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defined and have a graded uniqueness theorem. We also 
prove the Cuntz–Krieger uniqueness theorem; to do this, we 
use a groupoid approach. As a consequence of the graded 
uniqueness theorem, we show that every Kumjian–Pask 
algebra is isomorphic to the Steinberg algebra associated to 
its boundary path groupoid. We then use Steinberg algebra 
results to prove the Cuntz–Krieger uniqueness theorem and 
also to characterize simplicity and basic simplicity.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the 1990s, C∗-algebras of row-finite directed graphs were introduced in [7,16,17]. 
Since their first appearance, these C∗-algebras have been intensively studied (for ex-
ample, see [24]). Some of the earliest results about these algebras include the existence 
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of a universal family, the gauge-invariant uniqueness theorem, and the Cuntz–Krieger 
uniqueness theorem.

Higher-rank graph C∗-algebras were introduced by Kumjian and Pask in [15] as a 
generalisation of the C∗-algebras of directed graphs. In [15], Kumjian and Pask limit 
their focus to row-finite higher-rank graphs with no sources. Later, Raeburn, Sims and 
Yeend extended the coverage by introducing C∗-algebras of locally convex, row-finite 
higher-rank graphs in [21] and then finitely aligned higher-rank graphs in [22]. It is 
in the finitely aligned setting where graphs that fail to be row-finite are considered. 
Once again Raeburn, Sims and Yeend establish the existence of a universal family, the 
gauge-invariant uniqueness theorem, and the Cuntz–Krieger uniqueness theorem.

On the other hand, Leavitt path algebras were developed independently by Ara, 
Moreno, and Pardo in [4] and Abrams and Aranda Pino in [2]. A complex Leavitt path 
algebra is a purely algebraic structure constructed from a directed graph that sits densely 
inside the graph C∗-algebra. Tomforde showed in [30] that one can generalise further and 
define Leavitt path R-algebras where R is any commutative ring with identity. Tomforde 
proved the existence of a universal family, the graded uniqueness theorem (which is the 
algebraic analogue of the gauge-invariant uniqueness theorem), and the Cuntz–Krieger 
uniqueness theorem for Leavitt path R-algebras. Tomforde’s proofs in [30] use techniques 
that are similar to those employed by Raeburn for Leavitt path C-algebras in [6] and in 
Tomforde’s earlier paper [29] for Leavitt path K-algebras where K is an arbitrary field.

Moving to higher-rank graphs, Kumjian–Pask R-algebras were introduced in [5] and 
include the class of Leavitt path algebras. Kumjian–Pask algebras are the algebraic ana-
logue of the higher-rank graph C∗-algebras of [15]. As in [15], the authors of [5] consider 
row-finite higher-rank graphs with no sources. Later, Clark, Flynn and an Huef devel-
oped Kumjian–Pask algebras for locally convex, row-finite higher-rank graphs in [11]. To 
complete the final algebraic piece, in this paper we introduce Kumjian–Pask algebras for 
finitely aligned higher-rank graphs. We will establish the existence of a universal family, 
the graded uniqueness theorem, and the Cuntz–Krieger uniqueness theorem.

Our motivation to consider this class of higher-rank graphs comes from our desire 
to establish an algebraic version of [19, Theorem 4.1]: there Pangalela shows that the 
Toeplitz C∗-algebra associated to a row-finite graph Λ can be realized as the graph 
C∗-algebra associated to a higher-rank graph constructed from Λ, called TΛ. In this 
setting TΛ has sources and is not locally convex.

Let Λ be a finitely aligned k-graph and let R be a commutative ring with iden-
tity. We define a Kumjian–Pask Λ-family (Definition 3.1) and show the existence of 
a universal Kumjian–Pask algebra KPR (Λ) that is a Zk-graded R-algebra in Propo-
sition 3.7. We then prove the graded uniqueness theorem in Theorem 4.1. Up to this 
point, our techniques mirror the C∗-algebraic techniques of [22]. However, the proof 
of the Cuntz–Krieger uniqueness theorem of [22] is highly analytic so we must use an 
alternate approach. We have chosen a groupoid approach.

In Section 5, we introduce groupoids and Steinberg algebras. Then, given a finitely 
aligned higher-rank graph Λ, we build the associated boundary-path groupoid GΛ as 
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in [32]. We then use the graded uniqueness theorem (Theorem 4.1) to show that the 
Kumjian–Pask algebra KPR (Λ) is isomorphic to the Steinberg algebra AR(GΛ) in Propo-
sition 5.4. With this isomorphism in place, we aim to use results about Steinberg algebras 
to establish results about Kumjian–Pask algebras.

First we establish how certain properties of Λ translate to properties of GΛ; we do this 
in Section 6 and Section 7. Of interest in its own right, we show that a higher-rank graph 
Λ is aperiodic if and only if the boundary-path groupoid GΛ is effective in Proposition 6.3. 
We also show in Proposition 7.1, that a higher-rank graph Λ is cofinal if and only if GΛ
is minimal.

Now in Section 8, we prove the Cuntz–Krieger uniqueness theorem. This theorem 
only applies to Kumjian–Pask algebras associated to aperiodic graphs. The proof is 
simply an application of the Cuntz–Krieger uniqueness theorem for Steinberg algebras 
[9, Theorem 3.2] which applies to effective groupoids. Note that our technique gives an 
alternate proof of the Cuntz–Krieger uniqueness theorem in the special cases of Leavitt 
path algebras in [30] and the row-finite Kumjian–Pask algebras of [5,11].

Finally, in Section 9, we give necessary and sufficient conditions for KPR (Λ) to be 
basically simple in Theorem 9.3 and simple in Theorem 9.4. These two results are a 
consequence of the characterisation of basic simplicity and simplicity of the Steinberg 
algebra AR (GΛ) (see Theorem 4.1 and Corollary 4.6 of [9]).

2. Background

Let N be the set of non-negative integers and let k be a positive integer. We write 
n ∈ Nk as (n1, . . . , nk) and for m, n ∈ Nk, we write m ≤ n to denote mi ≤ ni for 
1 ≤ i ≤ k. We also write m ∨ n for their coordinate-wise maximum and m ∧ n for their 
coordinate-wise minimum. We denote the usual basis in Nk by {ei}.

A directed graph or 1-graph E =
(
E0, E1, r, s

)
consists of countable sets of vertices 

E0, edges E1 and functions r, s : E1 → E0, which denote range and source maps, 
respectively. We follow the conventions of [23] and write λμ to denote the composition of 
paths λ and μ with s (λ) = r (μ). Thus a path of length n ∈ N is a sequence λ = λ1 · · ·λn

of edges λi with s (λi) = r (λi+1) for 1 ≤ i ≤ n − 1. We also have s (λ) := s (λn) and 
r (λ) := r (λ1).

Remark 2.1. We use this convention of paths because we view the collection of paths as 
a category.

2.1. Higher-rank graphs

For a positive integer k, we regard the additive semigroup Nk as a category with one 
object. A higher-rank graph or k-graph Λ =

(
Λ0,Λ, r, s

)
is a countable small category Λ

with a functor d : Λ → Nk, called the degree map, satisfying the factorisation property: 
for every λ ∈ Λ and m, n ∈ Nk with d (λ) = m + n, there are unique elements μ, ν ∈ Λ
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such that λ = μυ and d (μ) = m, d (ν) = n. We then write λ (0,m) for μ and λ (m,m + n)
for ν.

We write Λ0 to denote the set of objects in Λ and we identify each object v ∈ Λ0

with the identity morphism at the object, which, by the factorisation property, is the 
only morphism with range and source v. We then regard elements of Λ0 as vertices. For 
n ∈ Nk, we define

Λn := {λ ∈ Λ : d (λ) = n}

and call the elements λ of Λn paths of degree n. For each λ ∈ Λ we say λ has source s (λ)
and range r (λ). For v ∈ Λ0, λ ∈ Λ and E ⊆ Λ, we define

vE := {μ ∈ E : r (μ) = v} ,

λE := {λμ ∈ Λ : μ ∈ E, r (μ) = s (λ)} ,

Eλ := {μλ ∈ Λ : μ ∈ E, s (μ) = r (λ)} .

Remark 2.2. In older references, for example [15,21], vΛ is denoted by Λ (v).

Example 2.3 ([21, Example 2.2.(ii)]). Let k ∈ N and m ∈ (N∪{∞})k. We define

Ωk,m :=
{
(p, q) ∈ Nk × Nk : p ≤ q ≤ m

}
.

This is a category with objects 
{
p ∈ Nk : p ≤ m

}
, range map r (p, q) = p, source map 

s (p, q) = q, and degree map d (p, q) = q − p. Then (Ωk,m, d) is a k-graph.

One way to visualise k-graphs is to use coloured graphs. By choosing k different colours 
c1, . . . , ck, we can view paths in Λei as edges of colour ci. For a k-graph Λ, we call its 
corresponding coloured graph the skeleton of Λ. For further discussion about k-graphs 
and their skeletons, see [14].

Let Λ be a k-graph. For λ, μ ∈ Λ, we say that τ is a minimal common extension of λ
and μ if

d (τ) = d (λ) ∨ d (μ) , τ (0, d (λ)) = λ and τ (0, d (μ)) = μ.

Let MCE (λ, μ) denote the collection of all minimal common extensions of λ and μ. Then 
we write

Λmin (λ, μ) := {(ρ, τ) ∈ Λ × Λ : λρ = μτ ∈ MCE (λ, μ)} .

Meanwhile, for E ⊆ Λ and λ ∈ Λ, we write

Ext (λ;E) :=
⋃ {

ρ : (ρ, τ) ∈ Λmin (λ, μ)
}

.

μ∈E
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A set E ⊆ vΛ is exhaustive if for every λ ∈ vΛ, there exists μ ∈ E such that 
Λmin (λ, μ) 
= ∅. We define

FE (Λ) :=
⋃

v∈Λ0

{E ⊆ vΛ\ {v} : E is finite and exhaustive} .

For E ∈ FE (Λ), we write r (E) for the vertex v which satisfies E ⊆ vΛ.
We say that Λ is finitely aligned if Λmin (λ, μ) is finite (possibly empty) for all λ, μ ∈ Λ. 

We see that every 1-graph is finitely aligned. As in [15, Definition 1.4], we say that a 
k-graph Λ is row-finite if vΛn is finite for every v ∈ Λ0 and n ∈ Nk. Note that for 
all λ, μ ∈ Λ, we have 

∣∣Λmin (λ, μ)
∣∣ = |MCE (λ, μ)| ≤

∣∣r (λ) Λd(λ)∨d(μ)
∣∣. Hence, every 

row-finite k-graph Λ is finitely aligned. On the other hand, a finitely aligned k-graph Λ
is not necessarily row-finite.

For example, consider the 2-graph Λ1 which has skeleton

where efi = fie for all positive integers i, the solid edge has degree (1, 0) and dashed 
edges have degree (0, 1). It is clearly not row-finite because |vΛ(0,1)

1 | = ∞. On the other 
hand, for λ, μ ∈ Λ, 

∣∣Λmin
1 (λ, μ)

∣∣ is either 0 or 1, and then Λ1 is finitely aligned.
Following [15, Definition 1.4], a k-graph Λ has no sources if vΛn is non-empty for 

every v ∈ Λ0 and n ∈ Nk. Meanwhile, recall from [21, Definition 3.9] that a k-graph Λ
is locally convex if for all vΛ0, 1 ≤ i, j ≤ k with i 
= j, λ ∈ vΛei and μ ∈ vΛej , the sets 
s (λ) Λej and s (μ) Λei are non-empty.

Consider the 2-graph Λ2 with skeleton

where e1f1 = f2e2, solid edges have degree (1, 0) and dashed edges have degree (0, 1). 
Since v5 does not receive edges with degree (0, 1), then v5 is a source of Λ2. Furthermore, 
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Λ2 fails to be locally-convex since e3 ∈ v1Λ(1,0)
2 , f2 ∈ v1Λ(0,1)

2 but s (e3) Λ(0,1)
2 = ∅. On 

the other hand, Λ2 is row-finite thus Λ2 is finitely aligned.
Next consider the 2-graph Λ3 with skeleton

where efi = fei for all positive integers i, solid edges have degree (1, 0) and dashed edges 
have degree (0, 1). Since 

∣∣Λmin
3 (e, f)

∣∣ = ∞, then Λ3 is not finitely aligned. Hence, not 
every k-graph is finitely aligned.

To summarise, finitely aligned k-graphs generalise both row-finite k-graphs with no 
sources and locally convex row-finite k-graphs. However, this class of k-graphs does not 
cover all k-graphs. In this paper, we focus on finitely aligned k-graphs. For other examples 
and further discussion, see [15,19,21,22,31].

2.2. Paths and boundary paths

Suppose that Λ is a finitely aligned k-graph. Recall from [21, Definition 3.1] that for 
n ∈ Nk, we define

Λ≤n := {λ ∈ Λ : d (λ) ≤ n, and d (λ)i < ni implies s (λ) Λei = ∅}.

Note that vΛ≤n 
= ∅ for all v ∈ Λ0 and n ∈ Nk. This is because v is contained in vΛ≤n

whenever vΛ≤n has no non-trivial paths of degree less than or equal to q. For further 
discussion, see [21, Remark 3.2].

Following [13, Definition 5.10], we say that a degree-preserving functor x : Ωk,m → Λ
is a boundary path of Λ if for every n ∈ Nk with n ≤ m and for E ∈ x (n, n) FE (Λ), 
there exists λ ∈ E such that x (n, n + d (λ)) = λ. We write ∂Λ for the set of all boundary 
paths. Note that for v ∈ Λ0, v∂Λ is non-empty [13, Lemma 5.15].

Remark 2.4. In the locally convex setting, the set Λ≤∞ (as defined in [21, Definition 
3.14]) is referred to as the “boundary path space”. Indeed, if Λ is row-finite and locally 
convex, then Λ≤∞ = ∂Λ [31, Proposition 2.12]. However, more generally, Λ≤∞ ⊆ ∂Λ
and the two can be different (see [31, Example 2.11]).

Let x ∈ ∂Λ. If n ∈ Nk and n ≤ d (x), we define σnx by σnx (0,m) = x (n, n + m)
for all m ≤ d (x) − n, and by [13, Lemma 5.13.(1)], σnx also belongs to ∂Λ. We also 
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write x (n) for the vertex x (n, n). Then the range of boundary path x is the vertex 
r (x) := x (0). For λ ∈ Λx (0), we also have λx ∈ ∂Λ [13, Lemma 5.13.(2)].

2.3. Graded rings

Suppose that G is an additive abelian group. A ring A is G-graded if there are additive 
subgroups {Ag : g ∈ G} satisfying:

A =
⊕

g∈GAg and for g, h ∈ G, AgAh ⊆ Ag+h.

If A and B are G-graded rings, a homomorphism π : A → B is G-graded if π (Ag) ⊆ Bg

for g ∈ G.
Let A be a G-graded ring. We say an ideal I of A is a G-graded ideal if {I ∩Ag : g ∈ G}

is a grading of I.

3. Kumjian–Pask Λ-families

Suppose that Λ is a finitely aligned k-graph and R is a commutative ring with iden-
tity 1. For λ ∈ Λ, we call λ∗ a ghost path (λ∗ is a formal symbol) and we define

G (Λ) := {λ∗ : λ ∈ Λ} .

For v ∈ Λ0, we define v∗ := v. We also extend r and s to be defined on G (Λ) by

r (λ∗) = s (λ) and s (λ∗) = r (λ) .

We then define composition on G (Λ) by setting λ∗μ∗ = (μλ)∗ for λ, μ ∈ Λ; and write 
G 
(
Λ �=0) the set of ghost paths that are not vertices. Note that the factorisation property 

of Λ induces a similar factorisation property on G (Λ).

Definition 3.1. A Kumjian–Pask Λ-family {Sλ, Sμ∗ : λ, μ ∈ Λ} in an R-algebra A consists 
of S : Λ ∪G 

(
Λ �=0) → A such that:

(KP1)
{
Sv : v ∈ Λ0} is a collection of mutually orthogonal idempotents;

(KP2) for λ, μ ∈ Λ with s (λ) = r (μ), we have SλSμ = Sλμ and Sμ∗Sλ∗ = S(λμ)∗ ;
(KP3) Sλ∗Sμ =

∑
(ρ,τ)∈Λmin(λ,μ) SρSτ∗ for all λ, μ ∈ Λ; and

(KP4)
∏

λ∈E

(
Sr(E) − SλSλ∗

)
= 0 for all E ∈ FE (Λ).

Remark 3.2. A number of aspects of these relations are worth commenting on:

(i) In previous references about Leavitt path algebras and Kumjian–Pask algebras, 
people usually distinguish the vertex idempotents as “Pv” (for example, see [1–5,11,
29,30]). We do not follow this convention because we do not want to make additional 
unnecessary cases in each proof.
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(ii) (KP2) in [5,11] has more relations to check. However, using our notational conven-
tion, those relations can be simplified and are equivalent to our (KP2).

(iii) The restriction to finitely aligned k-graphs is necessary for the sum in (KP3) to be 
make sense (see [20]).

(iv) In (KP3), we interpret the empty sum as 0, so Sλ∗Sμ = 0 whenever Λmin (λ, μ) = ∅. 
We also have Sλ∗Sλ = Ss(λ).

(v) (KP3–4) have been changed from those in [5, Definition 3.1] and [11, Definition 
3.1]. We do this because we need to adjust the relations to deal with situation 
where k-graph is not locally convex. For further discussion, see Appendix A of [22].

The following lemma establishes some useful properties of a family satisfying (KP1–3).

Proposition 3.3. Let Λ be a finitely aligned k-graph, R be a commutative ring with 1, and 
{Sλ, Sμ∗ : λ, μ ∈ Λ} be a family satisfying (KP1–3) in an R-algebra A. Then

(a) SλSλ∗SμSμ∗ =
∑

λρ∈MCE(λ,μ) SλρS(λρ)∗ for λ, μ ∈ Λ; and {SλSλ∗ : λ ∈ Λ} is a com-
muting family.

(b) The subalgebra generated by {Sλ, Sμ∗ : λ, μ ∈ Λ} is

spanR{SλSμ∗ : λ, μ ∈ Λ, s (λ) = s (μ)}.

(c) For n ∈ Nk and λ, μ ∈ Λ≤n, we have Sλ∗Sμ = δλ,μSs(λ).
(d) Suppose that rSv 
= 0 for all r ∈ R\ {0}, v ∈ Λ0 and that λ, μ ∈ Λ with s (λ) = s (μ). 

If r ∈ R\ {0} and G ⊆ s (λ) Λ is finite non-exhaustive, then

rSλ 
= 0 and rSλ

( ∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sμ∗ 
= 0.

Proof. To show (a), we take λ, μ ∈ Λ and then

SλSλ∗SμSμ∗ = Sλ

( ∑
(ρ,τ)∈Λmin(λ,μ)

SρSτ∗
)
Sμ∗ =

∑
(ρ,τ)∈Λmin(λ,μ)

SλρS(μτ)∗

=
∑

(ρ,τ)∈Λmin(λ,μ)

SλρS(λρ)∗ =
∑

λρ∈MCE(λ,μ)

SλρS(λρ)∗ .

Furthermore,

SλSλ∗SμSμ∗ =
∑

λρ∈MCE(λ,μ)

SλρS(λρ)∗ =
∑

μτ∈MCE(λ,μ)

SμτS(μτ)∗ = SμSμ∗SλSλ∗ ,

as required.
Next we show (b). For λ, μ ∈ Λ, we have SλSμ∗ = SλSs(λ)Ss(μ)Sμ∗ by (KP2). Then 

by (KP1), SλSμ∗ 
= 0 implies s (λ) = s (μ). Therefore, the result follows from part (a), 
(KP2) and (KP3).
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To show (c), we take λ, μ ∈ Λ≤n. Suppose that Sλ∗Sμ 
= 0. By (KP3), there exists 
(ρ, τ) ∈ Λmin (λ, μ) such that λρ = μτ and d (λρ) ≤ n. Since λ, μ ∈ Λ≤n, then ρ =
s (λ) = τ and hence λ = μ.

Finally, we show (d). Take r ∈ R\ {0} and λ ∈ Λ. Suppose for contradiction that 
rSλ = 0. Then

0 = Sλ∗ (rSλ) = rSλ∗Sλ = rSs(λ),

which contradicts with rSv 
= 0 for all r ∈ R\ {0} and v ∈ Λ0. Hence, rSλ 
= 0.
Now take r ∈ R\ {0}, λ, μ ∈ Λ with s (λ) = s (μ) and finite non-exhaustive G ⊆

s (λ) Λ. Suppose for contradiction that

rSλ

( ∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sμ∗ = 0.

Since G is non-exhaustive, then there exists γ ∈ s (λ) Λ such that Ext (γ;G) = ∅. Hence 
Λmin (ν, γ) = ∅ for every ν ∈ G, and then by (KP3), Sν∗Sγ = 0 for ν ∈ G. Therefore,

0 =
(
rSλ

( ∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sμ∗

)
Sμγ

= rSλ

( ∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sγ

= rSλSγ = rSλγ ,

which contradicts with rSλγ 
= 0. Hence, rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sμ∗ 
= 0. �

Remark 3.4. For n ∈ Nk, we have Λn ⊆ Λ≤n. Hence, Proposition 3.3.(c) also implies 
that for n ∈ Nk and λ, μ ∈ Λn, we have Sλ∗Sμ = δλ,μSs(λ).

Remark 3.5. Suppose that rSv 
= 0 for all r ∈ R\ {0}, v ∈ Λ0 and that λ, μ ∈ Λ
with s (λ) = s (μ). Then the contrapositive of Proposition 3.3.(d) says: if r ∈ R and 
G ⊆ s (λ) Λ is finite such that rSλ

(∏
ν∈G

(
Ss(λ) − SνSν∗

) )
Sμ∗ = 0, then we have either 

r = 0 or G is exhaustive.

Now we give an example of a Kumjian–Pask Λ-family in a particular algebra of en-
domorphisms.

Proposition 3.6. Let Λ be a finitely aligned k-graph and R be a commutative ring with 1. 
Let FR (∂Λ) be the free module with basis the boundary path space. Then for every v ∈ Λ0

and λ, μ ∈ Λ\Λ0, there exist endomorphisms Sv, Sλ, Sμ∗ : FR (∂Λ) → FR (∂Λ) such that 
for x ∈ ∂Λ,

Sv (x) =
{
x if r (x) = v;
0 otherwise,



L. Orloff Clark, Y.E.P. Pangalela / Journal of Algebra 482 (2017) 364–397 373
Sλ (x) =
{
λx if s (λ) = r (x) ;
0 otherwise,

Sμ∗ (x) =
{
σd(μ)x if x (0, d (μ)) = μ;
0 otherwise.

Furthermore, {Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family in the R-algebra
End (FR (∂Λ)) with rSv 
= 0 for all r ∈ R\ {0} and v ∈ Λ0.

Proof. Take v ∈ Λ0 and λ, μ ∈ Λ\Λ0. First note that for x ∈ ∂Λ and m ≤ d (x), we 
have σmx ∈ ∂Λ. Now define functions fv, fλ, and fμ∗ : ∂Λ → FR (∂Λ) by

fv (x) =
{
x if r (x) = v;
0 otherwise,

fλ (x) =
{
λx if s (λ) = r (x) ;
0 otherwise,

fμ∗ (x) =
{
σd(μ)x if x (0, d (μ)) = μ;
0 otherwise.

The universal property of free modules gives nonzero endomorphisms

Sv, Sλ, Sμ∗ : FR (∂Λ) → FR (∂Λ)

extending fv, fλ, and fμ∗ , as needed.
Now we claim that {Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family. To see (KP1), 

take v ∈ Λ0 and x ∈ ∂Λ. Then we have S2
v (x) = x = Sv (x) if r (x) = v, and S2

v (x) =
0 = Sv (x) otherwise. Hence S2

v = Sv. Now take v, w ∈ Λ0 with v 
= w and x ∈ ∂Λ. Since 
x ∈ w∂Λ implies x /∈ v∂Λ, we have SvSw (x) = 0 for x ∈ ∂Λ and SvSw = 0.

Next we show (KP2). Take λ, μ ∈ Λ with s (λ) = r (μ). Then for x ∈ s (μ) ∂Λ, we 
have μx ∈ s (λ) ∂Λ. Then SλSμ (x) = λμx = Sλμ (x) if x ∈ s (μ) ∂Λ, and SλSμ (x) = 0 =
Sλμ (x) otherwise. Hence SλSμ = Sλμ. Meanwhile, for x ∈ r (λ) ∂Λ with x (0, d (λμ)) =
λμ, we have d (λμ) ≤ d (x) and σd(λμ)x ∈ s (μ) ∂Λ. Furthermore, x (0, d (λμ)) = λμ, 
implies x (0, d (λ)) = λ and then we have d (λ) ≤ d (x) and σd(λ)x ∈ s (λ) ∂Λ. Hence,

Sμ∗Sλ∗ (x) = Sμ∗σd(λ)x = σd(λ)+d(μ)x = σd(λμ)x = S(λμ)∗ (x)

if x (0, d (λμ)) = λμ, and Sμ∗Sλ∗ (x) = 0 = S(λμ)∗ (x) otherwise. Therefore, Sμ∗Sλ∗ =
S(λμ)∗ .

Now we show (KP3). Take λ, μ ∈ Λ. If r (λ) 
= r (μ), then Sλ∗Sμ = 0 and 
Λmin (λ, μ) = ∅, as required. Suppose r (λ) = r (μ). We have
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Sλ∗Sμ (x) =
{

(μx) (d (λ) , d (μx)) if x ∈ s (μ) ∂Λ and (μx) (0, d (λ)) = λ;
0 otherwise.

Take x ∈ s (μ) ∂Λ. Note that s (μ) = r (τ) for (ρ, τ) ∈ Λmin (λ, μ). First suppose 
(μx) (0, d (λ)) 
= λ. Then for (ρ, τ) ∈ Λmin (λ, μ),

(μx) (0, d (λρ)) 
= λρ and (μx) (0, d (μτ)) 
= μτ .

Hence x (0, d (τ)) 
= τ and SρSτ∗ (x) = Sρ (0) = 0. Therefore
∑

(ρ,τ)∈Λmin(λ,μ)

SρSτ∗ (x) = 0.

Next suppose (μx) (0, d (λ)) = λ. Since (μx) (0, d (λ)) = λ and (μx) (0, d (μ)) = μ, 
there is τ ∈ s (μ) Λ such that (ρ, τ) ∈ Λmin (λ, μ) and (μx) (0, d (μτ)) = μτ . There-
fore x (0, d (τ)) = τ . Note that this τ is unique by the factorisation property. Hence 
for (ρ′, τ ′) ∈ Λmin (λ, μ) such that (ρ′, τ ′) 
= (ρ, τ), we have Sρ′Sτ ′∗ (x) = 0. Also 
x (0, d (τ)) = τ , thus

SρSτ∗ (x) = Sρ (x (d (τ) , d (x))) = ρ [x (d (τ) , d (x))]

= ρ [(μx) (d (μτ) , d (μx))]

= ρ [(μx) (d (λρ) , d (μx))] (since μτ = λρ)

= (μx) (d (λ) , d (μx))

and ∑
(ρ′,τ ′)∈Λmin(λ,μ)

SρSτ∗ (x) = SρSτ∗ (x) = (μx) (d (λ) , d (μx)) = Sλ∗Sμ (x) ,

as required.
Finally, we show (KP4). Take E ∈ FE (Λ). Take x ∈ r (E) ∂Λ. Since E ∈ x (0) FE (Λ)

and x is a boundary path, then there exists λ ∈ E such that x (0, d (λ)) = λ. This implies(
Sr(E) − SλSλ∗

)
(x) = Sr(E) (x) − SλSλ∗ (x)

= x− Sλ (x (d (λ) , d (x)))

= x− x = 0.

Hence
( ∏
λ∈E

(
Sr(E) − SλSλ∗

) )
(x) = 0

for x ∈ r (E) ∂Λ, and 
∏

λ∈E

(
Sr(E) − SλSλ∗

)
= 0.
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Thus {Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family, as claimed. Now note that for 
v ∈ Λ0, v∂Λ is non-empty. This implies that for all r ∈ R\ {0} and v ∈ Λ0, rSv 
= 0. �

Using an alternate construction of a Kumjian–Pask Λ-family, we next show that there 
is an R-algebra which is universal for Kumjian–Pask Λ-families.

Theorem 3.7. Let Λ be a finitely aligned k-graph and R be a commutative ring with 1.

(a) There is a universal R-algebra KPR (Λ) generated by a Kumjian–Pask Λ-family 
{sλ, sμ∗ : λ, μ ∈ Λ} such that whenever {Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask 
Λ-family in an R-algebra A, then there exists a unique R-algebra homomorphism 
πS : KPR (Λ) → A such that πS (sλ) = Sλ and πS (sμ∗) = Sμ∗ for λ, μ ∈ Λ.

(b) We have rsv 
= 0 for all r ∈ R\ {0} and v ∈ Λ0.
(c) The subsets

KPR (Λ)n := spanR {sλsμ∗ : λ, μ ∈ Λ, d (λ) − d (μ) = n}

forms a Zk-grading of KPR (Λ).

Proof. We use an argument similar to [5, Theorem 3.4] and [11, Theorem 3.7]. To show 
(a), first we define X := Λ ∪G 

(
Λ �=0) and FR (w (X)) be the free algebra on the set w (X)

of words on X. Let I be the ideal of FR (w (X)) generated by elements of the following 
sets:

(i)
{
vw − δv,wv : v, w ∈ Λ0},

(ii) {λ − μν, λ∗ − ν∗μ∗ : λ, μ, ν ∈ Λ and λ = μν},
(iii) {λ∗μ −

∑
(ρ,τ)∈Λmin(λ,μ) ρτ

∗ : λ, μ ∈ Λ}, and
(iv) {

∏
λ∈E (r (E) − λλ∗) : E ∈ FE (Λ)}.

Now define KPR (Λ) := FR (w (X)) /I and q : FR (w (X)) → FR (w (X)) /I be the 
quotient map. Define sλ := q (λ) for λ ∈ Λ, and sμ∗ := q (μ∗) for μ∗ ∈ G 

(
Λ �=0). Then 

{sλ, sμ∗ : λ ∈ Λ, μ∗ ∈ G 
(
Λ �=0)} is a Kumjian–Pask Λ-family in KPR (Λ).

Now let {Sλ, Sμ∗ : λ, μ ∈ Λ} be a Kumjian–Pask Λ-family in an R-algebra A. Define 
f : X → A by f (λ) := Sλ for λ ∈ Λ, and f (μ∗) := Sμ∗ for μ∗ ∈ G 

(
Λ �=0). The universal 

property of FR (w (X)) gives a unique R-algebra homomorphism φ : FR (w (X)) → A

such that φ|X = f . Since {Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family, then I ⊆
ker (φ). Thus there exists an R-algebra homomorphism πS : KPR (Λ) → A such that 
πS ◦q = φ. The homomorphism πS is unique since the elements in X generate FR (w (X))
as an algebra. Furthermore, we have πS (sλ) = Sλ for λ ∈ Λ and πS (sμ∗) = Sμ∗ for 
μ∗ ∈ G 

(
Λ �=0), as required.

To show (b), let {Sλ, Sμ∗ : λ, μ ∈ Λ} be the Kumjian–Pask Λ-family as in Proposi-
tion 3.6. Then rSv 
= 0 for v ∈ Λ0. Since πS (rsv) = rSv 
= 0 for all r ∈ R\ {0} and 
v ∈ Λ0, we have rsv 
= 0 for all r ∈ R\ {0} and v ∈ Λ0.
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Next we show (c). We first extend the degree map to w (X) by d (w) :=
∑|w|

i=1 d ((wi))
for w ∈ w (X). By [5, Proposition 2.7], FR (w (X)) is Zk-graded by the subgroups

FR (w (X))n :=

⎧⎨
⎩

∑
w∈w(X)

rww : rw 
= 0 implies d (w) = n

⎫⎬
⎭ .

Now we claim that the ideal I defined in (a) is a graded ideal. It suffices to show 
that I is generated by elements in FR (w (X))n for some n ∈ Zk. Since d (v) = 0 for 
v ∈ Λ0, then the generators in (i) belong to FR (w (X))0. If λ = μν in Λ, then λ − μν

belongs to FR (w (X))d(λ) and λ∗ − ν∗μ∗ belongs to FR (w (X))−d(λ). For λ, μ ∈ Λ and 
(ρ, τ) ∈ Λmin (λ, μ), we have

d (ρ) − d (τ) = (d (λ) ∨ d (μ) − d (λ)) − (d (λ) ∨ d (μ) − d (μ)) = −d (λ) + d (μ)

and then the generators in (iii) belong to FR (w (X))−d(λ)+d(μ). Finally, a word λλ∗ has 
degree 0 and then the generators in (iv) belong to FR (w (X))0. Thus I is a graded ideal.

Since I is graded, then KPR (Λ) = FR (w (X)) /I is graded by the subgroups

(FR (w (X)) /I)n := spanR {q (w) : w ∈ w (X) , d (w) = n} .

By Proposition 3.3.(b), we have KPR (Λ) = spanR {sλsμ∗ : λ, μ ∈ Λ, s (λ) = s (μ)}. We 
have to show that

KPR (Λ)n := spanR {sλsμ∗ : λ, μ ∈ Λ, d (λ) − d (μ) = n} = (FR (w (X)) /I)n .

Take λ, μ ∈ Λ with d (λ) − d (μ) = n. Then sλsμ∗ = q (λ) q (μ∗) = q (λμ∗) and d (λμ∗) =
d (λ) − d (μ) = n. Hence sλsμ∗ ∈ (FR (w (X)) /I)n and KPR (Λ)n ⊆ (FR (w (X)) /I)n.

To prove (FR (w (X)) /I)n ⊆ KPR (Λ)n, we first establish the following claim:

Claim 3.8. Let X := Λ ∪ G 
(
Λ �=0) and q : FR (w (X)) → KPR (Λ) be the quotient map. 

Then for w ∈ w (X), we have q (w) ∈ KPR (Λ)d(w).

Proof of Claim 3.8. We are modifying the proof of [5, Lemma 3.5] and [11, Lemma 
3.8] using our version of (KP3). We prove the claim by induction on |w|. For |w| = 0, 
we have w = v for some v ∈ Λ0. Then q (w) = sv = svsv∗ and d (v) − d (v) = 0. So 
q (w) ∈ KPR (Λ)d(w).

For |w| = 1, we have two possibilities. First suppose w = λ for λ ∈ Λ. Then q (w) =
sλ = sλss(λ)∗ and d (λ) − d (s (λ)) = d (λ). So q (w) ∈ KPR (Λ)d(w). Next suppose 
w = λ∗ for λ ∈ Λ. Then q (w) = sλ∗ = ss(λ)sλ∗ and d (s (λ)) − d (λ) = −d (λ) = d (λ∗). 
So q (w) ∈ KPR (Λ)d(w).

For |w| = 2, we have four possibilities: w = λμ∗, w = λμ, w = μ∗λ∗, or w = λ∗μ. For 
the first three cases, we have
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q (λμ∗) = sλsμ∗ and d (λ) − d (μ) = d (λμ∗) ,

q (λμ) = sλμss(μ)∗ and d (λμ) − d (s (μ)) = d (λμ) ,

q (μ∗λ∗) = ss(μ)s(λμ)∗ and d (s (μ)) − d
(
(λμ)∗

)
= d (μ∗λ∗) ,

as required. Suppose w = λ∗μ. By (KP3), we have

q (λ∗μ) = sλ∗sμ =
∑

(ρ,τ)∈Λmin(λ,μ)

sρsτ∗ .

For (ρ, τ) ∈ Λmin (λ, μ), we have λρ = μτ and then d (w) = d (μ) − d (λ) = d (ρ) − d (ρ). 
So q (w) ∈ KPR (Λ)d(w).

Now suppose that n ≥ 2 and q (y) ∈ KPR (Λ)d(y) for every word y with |y| ≤ n. Let w
be a word with |w| = n + 1 and q (w) 
= 0. If w contains a subword wiwi+1 = λμ, then λ
and μ are composable in Λ since otherwise q (λμ) = 0. Now let w′ be the word obtained 
from w by replacing wiwi+1 with the single path λμ, and then

q (w) = sw1 · · · swi−1sλsμswi+2swn+1 = sw1 · · · swi−1sλμswi+2swn+1 = q (w′) .

Since |w′| = n and d (w′) = d (w), the inductive hypothesis implies q (w) ∈ KPR (Λ)d(w). 
A similar argument shows q (w) ∈ KPR (Λ)d(w) whenever w contains a subword wiwi+1 =
μ∗λ∗.

So suppose w contains no subword of the form λμ or μ∗λ∗. Since |w| ≥ 3, either 
w1w2 or w2w3 has the form λ∗μ. By (KP3), we write q (w) as a sum of terms q

(
yi
)

with ∣∣yi∣∣ = n + 1 and d 
(
yi
)

= d (w). Since |w| ≥ 3, each nonzero summand q
(
yi
)

contains 
a factor of the form sγsρ or one of the form sτ∗sγ∗ . Then the previous argument shows 
that every q

(
yi
)
∈ KPR (Λ)d(w) and q (w) ∈ KPR (Λ)d(w), as required. � Claim 3.8

Every element in (FR (w (X)) /I)n is in the form q (w) with w ∈ w (X) and d (w) = n, 
which, by Claim 3.8, belongs to KPR (Λ)n. Then (FR (w (X)) /I)n ⊆ KPR (Λ)n, as re-
quired. �
Definition 3.9. Suppose that {Sλ, Sμ∗ : λ, μ ∈ Λ} is the Kumjian–Pask Λ-family in the 
R-algebra End (FR (∂Λ)) as in Proposition 3.6. We call the R-algebra homomorphism 
πS : KPR (Λ) → End (FR (∂Λ)) obtained from Theorem 3.7.(a), the boundary path rep-
resentation of KPR (Λ).

4. The graded uniqueness theorem

Throughout this section, Λ is a finitely aligned k-graph and R is a commutative ring 
with identity 1.

Theorem 4.1 (The graded uniqueness theorem). Let Λ be a finitely aligned k-graph, R be a 
commutative ring with 1, and A be a Zk-graded R-algebra. Suppose that π : KPR (Λ) → A
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is a Zk-graded ring homomorphism such that π (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0. 
Then π is injective.

We start the proof of Theorem 4.1 by adapting some C∗-algebra results used to prove 
the gauge-invariant uniqueness theorem [22, Theorem 4.2] to Kumjian–Pask algebras. 
Although the argument is rather technical, the point is that most of the argument in the 
C∗-algebra setting also works in our situation.

First we recall from [22, Definition 2.5] that a Cuntz–Krieger Λ-family is a collection 
{Tλ : λ ∈ Λ} of partial isometries (in other words, it satisfies Tλ = TλT

∗
λTλ for λ ∈ Λ, 

see [23, Appendix A]) in a C∗-algebra B satisfying:

(TCK1)
{
Tv : v ∈ Λ0} is a collection of mutually orthogonal projections;

(TCK2) TλTμ = Tλμ whenever s (λ) = r (μ);
(TCK3) T ∗

λTμ =
∑

(ρ,τ)∈Λmin(λ,μ) TρT
∗
τ for all λ, μ ∈ Λ; and

(CK)
∏

λ∈E

(
Tr(E) − TλT

∗
λ

)
= 0 for all E ∈ FE (Λ).

For a finitely aligned k-graph Λ, there exists a universal C∗-algebra C∗ (Λ) gen-
erated by the universal Cuntz–Krieger Λ-family {tλ : λ ∈ Λ}. Now suppose that 
{Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family in an R-algebra A and we define 
Tλ := Sλ for λ ∈ Λ and T ∗

μ := Sμ∗ for μ ∈ G 
(
Λ �=0). Then {Tλ : λ ∈ Λ} is a collec-

tion satisfying Tλ = TλT
∗
λTλ for λ ∈ Λ, (TCK1–3) and (CK). (Note that we do not 

say that {Tλ : λ ∈ Λ} is a Cuntz–Krieger Λ-family, since we need a C∗-algebra contain-
ing Tλ, T ∗

μ .) Similarly, a Cuntz–Krieger Λ-family in a C∗-algebra gives a Kumjian–Pask 
Λ-family. Thus one can translate proofs about Cuntz–Krieger Λ-families to proofs about 
Kumjian–Pask Λ-families.

The key ingredient to proof of Theorem 4.1 is proving that the uniqueness theorem 
holds on the core KPR (Λ)0 := spanR {sλsμ∗ : d (λ) = d (μ)} (Theorem 4.4). First we 
establish some preliminary results and notation.

Following [22, Lemma 3.2], for every finite set E ⊆ Λ, there exists a finite set F ⊆ Λ
which contains E and satisfies

λ, μ, ρ, τ ∈F , d (λ) = d (μ) , d (ρ) = d (τ) , s (λ) = s (μ) , and s (ρ) = s (τ) (4.1)

imply
{
λα, τβ : (α, β) ∈ Λmin (μ, ρ)

}
⊆ F .

We then write

ΠE :=
⋂

{F ⊆ Λ : E ⊆ F and F satisfies (4.1)}

and ΠE×d,s ΠE for the set {(λ, μ) ∈ ΠE × ΠE : d (λ) = d (μ) , s (λ) = s (μ)}. Note that 
ΠE is finite. Now recall from Notation 3.12 of [22] that for λ ∈ ΠE, we write

T (λ) := {ν ∈ s (λ) Λ : d (ν) 
= 0, λν ∈ ΠE} .

Since λT (λ) ⊆ ΠE and ΠE is finite, then T (λ) is also finite.
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Now suppose that {Sλ, Sμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family in an R-algebra A. 
The argument of Lemma 3.2 of [22] shows that the set

MS
ΠE := spanR {SλSμ∗ : (λ, μ) ∈ ΠE ×d,s ΠE}

is closed under multiplication. For (λ, μ) ∈ ΠE ×d,s ΠE, define

Θ (S)ΠE
λ,μ := Sλ

( ∏
ν∈T (λ)

(
Ss(λ) − SλνS(λν)∗

) )
Sμ∗.

Applying the argument of Proposition 3.9 and Proposition 3.11 of [22] gives the fol-
lowing.

Lemma 4.2. Let {Sλ, Sμ∗ : λ, μ ∈ Λ} be a Kumjian–Pask Λ-family in an R-algebra A and 
E ⊆ Λ be finite. For (λ, μ) , (ρ, τ) ∈ ΠE ×d,s ΠE, we have

Θ (S)ΠE
λ,μ Θ (S)ΠE

ρ,τ = δμ,ρΘ (S)ΠE
λ,τ , SλSμ∗ =

∑
λν∈ΠE

Θ (S)ΠE
λν,μν

and MS
ΠE is spanned by the set {Θ (S)ΠE

λ,μ : (λ, μ) ∈ ΠE ×d,s ΠE}.

Lemma 4.3. Let Λ be a finitely aligned k-graph, R be a commutative ring with 1 and 
E ⊆ Λ be finite. Suppose that π : KPR (Λ) → A is a ring homomorphism such that 
π (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0. Let (λ, μ) ∈ ΠE ×d,s ΠE. Then the following 
conditions are equivalent:

(a) π
(
Θ (s)ΠE

λ,μ

)
= 0.

(b) Θ (s)ΠE
λ,μ = 0.

(c) T (λ) is exhaustive.

Furthermore, for r ∈ R\ {0} we have

π
(
rΘ (s)ΠE

λ,μ

)
= 0 if and only if rΘ (s)ΠE

λ,μ = 0

and π is injective on Ms
ΠE.

Proof. By following the argument of Proposition 3.13 and Corollary 3.17 of [22], we 
have the three equivalent conditions. Now take (λ, μ) ∈ ΠE ×d,s ΠE and r ∈ R\ {0}. If 
rΘ (s)ΠE

λ,μ = 0, we trivially have π
(
rΘ (s)ΠE

λ,μ

)
= 0. So suppose π

(
rΘ (s)ΠE

λ,μ

)
= 0. Since 

π (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0, then by Remark 3.5, π
(
rΘ (s)ΠE

λ,μ

)
= 0 implies 

that T (λ) is exhaustive (since r 
= 0) and by (c)⇒(b), Θ (s)ΠE
λ,μ = 0. So rΘ (s)ΠE

λ,μ = 0, 
as required.
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Next we show that π is injective on Ms
ΠE . Take a ∈ Ms

ΠE such that π (a) = 0. We 
have to show a = 0. Since a ∈ Ms

ΠE and Ms
ΠE = spanR{Θ (s)ΠE

λ,μ : (λ, μ) ∈ ΠE ×d,s ΠE}
(Lemma 4.2), we write a =

∑
(λ,μ)∈F rλ,μΘ (s)ΠE

λ,μ where F ⊆ ΠE ×d,s ΠE is finite and 

for all (λ, μ) ∈ F , we have rλ,μ ∈ R and Θ (s)ΠE
λ,μ 
= 0. If T (λ) is exhaustive for some 

(λ, μ) ∈ F , then by (c)⇒(b), Θ (s)ΠE
λ,μ = 0, which contradicts Θ (s)ΠE

λ,μ 
= 0. So T (λ) is 
non-exhaustive for all (λ, μ) ∈ F . Since π (a) = 0, then for (ρ, τ) ∈ F , we have

0 = π
(
Θ (s)ΠE

ρ,ρ

)
π (a)π

(
Θ (s)ΠE

τ,τ

)
= π

(
Θ (s)ΠE

ρ,ρ

)
π
( ∑

(λ,μ)∈F

rλ,μΘ (s)ΠE
λ,μ

)
π
(
Θ (s)ΠE

τ,τ

)

= rρ,τπ
(
Θ (s)ΠE

ρ,τ

)
= rρ,τΘ (π (s))ΠE

ρ,τ (by Lemma 4.2).

But now since π (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0, then by Remark 3.5, 
rρ,τΘ (π (s))ΠE

ρ,τ = 0 implies that rρ,τ = 0 (since T (ρ) is non-exhaustive). Therefore, 
a = 0 and π is injective on Ms

ΠE . �
A direct consequence of Lemma 4.3 is:

Theorem 4.4. Let Λ be a finitely aligned k-graph and R be a commutative ring with 1. 
Suppose that π : KPR (Λ) → A is a ring homomorphism such that π (rsv) 
= 0 for all 
r ∈ R\ {0} and v ∈ Λ0. Then π is injective on KPR (Λ)0.

Proof. Take a ∈ KPR (Λ)0 such that π (a) = 0. We have to show a = 0. Write a =∑
(λ,μ)∈F rλ,μsλsμ∗ with d (λ) = d (μ) for (λ, μ) ∈ F . Define E := {λ, μ : (λ, μ) ∈ F} and 

then a ∈ Ms
ΠE . Since π is injective on Ms

ΠE (Lemma 4.3), a = 0. �
Now we establish the last stepping stone result before proving Theorem 4.1.

Lemma 4.5. Let I be a graded ideal of KPR (Λ). Then I is generated as an ideal by the 
set I0 := I ∩ KPR (Λ)0.

Proof. We generalise the argument of [30, Lemma 5.1]. Take n ∈ Zk and write n =
n1 − n2 such that n1, n2 ∈ Nk and |n1 + n2| as minimum as possible. We show that 
In := I ∩ KPR (Λ)n is contained in KPR (Λ)n1

I0KPR (Λ)n2
. Now take a ∈ In and write 

a =
∑

(λ,μ)∈F rλ,μsλsμ∗ . Note that d (λ)−d (μ) = n for (λ, μ) ∈ F . Since n = n1−n2 with 
n1, n2 ∈ Nk and |n1 + n2| as minimum as possible, then for every (λ, μ) ∈ F , d (λ) ≥ n1
and d (μ) ≥ n2, so by the factorisation property, there exist λ1, λ2, μ1, μ2 such that

λ = λ1λ2, μ = μ1μ2, d (λ1) = n1, d (μ1) = n2, and d (λ2) = d (μ2) .

Hence
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a =
∑

(λ,μ)∈F

rλ1λ2,μ1μ2sλ1

(
sλ2sμ∗

2

)
sμ∗

1 .

Take (α, β) ∈ F and write α = α1α2 and β = β1β2. Note that for ν, γ ∈ Λ with 
d (ν) = d (γ), Remark 3.4 gives sν∗sγ = 0 for ν 
= γ. Then

sα∗
1asβ1 =

∑
(λ,μ)∈F

rλ1λ2,μ1μ2

(
sα∗

1sλ1

) (
sλ2sμ∗

2

) (
sμ∗

1sβ1

)

=
∑

{(λ,μ)∈F :λ1=α1,μ1=β1}
rα1λ2,β1μ2sλ2sμ∗

2

since d (α1) = n1 = d (λ1) and d (β1) = n2 = d (μ1) for (λ, μ) ∈ F . Since a ∈ I, we have 
sα∗

1asβ1 ∈ I. Since d (λ2) = d (μ2) for (α1λ2, β1μ2) ∈ F , we have sα∗
1asβ1 ∈ KPR (Λ)0. 

Hence
∑

{(λ,μ)∈F :λ1=α1,μ1=β1}
rα1λ2,β1μ2sλ2sμ∗

2 = sα∗
1asβ1 ∈ I0

and
∑

{(λ,μ)∈F :λ1=α1,μ1=β1}
rα1λ2,β1μ2sα1λ2s(β1μ2)∗

= sα1

(
sα∗

1asβ1

)
sβ∗

1 ∈ KPR (Λ)n1
I0KPR (Λ)n2

.

Therefore

a =
∑

(λ,μ)∈F

rλ1λ2,μ1μ2sλ1λ2s(μ1μ2)∗

=
∑

{(α1,β1):(α,β)∈F}

( ∑
{(λ,μ)∈F :λ1=α1,μ1=β1}

rα1λ2,β1μ2sα1λ2s(β1μ2)∗
)

also belongs to KPR (Λ)n1
I0KPR (Λ)n2

, and In ⊆ KPR (Λ)n1
I0KPR (Λ)n2

.
Now since I is a graded ideal and I =

⊕
n∈Zk In, we have that I is generated as an 

ideal by I0. �
Proof of Theorem 4.1. Because π is graded, we have that kerπ is a graded ideal. By 
Lemma 4.5, the ideal kerπ is generated by the set kerπ ∩ KPR (Λ)0. Thus it suffices 
to show π|KPR(Λ)0 : KPR (Λ)0 → A is injective. However, the injectivity follows from 
Theorem 4.4. �

One immediate application of Theorem 4.1 is:

Proposition 4.6. Let Λ be a finitely aligned k-graph. Let {sλ, sμ∗ : λ, μ ∈ Λ} be the univer-
sal Kumjian–Pask Λ-family for R = C and {tλ : λ ∈ Λ} be the universal Cuntz–Krieger 
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Λ-family. Then there is an isomorphism πt : KPC (Λ) → spanC

{
tλt

∗
μ : λ, μ ∈ Λ

}
such 

that πt (sλ) = tλ and πt (sμ∗) = t∗μ for λ, μ ∈ Λ. In particular, KPC (Λ) is isomorphic to 
a dense subalgebra of C∗ (Λ).

Proof. Since {tλ : λ ∈ Λ} satisfies (TCK1–3) and (CK), then 
{
tλ, t

∗
μ : λ, μ ∈ Λ

}
also sat-

isfies (KP1–4) and is a Kumjian–Pask Λ-family in C∗ (Λ). Thus the universal property 
of KPC (Λ) gives a homomorphism πt from KPC (Λ) onto the dense subalgebra

A := spanC

{
tλt

∗
μ : λ, μ ∈ Λ

}
of C∗ (Λ).

Next we show the injectivity of πt. By Theorem 4.1, it suffices to show that πt is a 
Zk-graded ring homomorphism. We claim that A is graded by

An := spanC

{
tλt

∗
μ : λ, μ ∈ Λ, d (λ) − d (μ) = n

}
.

Note that for λ, μ, ρ, τ ∈ Λ with d (λ) − d (μ) = n and d (ρ) − d (τ) = m, we have

tλt
∗
μtρt

∗
τ = tλ

( ∑
(μ′,ρ′)∈Λmin(μ,ρ)

tμ′t∗ρ′
)
t∗τ (by (TCK3))

=
∑

(μ′,ρ′)∈Λmin(μ,ρ)

tλμ′t∗τρ′

and for (μ′, ρ′) ∈ Λmin (μ, ρ),

d (λμ′) − d (τρ′) = d (λ) + d (μ′) − d (τ) − d (ρ′)

= d (λ) + (d (μ) ∨ d (ρ) − d (μ))

− d (τ) − (d (μ) ∨ d (ρ) − d (ρ))

= (d (λ) − d (μ)) − (d (τ) − d (ρ))

= n + m.

Hence AnAm ⊆ An+m. Since each spanning element tλt∗μ belongs to Ad(λ)−d(μ), every 
element a of A can be written as a finite sum 

∑
an with an ∈ An. For an ∈ An such 

that a finite sum 
∑

an = 0, then we have each an = 0 by following the argument of [5, 
Lemma 7.4]. Thus 

{
An : n ∈ Zk

}
is a grading of A, as claimed. Then πt is a Zk-grading 

and by Theorem 4.1, πt is injective. �
5. Steinberg algebras

Steinberg algebras were introduced by Steinberg in [28] and are algebraic analogues of 
groupoid C∗-algebras. In [12], Clark and Sims show that for every 1-graph E, its Leavitt 
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path algebra is isomorphic to a Steinberg algebra. In this section, we show that for every 
finitely aligned k-graph Λ, its Kumjian–Pask algebra is isomorphic to a Steinberg algebra 
(Proposition 5.4). We start out with an introduction to groupoids and Steinberg algebras 
in general.

A groupoid G is a small category in which every morphism has an inverse. For a 
groupoid G, we write r (a) and s (a) to denote the range and source of a ∈ G. Because 
r (a) = s 

(
a−1) for a ∈ G, then r and s have the common image. We call this common 

image the unit space of G and denote it G(0). A pair (a, b) ∈ G × G is said composable
if s (a) = r (b). We then use notation G(2) to denote the collection of composable pairs 
in G. For A, B ⊆ G, we write

AB :=
{
ab : a ∈ A, b ∈ B, (a, b) ∈ G(2)

}
.

We say G is a topological groupoid if G is endowed with a topology such that composi-
tion and inversion on G are continuous. We also call an open set U ⊆ G an open bisection
if s and r restricted to U are homeomorphisms into G(0). Finally, we call G ample if G
has a basis of compact open bisections.

Remark 5.1. Note that if G is ample, then G is locally compact and étale. In fact, G is 
Hausdorff ample if and only if G is locally compact, Hausdorff and étale with totally 
disconnected unit space.

Now suppose that G is a Hausdorff ample groupoid and R is a commutative ring 
with 1. As in [9, Section 2.2], the Steinberg algebra1 associated to G is

AR (G) := {f : G → R : f is locally constant and has compact support}

where addition and scalar multiplication are defined pointwise, and convolution is given 
by

(f � g) (a) :=
∑

r(a)=r(b)

f (b) g
(
b−1a

)
.

Furthermore, for compact open bisections U and V , we have the characteristic function 
1U ∈ AR(G) and

1U � 1V = 1UV

[28, Proposition 4.3]. Note that for f ∈ AR (G), supp (f) is clopen ([9, Remark 2.1]).

Example 5.2. To each finitely aligned k-graph Λ, we define the associated boundary-path 
groupoid GΛ from [32, Definition 4.8] as follows. Write

1 In [28], Steinberg writes RG to denote AR(G).
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Λ ∗s Λ := {(λ, μ) ∈ Λ × Λ : s (λ) = s (μ)} .

The objects of GΛ are

Obj (GΛ) := ∂Λ.

The morphisms are

Mor (GΛ) := {(λz, d (λ) − d (μ) , μz) ∈ ∂Λ × Zk × ∂Λ :

(λ, μ) ∈ Λ ∗s Λ, z ∈ s (λ) ∂Λ}
= {(x,m, y) ∈ ∂Λ × Zk × ∂Λ : there exists p, q ∈ Nk such that

p ≤ d (x) , q ≤ d (y) , p− q = m and σpx = σqy}.

The range and source maps are given by r (x,m, y) := x and s (x,m, y) := y, and 
composition is defined such that

((x1,m1, y1) , (y1,m2, y2)) �→ (x1,m1 + m2, y2) .

Finally inversion is given by (x,m, y) �→ (y,−m,x).
Next, we show how to realise GΛ as a topological groupoid. For (λ, μ) ∈ Λ ∗s Λ and 

finite non-exhaustive subset G ⊆ s (λ) Λ, we write

ZΛ (λ) := λ∂Λ,

ZΛ (λ\G) := ZΛ (λ)\
( ⋃

ν∈G

ZΛ (λν)
)
,

ZΛ (λ ∗s μ) := {(x, d (λ) − d (μ) , y) ∈ GΛ : x ∈ ZΛ (λ) , y ∈ ZΛ (μ)

and σd(λ)x = σd(μ)y},

and

ZΛ (λ ∗s μ\G) := ZΛ (λ ∗s μ)\
( ⋃

ν∈G

ZΛ (λν ∗s μν)
)
.

The sets ZΛ (λ ∗s μ\G) form a basis of compact open bisections for a second-countable, 
Hausdorff topology on GΛ under which it is an ample groupoid. Further, the sets 
ZΛ (λ\G) form a basis of compact open sets for G(0)

Λ .

Remark 5.3. A number of notes of this example:

(i) We think of G(0)
Λ = ∂Λ as a subset of GΛ under the correspondence x �→ (x, 0, x).

(ii) In [32], Yeend defines ZΛ (λ\G) and ZΛ (λ ∗s μ\G) where G is finite. However, 
if G is exhaustive, then ZΛ (λ\G) and ZΛ (λ ∗s μ\G) are empty sets. Thus our 
definitions make sure that both ZΛ (λ\G) and ZΛ (λ ∗s μ\G) are non-empty.
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Next we generalise [10, Proposition 4.3] as follows:

Proposition 5.4. Let Λ be a finitely aligned k-graph and GΛ be its boundary-path groupoid 
as defined in Example 5.2. Let R be a commutative ring with 1. Then there is an iso-
morphism πT : KPR (Λ) → AR (GΛ) such that πT (sλ) = 1ZΛ(λ∗ss(λ)) and πT (sμ∗) =
1ZΛ(s(μ)∗sμ) for λ, μ ∈ Λ.

The only part of the proof of Proposition 5.4 that requires much additional work is 
showing the surjectivity of πT . For this, we establish the following two lemmas. These 
lemmas show that the characteristic function associated to a compact open set in GΛ
can be written as a sum of elements in the form 1ZΛ(λ∗sμ\G).

Lemma 5.5. Let (λ, μ) , (λ′, μ′) ∈ Λ ∗s Λ, G ⊆ s (λ) Λ, and G′ ⊆ s (λ′) Λ. Define F :=
Λmin (λ, λ′) ∩ Λmin (μ, μ′). Then

ZΛ(λ ∗s μ\G)∩ZΛ(λ′ ∗s μ′\G′) = �
(γ,γ′)∈F

ZΛ(λγ ∗s μ′γ′\[Ext(γ;G)∪Ext(γ′;G′)]). (∗)

Proof. We generalise the argument of [12, Example 3.2] for 1-graphs. First we show that 
the collection

{ZΛ (λγ ∗s μ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) : (γ, γ′) ∈ F}

is disjoint. It suffices to show that the collection

{ZΛ (λγ ∗s μ′γ′) : (γ, γ′) ∈ F}

is disjoint. Suppose for contradiction that there exist (γ, γ′), (γ′′, γ′′′) ∈ F such that 
(γ, γ′) 
= (γ′′, γ′′′) and V := ZΛ (λγ ∗s μ′γ′)∩ZΛ (λγ′′ ∗s μ′γ′′′) 
= ∅. Note that if γ = γ′′, 
then

λ′γ′ = λγ(since (γ, γ′) ∈ Λmin (λ, λ′))

= λγ′′ (since γ = γ′′)

= λ′γ′′′ (since (γ′′, γ′′′) ∈ Λmin (λ, λ′))

and γ′ = γ′′′ by the factorisation property, which contradicts (γ, γ′) 
= (γ′′, γ′′′). The 
same argument shows that γ′ = γ′′′ implies γ = γ′′. Hence γ 
= γ′′ and γ′ 
= γ′′′. 
Meanwhile, since (γ, γ′), (γ′′, γ′′′) ∈ F , then d (γ) = d (γ′′) and d (γ′) = d (γ′′′). Take 
(x,m, y) ∈ V . Then x ∈ ZΛ (λγ) and x ∈ ZΛ (λγ′′). Since d (γ) = d (γ′′), then d (λγ) =
d (λγ′′) and γ = x (d (λ) , d (λγ)) = x (d (λ) , d (λγ′′)) = γ′′, which contradicts γ 
= γ′′. 
Hence the collection {ZΛ (λγ ∗s μ′γ′) : (γ, γ′) ∈ F} is disjoint, and so is

{ZΛ (λγ ∗s μ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) : (γ, γ′) ∈ F} .
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Next we show the right inclusion of (∗). Write

U := ZΛ (λ ∗s μ\G) ∩ ZΛ (λ′ ∗s μ′\G′)

and take (x,m, y) ∈ U . We show (x,m, y) ∈ ZΛ (λγ ∗s μ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)])
for some (γ, γ′) ∈ F . Because x ∈ ZΛ (λ) and x ∈ ZΛ (λ′), then d (x) ≥ d (λ)∨ d (λ′) and 
there exists (γ, γ′) ∈ Λmin (λ, λ′) such that

x ∈ ZΛ (λγ) . (5.1)

Using a similar argument, there exists (γ′′, γ′′′) ∈ Λmin (μ, μ′) such that

y ∈ ZΛ (μγ′′) . (5.2)

We claim that γ = γ′′ and γ′ = γ′′′. To see this, note that m = d (λ) − d (μ) =
d (λ′) − d (μ′) and

d (γ) = d (λ) ∨ d (λ′) − d (λ) = (d (μ) + m) ∨ (d (μ′) + m) − (d (μ) + m)

= (d (μ) ∨ d (μ′)) + m− (d (μ) + m) = d (μ) ∨ d (μ′) − d (μ) = d (γ′′) .

Since (x,m, y) ∈ ZΛ (λ ∗s μ\G), then σd(λ)x = σd(μ)y and

γ =
(
σd(λ)x

)
(0, d (γ)) =

(
σd(μ)y

)
(0, d (γ′)) = γ′′.

Using a similar argument, we also get γ′ = γ′′′ proving the claim.
Next we show that (x,m, y) ∈ ZΛ (λγ ∗s μ′γ′). By (5.1) and (5.2), we have x ∈ ZΛ (λγ)

and y ∈ ZΛ (μγ′′). Since γ = γ′′, γ′ = γ′′′, (γ′′, γ′′′) ∈ Λmin (μ, μ′), then μγ′′ = μγ = μ′γ′

and y ∈ ZΛ (μ′γ′). On the other hand, since (x,m, y) ∈ ZΛ (λ ∗s μ\G), then σd(λ)x =
σd(μ)y and

σd(λγ)x = σd(μγ)y = σd(μ′γ′)y

since μγ = μ′γ′. Since m = d (λ) − d (μ) = d (λγ) − d (μ′γ′), then (x,m, y) ∈
ZΛ (λγ ∗s μ′γ′), as required.

Finally we show that (x,m, y) /∈ ZΛ (λγν ∗s μ′γ′ν) for all ν ∈ Ext (γ;G)∪Ext (γ′;G′). 
Suppose for a contradiction that there exists ν ∈ Ext (γ;G) ∪ Ext (γ′;G′) such that 
(x,m, y) ∈ ZΛ (λγν ∗s μ′γ′ν). Without loss of generality, suppose ν ∈ Ext (γ;G). Then 
there exists ν′ ∈ G such that γν ∈ ZΛ (ν′). Since x ∈ ZΛ (λγν), y ∈ ZΛ (μ′γ′ν) =
ZΛ (μγν), and γν ∈ ZΛ (ν′), then x ∈ ZΛ (λν′) and y ∈ ZΛ (μν′) where ν′ ∈ G. This 
contradicts (x,m, y) ∈ ZΛ (λ ∗s μ\G). Hence

(x,m, y) ∈ ZΛ (λγ ∗s μ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)])
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and

U ⊆ �
(γ,γ′)∈F

ZΛ (λγ ∗s μ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) .

Next we show the left inclusion of (∗). Take (γ, γ′) ∈ F and

(x,m, y) ∈ ZΛ (λγ ∗s μ′γ′\ [Ext (γ;G) ∪ Ext (γ′;G′)]) . (5.3)

We show (x,m, y) belongs to both ZΛ (λ ∗s μ\G) and ZΛ (λ′ ∗s μ′\G′). Without loss of 
generality, it suffices to show (x,m, y) ∈ ZΛ (λ ∗s μ\G). First we show that (x,m, y) ∈
ZΛ (λ ∗s μ). Note that we have μγ = μ′γ′ and m = d (λγ) − d (μ′γ′) = d (λ) − d (μ). On 
the other hand, (x,m, y) ∈ ZΛ (λγ ∗s μ′γ′) also implies x ∈ ZΛ (λγ) and y ∈ ZΛ (μ′γ′) =
ZΛ (μγ). Furthermore,

σ(λ)x = [x (d (λ) , d (λγ))]
[
σ(λγ)x

]
= γ

[
σ(λγ)x

]
(since x (d (λ) , d (λγ)) = γ)

= γ[σ(μ′γ′)y] (since σ(λγ)x = σ(μ′γ′)y)

= [y (d (μ) , d (μγ))] [σ(μ′γ′)y] (since y (d (μ) , d (μγ)) = γ)

= [y (d (μ) , d (μγ))] [σ(μγ)y] (since μγ = μ′γ′)

= σ(μ)y

and then (x,m, y) ∈ ZΛ (λ ∗s μ), as required.
To complete the proof, we have to show (x,m, y) /∈ ZΛ (λν ∗s μν) for all ν ∈ G. 

Suppose for contradiction that there exists ν ∈ G such that (x,m, y) ∈ ZΛ (λν ∗s μν). 
In particular, x ∈ ZΛ (λν). Since x ∈ ZΛ (λγ) and x ∈ ZΛ (λν), then there exists ν′ ∈
Ext (γ; {ν}) such that x ∈ ZΛ (λγν′). Hence

σ(λγν′)x = σ(μγν′)y (since σ(λ)x = σ(μ)y)

= σ(μ′γ′ν′)y (since μγ = μ′γ′),(
σ(μ)y

)
(0, d (γν′)) =

(
σ(λ)x

)
(0, d (γν′)) (since σ(λ)x = σ(μ)y)

= x (d (λ) , d (λγν′))

= γν′ (since x ∈ ZΛ (λγν′)),

(5.4)

and

y (0, d (μ′γ′ν′)) = y (0, d (μγν′)) (since μγ = μ′γ′)

= μγν′ (by (5.4))

= μ′γ′ν′ (since μγ = μ′γ′).
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Furthermore,

d (λγν′) − d (μ′γ′ν′) = d (λγ) − d (μ′γ′)

= d (λγ) − d (μγ) (since μγ = μ′γ′)

= d (λ) − d (μ) = m.

Hence (x,m, y) ∈ ZΛ (λγν′ ∗s μ′γ′ν′) for some ν′ ∈ Ext (γ; {ν}) ⊆ Ext (γ;G), which 
contradicts (5.3). The conclusion follows. �
Lemma 5.6. Let {ZΛ (λi ∗s μi\Gi)}ni=1 be a finite collection of compact open bisection 
sets and

U :=
n⋃

i=1
ZΛ (λi ∗s μi\Gi) .

Then

1U ∈ spanR

{
1ZΛ(λ∗sμ\G) : (λ, μ) ∈ Λ ∗s Λ, G ⊆ s (λ) Λ

}
.

Proof. It is trivial for n = 1. Now let n = 2 and F := Λmin (λ1, λ2) ∩ Λmin (μ1, μ2). If 
F = ∅, then

1U = 1ZΛ(λ∗sμ\G) + 1ZΛ(λ′∗sμ′\G′).

Otherwise, by Proposition 5.5, we have

1U = 1ZΛ(λ∗sμ\G) + 1ZΛ(λ′∗sμ′\G′) −
∑

(γ,γ′)∈F

1Zγ,γ′

where Zγ,γ′ := ZΛ (λγ ∗s μ′γ′\Ext (γ;G) ∪ Ext (γ′;G′)), as required. For n ≥ 3, by using 
the inclusion-exclusion principle and de Morgan’s law, 1U can be written as a sum of 
elements in the form 1ZΛ(λ∗sμ\G). �
Proof of Proposition 5.4. Define Tλ := 1ZΛ(λ∗ss(λ)). Then by [13, Theorem 6.13] (or 
[32, Example 7.1]), {Tλ, Tμ∗ : λ, μ ∈ Λ} is a Kumjian–Pask Λ-family in AR (GΛ). Hence, 
there exists a homomorphism πT : KPR (Λ) → AR (GΛ) such that πT (sλ) = Tλ and 
πT (sμ∗) = Tμ∗ for λ, μ ∈ Λ by Theorem 3.7(a).

To see that πT is injective, first we show that πT is graded. Take λ, μ ∈ Λ. Then 
sλsμ∗ ∈ KPR (Λ)d(λ)−d(μ) and

πT (sλsμ∗) = 1ZΛ(λ∗sμ) = 1{(x,d(λ)−d(μ),y):(λ,μ)∈Λ∗sΛ,z∈s(λ)∂Λ} ∈ AR (GΛ)d(λ)−d(μ) .

Since for every n ∈ Zk, KPR (Λ)n is spanned by elements in the form sλsμ∗ (The-
orem 3.7.(c)), then for n ∈ Zk, πT (KPR (Λ)n) ⊆ AR (GΛ)n and πT is graded. Since 
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πT (rsv) = r1ZΛ(v∗sv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0, and πT is graded, then by 
Theorem 4.1, πT is injective, as required.

Finally we show the surjectivity of πT . Take f ∈ AR (GΛ). By [9, Lemma 2.2], f can be 
written as 

∑
U∈F aU1U where aU ∈ R, each U is in the form 

⋃n
i=1 ZΛ (λi ∗s μi\Gi) for 

some n ∈ N, and F is finite set of mutually disjoint elements. Hence, to show f ∈ im (πT ), 
it suffices to show

1U ∈ im (πT )

where U :=
⋃n

i=1 ZΛ (λi ∗s μi\Gi) for some n ∈ N and collection {ZΛ (λi ∗s μi\Gi)}ni=1. 
By Lemma 5.6, 1U can be written as the sum of elements in the form 1ZΛ(λ∗sμ\G). On 
the other hand, for (λ, μ) ∈ Λ ∗s Λ and finite G ⊆ s (λ) Λ, we have

Tλ

(∏
ν∈G

(
Ts(λ) − TνTν∗

) )
Tμ∗ = 1ZΛ(λ∗ss(λ))

(∏
ν∈G

(
1ZΛ(s(λ)∗ss(λ)) − 1ZΛ(ν∗sν)

) )
1ZΛ(s(μ)∗sμ)

(5.5)

= 1ZΛ(λ∗ss(λ))
( ∏
ν∈G

(
1ZΛ( s(λ)∗ss(λ)\{ν})

) )
1ZΛ(s(μ)∗sμ)

= 1ZΛ(λ∗ss(λ))
(
1∏

ν∈G ZΛ( s(λ)∗ss(λ)\{ν})
)
1ZΛ(s(μ)∗sμ)

= 1ZΛ(λ∗ss(λ))
(
1ZΛ( s(λ)∗ss(λ)\G)

)
1ZΛ(s(μ)∗sμ)

= 1ZΛ(λ∗sμ\G)

since s (λ) = s (μ). Hence, 1ZΛ(λ∗sμ\G) belongs to im (πT ) and then so does 1U , as 
required. Therefore, πT is surjective and then is an isomorphism. �
Remark 5.7. Finitely aligned k-graphs include 1-graphs and row-finite k-graphs with 
no sources. Further, in these cases, the boundary path groupoid GΛ of Example 5.2
coincides with GE of [12] and GΛ of [10]. Thus, we have generalised Example 3.2 of [12]
and Proposition 4.3 of [10]. For locally convex row-finite k-graphs, our construction gives 
a Steinberg algebra model of the Kumjian–Pask algebras of [11].

6. Aperiodic higher-rank graphs and effective groupoids

In this section and Section 7, we investigate the relationship between a k-graph Λ and 
its boundary-path groupoid GΛ as constructed in Example 5.2. We expect the Cuntz–
Krieger uniqueness theorem (Theorem 8.1) to apply only to aperiodic finitely aligned 
k-graphs (definition below). On the other hand, effective groupoids (definition below) 
are needed in the hypothesis of the Cuntz–Krieger uniqueness theorem for Steinberg 
algebras (Theorem 8.2). In this section, our main result is Proposition 6.3 which says 
that a finitely aligned k-graph Λ is aperiodic if and only if the boundary-path groupoid 
GΛ is effective.
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We say a boundary path x is aperiodic if for all λ, μ ∈ Λr (x), λ 
= μ implies λx 
= μx. 
We say a finitely aligned k-graph Λ is aperiodic if for each v ∈ Λ0, there exists an 
aperiodic boundary path x with r (x) = v.

Remark 6.1. There are several equivalent ways to define the aperiodicity condition for 
finitely aligned k-graphs (see [13,18,22,26]). However, those definitions are equivalent by 
[18, Proposition 3.6] and [26, Proposition 2.11]. The definition we use is called Condition 
(B′) in [13, Remark 7.3] and [26, Definition 2.1.(ii)].

Remark 6.2. For 1-graphs, the aperiodicity condition is known as Condition (L), which, 
using our conventions, says that every cycle has an entry (see [1,3,7,16,23,29,30]).

Next let G be a topological groupoid. Define Iso (G) the isotropy groupoid of G by

Iso (G) := {a ∈ G : s (a) = r (a)} .

We then say G is effective if the interior of Iso (G) is G(0). See [8, Lemma 3.1] for some 
equivalent characterisations.

Proposition 6.3. Let Λ be a finitely aligned k-graph. Then Λ is aperiodic if and only if 
the boundary-path groupoid GΛ is effective.

Proof. (⇒) First suppose that Λ is aperiodic. We trivially have G(0)
Λ belongs to the 

interior of Iso (GΛ). Now we show the reverse inclusion. Take a an interior point of 
Iso (GΛ). Then there exists ZΛ (λ ∗s μ\G) such that ZΛ (λ ∗s μ\G) ⊆ Iso (GΛ) and a ∈
ZΛ (λ ∗s μ\G). We show λ = μ.

Note that since a ∈ ZΛ (λ ∗s μ\G), then ZΛ (λ ∗s μ\G) is not empty and by Re-
mark 5.3.(ii), G is not exhaustive. Hence, there exists ν ∈ s (λ) Λ such that Λmin (ν, γ) = ∅
for γ ∈ G. Because Λ is aperiodic, there exists an aperiodic boundary path x ∈ s (ν) ∂Λ.

We claim that the boundary path νx is also aperiodic. Suppose for contradiction that 
there exists λ′, μ′ ∈ Λr (νx) such that λ′ 
= μ′ and

λ′ (νx) = μ′ (νx) . (6.1)

Since λ′, μ′, ν ∈ Λ, by the unique factorisation property we have λ′ 
= μ′ implies λ′ν 
=
μ′ν. Now because x is aperiodic, λ′ν 
= μ′ν implies λ′ν (x) 
= μ′ν (x), which contradicts 
(6.1). Hence, νx is aperiodic, as claimed.

Since λνx ∈ ZΛ (λ)\ZΛ (λγ) and μνx ∈ ZΛ (μ)\ZΛ (μγ) for γ ∈ G, we have

(λνx, d (λ) − d (μ) , μνx) ∈ ZΛ (λ ∗s μ\G) .

Thus ZΛ (λ ∗s μ\G) ⊆ Iso (GΛ), and hence λνx = μνx. Since νx is aperiodic, we have 
λ (νx) = μ (νx) which implies λ = μ. Therefore, GΛ is effective.
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(⇐) Now suppose that Λ is not aperiodic. Then there exists v ∈ Λ0 such that for all 
boundary path x ∈ v∂Λ, x is not aperiodic.

Claim 6.4. For x ∈ v∂Λ, we have xGΛx 
= {x}.

Proof of Claim 6.4. Take x ∈ v∂Λ. Since x is not aperiodic, then there exist λ, μ ∈ Λr (x)
such that λ 
= μ and λx = μx. If d (λ) = d (μ), then

λ = (λx) (0, d (λ)) = (μx) (0, d (μ)) = μ,

which contradicts with λ 
= μ.
So suppose d (λ) 
= d (μ). Note that for 1 ≤ i ≤ k such that d (λ)i 
= d (μ)i, we have 

d (x)i = ∞ (since λx = μx). Hence

((d (λ) ∨ d (μ)) − d (λ)) ∨ ((d (λ) ∨ d (μ)) − d (μ)) ≤ d (x) .

Write p := (d (λ) ∨ d (μ)) − d (λ) and q := (d (λ) ∨ d (μ)) − d (μ). Then

σpx = σp
(
σd(λ) (λx)

)
= σd(λ)∨d(μ) (λx)

= σd(λ)∨d(μ) (μx) (since λx = μx)

= σq
(
σd(μ) (μx)

)
= σqx

and p 
= q (since d (λ) 
= d (μ)). This implies (x, p− q, x) ∈ GΛ\ G(0)
Λ and xGΛx 
= {x}.

� Claim 6.4

Since xGΛx 
= {x} for all x ∈ v∂Λ, then

ZΛ (v) ∩ {z ∈ G(0)
Λ : zGΛz = {z}} = ∅

and {z ∈ G(0)
Λ : zGΛz = {z}} is not dense in G(0)

Λ . Since GΛ is locally compact, second-
countable, Hausdorff and étale, then by [24, Proposition 3.6.(b)], GΛ is not effective, as 
required. �
Remark 6.5. In fact, for a finitely aligned k-graph Λ, the following five conditions are 
equivalent:

(a) GΛ is effective.
(b) GΛ is topologically principal in that the set of units with trivial isotropy is dense in 

G(0).
(c) GΛ satisfies Condition (1) of Theorem 5.1 of [25].
(d) Λ has no local periodicity as defined in [26].
(e) Λ is aperiodic.



392 L. Orloff Clark, Y.E.P. Pangalela / Journal of Algebra 482 (2017) 364–397
In [24, Proposition 3.6], Renault shows that for a locally compact, second-countable, 
Hausdorff, étale G, G is effective if and only if it is topologically principle. Since the 
boundary-path groupoid GΛ is locally compact, second-countable, Hausdorff and étale, 
then (a)⇔(b). Meanwhile, in [32, Theorem 5.2], Yeend proves (b)⇔(c). [Note that Yeend 
uses notion “essentially free” instead of “topologically principal”.] Lemma 5.6 of [25] gives 
(c)⇔(d). Finally, (d)⇔(e) follows from [26, Proposition 2.11].

7. Cofinal higher-rank graphs and minimal groupoids

In this section, we show that a finitely aligned k-graph Λ is cofinal if and only if the 
boundary-path groupoid GΛ is minimal (Proposition 7.1). Later, we use this relationship 
to study the simplicity of Kumjian–Pask algebras in Section 9.

Recall from [27, Definition 8.4] that we say a k-graph Λ is cofinal if for all v ∈ Λ0 and 
x ∈ ∂Λ, there exists n ≤ d (x) such that vΛx (n) 
= ∅.

In a groupoid G, a subset U ⊆ G(0) is called invariant if s (a) ∈ U implies r (a) ∈ U

for all a ∈ G. Note that U is invariant if and only if G(0)\U is invariant. We then say 
a topological groupoid G is minimal if G(0) has no nontrivial open invariant subsets. 
Equivalently, G is minimal if for each x ∈ G(0), the orbit [x] := s (xG) is dense in G(0).

Proposition 7.1. Let Λ be a finitely aligned k-graph. Then Λ is cofinal if and only if the 
boundary-path groupoid GΛ is minimal.

Proof. (⇒) Suppose that Λ is cofinal. Take x ∈ G(0)
Λ . We have to show that [x] is dense 

in G(0)
Λ . Take a non-empty open set ZΛ (λ\G) and we claim that ZΛ (λ\G) ∩ [x] 
= ∅. 

Since ZΛ (λ\G) is non-empty, we have that G is not exhaustive (see Remark 5.3.(i)). 
Then there exists ν ∈ s (λ) Λ such that Λmin (ν, γ) = ∅ for γ ∈ G. Now consider the 
vertex s (λν) and the boundary path x. Since Λ is cofinal, then there exists n ≤ d (x)
such that s (λν) Λx (n) 
= ∅. Take μ ∈ s (λν) Λx (n). Because x is a boundary path, so is 
σnx. Hence,

y := λνμ [σnx]

is also a boundary path. It is clear that y ∈ ZΛ (λ) and since Λmin (ν, γ) = ∅ for γ ∈ G, 
we have y /∈ ZΛ (λγ) for γ ∈ G. Hence, y ∈ ZΛ (λ\G).

On the other hand, since y = λνμ [σnx], then (x, n− d (λνμ) , y) ∈ GΛ and y ∈ [x]. 
Therefore, ZΛ (λ\G) ∩ [x] 
= ∅. Thus, [x] is dense in G(0)

Λ and GΛ is minimal.
(⇐) Suppose that Λ is not cofinal. Then there exist v ∈ Λ0 and x ∈ ∂Λ such that for 

all n ≤ d (x), we have vΛx (n) = ∅. We claim ZΛ (v)∩ [x] = ∅. Suppose for contradiction 
that ZΛ (v) ∩ [x] 
= ∅. Take y ∈ ZΛ (v) ∩ [x]. Because y ∈ [x], then there exist p, q ∈ Nk

such that (x, p− q, y) ∈ GΛ. This implies σpx = σqy. Since y ∈ ZΛ (v), then r (y) = v. 
Hence, σpx = σqy and r (y) = v imply that y (0, q) belongs to vΛx (p), which contradicts 
with vΛx (n) = ∅ for all n ≤ d (x). Therefore, ZΛ (v)∩ [x] = ∅, as claimed, and [x] is not 
dense in G(0)

Λ . Thus, GΛ is not minimal. �
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8. The Cuntz–Krieger uniqueness theorem

Throughout this section, Λ is a finitely aligned k-graph and R is a commutative ring 
with identity 1.

Theorem 8.1 (The Cuntz–Krieger uniqueness theorem). Let Λ be an aperiodic finitely 
aligned k-graph, R be a commutative ring with 1. Suppose that π : KPR (Λ) → A is a 
ring homomorphism such that π (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0. Then π is 
injective.

We show Theorem 8.1 by using the Cuntz–Krieger uniqueness theorem for Steinberg 
algebras [9, Theorem 3.2]. First we verify an alternate formulation of the Cuntz–Krieger 
uniqueness theorem for Steinberg algebras that will be useful.

Theorem 8.2. Let G be an effective, Hausdorff, ample groupoid, and R be a commutative 
ring with 1. Let B be a basis of compact open bisection for the topology on G. Let φ :
AR (G) → A be a ring homomorphism. Suppose that ker (φ) 
= 0. Then there exist r ∈
R\ {0} and B ∈ B such that B ⊆ G(0) and φ (r1B) = 0.

Proof. Since ker (φ) 
= 0, then by [9, Theorem 3.2], there exist r ∈ R\ {0} and a non-
empty compact open subset K ⊆ G(0) such that φ (r1K) = 0. Since K is open, then 
there is B ∈ B such that B ⊆ K. Hence, B ⊆ G(0) and

0 = φ (r1K)φ (1B) = φ (r1KB) = φ (r1K∩B) = φ (r1B) . �
Proof of Theorem 8.1. First note that GΛ is a Hausdorff and ample groupoid that is ef-
fective by Proposition 6.3. Thus it satisfies the hypothesis of Theorem 8.2. Now recall the 
isomorphism πT : KPR (Λ) → AR (GΛ) as in Proposition 5.4. Then πT (sλ) = 1ZΛ(λ∗ss(λ))
and πT (sμ∗) = 1ZΛ(s(μ)∗sμ) for λ, μ ∈ Λ. Define φ := π◦π−1

T . To show the injectivity of π, 
it suffices to show that φ is injective. Suppose for contradiction that φ is not injective. 
By Theorem 8.2, there exist r ∈ R\ {0} and ZΛ (λ\G) such that φ 

(
r1ZΛ(λ\G)

)
= 0. 

Since 1ZΛ(λ\G) can be identified as 1ZΛ(λ∗sλ\G) (Remark 5.3.(i)), then by following the 
argument of (5.5), we get

φ
(
r1ZΛ(λ\G)

)
= π

(
rsλ

( ∏
ν∈G

(
ss(λ) − sνsν∗

) )
sλ∗

)

and then

π
(
rsλ

( ∏
ν∈G

(
ss(λ) − sνsν∗

) )
sλ∗

)
= 0. (8.1)

On the other hand, since π (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0, and G is finite 
non-exhaustive, then by Proposition 3.3.(d),



394 L. Orloff Clark, Y.E.P. Pangalela / Journal of Algebra 482 (2017) 364–397
π
(
rsλ

( ∏
ν∈G

(
ss(λ) − sνsν∗

) )
sλ∗

)

= 0,

which contradicts (8.1). The conclusion follows. �
One application of Theorem 8.1 is:

Corollary 8.3. Let Λ be finitely aligned k-graph and R be a commutative ring with 1. 
Then Λ is aperiodic if and only if the boundary-path representation πS : KPR (Λ) →
End (FR (∂Λ)) is injective.

To show Corollary 8.3, we establish some results and notation.
Following [26, Definition 2.3], for a finitely aligned k-graph Λ, we say Λ has no local 

periodicity if for every v ∈ Λ0 and every n 
= m ∈ Nk, there exists x ∈ v∂Λ such that 
either d (x) � n ∨m or σnx 
= σmx. If no local aperiodicity fails at v ∈ Λ0, then there 
are n 
= m ∈ Nk such that σnx = σmx for all x ∈ v∂Λ. In this case, we say Λ has local 
periodicity n, m at v ∈ Λ0.

Lemma 8.4 ([26, Lemma 2.9]). Let Λ be a finitely aligned k-graph which has local peri-
odicity n, m at v ∈ Λ0. Then d (x) ≥ n ∨ m and σnx = σmx for every x ∈ v∂Λ. Fix 
x ∈ v∂Λ and set μ = x (0,m), α = x (m,m ∨ n), and ν = (μα) (0, n). Then μαy = ναy

for every y ∈ s (α) ∂Λ.

Proof of Corollary 8.3. (⇒) Suppose that Λ is aperiodic. By Proposition 3.6, we have 
πS (rsv) 
= 0 for all r ∈ R\ {0} and v ∈ Λ0. Since Λ is aperiodic, then by Theorem 8.1, 
πS is injective.

(⇐) Suppose that Λ is not aperiodic. We are following the argument of [5, Lemma 5.9]. 
Since Λ is not aperiodic, by [26, Proposition 2.11], there exist v ∈ Λ0 and n 
= m ∈ Nk

such that Λ has local periodicity n, m at v ∈ Λ0. Let μ, ν, α be as in Lemma 8.4 and 
define a := sμαs(μα)∗ − sναs(μα)∗ . We claim that a ∈ ker (πS)\ {0}.

First we show that a 
= 0. Suppose for contradiction that a = 0. Then sμαs(μα)∗ =
sναs(μα)∗ . Note that d 

(
sμαs(μα)∗

)
= d (μα) − d (μα) = 0 and

d
(
sναs(μα)∗

)
= d (να) − d (μα) = d (ν) + d (α) − d (μ) − d (α) = n−m 
= 0.

Hence sμαs(μα)∗ = sναs(μα)∗ = 0. Thus, 0 = s(μα)∗
(
sμαs(μα)∗

)
sμα = s2

s(μα) = ss(μα), 
which contradicts Theorem 3.7.(b). Hence a 
= 0.

Now we show that a ∈ ker (πS). Take y ∈ ∂Λ, and it suffices to show πS (a) (y) = 0. 
Recall that πS (sλ) = Sλ and πS (sμ∗) = Sμ∗ where

Sλ (y) =
{
λy if s (λ) = r (y) ;
0 otherwise,

and Sμ∗ (y) =
{
σd(μ)y if y (0, d (μ)) = μ;
0 otherwise.
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First suppose that y (0, d (μα)) 
= μα. Then S(μα)∗ (y) = 0 and πS (a) (y) =
SμαS(μα)∗ (y) − SναS(μα)∗ (y) = 0. Next suppose that y (0, d (μα)) = μα. Then

πS (a) (y) = (Sμα − Sνα)
(
σd(μα)y

)
.

Since y ∈ ∂Λ, then σd(μα)y ∈ s (α) ∂Λ and by Lemma 8.4, μα
(
σd(μα)y

)
= να

(
σd(μα)y

)
and hence πS (a) (y) = 0. Thus, a ∈ ker (πS)\ {0}, as claimed, and πS is not injective. �
9. Basic simplicity and simplicity

As in [30], we say an ideal I in KPR (Λ) is basic if whenever r ∈ R\ {0} and v ∈ Λ0, 
we have rsv ∈ I implies sv ∈ I. We also say that KPR (Λ) is basically simple if its only 
basic ideals are {0} and KPR (Λ).

In this section, we investigate necessary and sufficient conditions for KPR (Λ) to be 
basically simple (Theorem 9.3) and to be simple (Theorem 9.4). We show that both 
results can be viewed as consequences of basic simplicity and simplicity characterisations 
of Steinberg algebras. Therefore, we state necessary and sufficient conditions for the 
Steinberg algebra AR (G) to be basically simple and to be simple in the following two 
theorems.

Theorem 9.1 ([9, Theorem 4.1]). Let G be a Hausdorff, ample groupoid and R be a 
commutative ring with 1. Then AR (G) is basically simple if and only if G is effective and 
minimal.

Theorem 9.2 ([9, Corollary 4.6]). Let G be a Hausdorff, ample groupoid and R be a 
commutative ring with 1. Then AR (G) is simple if and only if R is a field and G is 
effective and minimal.

Now we are ready to prove our results in this section.

Theorem 9.3. Let Λ be a finitely aligned k-graph and let R be a commutative ring with 1. 
Then KPR (Λ) is basically simple if and only if Λ is aperiodic and cofinal.

Proof. (⇒) First suppose that KPR (Λ) is basically simple. By Proposition 5.4, AR (GΛ)
is also basically simple and then by Theorem 9.1, GΛ is effective and minimal. On the 
other hand, GΛ is effective implies that Λ is aperiodic (Proposition 6.3), and GΛ is minimal 
implies that Λ is cofinal (Proposition 7.1). The conclusion follows.

(⇐) Next suppose that Λ is aperiodic and cofinal. By Proposition 6.3 and Propo-
sition 7.1, GΛ is effective and minimal and then by Theorem 9.1, AR (GΛ) is basically 
simple. Since AR (GΛ) is isomorphic to KPR (Λ) (Proposition 5.4), then KPR (Λ) is also 
basically simple, as required. �
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Theorem 9.4. Let Λ be a finitely aligned k-graph and let R be a commutative ring with 1. 
Then KPR (Λ) is simple if and only if R is a field and Λ is aperiodic and cofinal.

Proof. (⇒) First suppose that KPR (Λ) is simple. Then KPR (Λ) is also basically simple 
and Theorem 9.3 implies that Λ is aperiodic and cofinal. On the other hand, since 
KPR (Λ) is simple, then by Proposition 5.4, AR (GΛ) is also simple and by Theorem 9.2, 
R is a field, as required.

(⇐) Next suppose that R is a field and Λ is aperiodic and cofinal. By Proposition 6.3
and Proposition 7.1, GΛ is effective and minimal. Hence, by Theorem 9.2, AR (GΛ) is 
simple and by Proposition 5.4, so is KPR (Λ). �
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