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We define a function, called s-multiplicity, that interpolates 
between Hilbert–Samuel multiplicity and Hilbert–Kunz multi-
plicity by comparing powers of ideals to the Frobenius powers 
of ideals. The function is continuous in s, and its value is 
equal to Hilbert–Samuel multiplicity for small values of s and 
is equal to Hilbert–Kunz multiplicity for large values of s. We 
prove that it has an Associativity Formula generalizing the 
Associativity Formulas for Hilbert–Samuel and Hilbert–Kunz 
multiplicity. We also define a family of closures such that if 
two ideals have the same s-closure then they have the same 
s-multiplicity, and the converse holds under mild conditions. 
We describe the s-multiplicity of monomial ideals in toric rings 
as a certain volume in real space.
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1. Introduction

The purpose of this paper is to investigate a function that interpolates continuously 
between Hilbert–Samuel multiplicity and Hilbert–Kunz multiplicity. First we define a 
limit that behaves like a multiplicity, then we normalize it to get a proper interpolation 
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between the Hilbert–Samuel and Hilbert–Kunz multiplicities. This interpolating func-
tion, which we call s-multiplicity, is a single object which captures the behavior of both 
multiplicities as well as a family of multiplicity-like functions between them. Many of 
the similarities between the two multiplicities, such as the existence of an Associativity 
Formula and the connection to a closure, can be interpreted as special cases of a more 
general statement about s-multiplicity.

Throughout the paper we will assume that all rings are noetherian and equichar-
acteristic. By λR(M) we mean the length of M as an R-module. When the ring R is 
understood we may write λ (M) for λR(M).

Definition 1.1. Let (R, m) be a local ring of dimension d, I ⊆ R an m-primary ideal of R, 
and M a finitely generated R-module. The Hilbert–Samuel multiplicity of M with respect 
to I is defined to be

e(I;M) = lim
n→∞

d! · λ(M/InM)
nd

.

We often write e(I) for e(I; R).

Many properties of the Hilbert–Samuel multiplicity are well known. For instance, if 
I ⊆ J are ideals that have the same integral closure, then e(I) = e(J), and if R is formally 
equidimensional, then the converse holds [9]. The Hilbert–Samuel multiplicity is always 
a nonnegative integer, e(m) = 1 if (R, m) is regular, and if R is formally equidimensional 
the converse holds [7, Theorem 40.6].

When R is of prime characteristic p > 0, the Frobenius map F : R → R taking 
r �→ rp is a ring homomorphism, and so we may treat R as a module over itself via 
the action r · x = rpx. In this case, we often denote the module R with this new action 
by F∗R, and elements of this module by F∗r for r ∈ R. An R-module homomorphism 
ϕ : F∗R → R is called a p−1-linear map, and has the property that for any r, x ∈ R, 
rϕ(F∗x) = ϕ(F∗(rpx)). If F∗R is finitely generated as an R-module, we say the ring R is 
F -finite. For an ideal I ⊆ R and e ∈ N, the eth Frobenius power of I, denoted I [pe], is the 
ideal generated by the pe-th powers of the elements of I, equivalently by the pe-th powers 
of a set of generators for I. For any p−1-linear map ϕ and ideal I ⊆ R, ϕ(F∗(I [p])) ⊆ I.

When R is a ring of positive characteristic, we can define a limit similar to the Hilbert–
Samuel multiplicity using the Frobenius powers of the ideal instead of the powers.

Definition 1.2. Let (R, m) be a local ring of dimension d, I ⊆ R an m-primary ideal of R, 
and M a finitely generated R-module. The Hilbert–Kunz multiplicity of M with respect 
to I is defined to be

eHK(I;M) = lim
e→∞

λ
(
M/I [pe]M

)
ped

.

We often write eHK(I) for eHK(I; R).
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The Hilbert–Kunz multiplicity has some properties similar to the Hilbert–Samuel 
multiplicity. In particular, if I ⊆ J are ideals that have the same tight closure, then 
eHK(I) = eHK(J), and if R is complete and equidimensional then the converse holds [2, 
Theorem 8.17]. The Hilbert–Kunz multiplicity is a nonnegative real number, though 
unlike the Hilbert–Samuel multiplicity it need not be an integer. However, like the 
Hilbert–Samuel multiplicity, eHK(m) = 1 if (R, m) is regular, and if R is unmixed then 
the converse holds [11, Theorem 1.5].

Our main object of study is the s-multiplicity es(I, J ; M), a limit which interpolates 
between e(I; M) and eHK(J ; M).

Definition 1.3 (Definitions 2.5 and 3.5). Let (R, m) be a local ring of characteristic p > 0
and dimension d, let I and J be m-primary ideals of R, and let M be a finitely generated 
R-module. For all s > 0, the s-multiplicity of M with respect to I and J is

es(I, J ;M) := lim
e→∞

λ
(
M/(I�spe� + J [pe])M

)
pedHs(d)

,

where Hs(d) =
�s�∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d.

We establish many essential properties of the function es(I, J ; M), the most important 
of which are summarized below, and which show that the s-multiplicity is a good choice 
of interpolation between Hilbert–Samuel and Hilbert–Kunz multiplicity.

Theorem 1.4. Let (R, m) be a local ring of characteristic p > 0 and dimension d, let I
and J be m-primary ideals of R, and let M be a finitely generated R-module.

1. (Theorem 2.1) The s-multiplicity es(I, J ; M) exists for all s > 0.
2. (Corollary 3.8) For s � 1, es(I, J ; M) = e(I; M), and for s � 0, es(I, J ; M) =

eHK(J ; M).
3. (Corollary 3.8) If R is regular, then es(m, m; R) = 1 for all s
4. (Corollary 3.9) es(I, J ; M) is Lipschitz continuous in s.
5. (Corollary 3.10) For each s, es(I, J ; M) has an Associativity Formula generalizing 

the ones for Hilbert–Samuel and Hilbert–Kunz multiplicity
6. (Theorem 4.6) For each s ≥ 1 there is a closure operation I �→ Icls on the ideals 

of R such that I∗ ⊆ Icls ⊆ I and if Icls = Jcls , then es(I, I; R) = es(J, J ; R). 
Furthermore, if I ⊆ J and R is an F -finite complete domain, the converse holds.

7. (Theorem 5.4) If R is the completion of a semigroup ring at the maximal homoge-
neous ideal and I and J are monomial ideals of R, then es(I, J ; R) can be effectively 
computed by calculating a volume in Euclidean space based on the monomial gener-
ators of I and J .
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A brief outline of the paper is as follows: In Section 2, we prove the existence of 
the limit used to define the s-multiplicity and establish many of its fundamental prop-
erties that we will use throughout the paper. Of particular note are the results that 
the s-multiplicity is continuous in the parameter s and the Associativity Formula for 
s-multiplicity. In Section 3, we examine the relationship between the s-multiplicity and 
the Hilbert–Samuel and Hilbert–Kunz multiplicity and compute the limit from Section 2
for regular rings, which allows us to finish the definition of the s-multiplicity. In Section 4, 
we define a collection of closures and prove that they have exactly the same relation-
ship with s-multiplicity as integral closure (resp. tight closure) has with Hilbert–Samuel 
(resp. Hilbert–Kunz) multiplicity. In Section 5, we describe a method for computing the 
s-multiplicity of pairs of ideals in toric rings and use it to compute the s-multiplicity of 
the An singularities and rational normal curves.

Acknowledgments. The author would like to thank his Ph.D. advisor, Mark Johnson, 
for very many fruitful discussions and much excellent advice. Additionally the author 
is indebted to Lance Edward Miller, Neil Epstein, and Paolo Mantero for profitable 
discussions, and to the referee for a detailed review which significantly improved the 
paper.

2. The multiplicity-like function hs(I, J ;M)

We begin by considering a limit which combines aspects of the limits defining the 
Hilbert–Samuel and Hilbert–Kunz multiplicities. The idea is to take the colengths of a 
sum of ideals, one of which corresponds to the increasing Frobenius powers of an ideal J , 
and one of which corresponds to a subsequence of the powers of another ideal I. This 
subsequence will be determined by a real number s. We require that both of these ideals 
be primary to the maximal ideal of the ring they belong to so that at the extreme values 
of the parameter s one of the two ideals will dominate the other. This guarantees that in 
the extremal cases we will get a limit related to either the Hilbert–Samuel multiplicity 
of I or the Hilbert–Kunz multiplicity of J .

Theorem 2.1. Let (R, m) be a local ring of dimension d and characteristic p > 0, let I
and J be m-primary ideals of R, let M be a finitely generated R-module, and let s > 0. 
The limit

lim
e→∞

λ
(
M/(I�spe� + J [pe])M

)
ped

exists.

To prove this we require a few results that will describe the generators of certain 
modules as k-vector spaces and establish some combinatorial facts which will allow us 
to effectively estimate the module lengths involved in the proof.
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Lemma 2.2. Let (R, m, k) be a local ring containing its residue field, and let M be an 
R-module of finite length. Let {x1, . . . , xt} be a set of generators for m and {m1, . . . , mn}
a set of generators for M . Then

(i) M is generated as a k-vector space by elements of the form xb1
1 · · ·xbt

t mj, where 
b1, . . . , bt ∈ N and 1 ≤ j ≤ n; and

(ii) If I = (f1, . . . , fm) is an m-primary ideal of R then M is generated as a k-vector 
space by elements of the form fa1

1 · · · fam
m gmj, where a1, . . . , am ∈ N, 1 ≤ j ≤ n, 

and g is a generator of R/I as a k-vector space.

Proof. (i) By definition, M is generated as a k-vector space by elements of the form 
rmj with r ∈ R and 1 ≤ j ≤ n. For each such r, we have that r = v +

∑t
i=1 rixi for 

some v ∈ k and ri ∈ R, since R = k ⊕ m as a k-vector space. For each i, we may write 
ri = vi +

∑n
j=1 rijxj with vi ∈ k and rij ∈ R, and so

r = v +
t∑

i=1
vixi +

∑
1≤i,j≤t

ri,jxixj .

We may repeat this process until every term either has a coefficient of the xi’s which is 
an element of k or has a degree in the xi’s large enough that the term annihilates M
and so may be removed.

(ii) By part (i), M is generated as a k-vector space by terms of the form 
fa1
1 · · · fam

m xb1
1 · · ·xbt

t mj with ai, bi ∈ N. Fix a set of k-vector space generators {gi}
of R/I. Suppose that we have an element α = fa1

1 · · · fam
m xb1

1 · · ·xbt
t mj ∈ M with 

xb1
1 · · ·xbt

t /∈ {gi}. There exist ci ∈ k such that xb1
1 · · ·xbt

t −
∑

i cigi ∈ I, and so there 
exist r1, · · · , rm ∈ R such that xb1

1 · · ·xbt
t −
∑

i cigi =
∑m

�=1 r�f�. Therefore,

α =
∑
i

cif
a1
1 · · · fam

m gimj +
m∑
�=1

fa1
1 · · · fa�+1

� · · · fam
m r�mj .

We know by part (i) that r�mj is a k-linear combination of terms of the form 

x
b′1
1 · · ·xb′t

t mj′ , and so we have that α is a k-linear combination of terms of the form 

fa1
1 · · · fam

m gimj and fa′
1

1 · · · fa′
m

m x
b′1
1 · · ·xb′t

t mj′ with 
∑

� a
′
� = 1 +

∑
� a�. Continuing in this 

way, we may write α as a k-linear combination of terms either of the form fa1
1 · · · fam

m gimj

for some i or of the form fa1
1 · · · fam

m xb1
1 · · ·xbt

t mj with 
∑

i ai arbitrarily large. Since In

annihilates M for some n, we may throw out all the terms of the second kind, which 
finishes the proof. �

Bounding the lengths of the ideals we are concerned with will involve some combina-
torial calculations. For convenience we introduce some notation. For positive integers d
and m and real number r, we set Sm

d (r) to be the number of monomials in d variables 
with degree less than r and with degree in each variable less than m.
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Certain properties of the numbers Sm
d (r) are easy to see. First, if r ≥ 0, then Sm

1 (r) =
min{m, �r�}. Second, for d > 1, we have that Sm

d (r) =
∑m−1

i=0 Sm
d−1(r − i). Indeed, if 

we denote one of the variables by x, then for i = 0, 1, . . . , m − 1, there are Sm
d−1(r − i)

monomials with degree exactly i in x, degree less than r, and with degree in each variable 
less than m.

We will occasionally use a combinatorial description of the numbers Sd
m(r), which is 

established in the following lemma. This result appeared in a more general form as [10, 
Lemma 2.5], though the method of proof was different.

Lemma 2.3. For positive integers d and m and real number r,

Sm
d (r) =

d∑
i=0

(−1)i
(
d

i

)(
�r� − im− 1 + d

d

)
.

Proof. The number of monomials in d variables, of degree less than r, where each of a 
given set of i variables has degree at least m is the number of monomials in d variables of 

degree less than r−im, that is, 
(
�r� − im− 1 + d

d

)
. Thus the total number of monomials 

in d variables of degree less than r with degree in each variable less than m is
(
�r� − 1 + d

d

)
−

d∑
i=1

(−1)i−1

(
d

i

)(
�r� − im− 1 − d

d

)
,

by the inclusion–exclusion principle. �
Our next lemma is a technical result on the behavior of the numbers Sm

d (r) as m and 
r grow.

Lemma 2.4. If f, g : N → R are functions such that f(n) − g(n) ≤ cn + o(n) for some 
c ∈ R, f(n) ≥ g(n) for n � 0, and u is a positive integer, then

lim sup
n→∞

Sun
d (f(n)) − Sun

d (g(n))
nd

≤ ud−1c.

Proof. We proceed by induction on d. Suppose d = 1, and let n ∈ N large enough that 
f(n) ≥ g(n). If un ≤ g(n) we have that

Sun
1 (f(n)) − Sun

1 (g(n)) = 0

and if un > g(n) then

Sun
1 (f(n)) − Sun

1 (g(n)) ≤ �f(n)� − �g(n)� ≤ f(n) − g(n) + 1.

Therefore
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lim sup
n→∞

Sun
1 (f(n)) − Sun

1 (g(n))
n

≤ lim sup
n→∞

f(n) − g(n) + 1
n

≤ c.

Now suppose that d > 1. Then

Sun
d (f(n)) − Sun

d (g(n)) =
un−1∑
i=0

(
Sun
d−1(f(n) − i) − Sun

d−1(g(n) − i)
)

≤ un
(
Sun
d−1(f(n) − in) − Sun

d−1(g(n) − in)
)

where in is the value of i with 1 ≤ i ≤ un −1 that maximizes the expression Sun
d−1(f(n) −

i) − Sun
d−1(g(n) − i). By induction,

lim sup
n→∞

Sun
d (f(n)) − Sun

d (g(n))
nd

≤ lim sup
n→∞

un
(
Sun
d−1(f(n) − in) − Sun

d−1(g(n) − in)
)

nd

= u · lim sup
n→∞

Sun
d−1(f(n) − in) − Sun

d−1(g(n) − in)
nd−1

≤ u · ud−2c = ud−1c. �
Proof of Theorem 2.1. If d = 0, then for large enough e, I�spe� + J [pe] = 0 and so the 
limit is simply λ (R). Suppose that d ≥ 1. If k is not infinite, we may replace R by 
S = R[X]mR[X]. For any R-module N , we have λR(N) = λS(N ⊗R S), and so we may 
assume without loss of generality that the ring R has infinite residue field. Let K be 
a reduction of I generated by d elements f1, . . . , fd ∈ R, and let w be the reduction 
number of I with respect to K. Let x1, . . . , xt ∈ R be a set of generators for the maximal 
ideal m. Let m1, . . . , mn ∈ M be a set of generators of M . Let q, q′ be varying powers 
of p.

If q′ > w+d
s , then for sufficiently large q we have that

(
K�sq′� + J [q′]

)[q]
⊆
(
I�sq

′� + J [q′]
)[q]

⊆ I�sq
′q� + J [q′q] ⊆ K�sq′q�−w + J [q′q]

⊆
(
K�sq′�−d−1 + J [q′]

)[q]
.

Therefore,

λ

(
M(

K�sq′�−d−1 + J [q′]
)[q]

M

)
≤ λ

(
M(

I�sq′q� + J [q′q]
)
M

)
≤ λ

(
M(

K�sq′� + J [q′]
)[q]

M

)
.

If we divide the first and last terms of this inequality by qd, then the limit as q → ∞
exists by [5, Theorem 1.8]. Hence

lim sup
q→∞

1
qd

λ

(
M(

I�sq′q� + J [q′q]
)
M

)
− lim inf

q→∞
1
qd

λ

(
M(

I�sq′q� + J [q′q]
)
M

)
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≤ lim
q→∞

1
qd

(
λ

(
M(

K�sq′� + J [q′]
)[q]

M

)
− λ

(
M(

K�sq′�−d−1 + J [q′]
)[q]

M

))

= lim
q→∞

1
qd

λ

⎛
⎜⎝
(
K�sq′�−d−1 + J [q′]

)[q]
M(

K�sq′� + J [q′]
)[q]

M

⎞
⎟⎠ .

Let

Q =

(
K�sq′�−d−1 + J [q′]

)[q]
M(

K�sq′� + J [q′]
)[q]

M

∼=
(
K [q])�sq′�−d−1

M((
K [q]
)�sq′� + J [q′q]

)
M ∩
(
K [q]
)�sq′�−d−1

M
.

As an R-module, Q is generated by elements of the form fy1q
1 · · · fydq

d mα, where 
∑

i yi =
�sq′� −d −1 and 1 ≤ α ≤ n. Therefore, by Lemma 2.2, Q can be generated as a k-vector 
space by elements of the form fy1q+z1

1 · · · fydq+zd
d gmα where bi, yi, zi ∈ N, 

∑
i yi = �sq′� −

d − 1, and g is a k-vector space generator of R/K. Letting ci = yi + �zi/q� and ai =
zi − q�zi/q�, we have that ciq + ai = yiq + zi and ai < q, and so Q can be generated 
as a k-vector space by elements of the form fc1q+a1

1 · · · f cdq+ad

d gmα where ai, bi, ci ∈ N, 
ai < q, 

∑
i ci ≥ �sq′� − d − 1, g is a k-vector space generator of R/K, and 1 ≤ α ≤ n. 

Let v ∈ N such that Kv ⊆ J . If 
∑

i ci ≥ sq′ or ci ≥ vq′ for some i, then the product 
above vanishes in Q. Therefore

λ(Q) ≤ qd ·
(
Svq′

d (sq′) − Svq′

d (sq′ − d− 1)
)
· λ(R/K) · n.

From this we have that

lim sup
q→∞

1
qd

λ

(
M(

I�sq� + J [q]
)
M

)
− lim inf

q→∞
1
qd

λ

(
M(

I�sq� + J [q]
)
M

)

= lim sup
q→∞

1
(q′q)dλ

(
M(

I�sq′q� + J [q′q]
)
M

)
− lim inf

q→∞
1

(q′q)dλ
(

M(
I�sq′q� + J [q′q]

)
M

)

≤ lim
q→∞

qd ·
(
Svq′

d (sq′) − Svq′

d (sq′ − d− 1)
)
· λ(R/K) · n

(q′q)d

=

(
Svq′

d (sq′) − Svq′

d (sq′ − d− 1)
)
· λ(R/K) · n

(q′)d .

Since this holds for all q′ � 0, and by Lemma 2.4,
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lim sup
q→∞

1
qd

λ

(
M(

I�sq� + J [q]
)
M

)
− lim inf

q→∞
1
qd

λ

(
M(

I�sq� + J [q]
)
M

)

≤ lim sup
q′→∞

(
Svq′

d (sq′) − Svq′

d (sq′ − d− 1)
)
· λ(R/K) · n

(q′)d ≤ 0.

Thus the limit exists and the theorem is proved. �
Definition 2.5. Let (R, m) be a local ring of dimension d and characteristic p > 0, let I
and J be m-primary ideals of R, and let M be a finitely generated R-module. For s > 0, 
we set

hs(I, J ;M) = lim
e→∞

λ
(
M/(I�spe� + J [pe])M

)
ped

.

We will often write hs(I, J) for hs(I, J ;R), hs(I;M) for hs(I, I;M), hs(I) for hs(I;R), 
and hs(M) for hs(m;M). If we wish to emphasize the ring R, we will write hR

s (I, J ;M)
or a similarly decorated variant.

We next establish some properties of hs(I, J ;M). We will use the next result repeat-
edly throughout the paper, often without explicit reference.

Proposition 2.6. Let (R, m) be a local ring of dimension d and characteristic p > 0, let 
I and J be m-primary ideals of R, and let M be a finitely generated R-module. The 
following statements hold:

(i) hs(I, J ;M) ≤ min{ sd

d! e(I; M), eHK(J ; M)}.
(ii) If dimM < d then hs(I, J ;M) = 0.
(iii) If s′ ≥ s then hs′(I, J ;M) ≥ hs(I, J ;M).
(iv) If I ′ and J ′ are ideals of R such that I ⊆ I ′ and J ⊆ J ′, then hs(I ′, J ′;M) ≤

hs(I, J ;M).
(v) If I ′ is an ideal of R with the same integral closure as I, then hs(I ′, J ;M) =

hs(I, J ;M).
(vi) If J ′ is an ideal of R with the same tight closure as J , then hs(I, J ′;M) =

hs(I, J ;M).

Proof. (i) For all e ∈ N we have that I�spe� + J [pe] ⊇ I�sp
e�, hence

lim
e→∞

λ
(
M/(I�spe� + J [pe])M

)
ped

≤ lim
e→∞

λ
(
M/I�sp

e�M
)

�spe�d · �sp
e�d

ped
= sd

d! e(I;M).

Furthermore, for all e ∈ N we have that I�spe� + J [pe] ⊇ J [pe], hence

lim
λ
(
M/(I�spe� + J [pe])M

)
ed

≤ lim
λ
(
M/J [pe]M

)
ed

= eHK(J ;M).

e→∞ p e→∞ p
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�

(ii) By [5, Lemma 1.2], eHK(J ; M) = 0 for any M with dimM < d, and so part (i)
gives us the result.

(iii) For all e ∈ N we have that I�spe� + J [pe] ⊇ I�s
′pe� + J [pe], hence

λ
(
M/(I�sp

e� + J [pe])M
)
≤ λ
(
M/(I�s

′pe� + J [pe])M
)
.

(iv) For all e ∈ N we have that I ′�sp
e� + J ′[pe] ⊇ I�sp

e� + J [pe], hence

λ
(
M/(I ′�sp

e� + J ′[pe])M
)
≤ λ
(
M/(I�sp

e� + J [pe])M
)
.

(v) It suffices to prove the case where I ′ = I, the integral closure of I. If s > 0, then 
we have that, by part (iv) and [4, Proposition 11.2.1],

0 ≤ hs(I, J ;M) − hs

(
I, J ;M

)
= lim

e→∞
1
ped

λ

(
I
�spe� + J [pe]

I�spe� + J [pe]

)
≤ lim

e→∞
1
ped

λ

(
(I)�spe�

I�spe�

)

= sd

d!
(
e(I) − e(I)

)
= 0.

(vi) It suffices to prove the case where J = J∗, the tight closure of J . We have that, 
by part (iv) and [2, Theorem 8.17],

0 ≤ hs(I, J ;M) − hs(I, J∗;M)

= lim
e→∞

1
ped

λ

(
I�sp

e� + (J∗)[p
e]

I�spe� + J [pe]

)
≤ lim

e→∞
1
ped

λ

(
(J∗)[pe]

J [pe]

)
= eHK(J) − eHK(J∗) = 0.

Theorem 2.7. Let (R, m) be a local ring of characteristic p > 0, let I and J be m-primary 
ideals of R, and let M be a finitely generated R-module. The function hs(I, J ;M) is 
Lipschitz continuous.

Proof. Let δ > 0. The function hs(I, J ;M) is increasing by Proposition 2.6(iii), so we 
need only bound hs+δ(I, J ;M) − hs(I, J ;M) above in terms of δ.

Let d = dimR. If d = 0 then hs+δ(I, J ;M) = hs(I, J ;M) = λ (M), so 0 is a Lipschitz 
constant for hs(I, J ;M). Suppose d ≥ 1. We may assume that R/m is infinite, and so we 
may assume that I is generated by d elements by replacing it with a minimal reduction 
by Proposition 2.6(v). Let I = (f1, . . . , fd), let m = (x1, . . . , xt), let v ∈ N such that 
Iv ⊆ J , and let m1, . . . , mn be a set of generators for M . Then

hs+δ(I, J ;M) − hs(I, J ;M)

= lim 1
ed

(
λ
(
M/(I�(s+δ)pe� + J [pe])M

)
− λ
(
M/(I�sp

e� + J [pe])M
))
e→∞ p
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= lim
e→∞

1
ped

λ

(
(I�spe� + J [pe])M

(I�(s+δ)pe� + J [pe])M

)

= lim
e→∞

1
ped

λ

(
I�sp

e�M

(I�(s+δ)pe� + J [pe])M ∩ I�spe�M

)
.

The quotient module in the last line is generated as a k-vector space by elements of the 
form fa1

1 · · · fad

d gmα, where 
∑

i ai ≥ spe, g is a k-vector space generator of R/I, and 
1 ≤ α ≤ n. However, if 

∑
i ai ≥ (s + δ)pe or ai ≥ vpe for some i, then the corresponding 

product vanishes. Therefore,

λ

(
I�sp

e�M

(I�(s+δ)pe� + J [pe])M ∩ I�spe�M

)
≤
(
Svpe

d ((s + δ)pe) − Svpe

d (spe)
)
· λ(R/I) · n,

and so, by Lemma 2.4,

hs+δ(I, J ;M) − hs(I, J ;M) ≤ lim sup
e→∞

(Svpe

d ((s + δ)pe) − Svpe

d (spe)) · λ(R/I) · n
ped

≤ δ · vd−1 · λ(R/I) · n.

Hence vd−1 · λ (R/I) · n is a Lipschitz constant for hs(I, J ;M). �
Our most important application of Theorem 2.7 is the next result, which proves that 

hs(I, J ;M) is additive on short exact sequences. A direct consequence of this will be the 
Associativity Formula for s-multiplicity.

Theorem 2.8. Let (R, m) be a local ring of characteristic p > 0 and let I and J be 
m-primary ideals of R. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of finitely 
generated R-modules, then hs(I, J ;M) = hs(I, J ;M ′) + hs(I, J ;M ′′).

Proof. Let d = dimR, let m be the minimal number of generators of I, and fix e ∈ N. 
For any e′ ∈ N, we have that

I�(s+m/pe)pe+e′� + J [pe+e′ ] ⊆
(
I�sp

e� + J [pe]
)[pe′ ]

⊆ I�sp
e+e′� + J [pe+e′ ].

By [5, Theorem 1.6], we have that

λ

(
M ′

(I�spe+e′� + J [pe+e′ ])M ′

)
+ λ

(
M ′′

(I�spe+e′� + J [pe+e′ ])M ′′

)

≤ λ

⎛
⎝ M ′(

I�spe� + J [pe]
)[pe′ ]

M ′

⎞
⎠+ λ

⎛
⎝ M ′′(

I�spe� + J [pe]
)[pe′ ]

M ′′

⎞
⎠
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= λ

⎛
⎝ M(

I�spe� + J [pe]
)[pe′ ]

M

⎞
⎠+ O(pe

′(d−1))

≤ λ

(
M

(I�(s+m/pe)pe+e′� + J [pe+e′ ])M

)
+ O(pe

′(d−1)).

Dividing by p(e+e′)d and taking the limit as e′ → ∞, we obtain that

hs(I, J ;M ′) + hs(I, J ;M ′′) ≤ hs+m/pe(I, J ;M) .

This holds for all e, and so hs(I, J ;M ′) + hs(I, J ;M ′′) ≤ hs(I, J ;M) since by Theo-
rem 2.7, hs(I, J ;M) is continuous in s.

For the other inequality, note that for any e ∈ N, the sequence

M ′

(I�spe� + J [pe])M ′ →
M

(I�spe� + J [pe])M
→ M ′′

(I�spe� + J [pe])M ′′ → 0

is exact, whence

λ

(
M ′

(I�spe� + J [pe])M ′

)
+ λ

(
M ′′

(I�spe� + J [pe])M ′′

)
≥ λ

(
M

(I�spe� + J [pe])M

)
.

Therefore hs(I, J ;M ′) + hs(I, J ;M ′′) ≥ hs(I, J ;M). �
The additivity of hs(I, J ;M) on short exact sequences is exactly what we need to 

prove the Associativity Formula for s-multiplicity. This proof follows the proof in [7, 
Theorem 23.5] for the Associativity Formula for Hilbert–Samuel multiplicity.

Theorem 2.9 (The associativity formula). Let (R, m) be a local ring of characteristic 
p > 0, let I and J be m-primary ideals of R, and let M be a finitely generated R-module. 
We have that

hR
s (I, J ;M) =

∑
p∈Assh R

hR/p
s (I(R/p), J(R/p))λRp

(Mp)

where AsshR = {p ∈ SpecR | dimR/p = dimR}.

Proof. We proceed by induction on σ(M) =
∑

p∈Assh R λRp
(Mp). If σ(M) = 0, then 

dimM < dimR and so hR
s (I, J ;M) = 0.

Now suppose that σ(M) ≥ 1 and fix q ∈ AsshR such that λRq
(Mq) ≥ 1. Then 

q = (0 :R x) for some x ∈ M and so we have an exact sequence

0 → R/q → M → M/Rx → 0.

We have that σ(M/Rx) = σ(M) − 1 and so by induction,
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hR
s (I, J ;M/Rx) =

∑
p∈Assh R

hR/p
s (I(R/p), J(R/p))λRp

((M/Rx)p)

=
∑

p∈Assh R

hR/p
s (I(R/p), J(R/p))λRp

(Mp) − hR/q
s (I(R/q), J(R/q)) .

Therefore, it suffices to show that hR
s (I, J ;R/q) = h

R/q
s (I(R/q), J(R/q)) since then by 

Theorem 2.8 we will have the desired formula. This, however, is an easy computation:

hR
s (I, J ;R/q) = lim

e→∞
1
ped

λR

(
R/q

(I�spe� + J [pe])R/q

)

= lim
e→∞

1
ped

λR/q

(
R/q

(I(R/q))�sp
e� + (J(R/q))[p

e]

)

= hR/q
s (I(R/q), J(R/q)) . �

3. s-Multiplicity

The behavior of hs(I, J ;M) is related to two thresholds concerning the interactions 
between powers and Frobenius powers of ideals.

Definition 3.1. ([6], [1]) Let R be a ring of characteristic p > 0, and let I, J be ideals of 
R. For e ∈ N, let

νJI (pe) = sup
{
n ∈ N | In � J [pe]

}
and μJ

I (pe) = inf
{
n ∈ N | J [pe] � In

}
.

The F -threshold of I with respect to J is cJ (I) = lim
e→∞

νJI (e)
pe

. Similarly, we set 

bJ (I) = lim
e→∞

μJ
I (e)
pe

.

Lemma 3.2. Let R be a ring of characteristic p > 0, and let I, J be ideals of R. The 
limits defining cJ (I) and bJ (I) exist. Furthermore, if I �

√
J then cJ (I) = ∞, if 

J = R then cJ (I) = −∞, and if I ⊆
√
J �= R then 0 ≤ cJ (I) < ∞. Similarly, if 

J �
√
I, then bJ (I) = 0, if I = R then bJ (I) = ∞, and if J ⊆

√
I �= R then bJ (I) > 0. 

If 
√
I =

√
J �=

√
0 and I is contained in the Jacobson radical of R, then bJ (I) ≤ cJ (I).

Proof. If I �
√
J , then νJI (pe) = ∞ for all e and so cJ (I) = ∞. If J = R then 

νJI (pe) = −∞ for all e and so cJ (I) = −∞. Suppose I ⊆
√
J �= R, so that for all e, 

0 ≤ νJI (pe) and so cJ (I) ≥ 0. That cJ (I) exists in the case I ⊆
√
J is [1, Theorem 3.4], 

the proof of which also shows that cJ (I) < ∞ in this case.
If J �

√
I, then μJ

I (pe) = 1 for all e and so bJ (I) = 0. If I = R, then μJ
I (pe) = ∞

for all e, and so bJ (I) = ∞. Suppose that J ⊆
√
I �= R. The proof of the existence of 

bJ (I) in this case is nearly identical to that of the existence of cJ (I). Let e, e′ ∈ N. We 
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have that J [pe+e′ ] =
(
J [pe′ ]

)[pe]
⊆
(
Iμ

J
I (pe′ )−1

)[pe]
⊆ Ip

eμJ
I (pe′ )−pe , and so μJ

I (pe+e′) >
peμJ

I (pe′) − pe. Therefore,

lim inf
e→∞

μJ
I (pe)
pe

= lim inf
e→∞

μJ
I (pe+e′)
pe+e′

≥ lim
e→∞

μJ
I (pe′) − 1

pe′
= μJ

I (pe′) − 1
pe′

Hence lim inf
e→∞

μJ
I (pe)
pe

≥ lim sup
e′→∞

μJ
I (pe′) − 1

pe′
= lim sup

e′→∞

μJ
I (pe′)
pe′

and so the limit defining 

bJ (I) exists. Since J ⊆
√
I, there exists e ∈ N such that J [pe] ⊆ I, and so μJ

I (pe) ≥ 2. 
Hence, bJ (I) ≥ μJ

I (pe)−1
pe > 0.

For the last statement, suppose 
√
I =

√
J �=

√
0 and I is in the Jacobson radical of R. 

For e ∈ N, we have that IνJ
I (pe)+1 ⊆ J [pe] ⊆ Iμ

J
I (pe)−1. By Nakayama’s Lemma, we have 

that νJI (pe) + 1 ≥ μJ
I (pe) − 1. Therefore,

cJ (I) = lim
e→∞

νJI (pe)
pe

≥ lim
e→∞

μJ
I (pe) − 2

pe
= bJ (I) . �

Lemma 3.3. Let (R, m) be a local ring of dimension d and characteristic p > 0, let I and 
J be m-primary ideals of R, and let M be a finitely generated R-module.

1. If s ≤ bJ (I) then hs(I, J ;M) = sd

d! e(I; M).
2. If s ≥ cJ (I) then hs(I, J ;M) = eHK(J ; M).

Proof. If s < bJ (I), then for infinitely many e ∈ N, μJ
I (pe) > �spe�, and so J [pe] ⊆ I�sp

e�. 
Therefore

hs(I, J ;M) = lim
e→∞

λ
(
M/(I�spe� + J [pe])M

)
ped

= lim
e→∞

λ
(
M/I�sp

e�M
)

ped
= lim

e→∞

λ
(
M/I�sp

e�M
)

(�spe�)d · (�spe�)d
ped

= e(I;M)sd

d! .

If s > cJ (I), then for infinitely many e ∈ N, νJI (pe) < �spe�, and so I�sp
e� ⊆ J [pe]. 

Therefore

hs(I, J ;M) = lim
e→∞

λ
(
M/(I�spe� + J [pe])M

)
ped

= lim
e→∞

λ
(
M/J [pe]M

)
ped

= eHK(J ;M).

The continuity of hs(I, J ;M) gives the cases s = bJ (I) and s = cJ (I). �
When s is large, then hs(I, J ;M) precisely equals eHK(J), while when s is small it 

equals a well-understood multiple of e(I) depending only on s and the dimension of 
the ring. Hence, in order to properly interpolate between the two functions we need a 
normalizing factor that will take this difference in behavior into account. To determine 
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a good candidate for this factor, we look at one of the most notable properties of e(−)
and eHK(−), namely, if (R, m) is a regular local ring of positive characteristic, then 
e(m) = eHK(m) = 1. To that end, we calculate hs(R) for power series rings over a field.

Proposition 3.4. If k is a field of characteristic p > 0 and R = k[[x1, . . . , xd]], then

hs(R) =
�s�∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d.

Proof. Let m = (x1, . . . , xd). If d = 0, then m = 0, and so hs(R) = 1 =∑�s�
i=0(−1)i

(
0
i

)
(s − i)0. If d ≥ 1, then by Lemma 2.3 we have that

hs(R) = lim
e→∞

Spe

d (spe)
ped

=
d∑

i=0
(−1)i

(
d

i

)
lim
e→∞

1
ped

(
�spe� − ipe − 1 + d

d

)

=
�s�∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d. �

Proposition 3.4 gives us our normalizing factor, and so we are ready to define the 
s-multiplicity.

Definition 3.5. Let (R, m) be a local ring of characteristic p > 0, let I and J be m-primary 
ideals of R, let M be a finitely generated R-module, and let s > 0. Then the s-multiplicity
of M with respect to the pair (I, J) is defined to be

es(I, J ;M) = hs(I, J ;M)
Hs(d)

,

where Hs(d) =
�s�∑
i=0

(−1)i

d!

(
d

i

)
(s− i)d. We may write es(I, J) for es(I, J ;R), es(I;M)

for es(I, I;M), es(I) for es(I;R), and es(M) for es(m;M). If we wish to emphasize the 
ring R, we will write eRs (I, J ;M) or a similarly decorated variant.

In order to describe the interpolating properties of the s-multiplicity, we need some 
additional facts about the functions Hs(d). We describe these functions explicitly for d
up to 3:

Example 3.6.

Hs(0) =1

Hs(1) =
{
s if 0 < s < 1
1 if s ≥ 1
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Hs(2) =

⎧⎪⎪⎨
⎪⎪⎩

1
2s

2 if 0 < s < 1
1
2s

2 − (s− 1)2 if 1 ≤ s < 2
1 if s ≥ 2

Hs(3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
6s

3 if 0 < s < 1
1
6s

3 − 1
2 (s− 1)3 if 1 ≤ s < 2

1
6s

3 − 1
2 (s− 1)3 + 1

2 (s− 2)3 if 2 ≤ s < 3
1 if s ≥ 3

Certain properties of Hs(d) are suggested by the above examples, and are confirmed 
in the next lemma. It will be convenient for us to refer to values of Hs(d) when s ≤ 0. 
In keeping with the binomial description above, we set Hs(d) := 0 when s ≤ 0.

Lemma 3.7. The functions Hs(d) have the following properties.

(i) If d ≥ 1, then Hs(d) =
∫ s
s−1 Ht(d− 1) dt.

(ii) Hs(d) is nondecreasing.
(iii) Hs(d) is a Lipschitz continuous function of s on (0, ∞).
(iv) If s ≥ d, then Hs(d) = 1.
(v) If 0 < s ≤ 1, then Hs(d) = sd/d!.

Proof. (i) This is clear for d = 1, so suppose that d ≥ 2. Let q and q′ be varying powers 
of p. We have that

Hs(d) = lim
q→∞

Sqq′

d (sqq′)
(qq′)d = lim

q→∞

∑qq′−1
i=0 Sqq′

d−1(sqq′ − i)
(qq′)d

≤ lim
q→∞

q
∑q′−1

i=0 Sqq′

d−1(sqq′ − qi)
(qq′)d

= 1
q′

q′−1∑
i=0

lim
q→∞

Sqq′

d−1 ((s− i/q′)qq′)
(qq′)d−1 = 1

q′

q′−1∑
i=0

Hs−i/q′(d− 1)

Since the above holds for all q′, we have that

Hs(d) ≤ lim
q′→∞

1
q′

q′−1∑
i=0

Hs−i/q′(d− 1) =
s∫

s−1

Ht(d− 1) dt.

A similar argument, only using the inequality

qq′−1∑
i=0

Sqq′

d−1(sqq
′ − i) ≥ q

q′∑
i=1

Sqq′

d−1(sqq
′ − qi)

in the second line, shows that Hs(d) ≥
∫ s Ht(d− 1) dt.

s−1
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(ii) This is by inspection for d = 0. For d ≥ 1, let δ > 0, so by induction

Hs+δ(d) −Hs(d) =
s∫

s−1

Ht+δ(d− 1) −Ht(d− 1) dt ≥ 0.

(iii) This is trivial for d = 0. For d ≥ 1, we will actually show that the functions Hs(d)
are Lipschitz continuous with Lipschitz constants at most 1 on the entire real line. This 
can be seen for d = 1 by Example 3.6, so suppose d ≥ 2, s ∈ R, and 0 < δ < 1. By 
induction,

Hs+δ(d) −Hs(d) =
s∫

s−1

Ht+δ(d− 1) −Ht(d− 1) dt ≤
s∫

s−1

δ dt = δ.

(iv) This statement is true for d = 0 by inspection. Assume that d ≥ 1 and Hs(d− 1) =
1 for s ≥ d − 1. Then for s ≥ d, we have that

Hs(d) =
s∫

s−1

Ht(d− 1) dt =
s∫

s−1

1 dt = 1

and the result follows by induction.
(v) This is clear from the definition. �
Many properties of the hs(I, J ;M) immediately imply similar properties for the 

s-multiplicity. Some of these properties are listed in the next three corollaries. The first 
corollary makes explicit the interpolating properties of the s-multiplicity, while the sec-
ond contains some auxiliary results listed for completeness. The third is the Associativity 
Formula for s-multiplicity.

Corollary 3.8. Let (R, m) be a local ring of dimension d and characteristic p > 0, let I
and J be m-primary ideals of R, and let M be a finitely generated R-module.

(i) If 0 < s < min{1, bJ (I)}, then es(I, J ;M) = e(I; M).
(ii) If s > max{d, cJ (I)}, then es(I, J ;M) = eHK(J ; M).
(iii) If R is a regular ring, then es(R) = 1.

Proof. Statements (i) and (ii) simply combine Lemma 3.3 and Lemma 3.7. For state-
ment (iii), we may assume without loss of generality that R is complete with residue 
field k, in which case R ∼= k[[x1, . . . , xd]]. The result then follows from Definition 3.5 and 
Proposition 3.4. �
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Corollary 3.9. Let (R, m) be a local ring of dimension d and characteristic p > 0, let 
I and J be m-primary ideals of R, and let M be a finitely generated R-module. The 
following statements hold.

(i) es(I, J ;M) is a Lipschitz continuous function of s.
(ii) es(I, J ;M) ≤ eHK(J ;M)/Hs(d).
(iii) If dimM < d then es(I, J ;M) = 0.
(iv) If I ′ and J ′ are m-primary ideals of R such that I ⊆ I ′ and J ⊆ J ′, then 

es(I ′, J ′;M) ≤ es(I, J ;M).
(v) If I ′ is an m-primary ideal of R with the same integral closure as I, then 

es(I ′, J ;M) = es(I, J ;M).
(vi) If J ′ is an m-primary ideal of R with the same tight closure as J , then es(I, J ′;M) =

es(I, J ;M).
(vii) If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of finitely generated 

R-modules, then es(I, J ;M) = es(I, J ;M ′) + es(I, J ;M ′′).

Proof. (i) We have that es(I, J ;M) is constant, hence Lipschitz continuous, on 
(0, min{1, bJ (I)}]. By Lemma 3.7, Hs(d) is Lipschitz continuous and bounded away 
from zero on [min{1, bJ (I)}, ∞) and by Theorem 2.7, hs(I, J ;M) is Lipschitz continu-
ous, and so es(I, J ;M) is Lipschitz continuous on [min{1, bJ (I)}, ∞). Thus es(I, J ;M)
is Lipschitz continuous.

Parts (ii)–(vi) follow from Proposition 2.6. Part (vii) follows from Theorem 2.8. �
The following corollary now follows directly from Theorem 2.9.

Corollary 3.10 (Associativity formula for s-multiplicity). Let (R, m) be a local ring of 
characteristic p > 0, let I and J be m-primary ideals of R, and let M be a finitely 
generated R-module. We have that

eRs (I, J ;M) =
∑

p∈Assh R

eR/p
s (I(R/p), J(R/p))λRp

(Mp)

where AsshR = {p ∈ SpecR | dimR/p = dimR}.

An immediate application of Corollary 3.10 is the following result, which shows that 
the s-multiplicity of a module is in many cases determined by the s-multiplicity of the 
ring itself.

Proposition 3.11. Let (R, m) be a local ring of characteristic p > 0, let I and J be 
m-primary ideals of R, and let M be a finitely generated R-module. If Mp is free of 
constant rank r for every p ∈ AsshR, in particular if R is a domain, then es(I, J ;M) =
es(I, J) · r.
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Proof. By the Associativity Formula, we have that

eRs (I, J ;M) =
∑

p∈Assh R

eR/p
s (I(R/p), J(R/p))λRp

(Mp)

=
∑

p∈Assh R

eR/p
s (I(R/p), J(R/p)) · r = eRs (I, J) · r �

The problem of finding general bounds for the value of the s-multiplicity seems to be 
difficult, but we have a few results along those lines.

Proposition 3.12. Let ϕ : (R, m) → (S, n) be a local homomorphism of local rings of di-
mension d and characteristic p > 0 such that mS is n-primary, let I and J be m-primary 
ideals of R, and let M be a finitely generated R-module. Then

eSs (IS, JS;M ⊗R S) ≤ eRs (I, J ;M) · λS(S/mS)

and we have equality if ϕ is a flat ring homomorphism.

Proof. For any R-module N of finite length, we have that

λS(N ⊗R S) ≤ λR(N) · λS(S/mS) .

Thus, for any s > 0 and e ∈ N we have that

λS

(
M ⊗R S

((IS)�sp
e� + (JS)[p

e])(M ⊗R S)

)
= λS

(
M

(I�spe� + J [pe])M
⊗R S

)

≤ λR

(
M

(I�spe� + J [pe])M

)
· λS(S/mS) .

Dividing both sides by ped and taking the limit as e goes to infinity gives us that

hS
s (IS, JS;M ⊗R S) ≤ hR

s (I, J ;M) · λS(S/mS) ,

and dividing both sides by Hs(d) gives us the result for s-multiplicity.
If ϕ is a flat ring homomorphism, then for any R-module N we have that 

λS(N ⊗R S) = λR(N) · λS(S/mS) and so we have equality everywhere. �
Corollary 3.13. If (R, m, k) is a local ring of characteristic p > 0 and I is an ideal 
generated by a system of parameters in R, then es(I) ≤ λ (R/I). Furthermore, equality 
holds if R is Cohen–Macaulay.

Proof. We may assume that R is complete. Let d = dimR, let x1, . . . , xd be a system of 
parameters generating I, and let S = k[[x1, . . . , xd]] ⊆ R. Now by Proposition 3.12 and 
Corollary 3.8(iii),
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eRs (I) ≤ eSs ((x1, . . . , xd))λR(R/I) = λR(R/I) .

Furthermore, if R is Cohen–Macaulay, then R is a free S-module, hence is flat over S, 
so equality holds. �
4. s-Closure

The s-multiplicity is related to closures, just as the Hilbert–Samuel and Hilbert–Kunz 
multiplicities are. We see this already in the guise of Proposition 2.6 and Corollary 3.9
with respect to integral and tight closure. The natural question to ask at this point is 
whether there are closures that are similarly related to the various s-multiplicities. In this 
section we define these closures and show that in sufficiently nice rings, we get a strong 
connection between the closure operators and the s-multiplicity. We use the notation R◦

to stand for the complement of the union of the minimal primes of R.

Definition 4.1. Let R be a ring of characteristic p > 0, let I be an ideal of R, and let 
s ≥ 1 be a real number. An element x ∈ R is said to be in the weak s-closure of I if 
there exists c ∈ R◦ such that for all e � 0, cxpe ∈ I�sp

e� + I [pe]. We denote the set of all 
x in the weak s-closure of I by Iw.cls .

Remark 4.2. If I is of positive height, then x ∈ Iw.cls if and only if there exists c ∈ R◦

such that cxpe ∈ I�sp
e� +I [pe] for all e ∈ N. To see this, suppose that there exists c′ ∈ R◦

and e′ ∈ N such that c′xpe ∈ I�sp
e� + I [pe] for e > e′. Since I is of positive height, 

there exists c′′ ∈ (I�spe′� + I [pe′ ]) ∩ R◦. Setting c = c′c′′, we have that c ∈ R◦ and 
cxpe ∈ I�sp

e� + I [pe] for all e ∈ N.

For a given ideal I, Iw.cls is clearly an ideal containing I. However, it is not clear that 
the weak s-closure is idempotent; that is, it is not clear that (Iw.cls)w.cls = Iw.cls . If the 
ring is noetherian, we can construct an idempotent operation out of the weak s-closure 
by iterating the operation until the chain of ideals stabilizes.

Definition 4.3. Let R be a ring of characteristic p > 0, let I be an ideal of R, and let 
s ≥ 1 be a real number. The s-closure of I is defined to be the union of the following 
chain of ideals:

I ⊆ Iw.cls ⊆ (Iw.cls)w.cls ⊆
(
(Iw.cls)w.cls

)w.cls
⊆ · · · .

We denote this ideal by Icls .

Notice that, for s = 1, the s-closure is integral closure, and for s > cI (I), the s-closure 
is tight closure. Furthermore, if s ≤ s′, then Icls ⊇ Icls′ for all ideals I. Thus the s-closure 
interpolates monotonically between integral closure and tight closure as s increases. One 
should note that new closures do in fact arise:
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Example 4.4. Let R = k[[x, y]], where k is a field of characteristic p > 0. Let I = (x3, y3). 
Then

Icls =

⎧⎪⎪⎨
⎪⎪⎩

(x, y)3 if s = 1
(x3, x2y2, y3) if 1 < s ≤ 4

3

(x3, y3) if s > 4
3 .

In particular, if 1 < s ≤ 4
3 , then I = I∗ � Icls � I = (x, y)3.

Example 4.4 demonstrates that in some cases, an ideal I will only have finitely many 
distinct s-closures for various values of s; in fact, this will occur whenever R is local and 
I is primary to the maximal ideal. However, even in regular rings there can be infinitely 
many distinct s-closures.

Example 4.5. Let R = k[[x, y]], where k is a field of characteristic p > 0. Let 1 ≤ s <

s′ ≤ 2. Choose n ∈ N such that n > 2/(s′− s), and let I = (x2n, y2n). Then x�sn�y�sn� ∈
Iw.cls , since for any e ∈ N,

2
⌊

2n + �sn�pe
2n

⌋
≥ 2
⌊
1 + s

2p
e
⌋
≥ spe,

and so x2ny2n(x�sn�y�sn�)pe ∈ (x2n, y2n)�spe�. However, x�sn�y�sn� /∈ Iw.cls′ , since for 
any a ∈ N, letting e ∈ N such that pe ≥ a, we have that

2
⌊
a + �sn�pe

2n

⌋
≤ a + (sn + 1)pe

n
≤ (sn + 2)pe

n
= spe + 2pe

n
< spe + (s′ − s)pe = s′pe

and so xaya(x�sn�y�sn�)pe

/∈ (x2n, y2n)�s′pe�. Thus Iw.cls �= Iw.cls′ , and hence Icls �= Icls′

by Theorem 4.6. Thus we find that there are infinitely many distinct s-closures on R, 
one for every real number in the interval [1, 2].

If I and I ′ have the same integral closure, then e(I) = e(I ′), while if I and I ′ have 
the same tight closure, then eHK(I) = eHK(I ′). Our main theorem in this section is a 
similar result for s-multiplicity and s-closure.

Theorem 4.6. Let (R, m) be a local ring of characteristic p > 0 and let I and J be 
m-primary ideals of R with I ⊆ J . If J ⊆ Icls , then es(J) = es(I). If R is an F -finite 
complete domain, then the converse holds and Icls = Iw.cls .

Proof. Let d = dimR. Suppose that x ∈ Iw.cls , so that there exists c ∈ R◦ such that for 
all e � 0, we have that cxpe ∈ I�sp

e� + I [pe] ⊆ Ip
e . Hence x is in the integral closure of 

I and so hs((I, x), (I, x)) = hs(I, (I, x)) by Proposition 2.6(v). Now for large e ∈ N, c
annihilates I

�spe�+(I,x)[p
e]

�spe� [pe] . Let S = R/cR, so that for e � 0,

I +I
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λR

(
I�sp

e� + (I, x)[pe]

I�spe� + I [pe]

)
= λS

(
I�sp

e� + (I, x)[pe]

I�spe� + I [pe] ⊗ S

)
= λS

(
(IS)�spe� + ((I, x)S)[p

e]

(IS)�spe� + (IS)[pe]

)

And so, since dimS = d − 1,

hs(I, I) − hs(I, (I, x)) = lim
e→∞

1
ped

λR

(
I�sp

e� + (I, x)[pe]

I�spe� + I [pe]

)

= lim
e→∞

1
ped

λS

(
(IS)�spe� + ((I, x)S)[p

e]

(IS)�spe� + (IS)[pe]

)

=
(

lim
e→∞

1
pe

)
(hS

s (IS, IS) − hS
s (IS, (I, x)S)) = 0.

Therefore hs((I, x)) = hs(I) for any x ∈ Iw.cls , hence hs

(
Iw.cls

)
= hs(I). By induction, 

hs

(
Icls
)

= hs(I), hence hs(J) = hs(I) and so es(J) = es(I).
Now suppose that R is an F -finite complete domain and x ∈ R such that es((I, x)) =

es(I). In this case hs((I, x)) = hs(I), and so hs(I, (I, x)) = hs(I, I), and therefore

0 = lim
e→∞

1
ped

λ

(
I�sp

e� + (I, x)[pe]

I�spe� + I [pe]

)
= lim

e→∞
1
ped

λ
(
R/
(
(I�sp

e� + I [pe]) :R xpe
))

.

Let ψ ∈ HomR (F∗R,R) be a nonzero p−1-linear map and let ϕ(−) = ψ
(
F∗(fp−1

1 · · ·
fp−1
n ) · −

)
, where f1, . . . , fn is a generating set for I. Then

ϕ
(
F∗
(
(I�sp

e+1� + I [pe+1]) :R xpe+1
))

· xpe ⊆ ϕ
(
F∗
(
I�sp

e+1� + I [pe+1]
))

⊆ ψ
(
F∗
(
fp−1
1 · · · fp−1

n I�sp
e+1�
))

+ I [pe]

Let a1, · · · , an ∈ N with a1 + · · · + an ≥ spe+1. Then

n∑
i=1

⌊
ai + p− 1

p

⌋
≥

n∑
i=1

ai
p

≥ spe

and so fp−1
1 · · · fp−1

n I�sp
e+1� ⊆

(
I�sp

e�)[p]. Therefore ψ
(
F∗
(
fp−1
1 · · · fp−1

n I�sp
e+1�
))

⊆
I�sp

e� and so

ϕ
(
F∗
(
(I�sp

e+1� + I [pe+1]) :R xpe+1
))

· xpe ⊆ I�sp
e� + I [pe],

that is,

ϕ
(
F∗
(
(I�sp

e+1� + I [pe+1]) :R xpe+1
))

⊆
(
(I�sp

e� + I [pe]) :R xpe
)
.
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Since this holds for all e ∈ N, by [8, Theorem 5.5], we must have that 
⋂

e≥0
(
(I�spe� +

I [pe]) :R xpe) �= 0, that is, there is some 0 �= c ∈ R such that for all e ∈ N, cxpe ⊆
I�sp

e� + I [pe]. Therefore x ∈ Iw.cls .
Thus we have that if R is an F -finite complete domain and hs((I, x)) = hs(I), then 

x ∈ Iw.cls . Therefore if hs(J) = hs(I) then J ⊆ Iw.cls ⊆ Icls . Furthermore, in this case, 
if x ∈ Icls , then hs((I, x)) = hs(I) and hence x ∈ Iw.cls . Therefore Icls = Iw.cls . �
5. s-Multiplicity of toric rings

In this section we construct an equivalence between s-multiplicity for toric rings and 
certain volumes in Euclidean space. We will then use that equivalence to compute the 
s-multiplicity for a few toric rings. See [3] for a more general treatment of the correspon-
dence between limits in positive characteristic and volumes in real space.

Definition 5.1. Let k be a field. By a normal toric ring of dimension d over k, or simply 
toric ring, we will mean the ring k[[S]], where S = σ∨ ∩ Zd, σ∨ is a cone in Rd not 
containing any line through the origin, and S inherits the semigroup structure of Zd. 
Furthermore, we will require that the cone σ∨ be rational, that is, σ∨ = cone(v1, . . . , vn)
for some v1, . . . , vn ∈ Zd, and of full dimension, that is, the R-span of σ∨ is all of Rd. We 
will denote the monomial elements of k[[S]] by xv for v ∈ S, and if σ∨ = cone(v1, . . . , vn), 
we may write k[[xv1 , . . . , xvn ]] for k[[S]].

Definition 5.2. For a monomial ideal I ⊆ k[[S]], where k[[S]] is a toric ring, we denote 
by Exp I the set {v ∈ S | xv ∈ I} and by Hull I the convex hull of Exp I in Rd.

Lemma 5.3. Let (R, m) = (k[[S]], (S)) be a normal toric ring of dimension d over a field 
k of characteristic p > 0, where S = σ∨ ∩Zd, let I = (xu1 , . . . , xun) be a monomial ideal 
of R. For any m, e ∈ N with m ≥ 1,

(m + n) Hull I ∩ Zd ⊆ Exp Im ⊆ mHull I ∩ Zd and Exp I [pe] = (pe Exp I + σ∨) ∩ Zd

Proof. Let v ∈ (m + n) Hull I ∩ Zd. Then there exist a1, . . . , an ∈ R≥0 such that a1 +
· · · + an = 1 and v ∈ (m + n)(a1u1 + · · · + anun + σ∨) ∩ Zd. For each 1 ≤ i ≤ n, let 
bi = �(m + n)ai�. Since each ui ∈ σ∨, we have that

v ∈ (m + n)(a1u1 + · · · + anun + σ∨) ∩ Zd ⊆ (b1u1 + · · · + bnun + σ∨) ∩ Zd.

Since b1 + · · · + bn ≥ (m + n)(a1 + · · · + an) − n = m, we have that v ∈ Exp Im. This 
shows the first inclusion in the first statement.

A monomial xv is in Im if and only if v ∈ (a1u1 + · · · + anun + σ∨) ∩ Zd for some 
a1, . . . , an ∈ N with a1 + · · · + an = m. If this is the case then
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v ∈
(
m
(a1

m
u1 + · · · + an

m
un

)
+ σ∨
)
∩ Zd ⊆ mHull I ∩ Zd.

This shows the second inclusion in the first statement.
A monomial xv is in I [pe] if and only if v ∈ peu + σ∨ for some u ∈ Exp I. That is, 

xv ∈ I [pe] if and only if

v ∈
⋃

u∈Exp I

(peu + σ∨) ∩ Zd =

⎛
⎝pe ⋃

u∈Exp I

(u + σ∨)

⎞
⎠ ∩ Zd = (pe Exp I + σ∨) ∩ Zd,

which proves the second statement. �
Theorem 5.4. Let (R, m) = (k[[S]], (S)) be a normal toric ring of dimension d over a field 
k of characteristic p > 0, where S = σ∨ ∩ Zd, and let I and J be m-primary monomial 
ideals of R. Then

hs(I, J) = vol (σ∨ \ (sHull I ∪ (Exp J + σ∨))

where vol(−) is the standard Euclidean volume in Rd.

Proof. Let e ∈ N. The length of R/(I�spe� + J [pe]) is precisely the size of the set

Ve :=
{
v ∈ S | xv /∈ I�sp

e� + J [pe]
}

=
{
v ∈ S | v /∈ Exp I�sp

e� ∪ ExpJ [pe]
}
.

From Lemma 5.3, we have that

(σ∨ \ (spe Hull I ∪ pe ExpJ + σ∨)) ∩ Zd ⊆ Ve

⊆ (σ∨ \ ((�spe� + n) Hull I ∪ pe Exp J + σ∨)) ∩ Zd.

Scaling every set by 1
pe in each dimension, we get that

(σ∨ \ (sHull I ∪ ExpJ + σ∨)) ∩
(

1
pe

Z

)d

⊆ 1
pe

Ve ⊆ (σ∨ \ ((�spe + n�/pe) Hull I ∪ Exp J + σ∨)) ∩
(

1
pe

Z

)d

.

Since the volume of σ∨ \ (sHull I ∪ Exp J + σ∨) is equal to the volume of its interior, we 
obtain that

vol (σ∨ \ (sHull I ∪ ExpJ + σ∨))

= lim
e→∞

1
ped

∣∣∣∣∣(σ∨ \ (sHull I ∪ Exp J + σ∨)) ∩
(

1
pe

Z

)d
∣∣∣∣∣
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≤ lim
e→∞

1
ped

|Ve|

≤ lim
e→∞

1
ped

∣∣∣∣∣(σ∨ \ ((�spe + n�/pe) Hull I ∪ ExpJ + σ∨)) ∩
(

1
pe

Z

)d
∣∣∣∣∣

= vol (σ∨ \ (sHull I ∪ ExpJ + σ∨))

And so we have equality throughout. Since hs(I, J) = lim
e→∞

1
ped

|Ve|, the theorem is 
proved. �

Theorem 5.4 allows us to calculate the s-multiplicity of toric rings. We compute two 
examples.

Example 5.5 (An singularities). Let n ∈ N, n ≥ 1, and take

An = k[[x1, x2, x3]]/(x1x2 − xn+1
3 ) ∼= k[[x, y, x−1yn+1]].

The geometry of this toric ring is illustrated below. The shaded region corresponds to 
the cone σ∨, and the lattice points (1, 0), (0, 1), and (−1, n + 1) correspond to x, y, and 
x−1yn+1, respectively.

We wish to calculate es(An), so we need to calculate Hullm and Expm + σ∨ where 
m = (x, y, x−1yn+1). These are illustrated below.

There are three situations to consider: s ≤ 1, 1 ≤ s ≤ 2 − 1
n+1 , and s ≥ 2 − 1

n+1 . 
When s ≤ 1, s Hullm ∪ Expm + σ∨ is illustrated below:
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From this we can compute hs(An) = s2 for s ≤ 1.
Now suppose that 1 ≤ s ≤ 2 − 1

n+1 . The picture now becomes

Calculating the area of the unshaded region in σ∨ gives

hs(An) = −n + 1
n

(s− 1)2 + 2(s− 1) + 1

when 1 ≤ s ≤ 2 − 1
n+1 .

Now consider the case when s ≥ 2 − 1
n+1 . In this case the picture becomes

And so we compute hs(An) = 2 − 1
n+1 when s ≥ 2 − 1

n+1 .
With this, we can write down the s-multiplicity for the An singularities:

es(An) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 if 0 < s < 1
−n+1

n (s−1)2+2(s−1)+1
1
2 s

2−(s−1)2 if 1 ≤ s < 2 − 1
n+1

2− 1
n+1

1
2 s

2−(s−1)2 if 2 − 1
n+1 ≤ s < 2

2 − 1
n+1 if s ≥ 2.
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Example 5.6. Let k be a field, and consider the ring Vn = k[[x, xy, . . . , xyn]]. The ge-
ometry of this ring is illustrated below; the shaded region corresponds to σ∨ and for 
0 ≤ a ≤ n, the lattice points (1, a) corresponds to the monomial xya.

Letting m = (x, xy, . . . , xyn) we have the following pictures for Hullm and Expm +σ∨.

Thus we have the following pictures for various values of s:

With these figures we can calculate hs(Vn) and es(Vn):

hs(Vn) =

⎧⎪⎪⎨
⎪⎪⎩

ns2

2 if 0 < s ≤ 1
−n2

2 (s− 1)2 + n(s− 1) + n
2 if 1 ≤ s ≤ 1 + 1/n

n+1 if s ≥ 1 + 1/n
2
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es(Vn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n if 0 < s < 1
−n2(s−1)2+2n(s−1)+n

s2−2(s−1)2 if 1 ≤ s < 1 + 1/n
n+1

s2−2(s−1)2 if 1 + 1/n ≤ s < 2
n+1

2 if s ≥ 2.

Example 5.7. The normalizing factors Hs(d) can be easily visualized as areas in space 
in the same manner. Indeed, since k[[x1, . . . , xd]] is a toric ring, we simply apply the 
construction above to calculate hs((x1, . . . , xd)). For instance, when d = 2, we have the 
following picture:
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