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1. Introduction

In the 1990s, C*-algebras of row-finite directed graphs were introduced in [7,16,17].

Since their first appearance, these C*-algebras have been intensively studied (for ex-

ample, see [24]). Some of the earliest results about these algebras include the existence
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of a universal family, the gauge-invariant uniqueness theorem, and the Cuntz—Krieger
uniqueness theorem.

Higher-rank graph C*-algebras were introduced by Kumjian and Pask in [15] as a
generalisation of the C*-algebras of directed graphs. In [15], Kumjian and Pask limit
their focus to row-finite higher-rank graphs with no sources. Later, Raeburn, Sims and
Yeend extended the coverage by introducing C*-algebras of locally convex, row-finite
higher-rank graphs in [21] and then finitely aligned higher-rank graphs in [22]. It is
in the finitely aligned setting where graphs that fail to be row-finite are considered.
Once again Raeburn, Sims and Yeend establish the existence of a universal family, the
gauge-invariant uniqueness theorem, and the Cuntz—Krieger uniqueness theorem.

On the other hand, Leavitt path algebras were developed independently by Ara,
Moreno, and Pardo in [4] and Abrams and Aranda Pino in [2]. A complex Leavitt path
algebra is a purely algebraic structure constructed from a directed graph that sits densely
inside the graph C*-algebra. Tomforde showed in [30] that one can generalise further and
define Leavitt path R-algebras where R is any commutative ring with identity. Tomforde
proved the existence of a universal family, the graded uniqueness theorem (which is the
algebraic analogue of the gauge-invariant uniqueness theorem), and the Cuntz—Krieger
uniqueness theorem for Leavitt path R-algebras. Tomforde’s proofs in [30] use techniques
that are similar to those employed by Raeburn for Leavitt path C-algebras in [6] and in
Tomforde’s earlier paper [29] for Leavitt path K-algebras where K is an arbitrary field.

Moving to higher-rank graphs, Kumjian—Pask R-algebras were introduced in [5] and
include the class of Leavitt path algebras. Kumjian—Pask algebras are the algebraic ana-
logue of the higher-rank graph C*-algebras of [15]. As in [15], the authors of [5] consider
row-finite higher-rank graphs with no sources. Later, Clark, Flynn and an Huef devel-
oped Kumjian—Pask algebras for locally convex, row-finite higher-rank graphs in [11]. To
complete the final algebraic piece, in this paper we introduce Kumjian—Pask algebras for
finitely aligned higher-rank graphs. We will establish the existence of a universal family,
the graded uniqueness theorem, and the Cuntz—Krieger uniqueness theorem.

Our motivation to consider this class of higher-rank graphs comes from our desire
to establish an algebraic version of [19, Theorem 4.1]: there Pangalela shows that the
Toeplitz C*-algebra associated to a row-finite graph A can be realized as the graph
C*-algebra associated to a higher-rank graph constructed from A, called T'A. In this
setting T'A has sources and is not locally convex.

Let A be a finitely aligned k-graph and let R be a commutative ring with iden-
tity. We define a Kumjian—Pask A-family (Definition 3.1) and show the existence of
a universal Kumjian-Pask algebra KPg (A) that is a ZF-graded R-algebra in Propo-
sition 3.7. We then prove the graded uniqueness theorem in Theorem 4.1. Up to this
point, our techniques mirror the C*-algebraic techniques of [22]. However, the proof
of the Cuntz—Krieger uniqueness theorem of [22] is highly analytic so we must use an
alternate approach. We have chosen a groupoid approach.

In Section 5, we introduce groupoids and Steinberg algebras. Then, given a finitely
aligned higher-rank graph A, we build the associated boundary-path groupoid G, as
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n [32]. We then use the graded uniqueness theorem (Theorem 4.1) to show that the
Kumjian—Pask algebra KP g (A) is isomorphic to the Steinberg algebra Ar(G,) in Propo-
sition 5.4. With this isomorphism in place, we aim to use results about Steinberg algebras
to establish results about Kumjian—Pask algebras.

First we establish how certain properties of A translate to properties of G ; we do this
in Section 6 and Section 7. Of interest in its own right, we show that a higher-rank graph
A is aperiodic if and only if the boundary-path groupoid Gy is effective in Proposition 6.3.
We also show in Proposition 7.1, that a higher-rank graph A is cofinal if and only if Ga
is minimal.

Now in Section 8, we prove the Cuntz—Krieger uniqueness theorem. This theorem
only applies to Kumjian—Pask algebras associated to aperiodic graphs. The proof is
simply an application of the Cuntz—Krieger uniqueness theorem for Steinberg algebras
[9, Theorem 3.2] which applies to effective groupoids. Note that our technique gives an
alternate proof of the Cuntz—Krieger uniqueness theorem in the special cases of Leavitt
path algebras in [30] and the row-finite Kumjian—Pask algebras of [5,11].

Finally, in Section 9, we give necessary and sufficient conditions for KPg (A) to be
basically simple in Theorem 9.3 and simple in Theorem 9.4. These two results are a
consequence of the characterisation of basic simplicity and simplicity of the Steinberg
algebra Ag (Ga) (see Theorem 4.1 and Corollary 4.6 of [9]).

2. Background

Let N be the set of non-negative integers and let k be a positive integer. We write
n € N¥ as (ny,...,nx) and for m,n € N¥ we write m < n to denote m; < n; for
1 <4 < k. We also write m V n for their coordinate-wise maximum and m A n for their
coordinate-wise minimum. We denote the usual basis in N* by {e;}.

A directed graph or 1-graph E = (E07E1,7“, 8) consists of countable sets of vertices
E° edges E' and functions r,s : E' — EY, which denote range and source maps,
respectively. We follow the conventions of [23] and write Ay to denote the composition of
paths A and p with s (A\) = r (u). Thus a path of length n € N is a sequence A = Ay -+ A,
of edges \; with s(A;) = r(Aiy1) for 1 <4 < n — 1. We also have s (\) := s(\,) and
r(A) :=r(\).

Remark 2.1. We use this convention of paths because we view the collection of paths as
a category.

2.1. Higher-rank graphs

For a positive integer k, we regard the additive semigroup N¥ as a category with one
object. A higher-rank graph or k-graph A = (A%, A,r,s) is a countable small category A
with a functor d : A — N¥, called the degree map, satisfying the factorisation property:
for every A € A and m,n € N* with d (\) = m + n, there are unique elements y,v € A



L. Orloff Clark, Y.E.P. Pangalela / Journal of Algebra 482 (2017) 364—397 367

such that A = pv and d (1) = m, d (v) = n. We then write A (0, m) for p and A (m, m + n)
for v.

We write A° to denote the set of objects in A and we identify each object v € A°
with the identity morphism at the object, which, by the factorisation property, is the
only morphism with range and source v. We then regard elements of A° as vertices. For
n € N, we define

A :={deA:d(\)=n}

and call the elements X\ of A™ paths of degree n. For each A\ € A we say A has source s (\)
and range r (\). For v € A A € A and E C A, we define

vE:={pe E:r(u) =v},
AE:={dpeA:peEr(u=s\},
Ex:={ureA:peE s(u)=r(\}.

Remark 2.2. In older references, for example [15,21], vA is denoted by A (v).
Example 2.3 (/21, Ezample 2.2.(ii)]). Let k € N and m € (NU{00})*. We define
Qo = {(p,q) eNF xNF:p<g<m}.

This is a category with objects {p eNF:p< m}, range map r (p,q) = p, source map
s(p,q) = q, and degree map d (p,q) = ¢ — p. Then (Qm,d) is a k-graph.

One way to visualise k-graphs is to use coloured graphs. By choosing & different colours
c1,...,CL, we can view paths in A® as edges of colour ¢;. For a k-graph A, we call its
corresponding coloured graph the skeleton of A. For further discussion about k-graphs
and their skeletons, see [14].

Let A be a k-graph. For A\, p € A, we say that 7 is a minimal common extension of \
and p if

d(r)=dXN) Vd(u), 7(0,d(\) = X and 7(0,d (1)) = p.

Let MCE (A, 1) denote the collection of all minimal common extensions of A and p. Then
we write

A (A 1) = {(p,7) EAXA: Ap=pur € MCE(\,p)}.
Meanwhile, for £ C A and A € A, we write

Ext (A E) = U {p:(p,7) €A™ (X, p)}.
ner
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A set E C wA is ezhaustive if for every A € wA, there exists p € FE such that
A (X 1) # (. We define

FE(A) := U {E C vA\ {v} : E is finite and exhaustive} .
veAO

For E € FE (A), we write r (E) for the vertex v which satisfies £ C vA.

We say that A is finitely aligned if A™™ (), i) is finite (possibly empty) for all A, 1 € A.
We see that every 1-graph is finitely aligned. As in [15, Definition 1.4], we say that a
k-graph A is row-finite if vA™ is finite for every v € AY and n € N*. Note that for
all A, € A, we have |[A™" (X, p)| = [MCE (X, p)| < |r () AYMVEW| Hence, every
row-finite k-graph A is finitely aligned. On the other hand, a finitely aligned k-graph A
is not necessarily row-finite.

For example, consider the 2-graph A; which has skeleton

Le" f ~o
N
’ 2 N
L} - 1
[y . “‘ .
-~ .
e ' f1 ' .
NN - I' "
-
e N ST S L
Seos L.
..ﬁ A
[

where ef; = f;e for all positive integers 4, the solid edge has degree (1,0) and dashed
edges have degree (0, 1). It is clearly not row-finite because |vAgO’1)| = 00. On the other
hand, for A,z € A, |AR () u)| is either 0 or 1, and then A; is finitely aligned.

Following [15, Definition 1.4], a k-graph A has no sources if vA™ is non-empty for
every v € A? and n € N*. Meanwhile, recall from [21, Definition 3.9] that a k-graph A
is locally conver if for all vA?, 1 < i,j < k with i # j, A\ € vA% and pu € vA®, the sets
s(A) A% and s (u) A are non-empty.

Consider the 2-graph Ay with skeleton

U2 f1 V4
[ R e °
€1 €2
€3
V5@—————> @4~~~ === === = )
U1 f2 U3

where ey fi = faea, solid edges have degree (1,0) and dashed edges have degree (0,1).
Since vs does not receive edges with degree (0,1), then vs is a source of Ay. Furthermore,
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A fails to be locally-convex since e3 € leél’O),fg € legO’l) but s (e3) Aéo’l) = 0. On
the other hand, A5 is row-finite thus As is finitely aligned.
Next consider the 2-graph As with skeleton

where ef; = fe; for all positive integers i, solid edges have degree (1,0) and dashed edges
have degree (0,1). Since |A§nin (e,f)| = 00, then A3 is not finitely aligned. Hence, not
every k-graph is finitely aligned.

To summarise, finitely aligned k-graphs generalise both row-finite k-graphs with no
sources and locally convex row-finite k-graphs. However, this class of k-graphs does not
cover all k-graphs. In this paper, we focus on finitely aligned k-graphs. For other examples
and further discussion, see [15,19,21,22 31].

2.2. Paths and boundary paths

Suppose that A is a finitely aligned k-graph. Recall from [21, Definition 3.1] that for
n € N¥, we define

A" :={N€A:d()\) <n,and d()\), < n; implies s (\) A% = 0}.

Note that vAS"™ % ) for all v € A and n € N¥. This is because v is contained in vAS"
whenever vAS" has no non-trivial paths of degree less than or equal to g. For further
discussion, see [21, Remark 3.2].

Following [13, Definition 5.10], we say that a degree-preserving functor = : Qj ,, — A
is a boundary path of A if for every n € N*¥ with n < m and for E € x (n,n)FE (A),
there exists A € E such that x (n,n + d (X)) = A. We write A for the set of all boundary
paths. Note that for v € A, vA is non-empty [13, Lemma 5.15].

Remark 2.4. In the locally convex setting, the set AS> (as defined in [21, Definition
3.14]) is referred to as the “boundary path space”. Indeed, if A is row-finite and locally
convex, then AS® = 9A [31, Proposition 2.12]. However, more generally, AS® C 9A
and the two can be different (see [31, Example 2.11]).

Let z € OA. If n € N¥ and n < d(z), we define o™z by 0"z (0,m) = x (n,n +m)
for all m < d(z) — n, and by [13, Lemma 5.13.(1)], o™z also belongs to dA. We also
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write x (n) for the vertex x (n,n). Then the range of boundary path z is the vertex
r(x) := z (0). For A € Az (0), we also have Az € OA [13, Lemma 5.13.(2)].

2.8. Graded rings

Suppose that G is an additive abelian group. A ring A is G-graded if there are additive
subgroups {4, : g € G} satisfying:

A =P jecAy and for g,h € G, AgAy C Agin.

If A and B are G-graded rings, a homomorphism 7 : A — B is G-graded if 7 (A,) C B,
for g € G.

Let A be a G-graded ring. We say an ideal I of A is a G-graded ideal it {IN A, : g € G}
is a grading of I.

3. Kumjian—Pask A-families

Suppose that A is a finitely aligned k-graph and R is a commutative ring with iden-
tity 1. For A € A, we call A* a ghost path (A* is a formal symbol) and we define

G(A):={\":XeA}.
For v € A°, we define v* := v. We also extend r and s to be defined on G (A) by
r(A")=s(\) and s(\*) =r(N).

We then define composition on G (A) by setting \*u* = (uA)* for A\, u € A; and write
G (Aio) the set of ghost paths that are not vertices. Note that the factorisation property
of A induces a similar factorisation property on G (A).

Definition 3.1. A Kumgjian—Pask A-family {Sx, S, : A\, u € A} in an R-algebra A consists
of §: AUG (A7?) — A such that:

(KP1) {Sv tv € AO} is a collection of mutually orthogonal idempotents;

(KP2) for A\, u € A with s () =r(u), we have SxS,, = Sy, and S~ Sx- = S(au)*;
(KP3) Sx«Su =32, ryenmn(ru) SpSr for all A, € A; and

(KP4) HAGE (ST'(E) — S)\S)\*) =0 forall E € FE (A)

Remark 3.2. A number of aspects of these relations are worth commenting on:

(i) In previous references about Leavitt path algebras and Kumjian—Pask algebras,
people usually distinguish the vertex idempotents as “P,” (for example, see [1-5,11,
29,30]). We do not follow this convention because we do not want to make additional
unnecessary cases in each proof.
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(ii) (KP2) in [5,11] has more relations to check. However, using our notational conven-
tion, those relations can be simplified and are equivalent to our (KP2).

(iii) The restriction to finitely aligned k-graphs is necessary for the sum in (KP3) to be
make sense (see [20]).

(iv) In (KP3), we interpret the empty sum as 0, so Sy+S,, = 0 whenever A™™ (X, 1) = 0.
We also have S\«Sy = SS(A).

(v) (KP3-4) have been changed from those in [5, Definition 3.1] and [11, Definition
3.1]. We do this because we need to adjust the relations to deal with situation
where k-graph is not locally convex. For further discussion, see Appendix A of [22].

The following lemma establishes some useful properties of a family satisfying (KP1-3).

Proposition 3.3. Let A be a finitely aligned k-graph, R be a commutative ring with 1, and
{Sx, S+ 2 A\, € A} be a family satisfying (KP1-3) in an R-algebra A. Then

(a) SaSr+S,S, = Z/\peMCE(/\’M) SxpSapy* for A\, € A; and {S\Sx- : A € A} is a com-
muting family.
(b) The subalgebra generated by {Sx, S~ : A\, € A} is

spanp{SxSu : A, p € A, s(A) =s(p)}.

(c) Forn € N¥ and \, u € AS™, we have S Sy = a1 Ss(n)-
(d) Suppose that S, # 0 for allr € R\ {0}, v € A° and that A\, u € A with s (\) = s ().
If r € R\{0} and G C s(X) A is finite non-ezhaustive, then

rSx #0 and rSx( [T (Ssx) = SuSu+) ) Sus # 0.
veG

Proof. To show (a), we take A, x € A and then

SASAxSpSyr = SA( Z SPST*)SM = Z SAPS(M)*
(p,m)EA™IR(X, 1) (p,T)EA™IR(X, 1)
= Z SxpSap) = Z SxpS(rp)*-
(p,m)EA™IN (X 1) ApEMCE(X, 1)
Furthermore,
SN SuSpr = Z SAPS(AP)* = Z SMS(M)* = SuSp=SxSx+,
ApEMCE (A, 1) uTEMCE(\, 1)

as required.

Next we show (b). For A, u € A, we have SxSy- = SxSs(x)Ss(u)Su+ by (KP2). Then
by (KP1), SxS,- # 0 implies s (A\) = s (p). Therefore, the result follows from part (a),
(KP2) and (KP3).
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To show (c), we take A\, € AS™. Suppose that Sx+S,, # 0. By (KP3), there exists
(p,7) € A™n (X i) such that A\p = u7 and d (A\p) < n. Since \,u € AS", then p =
s(A) =7 and hence A = p.

Finally, we show (d). Take » € R\ {0} and A € A. Suppose for contradiction that
rSy = 0. Then

0= 5 (’I”S)\) =7rS\-S) = TSS()\)7

which contradicts with r.S, # 0 for all » € R\ {0} and v € A°. Hence, rSy # 0.
Now take » € R\ {0}, \,p € A with s(\) = s(u) and finite non-exhaustive G C
s (A) A. Suppose for contradiction that

rSY(TT (s = SuSue) ) Sp= = 0.

veG

Since G is non-exhaustive, then there exists v € s (A) A such that Ext (v; G) = 0. Hence
A™n (y, ) = () for every v € G, and then by (KP3), S-S, = 0 for v € G. Therefore,

0= (rSx( [T (Ser) = 800 ) ) Sir) Sur

veG

=S\ (JT (Ssen = 808.0) )5,

veG

=195y =15\,
which contradicts with Sy, # 0. Hence, rSx ([T, cq (Ss() — SuSu+) )Su= #0. O

Remark 3.4. For n € N¥| we have A" C A=". Hence, Proposition 3.3.(c) also implies
that for n € N¥ and X\, € A™, we have Sxx Sy = 0,1 Ss(n)-

Remark 3.5. Suppose that rS, # 0 for all r € R\ {0}, v € A? and that \,u € A
with s(A) = s(u). Then the contrapositive of Proposition 3.3.(d) says: if » € R and
G C s(\) A is finite such that rSx ([T, e (Ss(n) — SuSu+) ) S+ = 0, then we have either
r =0 or G is exhaustive.

Now we give an example of a Kumjian—Pask A-family in a particular algebra of en-
domorphisms.

Proposition 3.6. Let A be a finitely aligned k-graph and R be a commutative ring with 1.
Let Fr (OA) be the free module with basis the boundary path space. Then for every v € A°
and \, p € A\ A°, there exist endomorphisms Sy, Sx, Sy : Fr (OA) — Fr (OA) such that
for x € OA,

Sy (2) = {x if r(x) =v;

0 otherwise,
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Sy (2) = {)\x if s(\) =r(z);

0 otherwise,

oWz if 2(0,d () = p;
Spe (x) = .
0 otherwise.
Furthermore, {Sx,Su~: A\, u € A} is a Kumjian-Pask A-family in the R-algebra
End (Fg (OA)) with rS, # 0 for all r € R\ {0} and v € A°.

Proof. Take v € A and A\, € A\ A°. First note that for € A and m < d(z), we
have o™z € OA. Now define functions f,, fi, and f,« : OA — Fr (0A) by

£ (@) = {x if r(z) =v;

0 otherwise,

£ (@) = {Ax if s(\) =r(z);

0  otherwise,

fo (@) = {od% if 2 (0, d (1) = p;

0 otherwise.
The universal property of free modules gives nonzero endomorphisms
Syy S, Spr : Fr(0A) = Fr (OA)

extending f,, fx, and f,~, as needed.

Now we claim that {Sx, S, : A, u € A} is a Kumjian-Pask A-family. To see (KP1),
take v € AY and 2 € OA. Then we have S2 (z) = 2 = S, (v) if r (x) = v, and S? (z) =
0 =S, (z) otherwise. Hence S% = S,. Now take v,w € A® with v # w and x € dA. Since
x € woA implies ¢ vOA, we have S, S, () =0 for x € OA and S,S,, = 0.

Next we show (KP2). Take A\, u € A with s(\) = r (). Then for x € s(u)dA, we
have paz € s (X) OA. Then S)S, (z) = Apx = Sy, () if € s () OA, and SxS,, (z) =0 =
Sxp (x) otherwise. Hence S5, = Sx,. Meanwhile, for z € r (A\) OA with z (0,d (Ap)) =
A, we have d (\u) < d(x) and 0¥z € s(u) OA. Furthermore, 2 (0,d (A\u)) = A,
implies  (0,d (\)) = X and then we have d (\) < d (z) and 0%Mz € s (\) A. Hence,

Sy Sxx (x) = S,ﬁad(’\)x = g N Fd) g — AR g — Sy ()

if 2(0,d(Ap)) = Ap, and S-Sy« (x) = 0 = S(\,~ (x) otherwise. Therefore, S-Sy~ =

S
Now we show (KP3). Take A\, € A. If r(A) # r(u), then Sx\-S, = 0 and
A™I (X 1) = 0, as required. Suppose r (\) = r (). We have
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(u) (d (V) ,d (uz)) ifx € s () OA and () (0,d (V) = A;

0 otherwise.

55,00~ {

Take z € s(u)dA. Note that s(u) = r(r) for (p,7) € A™™ (X ). First suppose
() (0,4 (\)) # A Then for (p,7) € A™™ (A, ),

(1) (0,d (Ap)) # Ap and (ua) (0,d (7)) # pir-

Hence z (0,d (7)) # 7 and S,S+ (x) = S, (0) = 0. Therefore

> 8,8 (z) = 0.

(p,T)EA™IR(X, 1)

Next suppose (pz) (0,d(X)) = A. Since (uz) (0,d(N)) = A and (pz) (0,d(p)) = u,
there is 7 € s(u) A such that (p,7) € A™ (X, u) and (uz) (0,d (7)) = pr. There-
fore x (0,d (7)) = 7. Note that this 7 is unique by the factorisation property. Hence
for (p/,7') € A™™ (X, pu) such that (p',7') # (p,7), we have S, S~ (z) = 0. Also
x(0,d (7)) = 7, thus

SpSre (2) = Sp (@ (d(7),d (2))) = plz (d(r),d(x))]
= p[(px) (d(p1), d(p2))]
= pl(ux) (d(Np),d (ux))] (since pr = \p)
= (uz) (d(A), d (p))

and

(p' ) EA™R (A, p)

as required.
Finally, we show (KP4). Take E € FE (A). Take z € r (E) OA. Since E € z (0) FE (A)
and x is a boundary path, then there exists A € F such that x (0,d (A)) = A. This implies

(Sr() — SxSx+) (2) = Sp(r) () — SxSa- (2)
=z =S\ (z(d(N),d(z)))

=x—x=0.

Hence

( H (Sp(g) — SaSx+) ) () =0

ANEE

for z € r (E) O\, and [, (Sr(p) — SaSx-) = 0.
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Thus {Sx, Su» : A, u € A} is a Kumjian-Pask A-family, as claimed. Now note that for
v € AY, vOA is non-empty. This implies that for all r € R\ {0} and v € A°, 7S, # 0. O

Using an alternate construction of a Kumjian—Pask A-family, we next show that there
is an R-algebra which is universal for Kumjian—Pask A-families.

Theorem 3.7. Let A be a finitely aligned k-graph and R be a commutative ring with 1.

(a) There is a universal R-algebra KPg (A) generated by a Kumgjian—Pask A-family
{sx,8u= * A, € A} such that whenever {Sx, S, : A\, € A} is a Kumjian—Pask
A-family in an R-algebra A, then there exists a unique R-algebra homomorphism
s : KPr (A) = A such that ws (s)) = Sx and 7g (sp+) = Sy~ for A\, u € A.

(b) We have rs, # 0 for all r € R\ {0} and v € A°.

(¢) The subsets

KPR (A), :=spang {sxsy- : A, p € A, d(N) —d(p) =n}

forms a ZF-grading of KPg (A).

Proof. We use an argument similar to [5, Theorem 3.4] and [11, Theorem 3.7]. To show
(a), first we define X := AUG (A7Y) and Fg (w (X)) be the free algebra on the set w (X)
of words on X. Let I be the ideal of Fg (w (X)) generated by elements of the following
sets:

(i)
(i)
(i)

)

(iv

{vw = 600 i v,w € A%},

{A— v, \* —v*u* A v € Aand A = uv},
A =2 pmyenmina P77 A € A}, and
{ITaep (r(E) = AN*) : E € FE(A)}.

Now define KPg (A) := Fg(w (X)) /I and q : Fg (w (X)) — Fr(w (X)) /I be the
quotient map. Define sy := ¢ () for A € A, and s,- = ¢ (u*) for p* € G (A7é0). Then
{sxn, s, : A€ A, p* € G (A79)} is a Kumjian—Pask A-family in KPg (A).

Now let {Sx, S+ : A, € A} be a Kumjian-Pask A-family in an R-algebra A. Define
f:X—=>Aby f(A):=8\for A€ A and f(u*) := Sy~ for p* € G (A’ﬁo). The universal
property of Fr (w (X)) gives a unique R-algebra homomorphism ¢ : Fg (w (X)) — A
such that ¢|x = f. Since {Sx, S, : A, u € A} is a Kumjian-Pask A-family, then I C
ker (¢). Thus there exists an R-algebra homomorphism 7g : KPr (A) — A such that
mgoq = ¢. The homomorphism 7g is unique since the elements in X generate Fg (w (X))
as an algebra. Furthermore, we have 7g (sy) = Sy for A € A and 7g (s,+) = Sy~ for
p* € G (A#0), as required.

To show (b), let {Sx, S, : A, € A} be the Kumjian-Pask A-family as in Proposi-
tion 3.6. Then 7S, # 0 for v € A°. Since 75 (rs,) = rS, # 0 for all r € R\ {0} and
v €AY, we have rs, # 0 for all r € R\ {0} and v € A°.
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Next we show (c). We first extend the degree map to w (X) by d (w) := Zii‘l d ((w;))
for w € w (X). By [5, Proposition 2.7], Fg (w (X)) is Z*-graded by the subgroups

Fr(w (X)), = Z TwW i Ty 7 0 implies d (w) =n
wew(X)

Now we claim that the ideal I defined in (a) is a graded ideal. It suffices to show
that I is generated by elements in Fr (w (X)), for some n € Z*. Since d(v) = 0 for
v € AY, then the generators in (i) belong to Fg (w(X)),. If A = pv in A, then A — v
belongs to Fr (w (X)) ) and A* — v*p* belongs to Fr (w (X))_y,)- For A, u € A and
(p,7) € A™™ (X 1), we have

d(p) —d(r) = (dN)Vd(p) =d(N) = (dA) Vd(p) —d(p) = =d(A) +d(n)

and then the generators in (iii) belong to Fr (w (X))_(3)14(,)- Finally, a word AX* has

degree 0 and then the generators in (iv) belong to Fr (w (X)),. Thus I is a graded ideal.
Since I is graded, then KPg (A) = Fg (w (X)) /I is graded by the subgroups

(Fr(w (X)) /I), =spang {q(w) :w € w(X),d(w) =n}.

By Proposition 3.3.(b), we have KPg (A) = spang {sxsu- : A, p € A,s(A) =s(n)}. We
have to show that

KPR (A),, :=spang {sxsu- : A, p € A,d(N\) —d(pn) =n} = (Fr(w (X)) /1), -

Take A\, p € A with d (\) —d(p) =n. Then sys,- = q(N) ¢ (1*) = ¢ (A\p*) and d (Ap*) =
d(\) —d(p) =n. Hence sys,- € (Fg(w (X)) /1), and KPg (A), C (Fr(w (X)) /1),
To prove (Fg (w (X)) /I),, € KPg(A),, we first establish the following claim:

Claim 3.8. Let X := AUG (A7?) and q : Fg (w (X)) — KPg (A) be the quotient map.
Then for w € w(X), we have g (w) € KPR (A)y,-

Proof of Claim 3.8. We are modifying the proof of [5, Lemma 3.5] and [11, Lemma
3.8] using our version of (KP3). We prove the claim by induction on |w|. For |w| = 0,
we have w = v for some v € A®. Then ¢q (w) = s, = 5,8, and d(v) — d (v) = 0. So
q(w) € KPR (A)g-

For |w| = 1, we have two possibilities. First suppose w = A for A € A. Then ¢ (w) =
sx = sass(nr and d(A) — d(s(A) = d(A). So g(w) € KPg(A)y,,. Next suppose
w = A* for A € A. Then g (w) = sx= = sgn)8a- and d (s (A)) —d(N) = —d (\) = d(\).
So q(w) € KPR (A) 4

For |w| = 2, we have four possibilities: w = Ap*, w = Ay, w = p*A*, or w = A\*p. For
the first three cases, we have
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q(An*) = sxsu- and d(X) —d (p) = d ("),
)= d(s(p) =d(Au),
(

q (W) = ssysowr and d (s (u) —d (Aw)") = d (u*X*),

) =
q (M) = SauSs(py- and d (Ap

as required. Suppose w = A*u. By (KP3), we have

q ()\*/u) = Sx+S, = Z SpSr=.

(p,m)EA™ (X, 1)

For (p,7) € A™™ (X, 1), we have A\p = u7 and then d (w) = d (u) —d(\) = d (p) — d (p).
So g (w) € KPR (A) g,

Now suppose that n > 2 and ¢ (y) € KPg (A) 4, for every word y with |y| < n. Let w
be a word with |w| =n+1 and ¢ (w) # 0. If w contains a subword w;w;+1 = Ay, then A
and p are composable in A since otherwise ¢ (Aun) = 0. Now let w’ be the word obtained
from w by replacing w;w;41 with the single path Au, and then

_ _ _ /
q (w) = Swy " Swi1IASpSwipa Swnyr T Swi T Swim 1 SApSwi o Swnyr = 4 (w ) :

Since [w'| = n and d (w') = d (w), the inductive hypothesis implies ¢ (w) € KPg (A) (-
A similar argument shows g (w) € KPg (A) d(w) whenever w contains a subword w;w; 11 =
WENE

So suppose w contains no subword of the form Ay or p*A*. Since |w| > 3, either
wiws or waws has the form A* . By (KP3), we write ¢ (w) as a sum of terms ¢ (y*) with
|yi| =n+1andd (yl) = d(w). Since |w| > 3, each nonzero summand ¢ (yz) contains
a factor of the form s,s, or one of the form s;-s,-. Then the previous argument shows

that every ¢ (y') € KPg (A) 4wy and g (w) € KPR (A) ), as required. 0 Claim 3.8

w)?

Every element in (Fg (w (X)) /1),, is in the form ¢ (w) with w € w (X) and d (w) =n
which, by Claim 3.8, belongs to KPg (A),,. Then (Fg (w (X)) /I),, € KPr(A),, as re-
quired. O

Definition 3.9. Suppose that {S\,S,- : A\, € A} is the Kumjian-Pask A-family in the
R-algebra End (Fgr (0A)) as in Proposition 3.6. We call the R-algebra homomorphism
ms : KPg(A) — End (Fgr (OA)) obtained from Theorem 3.7.(a), the boundary path rep-
resentation of KPg (A).

4. The graded uniqueness theorem

Throughout this section, A is a finitely aligned k-graph and R is a commutative ring
with identity 1.

Theorem 4.1 (The graded uniqueness theorem). Let A be a finitely aligned k-graph, R be a
commutative ring with 1, and A be a ZF-graded R-algebra. Suppose that m : KPg (A) — A
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is a Z*-graded ring homomorphism such that  (rs,) # 0 for allr € R\ {0} and v € A°.
Then 7 is injective.

We start the proof of Theorem 4.1 by adapting some C*-algebra results used to prove
the gauge-invariant uniqueness theorem [22, Theorem 4.2] to Kumjian—Pask algebras.
Although the argument is rather technical, the point is that most of the argument in the
C*-algebra setting also works in our situation.

First we recall from [22, Definition 2.5] that a Cuntz—Krieger A-family is a collection
{T : A € A} of partial isometries (in other words, it satisfies Th = Th\TxT» for A € A,
see [23, Appendix A]) in a C*-algebra B satisfying:

(TCK1) {Tv RS AO} is a collection of mutually orthogonal projections;
(TCK2) T)\T,, = T\, whenever s (X) =1 (u);
(TCK3) TXTy = 3=, ryeamin(y ) LpTy for all A, p € A; and

(CK) H)\EE (TT(E) - T)\T:) =0 for all F € FE (A)

For a finitely aligned k-graph A, there exists a universal C*-algebra C* (A) gen-
erated by the universal Cuntz—Krieger A-family {¢): A € A}. Now suppose that
{Sx, Sy : A\, p € A} is a Kumjian-Pask A-family in an R-algebra A and we define
Ty = Sy for A € Aand T} := S« for p € G(A#)). Then {T) : A € A} is a collec-
tion satisfying T = ThT5Ty for A € A, (TCK1-3) and (CK). (Note that we do not
say that {T) : A € A} is a Cuntz—Krieger A-family, since we need a C*-algebra contain-
ing T\, T}, .) Similarly, a Cuntz—Krieger A-family in a C*-algebra gives a Kumjian—Pask
A-family. Thus one can translate proofs about Cuntz—Krieger A-families to proofs about
Kumjian—Pask A-families.

The key ingredient to proof of Theorem 4.1 is proving that the uniqueness theorem
holds on the core KPg (A), := spang {sxs,+ : d(\) =d ()} (Theorem 4.4). First we
establish some preliminary results and notation.

Following [22, Lemma 3.2], for every finite set E C A, there exists a finite set FF C A
which contains F and satisfies

Mt por €F, d(N) = (), d(p) =d (), s(N) = 5 (1), and 5 (p) = s (r)  (4.1)
imply {Ae, 78 : (a,8) € A™™ (u,p)} C F.
We then write
IE = ﬂ{F CA:ECF and F satisfies (4.1)}

and ITE x4 s IIE for the set {(A, u) € IIE x IIE : d(X) = d (p) , s (A) = s () }. Note that
IIE is finite. Now recall from Notation 3.12 of [22] that for A € IIE, we write

TN :={resANA:d(v)#0,\w elIlE}.

Since AT (A\) C IIE and IIFE is finite, then T (\) is also finite.
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Now suppose that {Sx, S, : A\, u € A} is a Kumjian-Pask A-family in an R-algebra A.
The argument of Lemma 3.2 of [22] shows that the set

Mg := spanp {S3Su= : (A, p) € IIE x4, IIE}

is closed under multiplication. For (A, ) € IIE X4 s ILE, define

O () =5 [T (Ssry = SawSin))Sur.

veT(N)

Applying the argument of Proposition 3.9 and Proposition 3.11 of [22] gives the fol-
lowing.

Lemma 4.2. Let {S),S,- : A, € A} be a Kumjian—Pask A-family in an R-algebra A and
E C A be finite. For (A, ), (p,7) € IIE x4, IIE, we have

O(S)N, O(S))7 =0,,0(9)7, SNSu= > (S,

A u pyT Av,pv
AveEIlE

and M55 is spanned by the set {© (5)1;5 s (A p) €IE x4 IIE}.

Lemma 4.3. Let A be a finitely aligned k-graph, R be a commutative ring with 1 and
E C A be finite. Suppose that w : KPg(A) — A is a ring homomorphism such that
7 (rsy) #0 for allr € R\ {0} and v € A°. Let (\, ) € IIE x4 IIE. Then the following
conditions are equivalent:

(a) 7(©(s)y2) = 0.

A

(b) ©(s)\ = 0.
T(

A) is exhaustive.
Furthermore, for r € R\ {0} we have

w(r@ (s)gﬁ) =0 if and only if r© (s)gﬁ =0

o s
and m is injective on Mfiy.

Proof. By following the argument of Proposition 3.13 and Corollary 3.17 of [22], we
have the three equivalent conditions. Now take (A, p) € IIE x4, IIE and r € R\ {0}. If
r0 (s)?ﬁ = 0, we trivially have 7(r© (s)?i) = 0. So suppose 7(r© (s)glﬁ) = 0. Since
7 (rsy) # 0 for all r € R\ {0} and v € AY, then by Remark 3.5, 7(r© (s)gﬁ) = 0 implies
that T (A) is exhaustive (since r # 0) and by (¢)=(b), © (s)/r\lﬁ =0. So r® (s)/r\lﬁ =0,
as required.
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Next we show that 7 is injective on Mfj;. Take a € Mfj; such that 7 (a) = 0. We
have to show a = 0. Since a € My and My = spanz{© (s)gﬁ c (A p) € IIE x4, IIE}
(Lemma 4.2), we write a = Z(A,H)GF (SWIS) (s)fﬁ where F' C IIE x4 5 IIE is finite and
for all (A, ) € F, we have 75, € R and © (s)fi £ 0. If T (\) is exhaustive for some
(A, ) € F, then by (¢)=(b), © (s)g\[ﬁ = 0, which contradicts © (s)glﬁ #0.So T (N) is
non-exhaustive for all (A, u) € F. Since 7 (a) = 0, then for (p,7) € F, we have

nEe ne
0=m(0(s),, )r(a)m(O(s), )

PP T,T

=7(© (s)gf ) ( Z WG] (s)gﬁ )7 (© (S)Ef )

(AmeEF

=7,,7(O (S)HE) =7,.0 (7 (s))gf (by Lemma 4.2).

But now since 7 (rs,) # 0 for all r € R\{0} and v € A% then by Remark 3.5,
75O (m (s))fl}f = 0 implies that r,, = 0 (since T (p) is non-exhaustive). Therefore,
a = 0 and 7 is injective on Myj5. O

A direct consequence of Lemma 4.3 is:

Theorem 4.4. Let A be a finitely aligned k-graph and R be a commutative ring with 1.
Suppose that m : KPr (A) — A is a ring homomorphism such that @ (rs,) # 0 for all
r € R\{0} and v € A°. Then = is injective on KPg (A),.

Proof. Take a € KPg(A), such that 7 (a) = 0. We have to show a = 0. Write a =
Z()\’#)EF T uSaSu with d(X) = d (u) for (A, p) € F. Define E := {\,pu: (A, ) € F} and
then a € M. Since = is injective on M (Lemma 4.3),a =0. O

Now we establish the last stepping stone result before proving Theorem 4.1.

Lemma 4.5. Let I be a graded ideal of KPr (A). Then I is generated as an ideal by the
set Ip := INKPg (A),.

Proof. We generalise the argument of [30, Lemma 5.1]. Take n € Z* and write n =
n1 — ng such that ni,ne € NF and |n1 + n2| as minimum as possible. We show that
L, :==INKPg(A), is contained in KPg (A),, IoKPg(A),,,. Now take a € I, and write
a = mer "usrsus - Note that d (A)—d (n) = n for (A, ) € F. Since n = ny —ny with
n1,n2 € N¥ and |ny + ny| as minimum as possible, then for every (\,u) € F, d(\) > ny
and d (u) > ng, so by the factorisation property, there exist A1, Ag, pi1, p2 such that

A= XA, o= papia, d (A1) = n1, d(p) = ng, and d (A2) = d (p2) .

Hence
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a= E "X, pap2 S (S>\2sl»¢§> Suj -
Ap)eF

Take (o, 8) € F and write @ = ajas and 8 = (182. Note that for v,v € A with
d(v) =d(v), Remark 3.4 gives s,+s, = 0 for v # . Then

SayaSp, = Z TX1 2,012 (s@f S)‘l) (‘9)\25#5) (SHT 851)
(A p)eF

= § ToiA2,B1p2SA2Sp3
{(Aw)eF: =ai,u1=p1}

since d (1) =n1 =d (A1) and d (B1) = na = d(u1) for (A, ) € F. Since a € I, we have
sqrasg, € 1. Since d (A2) = d(uz) for (ai1de, fipuz) € F, we have sqrasg, € KPg(A),.
Hence

Z Taiha,BiusSheSus = Sazasp, € Io
{(\p)EF:A1=01,u1=PB1}
and
Z TayXe,Brp2Sa1AaS(B1pz)*
{Nw)EF: i =a1,u1=P1}
= Sq, (Safa5ﬁ1> Spr € KPgr (A)n1 Io)KPRr (A)n2 .
Therefore
a= Z A1 2,12 SA1 X2 8 (papa)*
(A p)eF

= Z ( Z ra1A2’51“2Sa1A28(51,u2)*)

{(a1,81):(a,B)eF}  {(A\pw)EF:X1=0a1,p1=P1}

also belongs to KPr (A),, IoKPg (A),,,, and I,, C KPg (A),, IoKPRg (A)
Now since [ is a graded ideal and I = €
ideal by Iy. O

ng "

nezk In, we have that I is generated as an

Proof of Theorem 4.1. Because 7 is graded, we have that ker 7 is a graded ideal. By
Lemma 4.5, the ideal ker 7 is generated by the set kerm N KPg (A),. Thus it suffices
to show 7|kp,(n), * KPr(A)y — A is injective. However, the injectivity follows from
Theorem 4.4. 0O

One immediate application of Theorem 4.1 is:

Proposition 4.6. Let A be a finitely aligned k-graph. Let {sx, s, : A, u € A} be the univer-
sal Kumjian—Pask A-family for R = C and {tx : A € A} be the universal Cuntz—Krieger
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A-family. Then there is an isomorphism m; : KP¢ (A) — spang {t)\t; D WIS A} such
that m; (sx) = tx and m (s,+) = t), for A\, € A. In particular, KPc (A) ds isomorphic to
a dense subalgebra of C* (A).

Proof. Since {t) : A € A} satisfies (TCK1-3) and (CK), then {tA, D WIS A} also sat-
isfies (KP1-4) and is a Kumjian—Pask A-family in C* (A). Thus the universal property
of KP¢ (A) gives a homomorphism 7, from KP¢ (A) onto the dense subalgebra

A :=spang {tAt/*L D WIRS A}

of C* (A).
Next we show the injectivity of m;. By Theorem 4.1, it suffices to show that m; is a
ZF-graded ring homomorphism. We claim that A is graded by

Ay = spang {txth : A, p e A, d(N) —d(u) =n}.
Note that for A\, p, p, 7 € A with d(A\) —d (n) =n and d (p) — d (1) = m, we have

ExEhtots = ta( > tuth)ts (by (TCK3))
(w507 ) €A™ (1, p)

= S bwtl,

(w',p") €A™ (p1,p)

and for (1, p') € A™ (1, p),

d) —d(rp) =d(\) +d (') —d(r) —d(p')
=d(A)+ (d(u) Vd(p) —d(pn)
—d(r) = (d(n) Vd(p) —d(p))
= (d(X) = d(p)) = (d(7) = d(p))
=n+m

Hence A, A, € Apim. Since each spanning element ¢ At;, belongs to Ag(n)—d(u)> every
element a of A can be written as a finite sum ) a,, with a,, € A,. For a,, € A,, such
that a finite sum Y a,, = 0, then we have each a, = 0 by following the argument of [5,
Lemma 7.4]. Thus {An 'n € Zk} is a grading of A, as claimed. Then 7, is a ZF-grading
and by Theorem 4.1, m; is injective. O

5. Steinberg algebras

Steinberg algebras were introduced by Steinberg in [28] and are algebraic analogues of
groupoid C*-algebras. In [12], Clark and Sims show that for every 1-graph FE, its Leavitt
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path algebra is isomorphic to a Steinberg algebra. In this section, we show that for every
finitely aligned k-graph A, its Kumjian—Pask algebra is isomorphic to a Steinberg algebra
(Proposition 5.4). We start out with an introduction to groupoids and Steinberg algebras
in general.

A groupoid G is a small category in which every morphism has an inverse. For a
groupoid G, we write 7 (a) and s(a) to denote the range and source of a € G. Because
r(a) = s(a™!) for a € G, then r and s have the common image. We call this common
image the unit space of G and denote it G(°). A pair (a,b) € G x G is said composable
if s (a) = 7 (b). We then use notation G(?) to denote the collection of composable pairs
in G. For A, B C G, we write

AB = {ab:aeA,beB,(a,b) eg<2>}.

We say G is a topological groupoid if G is endowed with a topology such that composi-
tion and inversion on G are continuous. We also call an open set U C G an open bisection
if s and r restricted to U are homeomorphisms into G(?). Finally, we call G ample if G
has a basis of compact open bisections.

Remark 5.1. Note that if G is ample, then G is locally compact and étale. In fact, G is
Hausdorff ample if and only if G is locally compact, Hausdorff and étale with totally
disconnected unit space.

Now suppose that G is a Hausdorff ample groupoid and R is a commutative ring
with 1. As in [9, Section 2.2], the Steinberg algebra' associated to G is

Ar(G) :={f:G — R: f is locally constant and has compact support}

where addition and scalar multiplication are defined pointwise, and convolution is given
by

(f*g)(a):= > f(b)g(b 'a).
r(a)=r(

b)

Furthermore, for compact open bisections U and V', we have the characteristic function
1y € AR(Q) and

1U * 1\/ = 1UV
[28, Proposition 4.3]. Note that for f € Ag (G), supp (f) is clopen ([9, Remark 2.1]).

Example 5.2. To each finitely aligned k-graph A, we define the associated boundary-path
groupoid G from [32, Definition 4.8] as follows. Write

! In [28], Steinberg writes RG to denote Ar(G).



384 L. Orloff Clark, Y.E.P. Pangalela / Journal of Algebra 482 (2017) 364—397

Asg Ai={(Ap) EAXA:s(N)=s(u)}
The objects of G5 are
ODbj (Gp) := OA.
The morphisms are

Mor (Ga) := {(Az,d (\) — d (), uz) € DA x ZF x OA :
(A p) € Axg Az € s(N\)OA}
= {(x,m,y) € OA x ZF x dA : there exists p, ¢ € N¥ such that
p<d(e),q<d),p—q=m and oz = oy},

The range and source maps are given by r(z,m,y) := z and s(z,m,y) := y, and
composition is defined such that

(w1, m1,91), (Y1, m2,y2)) = (1, M1 + M2, y2) .

Finally inversion is given by (z,m,y) — (y, —m, x).
Next, we show how to realise G5 as a topological groupoid. For (A, u) € A x5 A and
finite non-exhaustive subset G C s (\) A, we write

Zy () = AOA,
Zn(NG) = Zy O\ (U Za (),
veG

Za (A xs ) :i={(z,d(N) —=d (1) ,y) €Gr:x € Zp(N),y € Zp (1)

and oMy = Jd(“)y},
and

Zn (A g f\ G) = Zn (N g )\ ( U Za Ow % uv))
veG

The sets Zj (X *5 p\ G) form a basis of compact open bisections for a second-countable,
Hausdorff topology on G under which it is an ample groupoid. Further, the sets
Zx (A\ G) form a basis of compact open sets for ggo).

Remark 5.3. A number of notes of this example:

(i) We think of ggo) = OA as a subset of G5 under the correspondence = — (z,0, x).

(ii) In [32], Yeend defines Zx (A\ G) and Zj (X #; p\ G) where G is finite. However,
if G is exhaustive, then Z, (A\ G) and Zj (A *s p\ G) are empty sets. Thus our
definitions make sure that both Z, (A\ G) and Zj (A %, p\ G) are non-empty.
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Next we generalise [10, Proposition 4.3] as follows:

Proposition 5.4. Let A be a finitely aligned k-graph and G be its boundary-path groupoid
as defined in Example 5.2. Let R be a commutative ring with 1. Then there is an iso-
morphism mp : KPr(A) — Agr (Ga) such that wr (sx) = 1z, (x.s(n)) and T () =
Lzu(swyomy for A pu € A

The only part of the proof of Proposition 5.4 that requires much additional work is
showing the surjectivity of 7. For this, we establish the following two lemmas. These
lemmas show that the characteristic function associated to a compact open set in Gy
can be written as a sum of elements in the form 1z, (. ,nq)-

Lemma 5.5. Let (A, pu),( N, ') € Axg A, G C s(A)A, and G' C s(N)A. Define F :=
AT (N N) N A™ (). Then

ZaAxs p\G) N Za(N 55 f\G") = L] Za(0y 55 1"y \[Ext(7; G) UExt(Y; G')]). ()
(vv)eEF

Proof. We generalise the argument of [12, Example 3.2] for 1-graphs. First we show that
the collection

{Za ( My x5 'y [Ext (v; G) UExt (v';G)]) : (7,7') € F}

is disjoint. It suffices to show that the collection

{Za My xs ') 2 (7,7') € F}

is disjoint. Suppose for contradiction that there exist (v,7'), (y”,7") € F such that
(7,7 £ (", 4" and V := Zp (Ay x5 /)N Za (A %5 'v"") # 0. Note that if v =+,
then
X7’ = My(since (7,7) € A™™ (A, X))
=\ (since v =+")
_ )\/,y/// (since (7//’7///) c Amin ()\7)\/))

"

by the factorisation property, which contradicts (v,v") # (v”,7"). The

"

and 7/ = «
same argument shows that v/ = ~'” implies v = 7”. Hence v # ~” and ' # ~'".
Meanwhile, since (y,v'), (v",7"") € F, then d(y) = d(v") and d(v') = d(y"). Take
(x,m,y) € V. Then z € Zy (My) and x € Zx (A\y"). Since d () = d(y”), then d (M) =
d(M") and v = z(d(N),d (M) = 2 (d(N),d (M) = +”, which contradicts v # ~”.
Hence the collection {Zx (Ay *s /') : (v,7') € F} is disjoint, and so is

{Zn (My 55 'Y\ [Ext (v; G) UExt (v';G")]) : (7,7') € F}.
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Next we show the right inclusion of (). Write
U:=Zp (M5 p\G) N Zp (N x5 '\ G)

and take (z,m,y) € U. We show (x,m,y) € Zx (Ny x5 '\ [Ext (7; G) UExt (7'; G')])
for some (7,7’) € F. Because x € Z, (A\) and x € Z, (N), then d(z) > d(\) Vd(X) and
there exists (v,7) € A™® (X, )') such that

T € Zp (\). (5.1)
Using a similar argument, there exists (y,~") € A™® (u, ') such that

y € Zx (") (5.2)

We claim that v = +” and v/ = «”. To see this, note that m = d(\) — d(u) =
d(N)—d(y) and

d(v)=dA)vdN)—dX) = (dp)+m)V(dy)+m)=(d(p)+m)
= (d(w) vd@))+m—(d(p)+m)=d(p)Vvd)—dp =dH").

Since (x,m,y) € Zx (A *, u\ G), then 09Ny = g4y and

V= (Udmm) 0,d(v)) = (Ud(”)y) 0,d(v)) ="

Using a similar argument, we also get v/ = +"” proving the claim.

Next we show that (x,m,y) € Zx (Ay xs /+'). By (5.1) and (5.2), we have x € Z) (M)
and y € Zp (1"). Since v =", v =", (7/",4") € A (u, i), then py" = pry = '/
and y € Z, (4'9'). On the other hand, since (x,m,y) € Zx (A, u\ G), then o¥N g =
o4y and

o O g = My = a7y

since uy = p+'. Since m = d(\) — d(u) = d(M\y) — d(@'y'), then (z,m,y) €
Z (Ay xg /"), as required.

Finally we show that (x,m,y) & Za (Myv *s u'y'v) for all v € Ext (y; G) UExt (v'; G').
Suppose for a contradiction that there exists v € Ext (y;G) U Ext (7/; G') such that
(x,m,y) € Zp (Ayv x5 ’'v'v). Without loss of generality, suppose v € Ext (; G). Then
there exists ¥ € G such that yv € Z) (V). Since © € Zy (AMyv), y € Zp (Wy'v) =
Zp (uyv), and yv € Zp (V'), then € Zp (W) and y € Zy (uv') where v/ € G. This
contradicts (z,m,y) € Zp (A *s p\ G). Hence

(x,m,y) € Zp (Ay *s (/9'\ [Ext (7; G) U Ext (7/; G')])
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and

UC | ZaOyse p/y'\ [Ext (v G) UExt (v; G')]).
(vY)EF

Next we show the left inclusion of (). Take (v,7’) € F and
(,m,y) € Zn (Xy s p'y'\ [Ext (v; G) UExt (v'; G)]). (5.3)

We show (z,m,y) belongs to both Zx (A *s p\ G) and Zx (N *5 '\ G'). Without loss of
generality, it suffices to show (z,m,y) € Zx (A *s p\ G). First we show that (z,m,y) €
Za (X #5 ). Note that we have py = /v and m =d (M) —d ('y') =d(N\) —d(p). On
the other hand, (z,m,y) € Zx (A\y *s p'y’) also implies x € Z (Ay) and y € Zp (u'7') =
Za (). Furthermore,

oMz = [z (d(N),d ()] [O—Mm}

=7 [U(M)x} (since z (d (A),d (\y)) =)
=4[ )y] (since cOMz = g7y
= [y (d (1) ,d ()] [ Vy] (since y (d (p) , d (7)) =)

= [y (d(p),d(uy))] ey (since py = p'~y)
=gy

and then (x,m,y) € Zx (X *; u), as required.

To complete the proof, we have to show (z,m,y) ¢ Zx (Av =, pv) for all v € G.
Suppose for contradiction that there exists v € G such that (x,m,y) € Zn (Av s pv).
In particular, x € Zx (A\v). Since x € Zj (Ay) and x € Zj (A\v), then there exists v/ €
Ext (7; {v}) such that x € Z (Ayv'). Hence

Ny — gy

o)z = ¢y (since o
= oWy (since py = '),
(J(“)y) (0,d (")) = (0(’\)30) (0,d (yv")) (since oMz = oW y) (5.4)
— (@A) d ()

=1/ (since x € Zy (M),
and
y(0,d(p'y'v') =y (0,d(uyr)) (since py = p'y')
= py' (by (5.4))

107

= W'V (since py = p'y').
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Furthermore,

d(Xy) —d (')

d(Ny) —d(wy) (since py = p'v')
d(N) —d (u) = m.

dM') —d(W~y'v') =

I,

Hence (z,m,y) € Zx (M =5 /v'V') for some v/ € Ext (v;{r}) C Ext(y;G), which
contradicts (5.3). The conclusion follows. O

Lemma 5.6. Let {Zy (N x5 i\ G;)}—, be a finite collection of compact open bisection
sets and

U = U ZA ()\i *g ,Ui\Gi) .
i=1

Then
1y € spang {1ZA(/\*SM\G) (A p) eAxs AG C s(A)A} .

Proof. It is trivial for n = 1. Now let n = 2 and F := A™® (A, Ag) N A™ (g, po). If
F = (, then

lv =1z, (aeap\@) T 1zu(Nsopn\G1)-

Otherwise, by Proposition 5.5, we have

Ly =12, 0vai\6) + lzg(vmnan = D, 1z,
(v,v)eF

where Z, o := Z) ( My *5 /v \ Ext (7; G) UExt (7'; G")), as required. For n > 3, by using
the inclusion-exclusion principle and de Morgan’s law, 1y can be written as a sum of
elements in the form 1z, (x«,\q)- O

Proof of Proposition 5.4. Define T\ := 1z, (x«.s(1))- Then by [13, Theorem 6.13] (or
(32, Example 7.1]), {T\,Ty» : A\, p € A} is a Kumjian-Pask A-family in Agr (Ga). Hence,
there exists a homomorphism 7r : KPgr (A) — Ag (Ga) such that 7 (s)) = T\ and
7 (8y+) = Ty for X\, u € A by Theorem 3.7(a).

To see that mp is injective, first we show that np is graded. Take A\, € A. Then
sxsur € KPR (A)gn)_q(,) and

T (8x8p) = 12, o) = H(@d)=d(w)p): 0 ens.n zes()oa} € AR (M) a(x)—aq) -

Since for every n € ZF, KPg(A), is spanned by elements in the form sys,~ (The-
orem 3.7.(c)), then for n € Z*, np (KPg(A),) € Agr(Ga), and 77 is graded. Since
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Tr (rsy) = rlz, sy # 0 for all » € R\ {0} and v € A°, and 7p is graded, then by
Theorem 4.1, wp is injective, as required.

Finally we show the surjectivity of 7. Take f € Ar (Ga). By [9, Lemma 2.2], f can be
written as Y. p ayly where ay € R, each U is in the form [J;_; Za (A s s\ G;) for
some n € N, and F is finite set of mutually disjoint elements. Hence, to show f € im (7r),
it suffices to show

1y € im (7r)

where U := |, Za (A *s i\ G;) for some n € N and collection {Zx (\; *s pi\ Gi)}iy.
By Lemma 5.6, 1y can be written as the sum of elements in the form 1z, (x._,\q). On
the other hand, for (A, u) € A x4 A and finite G C s(\) A, we have

([T Ty =TT ) ) Tor = 1z, s (T T (Lza(s0)20500) = 1Zawea) )1 2o (s)520)
veG veG
(5.5)

= 1z, (s (T (12 (smesN 1) )1 Za (s0520)
veG

= 12, (e s) (Ui Za (520 sON (1)) 1 24 (5()a)
= 12, (e s(0) (120 (s0)s0\G)) 120 (s()%010)

=1z, (aei\G)

since s(A) = s(u). Hence, 1z, (x«,n\g) belongs to im (77) and then so does 1y, as
required. Therefore, mp is surjective and then is an isomorphism. O

Remark 5.7. Finitely aligned k-graphs include 1-graphs and row-finite k-graphs with
no sources. Further, in these cases, the boundary path groupoid G, of Example 5.2
coincides with Gg of [12] and G of [10]. Thus, we have generalised Example 3.2 of [12]
and Proposition 4.3 of [10]. For locally convex row-finite k-graphs, our construction gives
a Steinberg algebra model of the Kumjian—Pask algebras of [11].

6. Aperiodic higher-rank graphs and effective groupoids

In this section and Section 7, we investigate the relationship between a k-graph A and
its boundary-path groupoid G, as constructed in Example 5.2. We expect the Cuntz—
Krieger uniqueness theorem (Theorem 8.1) to apply only to aperiodic finitely aligned
k-graphs (definition below). On the other hand, effective groupoids (definition below)
are needed in the hypothesis of the Cuntz—Krieger uniqueness theorem for Steinberg
algebras (Theorem 8.2). In this section, our main result is Proposition 6.3 which says
that a finitely aligned k-graph A is aperiodic if and only if the boundary-path groupoid
Gy is effective.
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We say a boundary path z is aperiodic if for all A\, p € Ar (x), A # p implies \x # pa.
We say a finitely aligned k-graph A is aperiodic if for each v € A°, there exists an
aperiodic boundary path x with r (z) = v.

Remark 6.1. There are several equivalent ways to define the aperiodicity condition for
finitely aligned k-graphs (see [13,18,22,26]). However, those definitions are equivalent by
[18, Proposition 3.6] and [26, Proposition 2.11]. The definition we use is called Condition
(B') in [13, Remark 7.3] and [26, Definition 2.1.(ii)].

Remark 6.2. For 1-graphs, the aperiodicity condition is known as Condition (L), which,
using our conventions, says that every cycle has an entry (see [1,3,7,16,23,29,30]).

Next let G be a topological groupoid. Define Iso (G) the isotropy groupoid of G by
Iso(G):={a€G:s(a)=r(a)}.

We then say G is effective if the interior of Iso (G) is G(?). See [8, Lemma 3.1] for some
equivalent characterisations.

Proposition 6.3. Let A be a finitely aligned k-graph. Then A is aperiodic if and only if
the boundary-path groupoid Ga is effective.

Proof. (=) First suppose that A is aperiodic. We trivially have g}x") belongs to the
interior of Iso(Ga). Now we show the reverse inclusion. Take a an interior point of
Iso (Ga). Then there exists Zy (A #s p\ G) such that Zp (A *s u\ G) C Iso(Gp) and a €
Zp (A *s p\ G). We show A = p.

Note that since a € Zp (A, p\ G), then Z (A *s u\ G) is not empty and by Re-
mark 5.3.(ii), G is not exhaustive. Hence, there exists v € s (\) A such that A™® (v,~) = ()
for v € G. Because A is aperiodic, there exists an aperiodic boundary path = € s (v) JA.

We claim that the boundary path vz is also aperiodic. Suppose for contradiction that
there exists X, i/ € Ar (vx) such that X # p' and

N (ve) = ' (va). (6.1)
Since X, ', v € A, by the unique factorisation property we have X # p’ implies N'v #
w'v. Now because x is aperiodic, N'v # p'v implies N'v (z) # p'v (x), which contradicts
(6.1). Hence, vz is aperiodic, as claimed.
Since Avz € Zp (A)\ Zx (A\y) and pvaz € Zp (u)\ Za (py) for v € G, we have
(A, d(N) —d(u),uve) € Zy (Axs p\ G).

Thus Zj (A *s p\ G) C Iso (Ga), and hence Avz = pvz. Since vz is aperiodic, we have
A (vz) = p(va) which implies A = p. Therefore, Gy is effective.



L. Orloff Clark, Y.E.P. Pangalela / Journal of Algebra 482 (2017) 364—397 391

(<) Now suppose that A is not aperiodic. Then there exists v € A° such that for all
boundary path x € vdA, x is not aperiodic.

Claim 6.4. For x € vOA, we have Gz # {z}.

Proof of Claim 6.4. Take z € vOA. Since z is not aperiodic, then there exist A, u € Ar ()
such that A # g and Ax = pzx. If d(X) = d (p), then

A= (Az) (0,d (X)) = (ux) (0,d (1)) = p,

which contradicts with \ # p.
So suppose d (A) # d (n). Note that for 1 <4 < k such that d()\), # d(n)
d(x), = oo (since Az = px). Hence

;» we have

(dX)Vd(p) =dX)V({([dA)Vd(p)—dp) <d).
Write p:= (d (M) Vd(p)) —d(N) and ¢ := (d(N) Vd(u)) —d(p). Then

P — P (O_d()\) ()\x)) — gdN)vd(p) (A\z)
= VAW (4z) (since A& = px)

= o1 (Ud(“) (,ux)) =olx

and p # ¢ (since d (\) # d(p)). This implies (z,p — q,x) € QA\QI(XO) and xGax # {x}.
O Claim 6.4

Since zGax # {x} for all x € vOA, then
Zn () N{z € G : 26z = {2}} =0

and {z € QI(\O) : 2Gaz = {z}} is not dense in ggo). Since Gp is locally compact, second-
countable, Hausdorff and étale, then by [24, Proposition 3.6.(b)], Ga is not effective, as
required. O

Remark 6.5. In fact, for a finitely aligned k-graph A, the following five conditions are
equivalent:

(a) Gy is effective.

(b) Ga is topologically principal in that the set of units with trivial isotropy is dense in
G,

(c) Ga satisfies Condition (1) of Theorem 5.1 of [25].

(d) A has no local periodicity as defined in [26].

(e) A is aperiodic.
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In [24, Proposition 3.6], Renault shows that for a locally compact, second-countable,
Hausdorff, étale G, G is effective if and only if it is topologically principle. Since the
boundary-path groupoid G, is locally compact, second-countable, Hausdorff and étale,
then (a)<(b). Meanwhile, in [32, Theorem 5.2], Yeend proves (b)<(c). [Note that Yeend
uses notion “essentially free” instead of “topologically principal”.] Lemma 5.6 of [25] gives
(¢)<(d). Finally, (d)<(e) follows from [26, Proposition 2.11].

7. Cofinal higher-rank graphs and minimal groupoids

In this section, we show that a finitely aligned k-graph A is cofinal if and only if the
boundary-path groupoid G, is minimal (Proposition 7.1). Later, we use this relationship
to study the simplicity of Kumjian—Pask algebras in Section 9.

Recall from [27, Definition 8.4] that we say a k-graph A is cofinal if for all v € A® and
x € OA, there exists n < d (z) such that vAz (n) # 0.

In a groupoid G, a subset U C G(© is called invariant if s (a) € U implies r (a) € U
for all a € G. Note that U is invariant if and only if g<0>\U is invariant. We then say
a topological groupoid G is minimal if G(°) has no nontrivial open invariant subsets.
Equivalently, G is minimal if for each z € G(%), the orbit [z] := s (2G) is dense in G(¥).

Proposition 7.1. Let A be a finitely aligned k-graph. Then A is cofinal if and only if the
boundary-path groupoid Gx is minimal.

Proof. (=) Suppose that A is cofinal. Take = € gf\‘)). We have to show that [z] is dense
in QI(\O). Take a non-empty open set Z (A\ G) and we claim that Zx (A\ G) N [z] # 0.
Since Zj (A\ G) is non-empty, we have that G is not exhaustive (see Remark 5.3.(i)).
Then there exists v € s(A) A such that A™® (v,v) = () for v € G. Now consider the
vertex s (Av) and the boundary path z. Since A is cofinal, then there exists n < d(x)
such that s (A\v) Az (n) # 0. Take pu € s (Av) Az (n). Because z is a boundary path, so is

oc™z. Hence,
y = Avp[o"x]

is also a boundary path. It is clear that y € Zx (\) and since A™" (v,~) = () for v € G,
we have y ¢ Zp (A\y) for v € G. Hence, y € Zp (A\ G).

On the other hand, since y = Avp[o™z], then (x,n —d(Avu),y) € Gp and y € [x].
Therefore, Zx (A\ G) N [z] # 0. Thus, [z] is dense in g,(\") and G is minimal.

(<) Suppose that A is not cofinal. Then there exist v € A and x € JA such that for
all n < d(x), we have vAz (n) = 0. We claim Z, (v) N [z] = . Suppose for contradiction
that Zx (v) N [z] # 0. Take y € Z, (v) N [x]. Because y € [z], then there exist p,q € N*
such that (x,p — q,y) € Ga. This implies oPx = ¢%y. Since y € Z, (v), then r (y) = v.
Hence, 0Pz = 0% and r (y) = v imply that y (0, ¢) belongs to vAz (p), which contradicts
with vAz (n) = § for all n < d (). Therefore, Z, (v) N[z] = 0, as claimed, and [z] is not

)

dense in ggo . Thus, G, is not minimal. O
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8. The Cuntz—Krieger uniqueness theorem

Throughout this section, A is a finitely aligned k-graph and R is a commutative ring
with identity 1.

Theorem 8.1 (The Cuntz—Krieger uniqueness theorem). Let A be an aperiodic finitely
aligned k-graph, R be a commutative ring with 1. Suppose that m : KPr(A) — A is a
ring homomorphism such that (rs,) # 0 for all r € R\ {0} and v € A°. Then m is
injective.

We show Theorem 8.1 by using the Cuntz—Krieger uniqueness theorem for Steinberg
algebras [9, Theorem 3.2]. First we verify an alternate formulation of the Cuntz—Krieger
uniqueness theorem for Steinberg algebras that will be useful.

Theorem 8.2. Let G be an effective, Hausdorff, ample groupoid, and R be a commutative
ring with 1. Let B be a basis of compact open bisection for the topology on G. Let ¢ :
AR (G) — A be a ring homomorphism. Suppose that ker (¢) # 0. Then there exist r €
R\ {0} and B € B such that B C G©) and ¢ (r1p) = 0.

Proof. Since ker (¢) # 0, then by [9, Theorem 3.2], there exist » € R\ {0} and a non-
empty compact open subset K C G(® such that ¢ (rlx) = 0. Since K is open, then
there is B € B such that B C K. Hence, B C G and

0:¢(T1K)¢(1B):¢(T1KB):¢(T1KQB):(]5(7“13). Oa

Proof of Theorem 8.1. First note that G, is a Hausdorff and ample groupoid that is ef-
fective by Proposition 6.3. Thus it satisfies the hypothesis of Theorem 8.2. Now recall the
isomorphism 77 : KPr (A) — Ag (Ga) as in Proposition 5.4. Then 77 (sx) = 1z, (A, s(2))
and 7 (8,) = 1z, (s(u)x.p) fOr A, gt € A. Define ¢ := Wowfl. To show the injectivity of m,
it suffices to show that ¢ is injective. Suppose for contradiction that ¢ is not injective.
By Theorem 8.2, there exist 7 € R\ {0} and Z, (A\ G) such that ¢ (rlz, (anq)) = 0.
Since 1z, (@) can be identified as 1z, (x«,a\¢) (Remark 5.3.(i)), then by following the
argument of (5.5), we get

¢ (rlzyone) = m(rsx( I (ss00 = svs0-) )sa-)
veG
and then

77(7“3)\( H (ss(,\) — sl,sl,*) )s») =0. (8.1)

veG

On the other hand, since 7 (rs,) # 0 for all r € R\ {0} and v € A°, and G is finite
non-exhaustive, then by Proposition 3.3.(d),
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7 (rsx( H (5s(n) — SuSu=) )sax) # 0,

veG

which contradicts (8.1). The conclusion follows. 0O
One application of Theorem 8.1 is:

Corollary 8.3. Let A be finitely aligned k-graph and R be a commutative ring with 1.
Then A is aperiodic if and only if the boundary-path representation wg : KPgr (A) —
End (Fr (OA)) is injective.

To show Corollary 8.3, we establish some results and notation.

Following [26, Definition 2.3], for a finitely aligned k-graph A, we say A has no local
periodicity if for every v € A® and every n # m € N*, there exists # € vOA such that
either d (z) # nV m or 0"z # o™x. If no local aperiodicity fails at v € A, then there
are n # m € N¥ such that 0"z = o™z for all z € vOA. In this case, we say A has local
periodicity n,m at v € A°.

Lemma 8.4 (/26, Lemma 2.9]). Let A be a finitely aligned k-graph which has local peri-
odicity n,m at v € A°. Then d(z) > nV m and o"x = o™z for every v € vOA. Fix
x € vOA and set p =2 (0,m), « = x (m,mVn), and v = (u«a) (0,n). Then pay = vay
for every y € s(a) OA.

Proof of Corollary 8.3. (=) Suppose that A is aperiodic. By Proposition 3.6, we have
7g (18,) # 0 for all 7 € R\ {0} and v € A°. Since A is aperiodic, then by Theorem 8.1,
mg is injective.

(<) Suppose that A is not aperiodic. We are following the argument of [5, Lemma 5.9].
Since A is not aperiodic, by [26, Proposition 2.11], there exist v € A? and n # m € N*
such that A has local periodicity n,m at v € A°. Let u,v,a be as in Lemma 8.4 and
define a := 5,05(ua)* — SvaS(ua) - We claim that a € ker (75)\ {0}.

First we show that a # 0. Suppose for contradiction that a = 0. Then s,48(ua)* =
SvaS(ua)+- Note that d (sua8(ua)<) = d (ue) — d (pa) = 0 and

d (svasSpuay) =dva) —d(pa) =d (V) +d () —d(u) —d () =n—m #0.

Hence s,08(u0)* = SvaS(ua)* = 0. Thus, 0 = s(,0)* (SHQS(W)*) Spa = sz(ua) = Ss(pa)s
which contradicts Theorem 3.7.(b). Hence a # 0.

Now we show that a € ker (7g). Take y € OA, and it suffices to show 7g (a) (y) = 0.
Recall that mg (sx) = Sy and 7g (su+) = S+ where

" and S, (y) =

52 (y) = Ay ifs(A\) =7(y); o® Wy if y (0,d (n) = p;
0 otherwise.

0  otherwise,
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First suppose that y(0,d(pc)) # po. Then Sia+(y) = 0 and 7g(a)(y) =
SpaS(uay (¥) = SvaS(uay* (¥) = 0. Next suppose that y (0,d (ua)) = po. Then

75 (@) (5) = (Sua = Sua) ()

Since y € JA, then o¥#¥y € 5 (a) OA and by Lemma 8.4, o (Ud(“a)y) = rva (ad(“‘l)y)
and hence 7g (a) (y) = 0. Thus, a € ker (wg)\ {0}, as claimed, and 7g is not injective. O

9. Basic simplicity and simplicity

As in [30], we say an ideal I in KPg (A) is basic if whenever 7 € R\ {0} and v € A?,
we have rs, € I implies s, € I. We also say that KPg (A) is basically simple if its only
basic ideals are {0} and KPg (A).

In this section, we investigate necessary and sufficient conditions for KPr (A) to be
basically simple (Theorem 9.3) and to be simple (Theorem 9.4). We show that both
results can be viewed as consequences of basic simplicity and simplicity characterisations
of Steinberg algebras. Therefore, we state necessary and sufficient conditions for the
Steinberg algebra Ag (G) to be basically simple and to be simple in the following two
theorems.

Theorem 9.1 (/9, Theorem /.1]). Let G be a Hausdorff, ample groupoid and R be a
commutative ring with 1. Then Ag (G) is basically simple if and only if G is effective and
manimal.

Theorem 9.2 (/9, Corollary 4.6]). Let G be a Hausdorff, ample groupoid and R be a
commutative ring with 1. Then Ar(G) is simple if and only if R is a field and G is
effective and minimal.

Now we are ready to prove our results in this section.

Theorem 9.3. Let A be a finitely aligned k-graph and let R be a commutative ring with 1.
Then KPg (A) is basically simple if and only if A is aperiodic and cofinal.

Proof. (=) First suppose that KPg (A) is basically simple. By Proposition 5.4, Ar (Ga)
is also basically simple and then by Theorem 9.1, G, is effective and minimal. On the
other hand, G, is effective implies that A is aperiodic (Proposition 6.3), and G, is minimal
implies that A is cofinal (Proposition 7.1). The conclusion follows.

(<) Next suppose that A is aperiodic and cofinal. By Proposition 6.3 and Propo-
sition 7.1, Gy is effective and minimal and then by Theorem 9.1, Ag (Gy) is basically
simple. Since Ag (Ga) is isomorphic to KPr (A) (Proposition 5.4), then KPg (A) is also
basically simple, as required. O
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Theorem 9.4. Let A be a finitely aligned k-graph and let R be a commutative ring with 1.
Then KPg (A) is simple if and only if R is a field and A is aperiodic and cofinal.

Proof. (=) First suppose that KPg (A) is simple. Then KP g (A) is also basically simple
and Theorem 9.3 implies that A is aperiodic and cofinal. On the other hand, since
KPg (A) is simple, then by Proposition 5.4, Ag (Ga) is also simple and by Theorem 9.2,
R is a field, as required.

(<) Next suppose that R is a field and A is aperiodic and cofinal. By Proposition 6.3
and Proposition 7.1, G, is effective and minimal. Hence, by Theorem 9.2, Ag (Gy) is
simple and by Proposition 5.4, so is KPr (A). O
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