0 Δ is an auto-equivalence, it induces an 
automorphism τ : H(Δ) → H(Δ), um �→ uτm. We also consider the Q(v)-algebras

H(Δ) = H(Δ) ⊗Z Q(v) and C(Δn) = C(Δn) ⊗Z Q(v).

Remark 3.1. We remark that the Hall algebra of Δ defined in [43] is the opposite algebra 
of H(Δ) given here with v being replaced by v−1. Thus, v and v−1 should be swaped 
when comparing with the formulas in [43].

Following [34], C(Δ∞) = H(Δ∞), and there is an isomorphism U+
v (sl∞) ∼= H(Δ∞)

taking Ei �→ ui, ∀ i ∈ I∞ = Z. But, for n � 2, C(Δn) is a proper subalgebra of H(Δn). 
By [36],

U+
v (ŝln) ∼= C(Δn), Ei �−→ ui, ∀ i ∈ In.

By [37, Th. 2.2], H(Δn) is decomposed into the tensor product of C(Δn) and a polyno-
mial ring in infinitely many indeterminates which are central elements in H(Δn). Such 
central elements have been explicitly constructed in [18]. More precisely, for each t � 1, 
let

ct = (−1)tv−2nt
∑
m

(−1)dim End(M(m))am(v2)um ∈ H(Δn), (3.1.1)

where the sum is taken over all m ∈ Mn such that dimM(m) = tδ with δ = (1, . . . , 1) ∈
NIn, and socM(m) is square-free, i.e., dim socM(m) � δ. The following result is proved 
in [18].

Theorem 3.2. The elements cm are central in H(Δn). Moreover, there is a decomposition

H(Δn) = C(Δn) ⊗Q(v) Q(v)[c1, c2, . . .],

where Q(v)[c1, c2, . . .] is the polynomial algebra in ct for t � 1. In particular, H(Δn) is 
generated by ui and ct for i ∈ In and t � 1.
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For each m ∈ M, set d(m) = dimM(m), d(m) = dimM(m) and define

ũm = vdim EndkΔ(M(m))−d(m)um. (3.2.1)

Then {ũm | m ∈ M} is also a Z-basis of H(Δ) which plays a role in the construction of 
the canonical basis. In particular,

ũi = ui for each i ∈ I and ũd = v
∑

i(d
2
i−di)ud for each d ∈ NI.

Consider the map π : ZI∞ → ZIn, d �→ d̄, where π(d) = d̄ = (dī) is defined by

dī =
∑
j∈ī

dj , ∀ ī ∈ In = Z/nZ.

In particular, for each representation M ∈ Rep Δ∞, dimF (M) = π(dimM).
In the following we briefly recall from [43, 6.1] the Z-linear map

γd : H(Δn)d̄ −→ H(Δ∞)d (3.2.2)

for each d ∈ NI∞. These maps play a crucial role in defining an action of H(Δn) on the 
Fock space later on.

Let k = Fq be a finite filed with q elements and let V = ⊕i∈IVi be an I-graded 
Fq-vector space with dimension vector d. Then we define CGV

(EV ) to be the set of 
GV -invariant functions EV → C, which is a vector space over C. Then H(Δ)d ⊗Z C (at 
v = √

q) can be identified with CGV
(EV ) via taking u[(V,x)] to the characteristic function 

of the GV -orbit of x in EV .
Now take d ∈ NI∞ and let V = ⊕i∈ZVi be an I∞-graded Fq-vector space of dimension 

vector d. This gives an In-graded space V = ⊕ī∈In
Vī of dimension vector d̄ with V ī =

⊕j∈īVj , ∀ ̄i ∈ In. Moreover, V admits a filtration by the subspaces

V �i =
⊕
j�i

Vj , ∀ i ∈ Z.

Then the associated graded space ⊕i∈ZV �i/V �i−1 is naturally identified with the 
Z-graded space V . Set

EV ,V = {x ∈ EV | x(V �i) ⊆ V �i+1} ⊂ EV .

This gives a map p : EV ,V → EV , which takes a representation of Δn in EV to the 
induced representation of Δ∞ in EV , and the embedding ι : EV ,V → EV . By specializing 
v to 

√
q, the map γd is then given by

(γd ⊗Z C) |v=√
q: CG (EV ) −→ CGV

(EV ), f �−→ √
q
h(d)

p!ι
∗(f),
V
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where h(d) =
∑

i<j,̄i=j̄ di(dj+1−dj). Here we identify H(Δn)d⊗Z C with CGV
(EV ) and 

H(Δ∞)d ⊗Z C with CGV
(EV ).

The first two statements in the following lemma are taken from [43, Sect. 6.1], and 
the third one follows from the isomorphism τ : H(Δ∞) → H(Δ∞).

Lemma 3.3. (1) For each d ∈ NI∞, γd(ũd̄) = v−h(d)ũd.
(2) Fix α, β ∈ NIn with d̄ = α + β. Then for x ∈ H(Δn)α and y ∈ H(Δn)β,∑

a,b

vκ(a,b)γa(x)γb(y) = γd(xy), (3.3.1)

where the sum is taken over all pairs a, b ∈ NI∞ satisfying a + b = d, ā = α, and 
b̄ = β, and κ(a, b) =

∑
i>j,̄i=j̄ ai(2bj − bj−1 − bj+1).

(3) For each d ∈ NI∞ and m ∈ Md̄
n, γτn(d)(ũm) = τn(γd(ũm)).

We now describe the images of the basis elements ũm of H(Δn)d̄ under γd.

Proposition 3.4. Let d ∈ NI∞ and m ∈ Mn be such that α := dimM(m) = d. Then

γd(ũm) ∈
∑

z∈M∞, F(z)�degm

Zũz.

Proof. Consider the radical filtration of M = M(m)

M = rad0 M ⊇ rad1 M(= radM) ⊇ · · · ⊇ rad
−1 M ⊇ rad
 M = 0

with rads−1 M/ rads M ∼= Sαs
, where � is the Loewy length of M and αs ∈ NIn for 

1 � s � �. Then M = Sα1 ∗ · · · ∗ Sα�
. Moreover, by [8, Sect. 9],

ũα1 · · · ũα�
= ũm +

∑
p<degm

fm,pũp, where fm,p ∈ Z.

On the one hand, by induction with respect to the order �deg, we may assume that 
for each p ∈ Md

n with p <deg m, γd(ũp) is a Z-linear combination of ũy with y ∈ M∞
satisfying F (y) �deg p. Therefore,

γd(ũm) = γd(ũα1 · · · ũα�
) + x, (3.4.1)

where x = − 
∑

p<degm
fm,pγd(ũp) is a Z-linear combination of ũz with F (z) <deg m.

On the other hand, by applying (3.3.1) inductively, we obtain

γd(ũα1 · · · ũα�
) =

∑
a1,...,a�

v
∑

s<t κ(as,at)−
∑

s h(as)ũa1 · · · ũa�
, (3.4.2)

where the sum is taken over all sequences a1, . . . , a
 ∈ NI∞ satisfying
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a1 + · · · + a
 = d and as = αs, ∀ 1 � s � �.

By the definition, each term ũa1 · · · ũa�
is a Z-linear combination of ũy such that M(y)

admits a filtration

M(y) = X0 ⊃ X1 ⊃ · · · ⊃ X
−1 ⊃ X
 = 0

satisfying Xs−1/Xs
∼= Sas

for all 1 � s � �. Applying the exact functor F gives a 
filtration of F (M(y))

F (M(y)) = F (X0) ⊃ F (X1) ⊃ · · · ⊃ F (X
−1) ⊃ F (X
) = 0

such that

F (Xs−1)/F (Xs) ∼= F (Xs−1/Xs) ∼= Sαs
, ∀ 1 � s � �.

Therefore,

F (M(y)) = M(F (π)) �deg Sα1 ∗ · · · ∗ Sα�
= M(m),

that is, F (y) �deg m.
In conclusion, we obtain that

γd(ũm) ∈
∑

z∈M∞, F(z)�degm

Zũz. �

Fix λ ∈ Π and write

d(λ) = dimM(m∞
λ ) ∈ NI∞ and α(λ) = dimM(mλ) ∈ NIn.

By the definition of M(m∞
λ ) and M(mλ), the radical filtration of M̃ = M(m∞

λ )

M̃ = rad0 M̃ ⊇ rad M̃ ⊇ · · · ⊇ rad
−1 M̃ ⊇ rad
 M̃ = 0

gives rise to the radical filtration of M(mλ) = F (M̃)

M(mλ) = F (rad0 M̃) ⊇ F (rad M̃) ⊇ · · · ⊇ F (rad
−1 M̃) ⊇ F (rad
 M̃) = 0,

that is, F (rads M̃) = rads(M(mλ)) for 1 � s � �. Let d(λ)s ∈ NI∞ and α(λ)s ∈ NIn, 
1 � s � �, be such that

rads−1 M̃/ rads M̃ ∼= Sd(λ)s and rads−1 M(mλ)/ rads M(mλ) ∼= Sα(λ)s .

Then d(λ)s = α(λ)s for 1 � s � �. Applying (3.4.1) and (3.4.2) to mλ gives the following 
result.
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Corollary 3.5. (1) Let λ ∈ Π and keep the notation above. Then

γd(λ)(ũmλ
) ∈ vθ(λ)ũm∞

λ
+

∑
z∈M∞, F(z)<degmλ

Zũz,

where θ(λ) =
∑

s<t κ(d(λ)s, d(λ)t) −
∑


s=1 h(d(λ)s).
(2) Let d ∈ NI∞ with d = α(λ). If d = τ rm(d(λ)) for some r ∈ Z, then

γd(ũmλ
) ∈ vθ(λ)ũτrm(m∞

λ ) +
∑

z∈M∞, F(z)<degmλ

Zũz.

Otherwise,

γd(ũmλ
) ∈

∑
z∈Md

∞, F(z)<degmλ

Zũz.

In the following we briefly recall the canonical basis of H(Δ) for Δ = Δn or Δ∞. By 
[27] and [43, Prop. 7.5], there is a semilinear ring involution ι : H(Δ) → H(Δ) taking 
v �→ v−1 and ũd �→ ũd for all d ∈ ZI. It is often called the bar-involution, usually written 
as x̄ = ι(x). The canonical basis (or the global crystal basis in the sense of Kashiwara) 
B := {bm | m ∈ M} for H(Δ) (at v = ∞) can be characterized as follows:

bm = bm, bm ∈ ũm +
∑

p<degm

v−1Z[v−1]ũp; (3.5.1)

see [27]. The canonical basis elements bm also admit a geometric characterization given in 
[28,43]. Let Hi

Op
(ICOm

) be the stalk at a point of Op of the i-th intersection cohomology 

sheaf of the closure Om of Om. Then

bm =
∑
i∈N

p�degm

vi−dim Om+dim Op dimHi
Op

(ICOm
)ũp.

For the cyclic quiver case, by [29], the subset of B

Bap := {bm | m ∈ Map
n }

is the canonical basis of C(Δn), where Map
n denotes the set of aperiodic multisegments, 

that is, those multisegments m =
∑

i∈In, l�1 mi,l[i, l) satisfying that for each l � 1, 
there is some i ∈ In such that mi,l = 0. In other words, Bap is the canonical basis of 
U±

v (ŝln). Note that for each λ = (λ1, . . . , λm) ∈ Π, the corresponding multisegment mλ

is aperiodic if and only if λ is n-regular which, by definition, satisfies λs > λs+n−1 for 
1 � s � s + n − 1 � m.
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4. Double Ringel–Hall algebras and highest weight modules

In this section we follow [42,6] to define the double Ringel–Hall algebra D(Δ) of the 
quiver Δ = Δn or Δ∞ and study the irreducible highest weight modules of D(Δn) asso-
ciated with integral dominant weights in terms of a quantized generalized Kac–Moody 
algebra.

The Ringel–Hall algebra H(Δ) of Δ can be extended to a Hopf algebra D(Δ)�0

which is a Q(v)-vector space with a basis {u+
mKα | α ∈ ZI, m ∈ M}; see [34,14,42] or [6, 

Prop. 1.5.3]. Its algebra structure is given by

KαKβ = Kα+β , Kαu
+
m = v(d(m),α)u+

mKα,

u+
mu

+
m′ =

∑
p∈M

v〈d(m),d(m′)〉ϕp

m,m′(v2)u+
p ,

(4.0.2)

where m, m′ ∈ M and α, β ∈ ZI, and its coalgebra structure is given by

Δ(u+
m) =

∑
m′,m′′∈M

v〈d(m′),d(m′′)〉 am′(v2)am′′(v2)
am(v2) ϕm

m′,m′′(v2)u+
m′′ ⊗ u+

m′Kd(m′′),

Δ(Kα) = Kα ⊗Kα, ε(u+
m) = 0 (m �= 0), ε(Kα) = 1,

(4.0.3)

where m ∈ M and α ∈ ZI. We refer to [42] or [6] for the definition of the antipode.
Dually, there is a Hopf algebra D(Δ)�0 with basis {Kαu

−
m | α ∈ ZI, m ∈ M}. In 

particular, the multiplication is given by

KαKβ = Kα+β , Kαu
−
m = v−(d(m),α)u−

mKα,

u−
mu

−
m′ =

∑
p∈M

v〈d(m′),d(m)〉ϕp

m′,m(v2)u−
p ,

(4.0.4)

where m, m′ ∈ M and α, β ∈ ZI. The comultiplication and the counit are given by

Δ(u−
m) =

∑
m′,m′′∈M

v〈d(m′),d(m′′)〉 am′am′′

am
ϕm
m′,m′′(v2)u−

m′′K−d(m′) ⊗ u−
m′ ,

Δ(Kα) = Kα ⊗Kα, ε(u−
m) = 0 (m �= 0), ε(Kα) = 1,

(4.0.5)

where α ∈ ZI and m ∈ M.
It is routine to check that the bilinear form ψ : D(Δ)�0 ×D(Δ)�0 → Q(v) defined 

by

ψ(Kαu
+
m,Kβu

−
m′) = v(α,β)−〈d(m),d(m)〉+2d(m) δm,m′

am(v2) (4.0.6)

is a skew-Hopf pairing in the sense of [22]; see, for example, [6, Prop. 2.1.3].
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Following [42] or [6, §2.1], with the triple (D(Δ)�0, D(Δ)�0, ψ) we obtain the associ-
ated reduced double Ringel–Hall algebra D(Δ) which inherits a Hopf algebra structure 
from those of D(Δ)�0 and D(Δ)�0. In particular, for all elements x ∈ D(Δ)�0 and 
y ∈ D(Δ)�0, we have in D(Δ) the following relations∑

ψ(x1, y1)y2x2 =
∑

ψ(x2, y2)x1y1, (4.0.7)

where Δ(x) =
∑

x1 ⊗ x2 and Δ(y) =
∑

y1 ⊗ y2 (here we use the Sweedler notation). 
Moreover, D(Δ) admits a triangular decomposition

D(Δ) = D(Δ)+ ⊗D(Δ)0 ⊗D(Δ)−, (4.0.8)

where D(Δ)± are subalgebras generated by u±
m (m ∈ M), and D(Δ)0 is generated by Kα

(α ∈ ZI). Thus, D(Δ)0 is identified with the Laurent polynomial ring Q(v)[K±1
i : i ∈ I],

H(Δ) = H(Δ) ⊗Z Q(v) ∼−→ D(Δ)+, um �−→ u+
m,

H(Δ)op = H(Δ)op ⊗Z Q(v) ∼−→ D(Δ)−, um �−→ u−
m.

For i ∈ I, α ∈ NI and m ∈ M, we write

u±
i = u±

[Si], u±
α = u±

[Sα], and ũ±
m = vdim EndΔ(M(m))−dimM(m)u±

m.

The canonical basis of H(Δ) in (3.5.1) gives the canonical bases B± := {b±m | m ∈ M} of 
D(Δ)± satisfying

b±m ∈ ũ±
m +

∑
p<degm

v−1Z[v−1]ũ±
p . (4.0.9)

It is known that D(Δ∞) is generated by u±
i , K

±1
i (i ∈ Z) and is isomorphic to 

Uv(sl∞). By [36], the Q(v)-subalgebra of D(Δn) generated by u±
i , K

±1
i (i ∈ In = Z/nZ) 

is isomorphic to U′
v(ŝln), while D(Δn) gives a realization of Uv(ĝln); see [38,19,6]. From 

now on, we write for notational simplicity,

D(∞) = D(Δ∞) and D(n) = D(Δn).

Remarks 4.1. (1) The construction of D(n) is slightly different from that in [6, §2.1]. 
In particular, the Ki here play a role as K̃i = KiK

−1
i+1 there. In particular, they do not 

satisfy the equality K0K1 · · ·Kn−1 = 1.
(2) We can extend D(n) to the Q(v)-algebra D̂(n) by adding new generators D±1

with relations

DD−1 = 1 = D−1D, KiD = DKi, DEi = vδ0,iEiD, DFi

= v−δ0,iFiD, Du±
m = v±a0u±

mD
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for all i ∈ In and m ∈ M, where d(m) = (ai)i∈In . Then Uv(ŝln) clearly becomes a 
subalgebra of D̂(n).

As in (3.1.1), define for each t � 1,

c±t = (−1)tv−2tn
∑
m

(−1)dim End(M(m))am(v2)u±
m ∈ D(n)±.

By Theorem 3.2, the elements c+
t and c−t are central in D(n)+ and D(n)−, respectively. 

Following [19, Sect. 4], define recursively for t � 1,

x±
t = tc±t −

t−1∑
s=1

x±
s c

±
t−s ∈ D(n)±.

Clearly, x+
t and x−

t are again central elements in D(n)+ and D(n)−, respectively. By 
applying [18, Cor. 10 & 12], the x±

t are primitive, i.e.,

Δ(x+
t ) = x+

t ⊗Ktδ + 1 ⊗ x+
t and Δ(x−

t ) = x−
t ⊗ 1 + K−tδ ⊗ x−

t ,

and they satisfy

ψ(x+
t ,x

−
s ) = v2tn{xt,xs} = δt,stv

2tnv−2tn(1 − v−2tn) = δt,st(1 − v−2tn).

Finally, as in [6, § 2.2], we scale the elements x±
t by setting

z±
t = vtn

vt − v−t
x±
t ∈ D(n)± for t � 1.

Then

Δ(z+
t ) = z+

t ⊗Ktδ + 1 ⊗ z+
t , Δ(z−

t ) = z−
t ⊗ 1 + K−tδ ⊗ z−

t , (4.1.1)

and

ψ(z+
t , z

−
s ) = δt,s

t(v2tn − 1)
(vt − v−t)2 .

Lemma 4.2. (1) For each i ∈ In,

[u+
i , u

−
i ] = Ki −K−1

i

v − v−1 .

(2) For α ∈ NIn and t, s � 1, Kαz
±
t = z±

t Kα and

[z+
t , z

−
s ] = δt,s

t(v2tn − 1)
t −t 2 (Ktδ −K−tδ). (4.2.1)
(v − v )



B. Deng, J. Xiao / Journal of Algebra 480 (2017) 168–208 183
Moreover, for each i ∈ In and t � 1,

[u+
i , z

−
t ] = 0 = [u−

i , z
+
t ].

Proof. We only prove the formula (4.2.1). The remaining ones are easy calculations. 
Since Δ(z+

t ) = z+
t ⊗Ktδ +1 ⊗z+

t and Δ(z−
s ) = z−

s ⊗ 1 +K−sδ ⊗z−
s , we have by (4.0.7)

that

Ktδψ(z+
t , z

−
s ) + z+

t ψ(1, z−
s ) + z−

s Ktδψ(z+
t ,K−sδ) + z−

s z
+
t ψ(1,K−sδ)

=z+
t z

−
s ψ(Ktδ, 1) + z−

s ψ(z+
t , 1) + z+

t K−sδψ(Ktδ, z
−
s ) + K−sδψ(z+

t , z
−
s ).

This implies that

[z+
t , z

−
s ] = ψ(z+

t , z
−
s )(Ktδ −K−sδ) = δt,s

t(v2tn − 1)
(vt − v−t)2 (Ktδ −K−tδ)

since ψ(1, z−
s ) = ψ(z+

t , Ksδ) = ψ(z+
t , 1) = ψ(Ktδ, z−

s ) = 0 and ψ(1, Ksδ) =
ψ(K−tδ, 1) = 1. �

Using arguments similar to those in the proof of [6, Th. 2.3.1], we obtain a presentation 
of D(n). More precisely, D(n) is the Q(v)-algebra generated by K±1

i , u+
i = Ei, u−

i = Fi, 
and z±

t for i ∈ In and t � 1 with defining relations:

(DH1) KiKj = KjKi, KiK
−1
i = 1 = K−1

i Ki;
(DH2) KiEj = vaijEjKi, KiFj = v−aijFjKi, Kiz

±
t = z±

t Ki;
(DH3) [Ei, Fj ] = δi,j

Ki−K−1
i

v−v−1 , [Ei, z
−
t ] = 0,

[z+
t , Fi] = 0, [z+

t , z
−
s ] = δt,s

t(v2tn−1)
(vt−v−t)2 (Ktδ −K−tδ);

(DH4)
∑

a+b=1−ci,j

(−1)a
[
1 − ci,j

a

]
Ea

i EjE
b
i = 0 for i �= j,

z+
t z

+
s = z+

s z
+
t , Eiz

+
t = z+

t Ei;

(DH5)
∑

a+b=1−ci,j

(−1)a
[
1 − ci,j

a

]
F a
i FjF

b
i = 0 for i �= j,

z−
t z

−
s = z−

s z
−
t , Fiz

−
t = z−

t Fi,

where i, j ∈ In and t, s � 1.
In the following we simply identify In = Z/nZ with the subset {0, 1, . . . , n − 1} of Z. 

Let P∨ = (⊕i∈InZhi) ⊕ Zd be the free abelian group with basis {hi | i ∈ In} ∪ {d}. Set 
h = P∨ ⊗Z Q and define

P = {Λ ∈ h∗ = HomQ(h,Q) | Λ(P∨) ⊂ Z}.

Then P = (⊕i∈InZΛi) ⊕ Zω, where {Λi | i ∈ In} ∪ {ω} is the dual basis of {hi |
i ∈ In} ∪ {d}. This gives rise to the Cartan datum (P∨, P, Π∨, Π) associated with the 
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Cartan matrix Cn = (aij), where Π∨ = {hi | i ∈ In} is the set of simple coroots and 
Π = {αi | i ∈ In} is the set of simple roots defined by

αi(hj) = aji, αi(d) = δ0,i for all i, j ∈ In.

Finally, let

P+ = {Λ ∈ P | Λ(hi) � 0, ∀ i ∈ In} =
(⊕
i∈In

NΛi

)
⊕ Zω

denote the set of dominant weights.
For each Λ ∈ P , consider the left ideal JΛ of D(n) defined by

JΛ =
∑

m∈Mn\{0}
D(n)u+

m +
∑

α∈ZIn

D(n)(Kα − vΛ(α))

=
∑

m∈Mn\{0}
D(n)u+

m +
∑
i∈In

D(n)(Ki − vΛ(hi)),

where Λ(α) =
∑

i∈In
aiΛ(hi) if α =

∑
i∈In

aiεi ∈ ZIn. The quotient module

M(Λ) := D(n)/JΛ

is called the Verma module which is a highest weight module with highest vector ηΛ :=
1 + JΛ. Applying the triangular decomposition (4.0.8) shows that

D(n)− −→ M(Λ), x− �−→ x− + JΛ

is an isomorphism of Q(v)-vector spaces. Via this isomorphism, D(n)− becomes a 
D(n)-module. It is clear that M(Λ) contains a unique maximal submodule M ′ which 
gives rise to an irreducible D(n)-module L(Λ) = M(Λ)/M ′.

Remark 4.3. By the construction, if Λ, Λ′ ∈ P+ satisfy Λ − Λ′ ∈ Zω, then L(Λ) =
L(Λ′). Therefore, it might be more appropriate to work with the algebra D̂(n) defined 
in Remark 4.1(2).

Theorem 4.4. Let Λ =
∑

i∈In
aiΛi + bω ∈ P+ be a dominant weight with 

∑
i∈In

ai > 0. 
Then

L(Λ) ∼= D(n)−/
( ∑
i∈In

D(n)−(u−
i )ai+1).

Proof. As in [9, Sect. 3], we extend the Cartan matrix C = (aij)i,j∈In to a Borcherds–
Cartan matrix C̃ = (ãij)i,j∈N by setting ãij = aij for 0 � i, j < n and ãij = 0 otherwise. 
Consider the free abelian group P̃∨ = (⊕i∈NZhi) ⊕ (⊕i∈NZdi) and define
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P̃ = {θ ∈ (P̃∨ ⊗Q)∗ | θ(P̃∨) ⊂ Z}.

We then obtain a Cartan datum of type C̃

(P̃∨, P̃ , Π̃∨ = {hi | i ∈ N}, Π̃ = {α̃i | i ∈ N})

where the α̃i are defined by

α̃i(hj) = ãji and α̃i(dj) = δi,j , ∀ i, j ∈ N.

Following [23, Def. 2.1] or [21, Def. 1.3], with the above Cartan datum we have the 
associated quantum generalized Kac–Moody algebra Uv(C̃) which is by definition a 
Q(v)-algebra generated by K±1

i , D±1
i , Ei, Fi for i ∈ N with relations; see [21, (1.4)] for 

the details. Clearly, the subalgebra of Uv(C̃) generated by K±1
i , D±1

0 , Ei, Fi for 0 � i < n

is isomorphic to Uv(ŝln).
In order to make a comparison with D(n), we consider the subalgebra Ũ of Uv(C̃)

generated by K±1
i , Ei, Fi for i ∈ N. Then Ũ admits a triangular decomposition

Ũ = Ũ− ⊗ Ũ0 ⊗ Ũ+,

where Ũ−, Ũ+, and Ũ0 are subalgebras generated by Fi, Ei, and K±1
i for i ∈ N, 

respectively. In particular, Ũ0 = Q(v)[K±1
i : i ∈ N]. It follows from the definition that 

there is a surjective algebra homomorphism Ψ : Ũ → D(n) given by

Ψ(Ei) =
{
u+
i , if 0 � i < n;

yi−n+1z
+
i−n+1, if i � n,

Ψ(Fi) =
{
u−
i , if 0 � i < n;

z−i−n+1, if i � n
, and

Ψ(K±1
i ) =

{
K±1

i , if 0 � i < n;
K±1

(i−n+1)δ, if i � n,

where yt = t(v2tn−1)(v−v−1)/(vt−v−t)2 for t � 1; see (4.2.1). Hence, each D(n)-module 
can be viewed as a Ũ-module via the homomorphism Ψ. By the definition, Ψ induces 
isomorphisms Ũ± ∼= D(n)±. Thus, in what follows, we will identify Ũ± with D(n)±
via Ψ.

As defined in [21, Sect. 2.1], for each θ ∈ P̃ , there is an associated irreducible Ũ-module 
L(θ). By [21, Prop. 3.3], L(θ) is integrable if and only if θ is dominant, that is,

θ ∈ P̃+ = {ρ ∈ (P̃∨ ⊗Q)∗ | ρ(P̃∨) ⊂ N}.

Moreover, by [23, Cor. 4.7], for θ ∈ P̃+,

L(θ) ∼= Ũ−/
( ∑

Ũ−F
θ(hi)+1
i +

∑
Ũ−Fi

)
.

i∈In i�n,θ(hi)=0
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Viewing the irreducible D(n)-module L(Λ) as a Ũ-module, it is then isomorphic to 
L(Λ̃), where Λ̃ ∈ P̃ is defined by

Λ̃(hi) =
{

Λ(hi) = ai, if 0 � i < n;
(i− n + 1)

∑
0�j<n aj , if i � n

and Λ̃(di) = δi,0b.

From the assumption 
∑

i∈I ai > 0 it follows that Λ̃(hi) > 0 for all i � n. Consequently,

L(Λ) ∼= L(Λ̃) ∼= Ũ−/
( ∑
i∈In

Ũ−F ai+1
i

)
= D(n)−/

( ∑
i∈In

D(n)−(u−
i )ai+1). �

For each Λ ∈ P , let L0(Λ) denote the irreducible U′
v(ŝln)-module of highest weight Λ. 

Applying Theorem 3.2 gives the following result.

Corollary 4.5. Let Λ =
∑

i∈In
aiΛi + bω ∈ P+ with 

∑
i∈In

ai > 0. Then L0(Λ) is the 

U′
v(ŝln)-submodule of L(Λ) generated by the highest weight vector ηΛ and there is a vector 

space decomposition

L(Λ) = L0(Λ) ⊗Q(v)[z−
1 , z

−
2 , . . .].

In particular, if L(Λ)|U′
v(ŝln) denotes the U′

v(ŝln)-module via restriction, then

L(Λ)|U′
v(ŝln)

∼=
⊕
m�0

L0(Λ −mδ∗)⊕p(m), (4.5.1)

where δ∗ =
∑

i∈In
αi and p(m) is the number of partitions of m.

Proof. By Theorem 3.2,

D(n)− = U−
v (ŝln) ⊗Q(v)[z−

1 , z
−
2 , . . .].

This implies that

L(Λ) ∼= D(n)−/
( ∑
i∈In

D(n)−(u−
i )ai+1)

∼=
(
U−

v (ŝln)/
( ∑
i∈In

U−
v (ŝln)F ai+1

i

))
⊗Q(v)[z−

1 , z
−
2 , . . .].

By [30, Cor. 6.2.3], L0(Λ) ∼= U−
v (ŝln)/

(∑
i∈In

U−
v (ŝln)F ai+1

i

)
. Hence, L0(Λ) is the 

U′
v(ŝln)-submodule of L(Λ) generated by ηΛ and the desired decomposition is obtained.
For each family of nonnegative integers {mt | t � 1} satisfying all but finitely many 

mt are zero, L0(Λ) ⊗
∏

t�1(z
−
t )mt is a U′

v(ŝln)-submodule of L(Λ) since [u±
i , z

−
t ] = 0 for 

all i ∈ In and t � 1. It is easy to see that
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L0(Λ) ⊗
∏
t�1

(z−
t )mt ∼= L0(Λ − (

∑
t�1

mt)δ∗).

We conclude that

L(Λ)|U′
v(ŝln)

∼=
⊕
m�0

L0(Λ −mδ∗)⊕p(m). �

By [30, Th. 14.4.11], for each Λ ∈ P+, the canonical basis {b−m | m ∈ Map
n } of U−

v (ŝln)
gives rise to the canonical basis

{b−mηΛ �= 0 | m ∈ Map
n }

of L0(Λ). On the other hand, the crystal basis theory for the quantum generalized Kac–
Moody algebra U(C̃) has been developed in [21]. Since all the Fi for i � n correspond 
to imaginary simple roots and are central in Ũ− = D(n)−, applying the construction in 
[21, Sect. 6] shows that the set

B′ :=
{(∏

i�n

Fmi
i

)
b−m | m ∈ Map

n and all mi ∈ N but finitely many are zero
}

forms the global crystal basis of Ũ− = D(n)−. We remark that B′ does not coincide 
with the canonical basis B− of D(n)− in (4.0.9).

5. The q-deformed Fock space I: D(∞)-module

In this section we introduce the q-deformed Fock space Λ∞ from [16] and review its 
module structure over D(∞) = Uv(sl∞) defined in [32,43], as well as its Uv(ŝln)-module 
structure. We also provide a proof of [43, Prop. 5.1] by using the properties of repre-
sentations of Δ∞. Throughout this section, we identify D(∞) with Uv(ŝl∞) via taking 
u+
i �→ Ei, u−

i �→ Fi for all i ∈ I∞ = Z.
For each partition λ ∈ Π, let T (λ) denote the tableau of shape λ whose box in the 

intersection of the i-th row and the j-th column is labelled with j − i (the box is then 
said to be with color j − i). For example, if λ = (4, 2, 2, 1), then T (λ) has the form

0 1 2 3

−1 0

−2 −1

−3

For given i ∈ Z, a removable i-box of T (λ) is by definition a box with color i which can 
be removed in such a way that the new tableau has the form T (μ) for some μ ∈ Π. On 
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the contrary, an indent i-box of T (λ) is a box with color i which can be added to T (λ). 
For i ∈ Z and λ ∈ Π, define

ni(λ) = |{indent i-boxes of T (λ)}| − |{removable i-boxes of T (λ)}|.

Let 
∧∞ be the Q(v)-vector space with basis {|λ〉 | λ ∈ Π}. Following [43, 4.2], there 

is a left Uv(sl∞)-module structure on 
∧∞ defined by

Ki · |λ〉 = vni(λ)|λ〉, Ei · |λ〉 = |ν〉, Fi · |λ〉 = |μ〉, ∀ i ∈ Z, λ ∈ Π, (5.0.2)

where μ, ν ∈ Π are such that T (μ) − T (λ) and T (λ) − T (ν) are a box with color i. As 
remarked in [32, Sect. 2] and [43, 4.2], 

∧∞ is isomorphic to the basic representation of 
Uv(sl∞) with the canonical basis {|λ〉 | λ ∈ Π}.

Lemma 5.1. (1) For i ∈ Z and λ, μ ∈ Π, if u−
i · |μ〉 = |λ〉, then there is an exact sequence

0 −→ Si −→ M(mλ) −→ M(mμ) −→ 0.

(2) Let m = [i, l) for some i ∈ Z and l � 1. Then ũ−
m · |∅〉 ∈ Z|λ〉 if i � 0 and 

i + l − 1 � 0 and 0 otherwise, where λ = (i + l, 1(−i)). In particular, if i = 0, then 
ũ−
m · |∅〉 = |λ〉.

Proof. (1) This follows directly from the definition.
(2) We proceed induction on l. The statement is trivial if l = 1. Suppose now l > 1. 

By the definition, M(m) = Si[l] with dimM(m) =
∑i+l−1

j=i εj . Then

u−
i+l−1 · · ·u−

i+1u
−
i = v1−lu−

m +
∑

z<∞
degm

v1−lu−
z .

For each z with z <∞
deg m, M(z) is decomposable. Thus, we may write

M(z) = M(y) ⊕M(z1),

where y ∈ M∞ and z1 = [j, i + l − j) for some i < j � i + l − 1. This implies that

u−
y u

−
z1

= u−
z .

By the induction hypothesis,

u−
z1
· |∅〉 ∈ Z|μ〉 if j � 0 and i + l − 1 � 0,

and 0 otherwise, where μ = (i + l, 1(−j)). Let now j � 0 and i + l − 1 � 0 and let 
k1, . . . , kj−i be a permutation of i, i + 1, . . . , j − 1. Then
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(u−
k1
u−
k2

· · ·u−
kj−i

) · |μ〉 = 0

unless k1 = i, k2 = i + 1 . . . , kj−i = j − 1, and moreover

(u−
i u

−
i+1 · · ·u−

j−1) · |μ〉 = |λ〉.

Since u−
y is a Z-linear combination of the monomials u−

k1
u−
k2

· · ·u−
kj−i

, we have ũ−
m · |∅〉 ∈

Z|λ〉.
Now let i = 0. Then u−

z1
· |∅〉 = 0 for each z1 = [j, i + l − j) with 0 < j � i + l − 1. 

Hence,

ũ−
m · |∅〉 = v1−lu−

m · |∅〉 = (u−
l−1 · · ·u−

1 u
−
0 ) · |∅〉 +

∑
z<∞

degm

u−
z · |∅〉 = |λ〉. �

Lemma 5.2. Let m =
∑

l�1 mi,l[i, l) ∈ M∞ and λ ∈ Π.

(1) If there is j ∈ Z such that 
∑

l�1 mj,l � 2, then ũ−
m · |λ〉 = 0. In particular, for each 

i ∈ Z and t � 2, (u−
i )(t) · |λ〉 = 0, where (u−

i )(t) = (u−
i )t/[t]!; see (3.0.2).

(2) The element ũ−
m · |λ〉 is a Z-linear combination of |μ〉 with μ ∈ Π.

Proof. (1) For each i ∈ Z, we put

mi =
∑
l�1

mi,l and Mi =
⊕
l�1

mi,lSi[l].

Then M = M(m) = ⊕i∈ZMi, where all but finitely many Mi are zero and

u−
m = v−

∑
i>j〈dim Mi,dimMj〉(· · ·u−

[M−1]u
−
[M0]u

−
[M1] · · · ).

Suppose there is j ∈ Z with m = mj � 2. Then Mj admits a decomposition

Mj = Sj [a1] ⊕ · · · ⊕ Sj [am] with a1 � · · · � am � 1.

This implies that

u−
[Sj [am]] · · ·u

−
[Sj [a1]] = vbju−

[Mj ],

where bj =
∑

1�p<q�m〈dimSj [mp], dimSj [mq]〉. Hence, it suffices to show that for each 
μ ∈ Π,

u−
[Mj ] · |μ〉 = v−bj (u−

[Sj [am]] · · ·u
−
[Sj [a1]]) · |μ〉 = 0.

By the definition, u−
[Sj [a1]] · |μ〉 is a Q(v)-linear combination of those ν which are obtained 

from μ by adding a (j + r)-box for each 0 � r < a1. Thus, each such ν does not admit 
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an indent j-box. Then u−
[Sj [a1]] · |ν〉 = 0 and, hence, (u−

[Sj [am]] · · ·u
−
[Sj [a1]]) · |μ〉 = 0. We 

conclude that ũ−
m · |λ〉 = 0.

(2) It is known that ũ−
m is a Z-linear combination of monomials of divided powers 

(u−
i )(t) for i ∈ Z and t � 1. Since by (1), (u−

i )(t) · |μ〉 = 0 for all i ∈ Z, μ ∈ Π and t � 2, 
it follows that ũ−

m ·|λ〉 is a Z-linear combination of (u−
i1
· · ·u−

im
) ·|λ〉, where m = dimM(m)

and i1, . . . , im ∈ Z. By the definition, (u−
i1
· · ·u−

im
) · |λ〉 is either zero or equal to |μ〉 for 

some μ ∈ Π. Therefore, ũ−
m · |λ〉 is a Z-linear combination of |μ〉 with μ ∈ Π. �

Proposition 5.3. (1) For each m ∈ M∞,

ũ−
m · |∅〉 ∈ Z|λ〉 for some λ ∈ Π with mλ �∞

deg m.

(2) For each λ ∈ Π,

ũ−
mλ

· |∅〉 = |λ〉 and ũ−
p · |∅〉 = 0 for all p ∈ M with p <∞

deg mλ.

In particular, b−mλ
· |∅〉 = |λ〉.

Proof. (1) If ũ−
m · |∅〉 = 0, there is nothing to prove. Now suppose ũ−

m · |∅〉 �= 0. By 
Lemma 5.2(2), we write

ũ−
m · |∅〉 =

∑
λ∈Π

fλ(v)|λ〉,

where all fλ(v) ∈ Z but finitely many are zero. If fλ(v) �= 0, then dimM(mλ) =
dimM(m). By Lemma 2.1(1), such a λ ∈ Π is unique. Hence, we may suppose ũ−

m · |∅〉 =
f(v)|λ〉 for some 0 �= f(v) ∈ Z and λ ∈ Π. It remains to show that mλ �∞

deg m.
Applying Lemma 5.2(1) implies that

M = M(m) = Si1 [a1] ⊕ · · · ⊕ Sit [at],

where i1 < · · · < it and a1, . . . , at � 1. Then

u−
[Si1 [a1]] · · ·u

−
[Sit [at]] = vau−

m,

where a =
∑

1�p<q�t〈dimSiq [aq], dimSip [ap]〉.
We proceed induction on t to show that M(mλ) �∞

deg M = M(m). If t = 1, this follows 
from Lemma 5.1(2). Let now t > 1 and let μ ∈ Π be such that

(u−
[Si2 [a2]] · · ·u

−
[Sit [at]]) · |∅〉 = g(v)|μ〉 for some 0 �= g(v) ∈ Z.

Then u−
[Si1 [a1]] · |μ〉 = vaf(v)g(v)−1|λ〉. By the induction hypothesis,

M(mμ) �∞
deg Si2 [a2] ⊕ · · · ⊕ Sit [at].
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By writing u−
[Si1 [a1]] as a Z-linear combination of monomials of u−

i ’s and applying 
Lemma 5.1(1), there exists X ∈ Rep Δ∞ satisfying dimX = dimSi1 [a1] with an exact 
sequence

0 −→ X −→ M(mλ) −→ M(mμ) −→ 0.

Since Si1 [a1] is indecomposable, it follows that X �∞
deg Si1 [a1]. Therefore,

M(mλ) �∞
deg M(mμ) ∗X �∞

deg (Si2 [a2] ⊕ · · · ⊕ Sit [at]) ∗ Si1 [a1]
= (Si2 [a2] ⊕ · · · ⊕ Sit [at]) ⊕ Si1 [a1] = M(m),

that is, mλ �∞
deg m.

(2) Write λ = (λ1, . . . , λt) with λ1 � · · · � λt � 1. Since

M(mλ) = S0[λ1] ⊕ S−1[λ2] ⊕ · · · ⊕ S1−t[λt],

we have that

u−
[S1−t[λt]] · · ·u

−
[S−1[λ2]]u

−
[S0[λ1]] = vcu−

mλ
,

where

c =
∑

1�r<s�t

〈dimS1−r[λr],dimS1−s[λs]〉 =
∑

1�r<s�t

dim HomΔ∞(S1−r[λr], S1−s[λs]).

By using an argument similar to that in the proof of Lemma 5.1(2), we obtain that

vcu−
mλ

· |∅〉 = (u−
[S1−t[λt]] · · ·u

−
[S−1[λ2]]u

−
[S0[λ1]]) · |∅〉

= vλ1−1(u−
[S1−t[λt]] · · ·u

−
[S−1[λ2]]) · |(λ1)〉

= cλ1+λ2−2(u−
[S1−t[λt]] · · ·u

−
[S−2[λ3]]) · |(λ1, λ2)〉

= vλ1+···+λt−t|(λ1, . . . , λt)〉 = vλ1+···+λt−t|λ〉.

Since

dim EndΔ∞(M(mλ)) =
∑

1�r�s�t

dim HomΔ∞(S1−r[λr], S1−s[λs]) = c + t

and dimM(mλ) = λ1 + · · · + λt, it follows that

ũ−
mλ

· |∅〉 = vc+t−(λ1+···+λt)u−
mλ

· |∅〉 = |λ〉.

Now let p <∞
deg mλ and suppose ũ−

p · |∅〉 �= 0. By (1), there exists μ ∈ Π with mμ �∞
deg p

such that ũ−
p · |∅〉 = f(v)|μ〉 for some f(v) ∈ Z. Thus, mμ <∞

deg mλ. By Lemma 2.1(1), 
μ = λ since dimM(mμ) = dimM(mλ). This is a contradiction. Hence, ũ−

p · |∅〉 = 0.
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By (4.0.9),

b−mλ
∈ ũ−

mλ
+

∑
p<∞

degmλ

v−1Z[v−1]ũ−
p .

We conclude that b−mλ
· |∅〉 = ũ−

mλ
· |∅〉 = |λ〉. �

As a consequence of the proposition above, we obtain [43, Prop. 5.1] as follows.

Corollary 5.4. The subspace I of U−
v (sl∞) spanned by b−m with m ∈ M −{mλ | λ ∈ Π} is 

a left ideal of U−
v (sl∞). Moreover, the map

U−
v (sl∞)/I −→

∧∞
, b−mλ

+ I �−→ |λ〉, ∀λ ∈ Π

is an isomorphism of U−
v (sl∞)-modules.

Proof. On the one hand, by [30, Th. 14.4.11], the set

{b−m · |∅〉 �= 0 | m ∈ M∞}

is a basis of 
∧∞. On the other hand, there is a U−

v (sl∞)-module homomorphism

φ : U−
v (sl∞) −→

∧∞
, x �−→ x · |∅〉.

It follows from Proposition 5.3(2) that I = Kerφ is a left ideal of U−
v (sl∞) and that φ

induces the desired isomorphism. �
Finally, for i ∈ Z and λ ∈ Π, put

n−
i (λ) =

∑
j<i, j∈ī

nj(λ), n+
i (λ) =

∑
j>i, j∈ī

nj(λ), and nī(λ) =
∑
j∈ī

nj(λ).

By [16,32], there is a Uv(ŝln)-module structure on 
∧∞ defined by

Kī · |λ〉 = vnī(λ)|λ〉, Eī · |λ〉 =
∑
j∈ī

vn
−
j (λ)Ej · |λ〉, Fī · |λ〉 =

∑
j∈ī

v−n+
j (λ)Fj · |λ〉, (5.4.1)

where ī ∈ In = Z/nZ.

6. The q-deformed Fock space II: D(n)-module

In this section we first recall the left D(n)�0-module structure on the Fock space 
∧∞

defined by Varagnolo and Vasserot in [43] and then extend their construction to obtain 
a D(n)-module structure on 

∧∞.



B. Deng, J. Xiao / Journal of Algebra 480 (2017) 168–208 193
For each x =
∑

m
xmum ∈ H(Δ) with Δ = Δn or Δ∞, we write

x± =
∑
m

xmu
±
m ∈ D(Δ)±.

Then for each d ∈ NI∞, the map γd : H(Δn)d̄ → H(Δ∞)d defined in Section 3 induces 
Q(v)-linear maps

γ±
d : D(n)±d̄ −→ D(∞)±d

such that γ±
d (x±) = (γd(x))± for each x ∈ H(Δ∞).

Following [43, 6.2], for each ī ∈ In = Z/nZ, λ ∈ Π and x ∈ D(n)−α , define

Kī · |λ〉 = vnī(λ)|λ〉 and x · |λ〉 =
∑
d

(
γ−
d (x)K−d′

)
· |λ〉, (6.0.2)

where the sum is taken over all d ∈ NI∞ such that d̄ = α and d′ =
∑

i>j, ī=j̄ djεi. By 
[43, Cor. 6.2], this defines a left D(n)�0-module structure on 

∧∞ which extends the 
Hayashi action of U�0

v (ŝln) on 
∧∞ defined in (5.4.1).

Dually, for each λ ∈ Π and x ∈ D(n)+α , define

x · |λ〉 =
∑
d

(
γ+
d (x)Kd′′

)
· |λ〉, (6.0.3)

where the sum is taken over all d ∈ NI∞ such that d̄ = α and d′′ =
∑

i<j, ī=j̄ djεi. Then 
we have the following result whose proof is analogous to that of [43, Cor. 6.2].

Proposition 6.1. The formula (6.0.3) defines a left D(n)�0-module structure on 
∧∞

which extends the Hayashi action of U�0
v (ŝln) on 

∧∞.

Proof. Let x ∈ D(n)+α and y ∈ D(n)+β , where α, β ∈ NIn. By the definition, we have, on 
the one hand, that

(xy) · |λ〉 =
∑
d

(
γ+
d (xy)Kd′′

)
· |λ〉

and, on the other hand, that

x · (y · |λ〉) =
∑
a,b

(
γ+
a (x)Ka′′γ+

b (y)Kb′′
)
· |λ〉,

where the sum is taken over all a, b ∈ NI∞ such that ā = α and b̄ = β.
Since Ka′′γ+

b (y) = v(a′′,b)γ+
b (y)Ka′′ , we obtain that

x · (y · |λ〉) =
∑ ∑

v(a′′,b)(γ+
a (x)γ+

b (y)Kd′′
)
· |λ〉.
d a+b=d
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By the definition,

(a′′,b) =
( ∑
i<j, ī=j̄

ajεi,
∑
i

biεi
)

=
∑

i<j, ī=j̄

bi(2aj − aj−1 − aj+1) = κ(a,b).

Applying Lemma 3.3(2) gives that

(xy) · |λ〉 = x · (y · |λ〉).

Hence, 
∧∞ becomes a left D(n)�0-module.

For each ī ∈ In = Z/nZ and λ ∈ Π, we have

u+
ī
· |λ〉 =

∑
j∈ī

(u+
j K−ε′′j

) · |λ〉.

Since ε′′j =
∑

l<j, l̄=j̄ εl for each j ∈ ī, it follows that

Kε′′j
· |λ〉 =

∏
l<j, l̄=j̄

Kεl · |λ〉 = v
∑

l<j,l̄=j̄ nl(λ)|λ〉 = vn
−
j (λ)|λ〉.

This implies that

u+
ī
· |λ〉 =

∑
j∈ī

vn
−
j (λ)u+

j · |λ〉,

which coincides with the formula for Eī · |λ〉 in (5.4.1), as required. �
After the work of Varagnolo and Vasserot [43], one naturally expects to extend their 

construction to obtain a D(n)-module structure on 
∧∞. The formula for the actions 

u+
α · |λ〉 of the semisimple generators u+

α in D(n)+ was given by Stroppel and Webster 
[41, Lem. 7.5]. The formula (6.0.3) is modified from (6.0.2) in terms of the Varagnolo–
Vasserot’s map in (3.2.2).

The rest of this section is devoted to verifying that formulas (6.0.2) and (6.0.3) indeed 
define a D(n)-module structure on 

∧∞. The strategy is to pass to the semi-infinite 
v-wedge spaces studied in [40,24] and then to compare the actions of the central elements 
z±
m in D(n) with those of the Heisenberg operators defined in [24].
Let Ω denote the Q(v)-vector space with basis {ωi | i ∈ Z}. By [6, Prop. 3.5], Ω admits 

a D(n)-module structure defined by

u+
i · ωs = δi+1,s̄ωs−1, u−

i · ωs = δi,s̄ωs+1

K±1
i · ωs = v±δi,s̄∓δi+1,s̄ωs, z±

m · ωs = ωs∓mn

(6.1.1)

for all i ∈ In and s, m ∈ Z with m � 1. In particular, K±1
δ ·ωs = ωs for each s ∈ Z. This 

is an extension of the U′
v(ŝln)-action on Ω defined in [24, 1.1] as well as an extension of 

the D(n)�0-action on Ω defined in [43, 8.1]; see [6, 3.5].
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For a fixed positive integer r, consider the r-fold tensor product Ω⊗r which has a 
basis

{ωi = ωi1 ⊗ · · · ⊗ ωir | i = (i1, . . . , ir) ∈ Zr}.

The Hopf algebra structure of D(n) induces a D(n)-module structure on the r-fold tensor 
product Ω⊗r. By (4.1.1), we have for each t � 1,

Δ(r−1)(z+
t ) =

r−1∑
s=0

1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
s

⊗z+
t ⊗Ktδ ⊗ · · · ⊗Ktδ︸ ︷︷ ︸

r−s−1

and

Δ(r−1)(z−
t ) =

r−1∑
s=0

K−tδ ⊗ · · · ⊗K−tδ︸ ︷︷ ︸
s

⊗z−
t ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

r−s−1

.

(6.1.2)

This implies particularly that for each t � 1 and ωi = ωi1 ⊗ · · · ⊗ ωir ∈ Ω⊗r,

z±
t · ωi =

r∑
s=1

ωi1 ⊗ · · · ⊗ ωis−1 ⊗ ωis∓tn ⊗ ωis+1 ⊗ · · · ⊗ ωir . (6.1.3)

By (4.0.3) and (4.0.5), for each α ∈ NIn, we have

Δ(r−1)(ũ+
α ) =

∑
α=α(1)+···+α(r)

v
∑

s>t〈α
(s),α(t)〉×

ũ+
α(1) ⊗ ũ+

α(2)Kα(1) ⊗ · · · ⊗ ũ+
α(r)K(α(1)+α(2)+···+α(r−1)),

Δ(r−1)(ũ−
α ) =

∑
α=α(1)+···+α(r)

v
∑

s>t〈α
(s),α(t)〉×

ũ−
α(1)K−(α(2)+···+α(r)) ⊗ · · · ⊗ u−

α(r−1)K−α(r) ⊗ ũ−
α(r) .

(6.1.4)

This gives the following lemma; see [43, Lem. 8.3] and [6, Cor. 3.5.8].

Lemma 6.2. Let α ∈ NIn and i = (i1, . . . , ir) ∈ Zr. Then

ũ+
α · ωi =

∑
n

vc
+(i,i−n)ωi−n, (6.2.1)

where the sum is taken over the sequences n = (n1, . . . , nr) ∈ {0, 1}r satisfying α =∑r
s=1 nsεis−1 and

c+(i, i − n) =
∑

1�s<t�r

ns(nt − 1)〈εīt , εīs〉;

ũ−
α · ωi =

∑
vc

−(i,i+n)ωi+n, (6.2.2)

n
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where the sum is taken over the sequences n = (n1, . . . , nr) ∈ {0, 1}r satisfying α =∑r
s=1 nsεīs and

c−(i, i + n) =
∑

1�s<t�r

nt(ns − 1)〈εīt , εīs〉.

On the other hand, let Ĥ(r) be the Hecke algebra of affine symmetric group of type 
A which is by definition a Q(v)-algebra with generators Ti and X±1

j for i = 1, . . . , r− 1, 
j = 1, . . . , r and relations:

(Ti + 1)(Ti − v2) = 0,

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi (|i− j| > 1),

XiX
−1
i = 1 = X−1

i Xi, XiXj = XjXi,

TiXiTi = v2Xi+1, XjTi = TiXj (j �= i, i + 1).

This is the so-called Bernstein presentation of Ĥ(r).
By [43, Sect. 8.2], there is a right Ĥ(r)-module structure on Ω⊗r defined by

ωi ·Xt = ωi1 · · ·ωit−1ωit−nωit+1 · · ·ωir ,

ωi · Tk =

⎧⎪⎨⎪⎩
v2ωi, if ik = ik+1;
vωisk , if −n < ik < ik+1 � 0;
vωisk + (v2 − 1)ωi, if −n < ik+1 < ik � 0,

(6.2.3)

where i = (i1, . . . , ir) ∈ Zr, ωi = ωi1 ⊗ · · · ⊗ ωir and

ωisk = ωi1 ⊗ · · · ⊗ ωik+1 ⊗ ωik ⊗ · · · ⊗ ωir .

Following [6, Prop. 3.5.5], the tensor space Ω⊗r is indeed a D(n)-Ĥ(r)-bimodule. Set

Ξr =
r−1∑
i=1

Im(1 + Ti) ⊆ Ω⊗r,

which is clearly a D(n)-submodule of Ω⊗r. Thus, the quotient space Ω⊗r/Ξr becomes a 
D(n)-module. For each i = (i1, . . . , ir) ∈ Zr, write

∧ωi = ωi1 ∧ . . . ∧ ωir = ωi + Ξr ∈ Ω⊗r/Ξr.

By [24, Prop. 1.3], the set

{∧ωi | i1 > · · · > ir}

forms a basis of Ω⊗r/Ξr.
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For each m ∈ Z, let Bm denote the set of sequences i = (i1, i2, . . .) ∈ Z∞ satisfying 
that is = m − s + 1 for s � 0, and set B∞ = ∪m∈ZBm. As in [43, Sect. 10.1], let Ω∞

denote the space spanned by semi-infinite monomials

ωi = ωi1 ⊗ ωi2 ⊗ · · · , where i = (i1, i2, . . .) ∈ B∞.

Then the affine Hecke algebra Ĥ(∞) acts on Ω∞ via the formulas in (6.2.3). Set

Ξ∞ =
∞∑
i=1

Im(1 + Ti) ⊆ Ω∞.

For each i = (i1, i2, . . .) ∈ B∞ as above, write

∧ωi = ωi1 ∧ ωi2 ∧ · · · = ωi + Ξ∞ ∈ Ω∞/Ξ∞.

For each m ∈ Z, let F(m) be the subspace of Ω∞/Ξ∞ spanned by ∧ωi with i ∈ Bm. 
Then

Ω∞/Ξ∞ =
⊕
m∈Z

F(m).

By [24, 1.4], the U′
v(ŝln)-module structure on Ω⊗r/Ξr induces a U′

v(ŝln)-module struc-
ture on F(m) for each m ∈ Z and, hence, a U′

v(ŝln)-module structure on Ω∞/Ξ∞ as well. 
Moreover, by [24, Prop. 1.4], the injective map

κ :
∞∧

−→ Ω∞/Ξ∞, |λ〉 �−→ ∧ωiλ

is a homomorphism of U′
v(ŝln)-modules which induces an isomorphism 

∧∞ ∼= F(0), 
where iλ = (i1, i2, . . .) with is = λs + 1 − s, ∀ s � 1.

As in [24, (49)], for each m ∈ Z, write

|m〉 = ωm ∧ ωm−1 ∧ ωm−2 ∧ · · · .

Clearly, for each i = (i1, i2, . . .) ∈ Bm, there exists a sufficiently large N such that

∧ωi = (ωi1 ∧ · · · ∧ ωiN ) ∧ |m−N〉.

By [24, Lem. 2.2] and (6.1.4), for given α ∈ NI and i ∈ Bm, there is t � 0 such that

u−
α · (∧ωi) =

(
u−
α · (ωi1 ∧ · · · ∧ ωit)

)
∧ |m− t〉.

Hence, the D(n)�0-module structure on Ω⊗r/Ξr induces a D(n)�0-module structure on 
Ω∞/Ξ∞; see [43, Sect. 10.1]. Moreover, by [43, Lem. 10.1], the map κ :

∧∞ → Ω∞/Ξ∞

is a D(n)�0-module homomorphism.
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Dually, for each given i ∈ Bm, there is t � 0 such that

u+
α · (∧ωi) =

(
u+
α · (ωi1 ∧ · · · ∧ ωit)

)
∧
(
Kα · |m− t〉

)
.

Thus, Ω∞/Ξ∞ becomes a left D(n)�0-module, too. We have the following result whose 
proof is similar to that of [43, Lem. 10.1].

Proposition 6.3. The map κ is a D(n)�0-module homomorphism.

Proof. We need to show that for each λ ∈ Π and α ∈ NIn,

κ(ũ+
α · |λ〉) = ũ+

α (κ(|λ〉)).

For simplicity, write i := iλ = (i1, i2, . . .). By (6.0.3),

ũ+
α · |λ〉 =

∑
d

(γ+
d (ũ+

α )Kd′′) · |λ〉 =
∑
d

v−h(d)(ũ+
dKd′′) · |λ〉,

where the sum is taken over all d ∈ NI∞ such that d̄ = α and h(d) =
∑

i<j,̄i=j̄ di(dj+1−
dj).

For each fixed d = (di) ∈ NI∞ with d̄ = α, we have

ũ+
d = · · · ũ+

d1ε1
ũ+
d0ε0

ũ+
d−1ε−1

· · · =
∏
i∈Z

ũ+
diεi

.

By the definition, ũ+
d · |λ〉 �= 0 implies that

d =
∑
s�1

nsεis−1,

where ns ∈ {0, 1} for all s � 1. Moreover, if this is the case, then

ũ+
d · |λ〉 = |μn〉,

where n = (n1, n2, . . .) and μn = μ ∈ Π is determined by iμ = i − n. Therefore, for 
d ∈ NI∞ with d =

∑
s�1 nsεis−1,

Kd′′ =
∏

īs=īt, is>it

Kns
it−1 and

h(d) =
∑
is>it

−nsnt(δīs ,̄it − δīs,it+1) = −
∑
is>it

nsnt〈εīt , εīs〉.

A calculation together with (6.2.1) implies that
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κ(ũ+
α · |λ〉) = ũ+

α (∧ωi) = ũ+
α (κ(|λ〉)). �

As a consequence of the results above, to prove that the formulas (6.0.2) and (6.0.3)
define a D(n)-module structure on 

∧∞, it suffices to show that the D(n)�0-module and 
D(n)�0-module structures on Ω∞/Ξ∞ define a D(n)-module structure. In other words, 
we need to show that the actions of K±1

i , u+
i , u

−
i (i ∈ In) and z+

s , z
−
s (s � 1) on Ω∞/Ξ∞

satisfy the relations (DH1)–(DH5) in Section 4.
Since, as discussed above, Ω∞/Ξ∞ is a U′

v(ŝln)-module, all the relations in 
(DH1)–(DH5) in which the z±

s are not involved are satisfied. In the following we are 
going to check the relations

[z+
t , z

−
s ] = δt,s

t(v2tn − 1)
(vt − v−t)2 (Ktδ −K−tδ), ∀ s, t � 1.

By [24, §2], for each t � 1, there are Heisenberg operators

B±
t : Ω∞/Ξ∞ → Ω∞/Ξ∞, ∧ωi �−→

∞∑
s=1

∧ωi∓tnes
,

where i ∈ B∞ and es = (δi,s)i�1 ∈ Z∞. Note that for each i ∈ B∞, ∧ωi∓tnes
= 0 for 

s � 0.

Proposition 6.4. For each t � 1 and i ∈ B∞,

B+
t (∧ωi) = vtz+

t · (∧ωi) and B−
t (∧ωi) = z−

t · (∧ωi).

Proof. For each m ∈ Z, recall the element

|m〉 = ωm ∧ ωm−1 ∧ ωm−2 ∧ · · · ∈ Ω∞/Ξ∞.

Then z+
t · |m〉 = 0 and Kδ · |m〉 = q|m〉. Write

∧ωi = ωi1 ∧ · · · ∧ ωiN ∧ |N −m〉.

Applying (6.1.2) gives that

z+
t · (∧ωi)

=
∑N

s=0 ωi1 ∧ · · · ∧ ωis︸ ︷︷ ︸
s

∧z+
t · ωis+1 ∧Ktδ · ωis+2 ∧ · · · ∧Ktδ · ωiN︸ ︷︷ ︸

N−s−1

∧(Ktδ · |N −m〉)

=
∑N

s=0 v
t ωi1 ∧ · · · ∧ ωis︸ ︷︷ ︸

s

∧ωis+1+tn ∧ ωis+2 ∧ · · · ∧ ωiN︸ ︷︷ ︸
N−s−1

∧|N −m〉

= vtB+
t (∧ωi) (since B+

t (|N −m〉) = 0),

that is, B+
t (∧ωi) = vtz+

t · (∧ωi). The second equality can be proved similarly. �
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Corollary 6.5. Let t, s � 1. Then for each i ∈ B∞,

[z+
t , z

−
s ] · (∧ωi) = δt,s

t(v2tn − 1)
(vt − v−t)2 (Ktδ −K−tδ) · (∧ωi).

Proof. By [24, Prop. 2.2 & 2.6] (with q = v),

[B+
t , B−

s ] = δt,s
t(1 − v2tn)

1 − v2n .

This together with Proposition 6.4 implies that for each i ∈ B∞,

[z+
t , z

−
s ] · (∧ωi) = vt[B+

t , B−
s ]δt,s · (∧ωi) = δt,s

tvt(1 − v2tn)
1 − v2n (∧ωi).

On the other hand,

δt,s
t(v2tn − 1)
(vt − v−t)2 (Ktδ −K−tδ) · (∧ωi) = δt,s

t(v2tn − 1)
(vt − v−t)2 (vt − v−t)(∧ωi)

= δt,s
tvt(1 − v2tn)

1 − v2n (∧ωi).

This gives the desired equality. �
By [24, Prop. 2.1] (or direct calculations), the actions of z±

t on Ω∞/Ξ∞ commutes 
with that of U′

v(ŝln). In conclusion, the actions of K±1
i , u+

i , u
−
i (i ∈ In) and z+

s , z
−
s

(s � 1) on Ω∞/Ξ∞ satisfy the relations (DH1)–(DH5). Therefore, the formulas (6.0.2)
and (6.0.3) define a D(n)-module structure on 

∧∞.

7. An isomorphism from L(Λ0) to 
∧∞

In this section we show that the Fock space 
∧∞ as a D(n)-module is isomorphic to the 

basic representation L(Λ0) defined in Section 4. As an application, the decomposition of 
L(Λ0) in Corollary 4.5 induces the Kashiwara–Miwa–Stern decomposition of 

∧∞ in [24].

Proposition 7.1. For each m ∈ Mn, ũ−
m · |∅〉 is a Z-linear combination of those |μ〉

satisfying mμ �deg m.

Proof. By (6.0.2),

ũ−
m · |∅〉 =

∑
d

(
γ−
d (ũ−

m)K−d′
)
· |∅〉, where d′ =

∑
i

( ∑
j<i, j̄=ī

dj
)
εi.

Since Ki · |∅〉 = vδi,0 |∅〉 for i ∈ Z, it follows that K−d′ · |∅〉 = v−
∑

j<0, j̄=0̄ dj |∅〉. By 
Proposition 3.4,
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γ−
d (ũ−

m) ∈
∑
z

Zũ−
z ,

where the sum is taken over z ∈ M∞ with F (z) �∞
deg m. Further, by Proposition 5.3(1),

ũ−
z · |∅〉 ∈ Z|μ〉

for some μ ∈ Π with m∞
μ �∞

deg z. This implies that

mμ = F (m∞
μ ) �deg F (z) �deg m.

This finishes the proof. �
For each d = (di) ∈ NI∞, set

σ(d) = −
∑

i<0, ī=0̄

di.

For λ ∈ Π, we write σ(λ) = σ(dimM(m∞
λ )). The following result was proved in [43, 

9.2 &10.1]. We provide here a direct proof for completeness.

Corollary 7.2. For each λ ∈ Π,

ũ−
mλ

· |∅〉 ∈ |λ〉 +
∑
μ�λ

Z|μ〉.

In particular, the D(n)-module 
∧∞ is generated by |∅〉 and the set

{b−mλ
· |∅〉 | λ ∈ Π}

is a basis of 
∧∞.

Proof. Applying Corollary 3.5 gives that

ũ−
mλ

· |∅〉 =
∑
d

(
γ−
d (ũ−

mλ
)K−d′

)
· |∅〉 =

∑
d

vσ(d)γ−
d (ũ−

mλ
) · |∅〉

=
∑
r∈Z

vθ(λ)+σ(λ)ũ−
τrm(m∞

λ ) · |∅〉 +
∑

z∈M∞, F(z)<degmλ

fλ,z ũ
−
z · |∅〉,

where fλ,z ∈ Z. By Proposition 5.3 and its proof,

ũ−
m∞

λ
· |∅〉 = |λ〉 and ũ−

τrm(m∞
λ ) · |∅〉 = 0 for r > 0.

Furthermore, for each r < 0, ũ−
τrm(m∞

λ ) · |∅〉 ∈ Z|μ〉 such that m∞
μ �∞

deg τ rm(m∞
λ ). Then 

mμ = F (m∞
μ ) �deg F (τ rm(m∞

λ )) = mλ, which implies that μ � λ. Since M(τ rm(m∞
λ ))
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does not have a composition factor isomorphic to Sλ1−1, μ does not contain a box with 
color λ1 − 1. Thus, μ �= λ and μ � λ.

Finally, by Proposition 7.1, for each z ∈ M∞ with F (z) <deg mλ, ũ−
z · |∅〉 is a Z-linear 

combination of |μ〉 satisfying mμ �deg F (z). Thus, mμ �deg F (z) <deg mλ, which by 
Lemma 2.1 implies that μ �λ. Hence, each ũ−

z · |∅〉 is a Z-linear combination of |μ〉 with 
μ � λ. Consequently,

ũ−
mλ

· |∅〉 ∈ vθ(λ)+σ(λ)|λ〉 +
∑
μ�λ

Z|μ〉.

Therefore, it remains to show that

θ(λ) + σ(λ) = 0.

Write λ = (λ1, . . . , λm) with λ1 � · · · � λm � 1 and set |λ| =
∑m

s=1 λs. We proceed 
induction on |λ| to show that θ(λ) + σ(λ) = 0. By the definition,

θ(λ) =
∑
s<t

κ(ds,dt) −

∑

s=1
h(ds),

where � = λ1 is the Loewy length of M = M(m∞
λ ) and Sds

∼= rads−1 M/ rads M for 
1 � s � �. Let 1 � t � m be such that λ1 = · · · = λt > λt+1 and define

λ′ = (λ1, · · · , λt−1, λt − 1, λt+1, λm).

Then |λ′| = |λ| − 1. By the induction hypothesis, we have θ(λ′) + σ(λ′) = 0.
For each 1 � s � �, let d′

s ∈ NI∞ be defined by setting Sd′
i

∼= rads−1 M ′/ rads M ′, 
where M ′ = M(m∞

λ′ ). Then

d′

 = d
 − ε
−t and d′

s = ds for 1 � s < �.

This implies that


∑
s=1

h(ds) −

∑

s=1
h(d′

s) = h(d
) − h(d′

) = −δt̄,1̄ and

∑
s<t

κ(ds,dt) −
∑
s<t

κ(d′
s,d′

t) =
∑

1�s<


κ(ds, ε
−t).

Hence,

θ(λ) − θ(λ′) =
∑

κ(ds, ε
−t) + δt̄,1̄.

1�s<




B. Deng, J. Xiao / Journal of Algebra 480 (2017) 168–208 203
On the other hand, σ(λ) = σ(λ′) − 1 if � − t < 0 and �̄ = t̄, and σ(λ) = σ(λ′) otherwise. 
A direct calculation shows that if � − t � 0, then∑

1�s<


κ(ds, ε
−t) = −δt̄,1̄,

and if � − t < 0, then

∑
1�s<


κ(ds, ε
−t) =
{
δ
̄,t̄ − 1, if t̄ = 1̄;
δ
̄,t̄, if t̄ �= 1̄.

We conclude that in all cases,

θ(λ) + σ(λ) = θ(λ′) + σ(λ′) = 0. �
By the definition, for each i ∈ In = Z/nZ,

Ki|∅〉 = vδi,0 |∅〉.

This together with the corollary above implies that 
∧∞ is a highest weight D(n)-module 

of highest weight Λ0. Consequently, there is a unique surjective D(n)-module homomor-
phism

ϕ : D(n)− = M(Λ0) −→
∞∧
, ηΛ0 �−→ |∅〉.

Theorem 7.3. The homomorphism ϕ induces an isomorphism of D(n)-modules

ϕ̄ : L(Λ0) −→
∞∧

.

Proof. By definition, we have

Fi · |∅〉 = 0 for i ∈ In\{0} and F 2
0 · |∅〉 = 0.

This together with Theorem 4.4 implies that ϕ induces a surjective homomorphism

ϕ̄ : L(Λ0) = D(n)−/
( ∑
i∈In

D(n)−FΛ0(hi)+1
i

)
−→

∞∧
.

Since L(Λ0) is simple, we conclude that ϕ̄ is an isomorphism. �
Combining the theorem with Corollary 4.5 gives the decomposition of 

∧∞ obtained 
by Kashiwara, Miwa and Stern in [24, Prop. 2.3].
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Corollary 7.4. As a U′
v(ŝln)-module, 

∧∞ has a decomposition

∞∧
|U′

v(ŝln)
∼=

⊕
m�0

L0(Λ0 −mδ∗)⊕p(m).

8. The canonical basis for 
∧∞

In this section we show that the canonical basis of 
∧∞ defined in [26] can be con-

structed by using the monomial basis of the Ringel–Hall algebra of Δn given in [8]. 
We also interpret the “ladder method” in [25] in terms of generic extensions defined in 
Section 2.

Recall that there is a bar-involution a �→ ι(a) = a on D(n)− which takes v �→ v−1

and fixes all ũ−
α for α ∈ NIn. Then it induces a semilinear involution on the basic 

representation L(Λ0) by setting

aηΛ0 = aηΛ0 for all a ∈ D(n)−.

On the other hand, by [26], there is a semilinear involution x �→ x on 
∧∞ which, by [43], 

satisfies

(i) |∅〉 = |∅〉,
(ii) ax = a x for all a ∈ D(n)− and x ∈

∧∞.

Therefore, the isomorphism L(Λ0) →
∧∞ given in Theorem 7.3 is compatible with the 

bar-involutions.
It is proved in [26, Th. 3.3] that for each λ ∈ Π,

|λ〉 = |λ〉 +
∑
μ�λ

aμ,λ|μ〉, where aμ,λ ∈ Z. (8.0.1)

Then applying the standard linear algebra method to the basis {|λ〉 | λ ∈ Π} in [27] (or 
see [11] for more details) gives rise to an “IC basis” {bλ | λ ∈ Π} which is characterized 
by

bλ = bλ and bλ ∈ |λ〉 +
∑
μ�λ

v−1Z[v−1]|μ〉.

The basis {bλ | λ ∈ Π} is called the canonical basis of 
∧∞. In other words, the basis 

elements bλ are uniquely determined by the polynomials aμ,λ.

Remark 8.1. Varagnolo and Vasserot [43] have conjectured that

b−mλ
· |∅〉 = bλ for each λ ∈ Π.

This conjecture was proved by Schiffmann [37].
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In the following we provide a way to deduce (8.0.1) by using the monomial basis of 
the Ringel–Hall algebra of Δn given in [8]. As in [8, Sect. 3], set

Ie = In ∪ {all sincere vectors in NIn}

and consider the set Σ of all words on the alphabet Ie. Recall that a vector a = (ai) ∈ NIn
is called sincere if ai �= 0 for all i ∈ In. Since D(n)− is isomorphic to the opposite 
Ringel–Hall algebra of Δn, we define

M ∗′ N = N ∗M.

This gives the map

℘op : Σ −→ M, w = a1a2 · · ·at �−→ Sa1 ∗′ Sa2 ∗′ · · · ∗′ Sat
.

By [8, Sect. 9], for each m ∈ M, there is a distinguished word wm ∈ (℘op)−1(m) which 
defines a monomial m(wm) on ũ−

a with a ∈ Ĩ such that

m(wm) = ũ−
m +

∑
p<degm

θp,mũ
−
p for some θm,p ∈ Z;

see [8, (9.1.1)]. If m = mλ for some λ ∈ Π, we simply write wmλ
= wλ. Thus,

m(wλ) = ũ−
mλ

+
∑

p<degmλ

θp,mλ
ũ−
p . (8.1.1)

This together with Proposition 7.1 and Corollary 7.2 implies that

m(wλ)|∅〉 = |λ〉 +
∑
μ�λ

τμ,λ|μ〉, (8.1.2)

where τμ,λ ∈ Z. Since the monomials m(wλ) are bar-invariant, we deduce that for each 
λ ∈ Π,

|λ〉 = |λ〉 +
∑
μ�λ

a′μ,λ|μ〉 for some a′μ,λ ∈ Z.

Comparing with (8.0.1) gives that

aμ,λ = a′μ,λ for all μ � λ.

In case λ is n-regular, then mλ is aperiodic and the word wλ can be chosen in Ω, 
the subset of all words on the alphabet In = Z/nZ; see [8, Sect. 4]. In other words, 
m(wλ) is a monomial of the divided powers (u−

i )(t) = F
(t)
i for i ∈ In and t � 1. We now 
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interpret the “ladder method” in [25, Sect. 6] in terms of the generic extension map. Let 
λ = (λ1, . . . , λt) ∈ Π be n-regular. Recall the corresponding nilpotent representation

M(mλ) =
t⊕

a=1
S1−a[λa],

where 1 − a is viewed as an element in In. Take 1 � s � t with λ1 = · · · = λs > λs+1
(λt+1 = 0 by convention) and let k � 0 be maximal such that

λs+l(n−1)+1 = · · · = λs+(l+1)(n−1) and λs+l(n−1) = λs+l(n−1)+1 + 1 for 0 � l � k − 1.

Let i1 ∈ I be such that soc(S1−s[λs]) = Si1 . Then for each a = s + l(n − 1) with 
0 � l � k,

soc(S1−a[λa]) = Si1 .

Define μ = (μ1, . . . , μt) ∈ Π by setting

μa =
{
λa − 1, if a = s + l(n− 1) for some 0 � l � k;
λa, otherwise.

It is easy to see from the construction that μ is again n-regular. Moreover, by applying 
an argument similar to that in the proof of [5, Prop. 3.7],

(k + 1)Si1 ∗′ M(mμ) = M(mμ) ∗ (k + 1)Si1 = M(mλ).

Repeating the above process, we finally obtain a sequence i1, . . . , id in In and positive 
integers k1 = k + 1, . . . , kd such that

(k1Si1) ∗′ · · · ∗′ (kdSid) = M(mλ).

In other word, the word wλ := ik1
1 · · · ikd

d lies in (℘op)−1(mλ). It can be also checked that 
the word wλ is distinguished. Thus, the corresponding monomial

m(wλ) = (u−
i1

)(k1) · · · (u−
id

)(kd) = F
(k1)
i1

· · ·F (kd)
id

gives rise to the equality (8.1.2) for the element m(wλ)|∅〉. We remark that m(wλ)|∅〉
coincides with the element A(λ) constructed in [25, (8)] by using the “ladder method” 
of James and Kerber [20].
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