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We define a restricted structure for Lie triple systems in the characteristic p � 2
setting, akin to the restricted structure for Lie algebras, and initiate a study of a
theory of restricted modules. In general, Lie triple systems have natural embed-
dings into certain canonical Lie algebras, the so-called ‘‘standard’’ and ‘‘universal’’
embeddings, and any Lie triple system can be shown to arise precisely as the

Ž .�1-eigenspace of an involution an automorphism which squares to the identity
on some Lie algebra. We specialize to Lie triple systems which arise as the
differentials of involutions on simple, simply connected algebraic groups over
algebraically closed fields of characteristic p. Under these hypotheses we com-
pletely classify the universal and standard embeddings in terms of the Lie algebra
and its universal central extension. � 2001 Academic Press
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1. INTRODUCTION

1.1. Background and Moti�ation. Let k be an algebraically closed field
that has characteristic p � 2, and let G be a connected, reductive alge-

Ž . Ž 2 .braic group over k. Let � � Aut G be an involution of G i.e., � � 1 .
Ž .Then the Lie algebra � � Lie G possesses a decomposition � � � � �

Ž .into �1- and �1-eigenspaces of the differential of � , and � � Lie K for
K � G�, the group of fixed points of � . Although not a Lie subalgebra, the

Ž .�1-eigenspace � of � � Aut � does bear the structure of a Lie triple
system.

Lie triple systems arose initially in Cartan’s studies of Riemannian
geometry, in which he employed his classification of the real simple Lie
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algebras to classify an important subcollection of Riemannian manifolds,
the symmetric spaces. Up to a factor of a Euclidean space, Cartan’s
classification associated to each symmetric space M a semisimple Lie
group G with an involutive automorphism. More precisely, for some
n � 0,

M 	 � n � G�K ,

where K is a compact subgroup of G determined by the fixed points of an
involution from G to itself, and G�K possesses a G-invariant Riemannian
structure. By means of this association of Lie groups to symmetric spaces
and of Lie algebras to the Lie groups, Cartan was able to classify the
symmetric spaces.

In a similar fashion, the objects called Lie triple systems arise upon
consideration of certain subspaces of Riemannian manifolds, the totally
geodesic submanifolds. Essentially, totally geodesic submanifolds are like
planes in Euclidean space. Given a Riemannian globally symmetric space
M, another result of Cartan’s associates to each totally geodesic submani-
fold S of M a Lie triple system T 
 � , where � is the Lie algebra of the

Ž �group of isometries of M, and vice versa. See 7, Theorem 7.2, pp.
� .189�190 . The theory of symmetric spaces was subsequently placed in a

� �more algebraic setting by the fundamental work of Loos 18 . Lie triple
Ž .systems and their connections with symmetric spaces and related spaces

� �continue to be a source of interest; see for example 3, 14, 15 .
ŽNow, maximal compact subgroups of a connected Lie group with finite

.center are utilized to study a large class of representations of the Lie
Žgroup, via Harish-Chandra modules. There is a vast literature on the

� � .subject, but see 16 as one entry point. Informally, Harish-Chandra
modules can be regarded simultaneously as modules for the complexifica-
tion of the maximal compact subgroup and the complexified Lie algebra of
the group, subject to certain compatibility conditions on the two actions.
By replacing the compact subgroup with the fixed point group K � G� of

� �an involution � of G as in the first paragraph above, we develop in 8 and
� �9 a theory of Harish-Chandra modules for algebraic groups in character-
istic p � 2. This spurred our initial interest in the theory of Lie triple
systems, for the decomposition � � � � � is fundamental to the study of
the modular Harish-Chandra modules. In some sense, the compatibility
conditions linking the actions of � and K , together with the decomposi-

Ž .tion � � � � � , � � Lie K , suggest that the resulting modular Harish-
Chandra modules might be approached as modules for K and for � ,
subject as before to some compatibility conditions.

Furthermore, in the representation theory of algebraic groups in positive
characteristic, the theory of restricted Lie algebras is used extensively,
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since every rational module for G is a restricted module for � as a
restricted Lie algebra. Thus, we were also drawn to develop an analogous
definition and theory of restricted Lie triple systems and to begin a study
of restricted modules for such Lie triple systems. As another area of

� � Žapplications, we have recently learned that Nagy 21 has also indepen-
.dently defined restricted Lie triple systems in the context of the theory of

quasi-groups and loops. In characteristic p � 3, he has, for example,
Žproved an analogue of Cartier’s duality linking formal Bruck loops of

.height 0 with the category of restricted Lie triple systems.

1.2. Organization of the Paper. Assume the notation as in the beginning
of Section 1.1. In Section 2, we provide some background and structure
theory results regarding Lie triple systems in the abstract, adjusted for the
characteristic p setting. This material includes discussions of the associa-
tions between a Lie triple system T and certain important related Lie

Ž .algebras, such as the standard enveloping Lie algebra L T and thes
Ž .universal enveloping Lie algebra L T . Next, recalling, in the Lie algebrau

case, the significance for the module theory of G of the existence of a
restricted structure on � , we develop a theory of restricted Lie triple
systems in Section 3. In Section 4, we return to the specific instance of the
Lie triple system �. When G is simple and simply connected over k, we
completely determine the standard and universal enveloping Lie algebras
Ž . Ž .L � and L � of � , describing them in terms of � and its universals u

Ž . �central covering � . We then turn to the representation theory of Lie
� �triple systems in Section 5. Following 6 , we define modules for a Lie

triple system T and relate them to special modules for the universal
Ž .enveloping Lie algebra L T of T. With the concept of a restricted Lieu

triple system in hand, we extend the notion of a Lie triple system module
Ž .to a definition of a restricted module for a restricted Lie triple system. In

the final subsection, Section 5.2, we look to the possible significance of
these developments in the special case T � � and propose some further
directions for research.

2. LIE TRIPLE SYSTEMS

In the next two sections, we will pass from the classical setting to a
consideration of Lie triple systems for an algebraically closed field k,

Ž . Žchar k � p � 2. These will be our standing assumptions on k throughout
.the paper. Much of the background material in Section 2 is not new; the

theory of Lie triple systems has been considered over fields of nonzero
characteristic. However, we will wish to address particular aspects of the
positive characteristic case and to discuss further the introductory example
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rising from algebraic group theory which will be of great interest later in
the paper. We also include a substantial amount of material in order to
make our results accessible to readers without a background in Lie triple
systems and because our references for this material are fairly old and�or
not readily available. The material in Section 3 is new. There, we will
extend the theory of Lie triple systems by developing a restricted theory
for Lie triple systems over k, analogous to the restricted theory for Lie
algebras over k.

To accomplish this, we begin by explaining just what a Lie triple system
is. Subsequently in this subsection, we will consider how Lie triple systems
‘‘sit’’ inside Lie algebras, including a more detailed discussion of two
important Lie algebras related to Lie triple systems, the ‘‘standard en-

Ž .veloping Lie algebra’’ L T and the ‘‘universal enveloping Lie algebra’’s
Ž .L T .u

DEFINITION 2.0.1. A Lie triple system is a k-vector space T closed
� �under a ternary operation abc which is trilinear and satisfies the three

properties, for all a, b, c, x, y, z in T ,

� �aab � 0, 2.0.2Ž .
� � � � � �abc � bca � cab � 0, 2.0.3Ž .

and

� � � � � � � �ab xyz � abx yz � x aby z � xy abz . 2.0.4Ž .

Ž .Note that by 2.0.2 ,

� � � � � � � �0 � a � b a � b c � aac � abc � bac � bbcŽ . Ž .
� � � �� abc � bac ,

hence

� � � �abc � � bac . 2.0.5Ž .

A morphism of Lie triple systems T , T � is a k-linear map � : T � T �
Ž� �. � Ž . Ž . Ž .�satisfying � abc � � a � b � c for all a, b, c � T . We let

Ž .Hom T , T � denote the Lie triple system morphisms from T to T �. ForLT S
brevity, we will often refer to a Lie triple system simply by the initials LTS.
In what follows, we will also assume for convenience that T is always
finite-dimensional. Finally, we will let LTS be the category with objects the
Lie triple systems and morphisms as defined above.

Following our initial description of the geometrical considerations moti-
vating the study of Lie triple systems, the fact that the first two axioms

� �above are reminiscent of those for the binary operation , in a Lie
Ž .algebra should cause no surprise. If � is any finite-dimensional Lie
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� � �� � �algebra over k, then the triple product xyz � x, y , z on � satisfies the
hypotheses above. Letting LIE denote the category of finite-dimensional

Ž .Lie algebras, we immediately see that we get a functor � : LIE �t r i p l e
LTS by setting � to be the LTS with this triple product for anyt r i p l e

Ž .� � Ob LIE . Moreover, any subspace of � which is closed under the
� � �� � �ternary product xyz � x, y , z determines a Lie triple system.

In light of the well-known interpretation of the Jacobi identity for Lie
algebras as a statement that the mapping D � ad x : � � � is a deriva-x
tion, we now consider the third axiom of a Lie triple system T. For
a, b � T , define a mapping D : T � T bya, b

� �D x � abx . 2.0.6Ž . Ž .a , b

Ž .Then 2.0.4 becomes, writing D � D ,a, b

� �D xyz � D x yz � xD y z � xyD z . 2.0.7Ž . Ž . Ž . Ž .Ž .

Any k-linear endomorphism D of a Lie triple system T satisfying property
Ž .2.0.7 will be called a deri�ation in T. As a special case, the derivation
D will be called an inner deri�ation.a, b

An important example of a Lie triple system arises by considering the
Ž .Lie algebra � � Lie G of a connected, reductive algebraic group G over

Ž . Žk, with an involution � � Aut G , � � 1. We will give a concrete example
.below; other examples of involutions are given in the Appendix. As in the

� ŽIntroduction, we let K � G be the group of fixed points of � in G. In
case G is semisimple and simply connected, K is actually a connected

.reductive group. Let � also denote the associated differential of �. Then
it is easily proved that this Lie algebra decomposes as

� � � � � , 2.0.8Ž .

where � is by definition the �1-eigenspace of � in � and the �1-eigen-
Ž .space equals Lie K � �.

EXAMPLE 2.0.9. Now, under the bracket operation on � , for any x, y, z
in � we have

2� � � � � � � �� x , y � � x , � y � �x , �y � �1 x , y � x , y ,Ž . Ž . Ž .Ž .
2.0.10Ž .

hence

� � � � � � � �� x , y , z � � x , y , � z � x , y , �z � � x , y , z .Ž .Ž .Ž .
2.0.11Ž .
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� � �� � �Thus, � is closed under the ternary operation xyz � x, y , z , so �
becomes a Lie triple system.

Ž . Ž . Ž .As a concrete example, take G � SL k , and let � : SL k � SL kn n n
Ž . Ž t.�1 Ž .by � x � x . Then � � �� k carries the associated involution givenn
Ž . t Žby � X � �X . We will continue to refer to an automorphism of a Lie

.algebra which squares to the identity as an ‘‘involution.’’ The �1-eigen-
Ž .space � of � on �� k consists of the symmetric n � n matrices. Here,n

for X, Y, Z symmetric n � n matrices, one can check our assertions above
�� � �by calculating that X, Y , Z is another symmetric matrix, whereas the

bracket of any two symmetric matrices is skew-symmetric. This is what we
Ž .expect from 2.0.8 , for here K � SO and � � � . This completes Exam-n n

ple 2.0.9.

Note that at the heart of the discussion above the origin of the
Ž .involution on � is irrelevant. More precisely, the calculations 2.0.10 and

Ž .2.0.11 show that the �1-eigenspace of any involution � on any Lie
algebra � becomes a Lie triple system in a natural way. Moreover, such a
construction in essence yields all Lie triple systems, as a consequence of
the following definition and theorem.

DEFINITION 2.0.12. Let T be a Lie triple system over k and � any Lie
algebra over k. A linear mapping � : T � � will be called an imbedding if

Ž . Ž� �.� : T � � � Hom T , � ; i.e., for all a, b, c � T , � abc �t r i p l e LT S t r i p l e
�� Ž . Ž .� Ž .�� a , � b , � c . For any imbedding � : T � � , let L denote the Lie�

Ž .subalgebra of � generated by Im � and call L the en�eloping Lie algebra�

of the imbedding �.

� � Ž . � Ž . Ž .�As in 17, Definition 1.5 , L � � T � � T , � T , but this need not�

Ž .be a direct sum. In any case, if dim T � n, then we obtain the boundk

n n � 1Ž .
dim L 
 n � , 2.0.13Ž .Ž .k � 2

� � � � � � � Ž . Ž .�for the relations x, x � 0 and x, y � � y, x hold inside � T , � T .
Now, an imbedding need not be an injection. However, the following

� �result essentially appears in 12 .

THEOREM 2.0.14. Let T be a Lie triple system o�er k. Then:

Ž . Ž . Ž .a There is a Lie algebra L T and an imbedding � : T � L Ts T s
which is one-to-one.

Ž . Ž . � �b As �ector spaces, L T 	 T � T , T .s

Ž . Ž .c L T is determined up to isomorphism by the following uni�ersals
property: Suppose � : T � � is any injecti�e imbedding for which L � T ��

� �T , T . Then there is a unique Lie algebra homomorphism � of L onto�
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Ž .L T which is the identity on T. More precisely, � satisfies the commutati�es
diagram

� �

T L�

���T ��
L T .Ž .s

Ž .The algebra L T is called the standard en�eloping Lie algebra of thes
LTS T.

Ž .Although we will not need the details of the proof of 2.0.14 , it will be
Ž .useful to us to have a construction of the Lie algebra L T in hand, whichs

� �we now present, following the more modern notation of 6 . First, let VT
be the quotient of the k-vector space T � T by the subspace of allk

� �elements Ý a � b , for which Ý a b x � 0 for all x � T. Now, as ai i i i i i
Ž . Ž .vector space, let L T � T � V . Equip L T with a bracket operations T s

� �x, y as follows, where a, b, c, a , b , c , d � T and a � b denotes thei i i i
coset of a � b � V,

� �a, b � a � b,

� � � �a , b , c � a b c ,Ý Ýi i i iž /
i i

� � � �c, a , b � � a b c ,Ý Ýi i i iž /
i i

� �a , b , c , d � a b c , d � a b d , c .Ý Ý Ýi i j j i i j j i i j jž / ž /
i j i , j

Ž . Ž Ž .Observe that the obvious map � : T � L T for L T as constructedT s s
. Ž .above is an injective imbedding of T satisfying the statement of 2.0.14 ,

subsequently termed the standard imbedding. Moreover, as vector spaces,
Ž . � � Ž .L T � T � T , T , identifying T with � T .s T

Ž .From 2.0.14 and the ensuing discussion we see that, indeed, every Lie
triple system identifies with the �1-eigenspace of an involution on some

Ž . � �Lie algebra: one can define an involution � on L T � T � T , T bys
setting, for all a, b, c in T ,

� � � �� a � �a and � b , c � b , c . 2.0.15Ž . Ž .Ž .
� �Analogously, but slightly more generally, Theorem 1.1 of 17 states

THEOREM 2.0.16. Suppose � : T � � is a one-to-one imbedding for which
� �� � L � T � T , T . Then T is determined as the �1-eigenspace of a unique�

in�olution in �.
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� �Proof. Write X � L in the form X � a � h, a � T , h � T , T . Set�

Ž . 2� X � h � a. Clearly, � is linear and � � 1. Next, for Y � a� � h� � a�
� � � �� Ý b , c ,i i i

� � � � � � � �� X , � Y � a, a� � h , h� � a, h� � h , a� . 2.0.17Ž . Ž . Ž .

� � � � � � �� �� � � � �Now, a, h� � Ý a , b , c � �Ý b , c , a � �Ý b c a � T ; like-i i i i i i i i i i i i
� �wise, h, a� � T. Moreover, by using the Jacobi identity in the form

�� � � �� � � �� � � � � � �U, V , W � � V, W , U � W, U , V with U, V � b , c and W �i i
� � � �b , c , we have, for each i,i i

� � � � � �� � � � � � � �b , c , b , c � � c , b , c , b � b , c , b , ci i i i i i i i i i i i

� � � � �� � � �� b c c , b � b c b , c .i i i i i i i i

� � � �From this it follows that h, h� � T , T . Thus

� � � � � � � � � �� X , Y � � a, a� � � h , h� � � a, h� � � h , a�Ž . Ž . Ž . Ž . Ž .
� � � � � � � �� a, a� � h , h� � a, h� � h , a� . 2.0.18Ž .

Ž . Ž .Together, 2.0.17 and 2.0.18 show that � is an automorphism, whence
� is an involution. Since T generates L , � is unique.�

Ž .We now discuss the uni�ersal en�eloping Lie algebra L T of T , whichu
Ž .fills a more general dual role. Precisely, there exists a Lie algebra L Tu

Ž .and an imbedding � : T � L T such that if � : T � � denotes anyT u
Ž .imbedding not necessarily injective then � lifts uniquely to a surjective

Ž .Lie algebra homomorphism L T � L satisfying the commutative dia-u �

gram
�T �

T L TŽ .u

��� ��
L .�

Equivalently, taking the universal enveloping Lie algebra determines a
Ž .functor L : LTS � LIE which is left adjoint to � .u t r i p l e

Ž . Ž Ž ..In particular, by setting �, L � � , L T in the diagram above, we� T s
� �conclude that � must be injective. Consequently, T , T � T � 0 inT

Ž . � � Ž .L T implies T , T � T � 0 in L T as well.s u
Ž .To construct the universal enveloping algebra L T of T , one may beu

guided by the parallel relationship of Lie algebras to their universal
Ž . � �associative enveloping algebras. Indeed, as described in 12 , the same
method employed to produce the universal enveloping algebra of a Lie

Ž .algebra will produce L T for the LTS T. Specifically, take LL to be theu
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Žfree Lie algebra over the vector space T. By a theorem of Witt e.g., see
� �.23, Theorem I.3.1 , LL can be obtained as follows. Form the free associa-

� �tive algebra A over the vector space T ; subsequently setting x, y � xyT
� yx determines a Lie algebra structure on A . Then LL is the LieT
subalgebra generated by the copy of T inside A . Now, inside LL , take theT

�� � � � �ideal I generated by all elements a, b , c � abc , a, b, c in T. The
Ž . Žquotient L T � LL�I is a Lie algebra into which T imbeds let � sendu T

.a � T to its coset a and which has the desired universal property, induced
Ž .from the universal property of LL . Moreover, by construction, L T �u

Ž . � Ž . Ž .� Ž . � �� T � � T , � T , whence L T � T � T , T .T T T u
In particular, there is a unique Lie algebra homomorphism

� : L T � L T , 2.0.19Ž . Ž . Ž .u s

which is the identity on T. Necessarily, by our earlier observations,
Ž . � � Ž . Ž .Ker � 
 T , T 
 L T . In fact, we can identify Ker � more preciselyu

as a consequence of the next lemma. Before this, however, let us introduce
Ž . � Ž . Ž .�some more pieces of notation. If L � � T � � T , � T is any en-�

� �veloping Lie algebra of an imbedding � of T , we may use , to denote�

Ž . Ž . Žthe bracket operation in L T . In the particular case L � L T resp.,� � s
Ž .. � � Ž � � .L � L T , we will simply employ the notation , resp., , . Later,� u s u

of course, if no confusion will result we may just use the plain brackets
� � Ž ., . Finally, for any Lie algebra � , we will let Z � denote its center.

LEMMA 2.0.20. Suppose � : T � � is any injecti�e imbedding of a LTS T
� � Ž .into a Lie algebra � for which L � T � T , T . Let � : L � L T denote� � s

Ž .the extension for which � �� � � , � being the imbedding of T into L T asT T s
Ž . Ž . � �before. Then Ker � � Z L � T , T .� �

Ž . � �Proof. By assumption, � is an injection, hence Ker � 
 T , T . Sup-�

Ž . � �pose a � L . Now, observe that a � Z L if and only if a, T � 0; one� � �

� �direction is immediate, while the other follows from the fact that a, T ��

� � � �0 implies a, T , T � 0 by an application of the Jacobi identity. Next, by� �

Ž . � � � �construction of L T , for b � T , T , b, T � 0 implies b � 0. Thus,s s s
Ž . � �using the universal property of L T , for a � T , T , the following ares �

equivalent:

Ž . Ž .a a � Z L ,�

Ž . � �b a, T � 0,�

Ž . Ž� � . � Ž . �c � a, T � � a , T � 0,� s

Ž . Ž .d a � Ker � .

This completes the proof.

Ž � �.The following result stated without proof on p. 151 of 6 yields the
Ž .promised characterization of Ker � .
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COROLLARY 2.0.21. Let T be a Lie triple system o�er k, with uni�ersal
Ž .en�eloping algebra L T . Thenu

� �Ker � � Z L T � T , T . 2.0.22Ž . Ž . Ž .Ž . uu

Ž .As an aside, we note that with considerably more effort one can also,
Ž . Ž .in fact, first prove 2.0.21 using the universal properties of L T andu

Ž . Ž . � �L T and then deduce 2.0.20 as a consequence, as was done in 8 . Wes
thank J. Faulkner for proposing the more direct approach employed above.

Later in this paper, as we consider the restricted structure for a Lie
triple system � arising as the �1-eigenspace of an involution induced

Ž .from an involution of an algebraic group as in 2.0.9 , we will again
Ž .examine relationships between the universal enveloping Lie algebra L �u

Ž .and the standard enveloping Lie algebra L � . We will, in that particulars
Ž . Ž .context, prove that, in many situations, L � 	 L � . For now, we offeru s

Ž . Ž .an example to demonstrate that L T � L T in general.s u

Ž . � �EXAMPLE 2.0.23. Suppose that T has dim T � n and that abc � 0k
Ž .for all a, b, c in T. Reviewing the construction of L T , we find thats

Ž . � �V � 0 and L T is simply the n-dimensional Lie algebra with x, y � 0T s
Ž .for all x, y � L T . On the other hand, note that the second exteriors

n n � 1Ž .2 Ž .power � T on the vector space T is an -dimensional vector
2

n n � 1Ž .2 Ž .space, hence the vector space L � T � � T becomes an n � -
2

� � 2 Ž .dimensional Lie algebra upon setting X, Y � 0 if X � T , Y � � T or
2 Ž . � �if X, Y � � T , and X, Y � X � Y if X, Y � T. Then L � L for the�

obvious imbedding of T. It now follows from the universal property of
Ž .L T thatu

n n � 1Ž .
dim L T � dim L � n � , 2.0.24Ž . Ž . Ž .Ž .k u k 2

Ž . Ž . Ž .whence L T � L T . We can say more here. By combining 2.0.24 andu s
Ž . Ž .2.0.13 , we see that L T 	 L in the particular case under consideration.u

Ž . Ž . Ž . � �Furthermore, the extension �: L T � L T has Ker � � T , T , con-u s
Ž .sistent with 2.0.22 .

2.1. Further Connections. In this subsection, we will explore further
connections between a Lie triple system T and certain imbeddings; the
focus will be on relationships between T and the standard enveloping Lie

Ž . Ž .algebra L T accorded by considering the Killing form of L T . Later, ins s
Section 4, we will apply the developments herein to the special case
elaborated in Example 2.0.9.

� � Ž .Following 19 , for fixed a, b � T , define a k-linear map R a, b : T � T
by

� �R a, b c � cab , for all c � T . 2.1.1Ž . Ž . Ž .
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Ž .Next, let 	 a, b : T � k be the mapping

1
	 a, b � trace R a, b � R b , a .Ž . Ž . Ž .

2

Then 	 : T � T � k is a symmetric bilinear form on T. Using the proper-
� �ties of Lie triple systems, 19, p. 59 proves that 	 is associative, in the

sense that

� � � �	 abc , d � 	 a, dcb . 2.1.2Ž .Ž . Ž .

Moreover, it is further shown there that

	 a, b � trace R a, b , 2.1.3Ž . Ž . Ž .

assuming 	 is nondegenerate. The form 	 provides an analogue for the
Killing form on a Lie algebra. In fact, up to a scalar multiple, 	 arises as

Ž . Žthe restriction of the Killing form 
 on L T see Chap. VI, Theorem 11,s
� �. � �of 19 . As a corollary of this theorem, 19 presents the following result:

PROPOSITION 2.1.4. The form 	 on a LTS T is nondegenerate if and only
Ž .if the Killing form 
 on the standard en�eloping Lie algebra L T iss

nondegenerate.

Ž .We now define the center Z T of a Lie triple system T by

� �Z T � x � T � xab � 0 for all a, b � T . 2.1.5� 4Ž . Ž .

Ž Ž .. � � � 4 Ž .Obviously, Ker R a, b � x � T � xab � 0 and Z T �
Ž Ž .. Ž .�Ker R a, b , taking the intersection over all pairs a, b � T � T. Al-

though much more can be said in this direction by pursuing the parallels
Ž � �.with Lie algebra theory see 19 , for our purposes we wish to develop

here only a few more results. First, we give a lemma.

LEMMA 2.1.6. Let � : T � � be any injecti�e imbedding of a LTS T.
Then

Ž . Ž . Ž .1 Z T � 0 implies Z L � 0;�

Ž . � � Ž . � �2 if , in addition, L � T � T , T , then 0 � Z L � T , T implies� �

Ž .Z T � 0.

Ž . � �Proof. Suppose x � Z T , x � 0. Then for any a, b � T , 0 � xab �
�� � �x, a , b in L . Thus, by rewriting the Jacobi identity in the form�

� � �� �� � � �� � � � �X, Y, Z � � X, Z , Y � X, Y , Z and taking X � x, a , Y � b, Z
�� � � �� �� � � �� � �� c, we find that x, a , b, c � � xac , b � xab , c � 0 � 0 � 0. As

� � � �a consequence, x, a commutes with every element in T and T , T ,
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� � Ž .whence it follows that x, a � Z L for all a � T. Note that the calcula-�

Ž . � �tions above yield x � Z L if x, a � 0 for all a � T ; otherwise, for�

� � Ž . Ž .some a � T , x, a is nonzero. In either case, Z L � 0, so 1 holds.�

� � Ž . Ž .Now suppose L � T � T , T and Z L � 0. If S � Z L � T � 0,� � �

then for any 0 � x � S and a, b � T 
 L ,�

� � � � � �xab � x , a , b � 0, b � 0. 2.1.7Ž .

Ž . Ž .Thus, Z T � 0. Now suppose S � 0, so that x � Z L must have the�

� � � � � � � � � � �form x � a� � Ý b , c , a , b , c � T , with each b , c � 0. Then for anyi i i i i i i
� � � � �� � � � � � � � � � � � �a � T , 0 � x, a � a�, a � Ý b , c , a � a�, a � Ý b c a , so a�, ai i i i i i

� � � � � �� �Ý b c a . Now, by assumption T , T � T � 0, whence we concludei i i
� � Ž .that a�, a � 0 for all a � T. If a� � 0, then Z T � 0, following the

Ž .calculation 2.1.7 above. On the other hand, if a� � 0, we are reduced to
� �� � Ž . � � Ž .the case x � Ý b , c ; i.e., Z L 
 T , T . This proves 2 .i i i �

Ž Ž ..COROLLARY 2.1.8. The center Z L T of the standard en�eloping Lies
Ž .algebra of a LTS T is nonzero if and only if Z T is nonzero.

Ž . Ž Ž ..Proof. In light of 2.1.6 , we must only demonstrate that Z L T �s
� � Ž Ž .. Ž .T , T � 0, for then Z L T � 0 will imply Z T � 0. Now, if h �s

� � Ž Ž .. � � � �Ý a , b � Z L T � T , T , then in particular 0 � h, c �i i i s
�� � � � � Ž .Ý a , b , c � Ý a b c for all c � T. By the construction of L T , thisi i i i i i s

occurs only when h � 0.

Ž . Ž . Ž .Reconsidering 2.0.23 in light of 2.1.8 , we note that there T � Z T
Ž .and L T was an n-dimensional abelian Lie algebra. On the other hand,s

Ž . Ž Ž .. 2 Ž .L T was not abelian; in fact, Z L T � � T .u u

Ž .THEOREM 2.1.9. Suppose T is a LTS with Z T � 0. Then
Ž . Ž Ž .. Ž .L T �Z L T 	 L T .u u s

Ž . Ž . Ž Ž .. � � Ž .Proof. By 2.1.6 , Z T � 0 implies Z L T 
 T , T . Hence, 2.0.21u u
Ž . Ž . Ž .shows that the surjective morphism �: L T � L T has Ker � �u s

Ž Ž ..Z L T .u

Ž .Finally, we will conclude this section with a handy intrinsic condition
for ensuring that a Lie triple system has a zero center.

THEOREM 2.1.10. Suppose the bilinear form 	 on a LTS T is nondegener-
Ž .ate. Then Z T � 0.

Ž .Proof. By assumption, 	 is nondegenerate, hence, by 2.1.4 , 
 is
Ž . Ž �nondegenerate on the Lie algebra L T . Since e.g., see 23, Theorems

�. Ž .I.7.1 any abelian ideal of L T is contained in the radical of 
 , the onlys
Ž . Ž Ž .. Ž .abelian ideal in L T is 0. In particular, Z L T � 0. Thus, by 2.1.8 ,s s

Ž .Z T � 0.
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Ž . � �2.2. L T Once Again. Given a Lie triple system T , 19 presents thes
Ž .standard enveloping Lie algebra L T in terms of inner derivations. Wes

will find this second approach instrumental to setting up the restricted
theory of Lie triple systems in the next section. In order to describe this

Ž .formulation of L T , we propose first to consider some general resultss
regarding the derivations of a Lie triple system.

Ž .Recall that the associative algebra structure of End T gives rise to ak
� �Lie algebra structure in the usual way; i.e., define f , g � fg � gf. For a

Ž . Ž .Lie triple system T , let Der T � Der T denote the set of LTS deriva-k
tions in T. Then we have

PROPOSITION 2.2.1. Suppose T is a Lie triple system o�er the field k. Then
Ž . � �Der T is a Lie algebra under the bracket operation D , D � D D �1 2 1 2

Ž .D D taken in End T .2 1 k

Ž .Proof. The proof just follows the same steps as the proof that Der L is
Ž .a Lie algebra for any Lie algebra L. For D , D � Der T and � � k, it is1 2

Ž . Ž .easy to check that D � D , �D � Der T , whence Der T is a subspace1 2 1
Ž .of End T . Next,k

� �D D abc � D D a bc � aD b c � abD cŽ . Ž . Ž .Ž . Ž .1 2 1 2 2 2

� D D a bc � D a D b c � D a bD cŽ . Ž . Ž . Ž . Ž .1 2 2 1 2 1

� D a D b c � aD D b c � aD b D cŽ . Ž . Ž . Ž . Ž .1 2 1 2 2 1

� D a bD c � aD b D c � abD D c .Ž . Ž . Ž . Ž . Ž .1 2 1 2 1 2

Ž� �.Switching indices gives an analogous expression for D D abc ; from this2 1
we see that

� � � �D D abc � D D abcŽ . Ž .1 2 2 1

� D D a bc � D D a bcŽ . Ž .Ž .1 2 2 1

� aD D b c � aD D b cŽ . Ž .Ž .1 2 2 1

� abD D c � abD D c .Ž . Ž .Ž .1 2 2 1

Therefore,

� � � � � � � �D , D abc � D , D a bc � a D , D b cŽ . Ž .Ž .1 2 1 2 1 2

� �� ab D , D c ,Ž .1 2

� � Ž . Ž .hence D , D � Der T . This shows that Der T becomes a subalgebra1 2
Ž .of the Lie algebra End T .k
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Next, recall the LTS derivation D in T , defined for any a, b � T as ina, b
Ž . Ž . Ž .2.0.6 . Inside Der T , take the subspace InnDer T spanned by all D ,a, b

Ž .a, b in T. Thus, by the trilinearity of the triple product, each h � InnDer T
� 4has the form h � Ý D , for some collection a , b of elements in T.i a , b i ii i

Ž .The subspace InnDer T is, moreover, a Lie algebra, as a consequence of
� �the following lemma which appears in 19 .

Ž . Ž .LEMMA 2.2.2. Let D � Der T and D � InnDer T . Then we ha�ex, y

D , D � D � D . 2.2.3Ž .x , y DŽ x . , y x , DŽ y.

Proof. For any z � T ,

D � D z � D x yz � xD y zŽ . Ž . Ž .Ž .DŽ x . , y x , DŽ y .

� �� D xyz � xyD zŽ .Ž .
� DD z � D D zŽ . Ž .x , y x , y

� D , D z , 2.2.4Ž . Ž .x , y

verifying the claim.

Ž .Note that, in the special case in which we take D � D , 2.2.3a, b
becomes

D , D � D � D . 2.2.5Ž .a , b x , y � ab x � , y x , � ab y �

Ž .In this particular setting, the calculation 2.2.4 amounts to rearranging
Ž .2.0.4 to produce

� � � � � � � �xy abz � ab xyz � abx yz � x aby z .

Ž .COROLLARY 2.2.6. For a Lie triple system T , InnDer T is an ideal of
Ž . Ž .Der T hence a Lie algebra .

Ž .Now, for a Lie triple system T , set L T to be the k-vector spaceD

L T � Der T � T . 2.2.7Ž . Ž . Ž .D

� �It is proved in 19, Chap. V, Sect. 6.5 that a Lie algebra structure may be
Ž . Ž .defined on Der T via setting, for any D , D � Der T and a , a � T ,1 2 1 2

� � � �D � a , D � a � D , D � D � D a � D aŽ . Ž .Ž .Ž .1 1 2 2 1 2 a , a 1 2 2 11 2

� Der T � T . 2.2.8Ž . Ž .

Ž . Ž .Under this operation, 2.2.6 shows that InnDer T � T is a Lie subalge-
Ž .bra of L T .D
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For completeness, we now verify that the two proposed constructions of
Ž . Ž � �.L T indeed give the same Lie algebra this does not appear in 19 .s

Ž . Ž .THEOREM 2.2.9. Let T be a Lie triple system. Then L T 	 InnDer Ts
� T as Lie algebras.

Ž . Ž .Proof. Let � : T � InnDer T � T by � a � 0 � a. Then it follows
Ž . � Ž . Ž .� Ž .from 2.2.8 that � T , � T � InnDer T , so by the universal mapping

Ž . Ž .property of L T there is a unique surjective Lie algebra homomor-s
Ž . Ž . Ž .phism � : InnDer T � T � L T , which is injective on T. By 2.0.20 ,s

Ž . Ž . � � Ž .Ker � � Z L � T , T . If h � Ý D � Ker � , then in particular� i a , bi i� � � � Ž . Ž .for any c � T , 0 � h, c � Ý D , c � Ý D c , using 2.2.8 . Thisi a , b i a , bi i i i
Ž .shows that the derivation h is identically zero on T. Thus, Ker � � 0, and

� is then an isomorphism.

Ž . Ž .This alternate approach to L T as an ideal of L T will be helpful ins D
setting up the restricted structure of a Lie triple system by enabling us to
work in the broader context of T and all its derivations. Finally, to

Ž . Ž .conclude this section, we examine a scenario in which L T and L Ts D
are one and the same.

THEOREM 2.2.10. Let T be a LTS for which 	 is nondegenerate. Then
Ž . Ž .L T � L T .s D

Ž . � �Proof. We modify the proof of Theorem 10 p. 57 of 19 . It will suffice
Ž . Ž . Ž . Ž .to show Der T � InnDer T . By 2.1.4 , 
 is nondegenerate on L T .s

Ž �Under this condition, Zassenhaus’s Lemma e.g., see 23, Corollary to
�. Ž .Theorem I.8.1 states that any derivation of the Lie algebra L T iss

Ž . Ž . Ž .inner. Because L T is an ideal in L T , any D � Der T defines as D
Ž . Ž .derivation ad D of L T . Thus, ad D � ad D� � a for some D� �s

Ž . Ž Ž .. ŽInnDer T and a � T. However, by assumption Z L T � 0 e.g., sees
Ž .. Ž .the proof of 2.1.10 , whence ad D � ad D� � a implies D � D� � a.

Ž . Ž .Finally, Der T � T � 0, so we conclude D � D� � InnDer T , as de-
sired.

3. RESTRICTED LIE TRIPLE SYSTEMS

With the results of the last section in hand, we can make our first move
toward developing a restricted structure for Lie triple systems. Seeking

Žfurther inspiration from our knowledge of Lie algebras and algebraic
.groups , suppose G is an algebraic group over k with coordinate algebra

� � Ž .k G . Then � � Lie G may be defined as certain ‘‘left invariant’’ deriva-
� � � Ž � �. 4tions of k G ; i.e., � � D � Der k G � D� � � � � D for all x � G ,k x x

� � � � Ž .Ž . Ž �1 . � �where � : k G � k G by � f y � f x y for all f � k G , y � G.x x
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As a consequence, � is a restricted Lie algebra. In general, any Lie algebra
Ž� over k is said to be a restricted Lie algebra or sometimes a p-restricted

. � p �Lie algebra if � carries the additional structure of a mapping X � X
such that for all X, Y � � and all � � k, the properties

� �p p � p �� X � � X , 3.1Ž . Ž .
p� p �� �X , Y � ad X Y , 3.2Ž . Ž . Ž .

and
p�1

� �p � p � � p �X � Y � X � Y � s X , Y , 3.3Ž . Ž . Ž .Ý i
i�1

Ž . i�1where is X, Y may be regarded as the coefficient of � in the formali
Ž Ž .. p�1Ž . Ž � �.expression ad � X � Y X e.g., see 13, Chap. 5, Sect. 7 , hold.

Now, any associative algebra RR gives rise to a Lie algebra RR by takingL
� � Ž .X, Y � XY � YX, X, Y � RR. Since � � Lie G is a Lie subalgebra of
Ž Ž � �.. pEnd k G , the Leibniz rule implies that for any D � � , D is anotherk L
derivation which is, furthermore, left invariant since D is. Under such
circumstances, setting D� p � � D p determines a restricted Lie algebra

Žstructure on � , as a consequence of the general result below see, for
� �.example, 23 , which we shall need later.

PROPOSITION 3.4. Let RR be an associati�e algebra o�er a field of positi�e
characteristic p. Then any Lie subalgebra � of RR is a restricted Lie algebra ifL
� is closed under pth powers in RR.

Our initial step, then, is to prove a ‘‘Leibniz rule’’ for derivations of a
Lie triple system T. In the interest of conciseness, in the lemma and its
proof below we will omit parentheses where this will cause no confusion,

� � � Ž . �writing Dxyz for D x yz , etc.

Ž .LEMMA 3.5. Let D � Der T . Then, for any integer n � 1,

nn i j k� �D xyz � D xD yD z 3.6Ž .Ý ž /ijk
0
i , j , k
n
i�j�k�n

n!0 nŽ Ž . .here, D � 1 and � .ijk i! j!k !

Proof. The proof is by induction. The case n � 1 is just the definition
Ž .2.0.7 . Suppose the result holds for n. We wish to show

n � 1n�1 i j k� �D xyz � D xD yD z .Ý ž /ijk
0
i , j , k
n�1
i�j�k�n�1
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We have

n�1� � n� �D xyz � DD xyz

n i j k� D D xD yD zÝ ž /ijk
i�j�k�n

n i j k� D D xD yD zÝ ž /ijk
i�j�k�n

n i�1 j k i j�1 k� D xD yD z � D xD yD zŽÝ ž /ijk
i�j�k�n

i j k�1� D xD yD z ..
nŽ .Define � 0 if any one of l, m, n is negative. Now, the coefficient oflmn

l m n n i�1 j k� � Ž .Ž� �the term D xD yD z in the expression Ý D xD yD z �ijki� j�k�n
i j�1 k i j k�1 n n n� � � �. Ž . Ž . Ž .D xD yD z � D xD yD z is � �l � 1 mn l m � 1 n lm n � 1Ž . Ž . Ž .

n � 1 n� 1Ž . � �� . From this, we can conclude that D xyz �lmn
n � 1 i j kŽ .� �Ý D xD yD z . By induction, the claim holdsijk0 
 i, j, k 
 n�1, i�j�k�n�1

for all n � 1.

COROLLARY 3.7. Let T be a Lie triple system o�er k. Let D be any
deri�ation of T. Then D p is also a deri�ation of T , where the pth power is

Ž .taken in the associati�e algebra End T .k

p p i j kŽ . Ž� �. Ž .� Ž . Ž . Ž .�Proof. By 3.5 , D xyz � Ý D x D y D z ,ijk0 
 i, j, k 
 p, i�j�k�p
pŽ . Ž .for all x, y, z in T. Each trinomial coefficient 0 
 i, j, k 
 p isijk

Ž .divisible by p and thus equals 0 in k unless one of i, j, k equals p.
pŽ� �. pŽ� �. � pŽ . �Therefore the expression for D xyz reduces to D xyz � D x yz

� pŽ . � � pŽ .� p p� xD y z � xyD z . Moreover, D is linear, since D is. Thus, D is
a derivation of T.

Our further development of the notion of a restricted Lie triple system
Ž .will be modeled with the aim in mind that T should be restricted if L Ts

Ž .is a restricted Lie algebra. The first property 3.1 of a restricted Lie
algebra is easy to emulate in the LTS setting; that is, we can begin by
supposing that a restricted Lie triple system T should carry a mapping

� p � Ž .� p � p � p �a � a under which � a � � a for all � � k and a � T. Conse-
Ž . Ž .quently, our work will focus on adapting 3.2 and 3.3 .

Ž .Beginning with 3.3 , we examine in greater detail the nature of the
Ž . Želements s X, Y . Specifically, let L be any Lie algebra over k noti

. Ž .necessarily restricted . For any X, Y � L, s X, Y is defined as above;i
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Ž . i�1 Ž Ž .. p�1Ž .namely, is X, Y is the coefficient of � in ad � X � Y X . Byi
Ž Ž .. p�1Ž . 1computing ad � X � Y X , one finds that

� if p � 3,

� �s X , Y � X , Y , Y ,Ž .1

� �2 s X , Y � X , Y , X ;Ž .2

� if p � 5,

� �s X , Y � X , Y , Y , Y , Y ,Ž .1

� � � �2 s X , Y � X , Y , X , Y , Y � X , Y , Y , X , YŽ .2

� �� X , Y , Y , Y , X ,

� � � �3s X , Y � X , Y , X , X , Y � X , Y , X , Y , XŽ .3

� �� X , Y , Y , X , X , and

� �4 s X , Y � X , Y , X , X , X .Ž .4

Likewise, the pattern continues for p � 7. If we now suppose that
Ž . ŽL � L T for some Lie triple system T or, more generally, that L � Ls �

.for some injective imbedding of T and we take X � a, Y � b � T , then
the identities above can be rewritten in terms of the triple product on T as

� Ž . � � Ž . � �s a, b � abb and 2 s a, b � aba , if p � 3;1 2

� Ž . �� � � Ž . �� � � �� � � �� � �s a, b � abb bb , 2 s a, b � aba bb � abb ab � abb ba ,1 2
Ž . �� � � �� � � �� � � Ž . �� � �3s a, b � aba ab � aba ba � abb aa , and 4 s a, b � aba aa , if3 4

p � 5.

Ž . Ž .Similarly, for p � 7, the values of s a, b up to scalar multiples can bei
interpreted as triple products of elements in T. In general, each summand

Ž .of is a, b involves p � 1 applications of the bracket operator in the Liei
algebra; since this is an even number for p � 3, the results can be
rewritten in terms of the triple product by grouping together the terms in
the two innermost brackets, then the next two innermost brackets, and so
on. More formally, observe that the decomposition of L associated to the

Ž .eigenspaces of the unique involution of 2.0.16 ,

� �L � T � T , T � L � L , 3.8Ž .1 0

1 � �The reader who wishes to compare this paper with 13 will note our ad acts on the left,
Ž Žinstead of the right. However, under the assumption p � 2, p � 1 is even, hence ad � X �

.. p�1Ž . �Ž . � �Ž . �� � Ž . p�1�� � Ž .� � ŽY X � � X � Y , 


 � X � Y , X 


 � �1 


 X, � X � Y , . . . , � X �

.� �� � Ž .� � Ž .� Ž Ž .. p�1 � �Y � 


 X, � X � Y , . . . , � X � Y , which is X ad � X � Y is the notation of 13 .



LIE TRIPLE SYSTEMS AND ALGEBRAIC GROUPS 551

� �is a � -grading, in the sense that L , L 
 L , with subscripts read mod2 i j i�j
Ž . Ž .2. Thus by the � -grading on L T , for a, b � T , is a, b � T , since2 s i

T � L and p is odd.1

PROPOSITION 3.9. Let T be a Lie triple system. For a, b � T , define
Ž . Ž . Ž . i�1s a, b � L T by requiring that is a, b be the coefficient of � ini s i

Ž Ž .. p�1Ž . Ž . Ž .ad �a � b a � L T . Then s a, b � T.s i

The calculations above suggest that we would profit from some new
notation. Let L be any Lie algebra. For any elements x , x , . . . , x of L,1 2 n
set

� �x , x , . . . , x � 


 x , x , x 


 , x � L. 3.10Ž . Ž .1 2 n 1 2 3 n

Ž .For example, specializing to the setting L � L T for T a Lie triples
Ž . Ž .system, for any a, b � T , each is a, b � a, b, � , . . . , � � T , where �i 1 n j

equals one of a or b.
Ž .We are now at the point where we can adapt the properties 3.1 and

Ž .3.3 to the Lie triple system setting. At this stage, then, we propose

DEFINITION 3.11. Call a Lie triple system T over k a restricted Lie triple
Ž .� p �system over k if there is given a map � : T � T satisfying the following

conditions, for all a, b, c � T and all � � k:

� �p p � p �� a � � a , 3.12Ž . Ž .
p�1

� �p � p � � p �a � b � a � b � s a, b , 3.13Ž . Ž . Ž .Ý i
i�1

� � p � �abc � a, b , c, . . . , c p copies of c , 3.14Ž . Ž . Ž .
� � p � �ab c � a, b , . . . , b , c p copies of b . 3.15Ž . Ž . Ž .

Ž . Ž .Notationally, the right-hand sides of 3.14 and 3.15 may be taken in
Ž .L T , but in fact lie back in T.s
Comparing this definition for a restricted Lie triple system with the

Ž .definition of a restricted Lie algebra, observe that properties 3.14 and
Ž . Ž .3.15 take the place of the remaining condition to be discussed, 3.2 . Note

� � p � � Ž .that the comparable element a bc � T is determined by 3.14 and�or
Ž . Ž . Ž .3.15 by applying either 2.0.3 or 2.0.5 . To further validate our choice of
Ž . Ž . Ž .3.14 and 3.15 , let us show that 3.11 meets the original test we set for
it, under some additional hypotheses.

Ž .THEOREM 3.16. Suppose T is a LTS and that L T is a restricted Lies
algebra under X � X � p �. Then T is a restricted Lie triple system if T is closed

� �under the p -operator.
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Ž .Proof. The LTS T is a subspace of L T , and for each 1 
 i 
 p � 1s
Ž . Ž . Ž .and for all a, b � T , s a, b � T , so 3.1 and 3.3 immediately restrict toi

Ž . Ž . Ž . Ž .give properties 3.12 and 3.13 . From 3.2 , for any X, Y � L T ,s
� � p � � Ž . pŽ . Ž . Ž .X , Y � �1 Y, X, . . . , X � � Y, X, . . . , X p copies of X .

� � p � � �� � p � � � �� � p � � �Thus for any c � T , ab c � a, b , c � � b , a , c �
Ž .2Ž . Ž . � � p �� �� � � p ���1 a, b, . . . , b, c . By this, 3.15 holds. Similarly, abc � a, b , c

� � p � � �� Ž .2Ž� � . Ž . Ž .� � c , a, b � �1 a, b , c, . . . , c � a, b, c, . . . , c , so 3.14 holds.
Thus T is a restricted LTS.

Ž .Still assuming for the moment that L T is restricted, we note thats
Ž .since T is only a subspace of L T , the additional condition requirings

� � Žclosure of T under the p -operator is not unreasonable. In general, even
Lie subalgebras of a restricted Lie algebra need not be restricted Lie

.algebras. However, by using the characterization of T as the �1
Ž . Ž .eigenspace of an involution � on L T as in 2.0.15 , we may ensure thats

� � Ž .T will always be closed under the p -operator of L T .s

Ž .THEOREM 3.17. Suppose T is a Lie triple system for which L T is as
� � � p �restricted Lie algebra. Then T is closed under the p -operator X � X of

Ž .L T .s

Ž .Proof. Viewing T as the �1-eigenspace of � in 2.0.15 , we need only
Ž � p �. � p � Ž .show that � a � �a for all a � T. Since L T is restricted, for anys

b � T ,
p� p �� �a , b � ad a b . 3.18Ž . Ž . Ž .

Now, p � 3, so

p � �ad a b � a, a, 


 , a, b 


Ž . Ž .
p� �1 b , a, . . . , aŽ . Ž .

� �� � 


 baa aa aa 


 aa , a . 3.19Ž .Ž .
That is, upon writing the last expression in terms of the triple bracket in T ,

Ž .it becomes the bracket in L T of two elements in T , namely,s
�� ��� � � � � � � � Ž .� 


 baa aa aa 


 aa and a. Since � fixes T , T 
 L T , applying �s

Ž .to both sides of 3.18 produces

p� p �� a , � b � ad a b , 3.20Ž . Ž . Ž . Ž . Ž .

whence

� p � � p �� �� � a , b � a , b . 3.21Ž . Ž .

Ž . � Ž � p �. � � � p � �From 3.21 , we find that �� a , b � a , b for all b � T.
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� � � �Now, replacing b with an element of the form b, c � T , T , we may
Ž . Ž .repeat the calculations 3.19 � 3.21 for

p� p � � � � �a , b , c � ad a b , c . 3.22Ž . Ž .Ž .
Ž . pŽ� �. Ž . pŽ .This time, ad a b, c � �1 b, c, a, . . . , a � T , hence applying � to

Ž .3.22 produces
p� p � � � � �� a , b , c � � ad a b , c . 3.23Ž . Ž . Ž .Ž .

� Ž � p �. � �� � � p � � ��Thus, we find �� a , b, c � a , b, c . Consequently, we may con-
� Ž � p �. � �� � � p � � ��clude that �� a ,Ý b , c � a ,Ý b , c for an arbitrary elementi i i i i i

� � � � � Ž � p �. � � � p � �Ý b , c � T , T . Therefore, it follows that �� a , X � a , X fori i i
Ž .all X � L T .s

Ž � p �. � p � Ž Ž ..The calculation above shows that �� a � a � Z L T . Sinces
Ž Ž � p �. � p �. Ž � p �. � p � Ž � p �. � p �� �� a � a � �� a � a , we see also that �� a � a �

� � Ž Ž .. Ž Ž .. � �T , T . However e.g., as shown in the proof of 2.1.8 , Z L T � T , Ts
� p � � p �Ž .� 0. Thus, � a � �a , as desired. The theorem follows.

Ž .COROLLARY 3.24. Suppose T is a Lie triple system. If L T is a restricteds
Ž .Lie algebra, then T is a restricted LTS. Furthermore, if Z T � 0, the

in�olution � defined abo�e is an automorphism of the restricted structure on
Ž .L T .s

Ž . Ž .Proof. The first statement arises simply by combining 3.17 and 3.16 .
Ž . � � Ž .� p � Ž .The proof of 3.17 shows that the p -operator � of L T sends Ts

Ž .� p � � �back to itself. We need only check that � likewise sends T , T to
Ž .itself. However, repeating the argument in 3.17 mutatis mutandis shows,

� � Ž � p �. � p � Ž Ž .. Ž � p �. � p �for any X � T , T , � X � X � Z L T , and also � X � Xs
Ž . Ž . Ž � p �. � p �� T. Therefore, by 2.1.8 , if Z T � 0 then we conclude � X � X ,

as desired.

Ž .The next goal of this section will be to look for converses to 3.16 and
Ž .3.24 , that is, to determine whether, under some hypotheses on a re-

Ž .stricted Lie triple system T , the Lie algebra L T bears the structure of as
restricted Lie algebra. Our approach will examine the question for the
Ž . Ž . Ž .possibly larger Lie algebra L T of 2.2.7 . We will be able to prove theD
following theorem:

Ž .THEOREM 3.25. Let T be a restricted Lie triple system with Z T � 0.
Ž .Then L T is a restricted Lie algebra, with a restricted structure extendingD

that of T.

Ž .After establishing 3.25 , we will examine the implications regarding the
Ž .existence of a restricted structure on related Lie algebras such as L T .s

Ž .The proof of 3.25 will require a sequence of lemmas, designed to
enable us to meet the requirements of the following criterion, presented in
� �13, Chap. V, Theorem 11 .
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� 4THEOREM 3.26. Let L be a Lie algebra o�er k with basis u such that fori
Ž . p � p �e�ery u , ad u is an inner deri�ation. For each u , let u be an element ofi i i i

Ž . p � p � � p �L such that ad u � ad u . Then there exists a unique mapping X � Xi i
of L into itself such that u� p � is as gi�en and L is a restricted Lie algebrai
relati�e to the mapping X � X � p �.

We now embark upon the necessary lemmas. The proof of the first,
Ž .which will be used to establish 3.29 below, was provided by J. Faulkner.

LEMMA 3.27. Let L be any Lie algebra o�er k, and let X, Y, Z � L.
Ž .Consider the expression Y, X, . . . , X, Z, X, . . . , X , in which X appears

p � 1 times. Then

p

� Y , X , . . . , X , Z, X , . . . , X � Z, X , . . . , X , Y .Ž . Ž .Ý
i�1

Here, in the ith summand on the left, Z appears in the position i � 1
Ž Ž . .identifying each summand with a p � 1 -tuple of elements of L .

Proof. Observe that, for any positive integer n,

n

Y , X , . . . , X , Z, X , . . . , XŽ .Ý
i�1

n�1
j n�1�j� ad �X ad �X Y , Z .Ž . Ž . Ž .Ž . Ž .Ý

j�0

Applying the Leibniz rule to the right-hand side shows

n

Y , X , . . . , X , Z, X , . . . , XŽ .Ý
i�1

jn�1 j n�1�k k� ad �X Y , ad �X ZŽ . Ž . Ž . Ž .Ž . Ž .Ý Ý ž /kj�0 k�0

n�1
n�1�k k� c ad �X Y , ad �X Z ,Ž . Ž . Ž . Ž .Ž . Ž .Ý k , n

k�0

n�1 jwhere by definition c � Ý . For k fixed, induction on n showsž /k , n j�k k

n�1 nj ŽÝ � . The base case k � n is trivial. The induction step tož /ž /j�k k � 1k

n n�1 n nj jn � 1 is almost as easy: it becomes Ý � Ý � � �ž / ž /ž / ž /j�k j�k k k � 1k k
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n n � 1 .� , by induction hypothesis. Thus, switching indices set i �ž / ž /k k � 1
.k � 1 ,

n

Y , X , . . . , X , Z, X , . . . , XŽ .Ý
i�1

n
n� Y , X , . . . , X , Z, X , . . . , X . 3.28Ž . Ž . Ž .Ý ž /i

i�1

In the particular case that n � p, this yields
n

Y , X , . . . , X , Z, X , . . . , X � Y , Z, X , . . . , XŽ . Ž .Ý
i�1

� � Z, X , . . . , X , Y ,Ž .
nŽ .since p � for all 1 
 i � p. This is the result we wished to establish.i

� �LEMMA 3.29. Let T be a restricted Lie triple system o�er k, with p -oper-
� p � Ž . Ž .ator a � a . Assume, in addition, that Z T � 0. Let D � Der T , re-

Ž .garded as an element of L T . Then for any a � T ,D

p� p �� �a , D � ad a D . 3.30Ž . Ž . Ž .
Ž . Ž .Proof. By definition 2.2.8 of the bracket operation in L T , theD

Ž . Ž � p �.left-hand side of 3.30 equals �D a . On the other hand, using the
Ž . Ž . pŽ Ž . .notation 3.10 , the right-hand side is simply �1 D a , a, . . . , a �

Ž Ž . . Ž .� D a , a, . . . , a p copies of a . Thus, it suffices to show that

D a� p � � D a , a, . . . , a . 3.31Ž . Ž . Ž .Ž .
� �By assumption, the center of T is trivial, that is, abc � 0 for all b, c � T

Ž .only if a � 0. Thus, to verify 3.31 it is enough to show that, for all
b, c � T ,

� p �D a bc � D a , a, . . . , a, b , c . 3.32Ž . Ž . Ž .Ž .

Ž .To arrive at the equality 3.32 , we begin by applying the derivation D to
� � p � �a bc ,

� p � � p � � p � � p �� �D a bc � D a bc � a D b c � a bD c ,Ž . Ž . Ž .Ž .
hence

� p � � p � � p � � p �� �D a bc � D a bc � a D b c � a bD cŽ . Ž . Ž .Ž .
� p � � p � � p �� �� �D ba c � D b a c � ba D c , 3.33Ž . Ž . Ž .Ž .
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Ž . Ž .by 2.0.5 . Using property 3.15 of a restricted Lie triple system and
Ž .applying the derivation D, the right-hand side of 3.33 now becomes

p

� D b , a, . . . , a, c � b , a, . . . , D a , a, . . . , a, cŽ . Ž .Ž . Ž .Ý
i�1

� b , a, . . . , a, D cŽ .Ž .

� D b , a, . . . , a, c � b , a, . . . , a, D c , 3.34Ž . Ž . Ž .Ž . Ž .
p Žwhere a appears p times in all but the second term, Ý b, a, . . . ,i�1

Ž . .D a , . . . , a, c . There, the ith summand is determined by the appearance
Ž . Ž Ž . .of D a in position i � 1 identifying each summand with a p � 2 -tuple

Ž .and with a appearing p � 1 times. Cancelling like terms in 3.34 and
Ž .substituting the result into 3.32 , we see that we need only show that

p

D a , a, . . . , a, b , c � � b , a, . . . , a, D a , a, . . . , a, c , 3.35Ž . Ž . Ž .Ž . Ž .Ý
i�1

Ž .where, as before, in the ith term on the right, D a occurs i places down
Ž .among the a’s. Letting d denote D a , we see that we need

p

d , a, . . . , a, b , c � � b , a, . . . , a, d , a, . . . , a, c . 3.36Ž . Ž . Ž .Ý
i�1

Ž .By bracketing both sides of the equation in 3.27 on the right with c � T ,
Ž . Ž . Ž .we get exactly the form of 3.36 . Thus 3.31 holds, whence 3.30 follows.

� �LEMMA 3.37. Let T be a restricted Lie triple system, with p -operator
a � a� p �. Then, for all a, b � T ,

p� p �� �a , b � ad a b 3.38Ž . Ž . Ž .

Ž .in the Lie algebra L T .D

Ž . p Ž Ž ..Proof. Write D � ad a . Then, by the Leibniz rule, D � Der L TD
Ž Ž ..as the pth power of ad a � Der L T . Thus, for any b, c � T ,D

� �D b , c � D b , c � b , D c 3.39Ž . Ž . Ž .Ž .

Ž . Ž .holds inside L T . Since p is odd, rewriting the right-hand side of 3.39D
Ž .using 3.10 produces the equivalent equation

D b , c � � b , c, a, . . . , a � c, a, . . . , a, b . 3.40Ž . Ž . Ž . Ž .
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Ž . �Ž . pŽ . �The left-hand side of 3.40 is ad a b , c , by construction. On the other
Ž . Ž .hand, by first applying properties 3.14 and 3.15 of a restricted LTS and

Ž .then using 2.0.3 , we find

� � p � � � � p � �� b , c, a, . . . , a � c, a, . . . , a, b � � bca � ca bŽ . Ž .
� � p � �� a bc . 3.41Ž .

Ž . Ž .Together 3.40 and 3.41 produce

p � p �� �ad a b , c � a , b , c . 3.42Ž . Ž . Ž .

Ž . Ž . pŽ .Again, p is odd, so by using the � -grading 3.8 , both ad a b and2
� p �� � Ž .a , b are in Der T and hence are equal.

A final lemma in our sequence follows.

Ž .LEMMA 3.43. Let T be a Lie triple system o�er k. Then Der T is a
� � � p � prestricted Lie algebra under the p -operator gi�en by setting D � D , the

Ž . � p � Ž . pŽ .pth power of D � Der T . In particular, D , D� � ad D D� for all
Ž .D, D� � Der T .

Ž . Ž . � �Proof. By 3.7 , Der T is closed under pth powers. Taking D, D� �
Ž . Ž Ž ..DD� � D�D turns Der T into a Lie subalgebra of End T . Thus, byk L

Ž . Ž .3.4 , Der T is a restricted Lie algebra.

We are now in a position to establish Theorem 3.25.

Ž . Ž . � p � p Ž .Proof of 3.25 . For any D � Der T , set D � D as in 3.4.3 . For
Ž . � p �a � T 
 L T , take a to be the image of a under the p-operator onD

Ž .the restricted Lie triple system T. Now, a k-basis B for L T consists of aD
Ž . Ž .basis B for Der T together with a basis B for T. By 3.26 , to ensureD T

Ž . � � p � �that L T is a restricted Lie algebra, it suffices to show that X , Y �D
Ž . pŽ . Ž .ad X Y for all Y � L T and all X � B. Let Y � D� � b, D� �D

Ž .Der T , b � T.
Ž .First, suppose X � D � B . Recall that, by definition 2.2.8 of the LieD

Ž . � � Ž . Ž . pŽ .algebra bracket in L T , D, b � D b . Thus, ad D b �D
� � � � ��� � pŽ . Ž .D, D, 


 D, b 


 � D b . Employing this, together with 3.43 , we
find

� p � � p � pD , D� � b � D , D� � D bŽ .
p p� ad D D� � ad D bŽ . Ž . Ž . Ž .
p� ad D D� � b .Ž . Ž .
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Ž . Ž .Now suppose X � a � B . From 3.29 and 3.37 , it follows thatT

� � p � � � � p � � � � p � �a , D� � b � a , D� � a , b
p p� ad a D� � ad a bŽ . Ž . Ž . Ž .
p� ad a D� � b .Ž . Ž .

� � p � � Ž . pŽ . Ž .From this it follows that X , Y � ad X Y for all Y � L T andD
Ž .X � B, hence L T possesses the structure of a restricted Lie algebra.D

Moreover, this structure restricts to give the restricted Lie triple system
structure of T.

Ž . Ž .As we know, L T is a Lie subalgebra of L T . Suppose T iss D
Ž . Ž .restricted and Z T � 0, so L T is a restricted Lie algebra. InsideD

Ž . � � Ž . Ž . Ž .L T , take the p -closure L T of L T . By definition, L T is theD s p s s p
Ž . Ž . Ž .smallest Lie subalgebra of L T containing L T for which X � L TD s s p

� p � Ž . � �implies X � L T . Note that since T is closed under the p -operator,s p

L T � InnDer T � T , 3.44Ž . Ž . Ž .p ps

� � Ž . Ž .taking the p -closure InnDer T of InnDer T inside the restricted Liep
Ž . Ž .algebra Der T . The Lie algebra L T forms a restricted Lie subalgebras p

Ž . Ž .of L T which contains L T .D s
With this in mind, we shall now see that, under the stronger hypothesis

Ž Ž ..that the restricted LTS T supports a nondegenerate form 	 as in 2.1.3 ,
Ž . Ž . Ž .the Lie algebras L T , L T , and L T are isomorphic restricted LieD s p s

algebras.

THEOREM 3.45. Suppose T is a restricted Lie triple system with nondegen-
Ž . Ž . Ž .erate form 	. Then L T � L T � L T as restricted Lie algebras, andD s p s

the restricted structure is unique.

Ž . Ž . Ž . Ž .Proof. From 2.1.10 , Z T � 0, hence by 3.25 L T is a restrictedD
Ž . Ž .Lie algebra. The nondegeneracy of 	 also implies L T � L T , asD s

Ž . Ž . Ž . Ž .demonstrated in 2.2.10 . Thus L T � L T � L T .D s p s
Ž .Finally, the Killing form 
 on the finite-dimensional Lie algebra L Ts

Ž . Ž . �is nondegenerate by 2.1.4 . In such a setting, a corollary to 3.26 13, p.
� Ž .191 states that the restricted structure on L T is unique. The theorems

now follows.

To summarize, in this section we have defined a restricted Lie triple
system and have examined the relations between this restricted structure
and the presence of a restricted structure on related Lie algebras, the
standard Lie algebra in particular. A priori, for T a restricted LTS, an
enveloping Lie algebra L of an imbedding � of T need not be restricted�
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as a Lie algebra. This leads to the question of whether, in the spirit of
Ž .3.26 , there exist intrinsic conditions which characterize an enveloping Lie
algebra as a Lie algebra of a restricted Lie triple system. Upon fixing T ,

�such a characterization may be obtained by modifying the results of 13,
�pp. 189�192 ; the fundamental result here is as follows.

� �THEOREM 3.46. Let T be a LTS and L � T � T , T an en�eloping Lie�

� 4algebra of T. Suppose there exists a basis u , . . . , u of T such that, for1 r
1 
 i 
 r, there exists a � � T with the property thati

p
ad u � ad � : L � L .Ž .i i � �

Then there exists a restricted structure x � x � p � on T such that u� p � � � ,i i
1 
 i 
 r.

Ž .Applied to L � L T , this approach can also be used to streamline the� s
definition of a restricted Lie triple system. In any case, the arguments
involved are straightforward, but the interested reader will find some

� �details in 10 , where these ideas are employed to analyze the restricted
Ž .representation theory of T see Section 5 and to create a restricted

cohomology theory for T.

4. ALGEBRAIC GROUPS AND LIE TRIPLE SYSTEMS

Having tackled Lie triple systems and important imbeddings of them
largely in the abstract, in this section we shall return to the more specific
setting of Example 2.0.9, raised in the Introduction to this paper and in
further detail in Section 2. Thus, we suppose G is a connected, reductive

Ž .algebraic group over k, with involution � � Aut G . Subsequently, � �
Ž .Lie G decomposes as the direct sum � � � � � of the �1-eigenspace

� � 0 and the �1-eigenspace � of the corresponding involution � �
Ž .Aut � . As we have seen, � is a Lie triple system; the obvious map � :�

� � � is an injective LTS imbedding of �. Our next lemma shows that L��

is more than just a Lie subalgebra of �.

PROPOSITION 4.1. With the abo�e notation, the en�eloping Lie algebra L��

is an ideal in �.

� �Proof. The Lie algebra L � � � � , � is of course a vector space, so��

to show that L is an ideal of � � � � � we need only show that��� � Ž . � �� , L 
 L . By the calculation 2.0.10 , � , � is a subset of the �1-� �� � � �eigenspace � of � . Similarly, � , � 
 �. Subsequently, for any X � � , Y,
Z � � ,

� � � � � � � �X , Y , Z � X , Y , Z � Y , X , Z � � , � ,
� � �� � � � �so � , � , � 
 � , � . From this, it follows that � , L 
 L .� �� �
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� � � �Note that � � � � � and � , � 
 � implies L � � � � , � . Further-��

more, under an additional hypothesis, � � L .��

LEMMA 4.2. Suppose � is simple. Then � is the en�eloping Lie algebra
Ž � �.L of the ob�ious LTS imbedding � : � � � i.e., in � � � � � , � � � , � .� ��

Ž . � �Proof. From 4.1 , L � � � � , � is an ideal of �. Since � is simple�� � �and L � 0, � � L , with � � � , � .� �� �

More generally, the proof shows that L � � if an analysis of the ideals��

of � eliminates the possibility that L � 0 can be proper. To this end, as� �

well as to carry out further analysis in this section, we will need the
following theorem, along with some properties of a Chevalley basis and an
analysis of the possible involutions of certain simple, simply connected
algebraic groups. In order not to break up the flow, we have included the
determination of involutions as an appendix, along with a brief reminder
of the necessary Chevalley basis material for the reader’s ease.

Ž � �.THEOREM 4.3 Hogeweij 11 . Suppose G is a simple, simply connected
Ž Ž . .algebraic group o�er an algebraically closed field k recall char k � p � 2 .

� �Then � � � , � . Also, � has no nontri�ial ideals, except in the following
cases:

Ž . Ž .1 A , p � n � 1 ,n

Ž .2 E , p � 3, and6

Ž .3 G , p � 3.2

Ž . Ž . Ž .In Cases 1 and 2 , the only nontri�ial ideal of � is the center Z � of � ,
Ž Ž .. Ž .with dim Z � � 1. In Case 3 , � has a single nontri�ial ideal, and it is ofk

Ž .the form � � � , spanned by the elements h , e in a Che�alley basis 6.1.4S S � �

Ž . Ž . Ž .for which � is a short root. Thus, � is simple except in Cases 1 , 2 , and 3 .

With our next result, we begin in earnest to link the structure of an
algebraic group under an involution with the form of the associated Lie
triple system by understanding the relationships between the Lie algebra
of the group and enveloping Lie algebras of the Lie triple system.

THEOREM 4.4. Suppose G is a simple, simply connected algebraic group
Ž . � �o�er k, and � � Aut G is an in�olution. Then � � � , � � �; i.e., � �

� �� , � .

Ž . Ž .Proof. From 4.2 and 4.3 , the theorem holds as long as G is not
among the types

Ž . Ž .1 A , p � n � 1 ,n

Ž .2 E , p � 3, and6

Ž .3 G , p � 3.2
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� �In these remaining cases, the nonzero ideal L � � � � , � must��

equal � if L is not the unique nontrivial ideal of �. Note that, in Cases��

Ž . Ž . Ž .1 and 2 , this amounts to � � Z � if L � � , since the one-dimen-��

Ž .sional ideal Z � is the unique nontrivial ideal in �. We will now rule out
Ž . Ž .the possibility that L � � by examining each of the cases 1 � 3 .��

Ž . Ž . Ž .Suppose, in Case 1 or 2 , � � Z � . Since � � � � � , it now follows
Ž .easily that � is an ideal in � , contradicting the fact that Z � is the only

nontrivial ideal.
Ž . Ž .Finally, in Case 3 , recall that, up to conjugacy, 6.2.2 shows that there

is only one involution � � Int t, and under the associated involution
Ž . Ž .� � Ad t of � , e � � t e � �e , for � the long simple root. This� 2 � � 22 2 2

shows that � must contain the root space � . However, the unique�2 � �nontrivial ideal � � � of � contains only short root spaces, so � � � , �S S
cannot be this ideal.

Thus in the case G is simple and simply connected, we can apply the
results developed earlier in this paper to relate � � L with the two��

Ž . Ž .important enveloping Lie algebras L � and L � . Such relations consti-s u
Ž . Ž .tute the content of 4.5 and 4.6 below.

Ž . Ž .THEOREM 4.5. Assume the hypotheses of 4.4 . Then � 	 L � , excepts
Ž .when � � Aut G is an inner automorphism and G is of type

Ž . Ž .1 A , p � n � 1 , orn

Ž .2 E , p � 3.6

Ž . Ž .In these exceptional cases, L � 	 ��Z � .s

Ž . � �Proof. From 4.4 , � � L � � � � , � . Thus, � lifts to a surjective� ��

Ž . Ž . Ž .Lie algebra homomorphism � : � � L � . Except in Cases 1 and 2 ofs
Ž . Ž . Ž . Ž . Ž . � �4.4 above, Z � � 0. According to 2.0.20 , Ker � � Z � � � , � � 0

� �� � , � � 0. Thus, � is an isomorphism.
Our analysis of the remaining possibilities for G will tackle the cases �

is inner and � is outer separately. First, suppose � is an inner automor-
Ž . Ž .phism of G, in either case 1 or 2 , with T , as usual, a fixed maximal

Ž . � �torus of G. We will now show that Z � 
 � , � ; then, arguing as
Ž . Ž . Ž .immediately above, Ker � � Z � . As in 6.2.2 , we may take � � Int t

for some semisimple element t � T. Now, T is abelian, so Ad � actsT
Ž . Ž . Ž .trivially on Lie T . Since Z � 
 Lie T , this shows that the associated

Ž . Ž . Ž . � �involution � � Ad t on � fixes Z � pointwise. Thus, Z � 
 � , � ,
Ž . Ž . Ž .whence L � 	 ��Z � via � .s

Ž . Ž .Next, suppose � is an outer automorphism of G, in Case 1 or Case 2 .
Ž .Our argument will proceed as follows. If � � � Aut G is any other

� �involution which is also outer, we will prove that � � � � . UsingZŽ� . ZŽ� .
Ž .this, it will then be sufficient to show that Z � 
 � for a particular outer
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Ž Ž . Ž ..involution � depending upon Case 1 or 2 . It will then follow that � :
Ž .� � L � is an isomorphism.s

Let � , � � be as above. Then � � � � �Int x for some x � G. If x � T ,
Ž . Ž .then we have already argued that Ad t fixes Z � pointwise. More

generally, any semisimple element belongs to some maximal torus T � and
Ž . Ž . Ž . Ž .Lie T � � Z � , so if x is semisimple, Ad x fixes Z � identically. Since

G is by assumption semisimple and simply connected, the semisimple
Ž � �. Ž .elements of G are dense in G see 24 . As a continuous map, Ad x must

Ž .then fix Z � pointwise, for all x � G. Therefore, the induced involutions
Ž .� , � � on � must agree on Z � .

Ž . Ž .We now consider Case 1 . For G � SL k , take � to be the outern�1
Ž . Ž t.�1 Ž . tautomorphism with � x � x . The associated involution � X � �X

Ž . Ž .on � � �� k takes scalar matrices to their negatives. Since p � n � 1 ,n�1
Ž . Ž . Ž .Z � consists of all scalar matrices, so this shows Z � 
 �. Thus, L �s

	 �.
Ž .Finally, we consider Case 2 . The Dynkin diagram associated to � is

� �2

� � � � � .
� � � � �1 3 4 5 6

Ž .As in 6.1.3 let h be the element in a Chevalley basis corresponding toi
� . Define z � �h � h � h � h ; z is nonzero by the linear indepen-i 1 3 5 6

Ž .dence of the h . Consider now the effect of � on z. Recall that � h �i i i j
Ž �. Ž� , � , so, for example, reading off the Coxeter matrix of E e.g., see p.i j 6

� �. Ž . Ž .262 of 1 , we get � h � 2, while for i � j, � h � �1 if i and j arei i i j
Ž . Ž . Ž . Ž .adjacent and 0 otherwise. Thus, � z � 3 � � z , � z � �3 � � z ,3 6 1 5

Ž . Ž . Ž .and � z � 0 � � z . However, by assumption char k � 3 here, whence2 4
Ž . Ž .in fact � z � 0 for all i � 1, . . . , 6. Thus, z � Z � and hence is a basisi

Ž .vector for the one-dimensional space Z � .
We can assume � is the involution which corresponds to the graph

automorphism which exchanges � and � , � and � , and fixes � and1 6 3 5 2
� . Thus, the effect of � on z is to carry z to its negative. As a4

Ž . Ž .consequence, Z � 
 �. Therefore, � 	 L � in this case. The proof iss
now complete.

Ž .COROLLARY 4.6. Assume the hypotheses of 4.4 . Unless � is either of
Ž . Ž .type A , p � n � 1 , or of type E , p � 3, we ha�e � 	 L � 	n 6 s

Ž . Ž Ž .. Ž Ž Ž .. � �.L � �Z L � with Z L � 
 � , � .u u u

Ž . Ž . Ž .Proof. With the exceptions noted above, Z � � 0, so 4.2 and 2.1.8
Ž . Ž . Ž . Ž Ž ..guarantee that Z � � 0. Consequently, L � 	 L � �Z L � bys u u

Ž . Ž . Ž . Ž Ž .. Ž .2.1.9 , so � � L � 	 L � �Z L � , by 4.5 .s u u
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Up to this point, with the exception of some analysis of the exceptional
Ž . Ž . Ž .cases 1 � 3 listed in 4.3 , the developments in this section have followed

simply as special cases of the theory in Section 2, largely independent of
Ž .the context of � � Lie G . Employing the theory of central extensions of

the Lie algebras of algebraic groups, discussed below, we can in fact
Ž .establish a stronger relationship between L � and � than is afforded byu

Ž .4.6 . Let us introduce the material regarding central extensions which we
� � � �will need. Our references for this material will be 20 and 26 . By

definition, a central extension of any given Lie algebra � is a short exact
sequence of Lie algebras

0 � 	 � � � � � 0, 4.7Ž .

Ž .for which 	 
 Z � . Central extensions form the objects of a category for
Ž .which the morphisms are pairs � , � of Lie algebra homomorphisms � :0 0

	 � 	�, � : � � �� making the diagram

�

	 � �

�� � ��0 � �

��	�

Ž . � �commute. A central extension 4.7 is a co�ering of � if � � � , � ; i.e., � is
Ž .perfect. A covering 4.7 of � is uni�ersal if for every central extension of �

there exists a unique morphism from the covering to the central extension.
�The reader may find a proof of the following theorem in, e.g., 20,

�Propositions 2 and 3 in Section 1.9 .

Ž � � .THEOREM 4.8. Let � be any perfect Lie algebra i.e., � , � � � . Then a
uni�ersal co�ering

0 � 	 � � � � � 0

of � exists. Further, the Lie algebra � is perfect and isomorphic to its own
uni�ersal co�ering.

In such a situation, we will write �� for �; �� is also called the
Ž . Ž .uni�ersal central extension of �. Recalling 4.3 , we see that for G

Ž .semisimple and simply connected, � � Lie G is perfect and thus pos-
sesses a universal central extension ��.

We say � equals its own universal cover if �� 	 �. As a consequence of
� �our earlier remarks and 26 , we have

THEOREM 4.9. Let G be semisimple and simply connected o�er k, p � 2.
Then � � �� except when p � 3 and G is either of type A or G .2 2

� � �Moreover, 26 shows that G acts on � by an action compatible with
� � Ž .the surjective morphism � : � � �. Let 
 � Ker � . Then the G-struc-
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ture of 
� is known and can be used to determine the dimension of �� in
the two exceptional cases above in which �� � � , a fact we will employ
just a little later.

Ž .We now turn back to our examination of the relations between L � ,s
Ž . Ž .L � , and �. Having fully characterized the relationship between L �u s

Ž .and � in 4.5 , our next goal will be to strengthen our understanding of the
Ž . Ž .one between L � and � , beyond 4.6 .u

THEOREM 4.10. Suppose G is a simple, simply connected algebraic group
Ž .o�er k. Then � 	 L � , unless p � 3 and � is either of type A or of typeu 2

G .2

Ž .In Section 5, we will employ the isomorphism � 	 L � to relateu
modules for the LTS � and modules for � , providing an additional source

Ž .of interest in 4.10 .

Ž . Ž . Ž .Proof of 4.10 . Since � � Lie G has the form � � L by 4.2 , from��

Ž . Ž .the universal property of L � there is a surjective morphism � : L � �u u
Ž . Ž . Ž .�. Moreover, �: L � � L � in 2.0.19 factors through � . Thus,u s

Ž .2.0.21 implies that

�
0 � 	� � L � � � � 0 4.11Ž . Ž .u

Ž . Ž Ž .. � �is a central extension, with 	� � Ker � 
 Z L � � � , � .u u
Ž .Moreover, no smaller subalgebra of L � maps onto �. To see this, letu

Ž . Ž . Ž� be a subalgebra of L � such that � � � �. For x � � as a subsetu
.of � , there exists c � 	� for which x � c � �. Since 	� is central,x x

� � � � � � � �x, y � x � c , y � c � � , � 
 �. Therefore � , � 
 �. As weu x y u u
� �already know, 	� 
 � , � , thus 	� 
 � , whence � 
 �. Therefore � � �u

� � Ž . Ž .� � , � � L � , so we conclude that � � L � .u u u
Ž .By 4.8 and the observations following it, a universal cover

�
� �0 � 
 � � � � � 0 4.12Ž .

Ž . Ž . Ž .of � exists, and there is a unique morphism � , � from 4.12 to 4.11 ,0

� �

�
 � ��

�

� .�

�� 0 � ��

L �	� Ž .u

Ž .From our comments above, � is necessarily surjective. However, by 4.9 ,
�� 	 �. Thus, identifying �� and � via � , the commutativity of the
triangle in the diagram above produces a splitting � of the morphism � :

Ž . Ž .L � � �. Therefore � 	 L � , as claimed.u u
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Ž .Thus, almost always � 	 L � . Now, assume moreover that G isu
defined and split over � and that � is defined over � . Then, by employingp p

� �more involved arguments based on the material in 26 , we may show that
Ž .L � � � , if G is of type A or G and p � 3. Moreover, our methodsu 2 2

Ž .will provide a unifying description of L � for any type, and for value ofu
p � 2. Let us sketch the approach and results before proceeding with the

Ž . Ž .formal details in 4.13 � 4.20 below.
Ž .In the A case, we can describe L � as a nonsplit central extension of2 u

Ž .� of dimension either 10 or 11; while in the G case, L � is a nonsplit2 u
central extension of � of dimension 17. In each of these cases, �� is no

Ž .longer isomorphic to �; but by using fact that L � is still a centralu
Ž . �extension of � , we can show that L � arises as a quotient of � . By thisu

Ž Ž .. � Ž .means we can determine dim L � . In fact, for 
 as in 4.12 ,k u
Ž . � Ž � �. �L � 	 � � 
 � � , where � is the �1-eigenspace of an involutionu

� � on �� induced from the involution � . More generally, we will see that
Ž . � Ž � �.L � 	 � � 
 � � for G of any type with no additional restrictionsu

Ž .on p; the result 4.10 may subsequently be reworked to follow as a
corollary. Carrying out the program above will provide a complete charac-

Ž .terization of L � and its relationship with �.u
Ž .We now return to the process of identifying L � . Our first proof willu

� �be somewhat terse, and the interested reader will wish to consult 26 . By
� � �26 , � possesses a rational G-action compatible with the surjective

� Ž .�morphism � : � � �. Let T be a fixed maximal torus of G, X T the
Ž . Ž .dominant weights, and L � the up to isomorphism irreducible rational

Ž .� Ž . Ž .Ž1.G-module with high weight � � X T . For such a module L � , L �
Ž .will denote the ‘‘twist’’ of L � via the Frobenius automorphism of G.

� ŽWe may now record the resulting G-module structure of 
 in the
.nontrivial cases as follows.

LEMMA 4.13. Let G be a simple, simply connected algebraic group o�er k,
p � 3, of type G or A . Assume also that G is defined and split o�er � . In2 2 p

� Ž .Ž1. Ž . Žthe G case, 
 	 L � 	 L 3� � the fundamental dominant weight2 1 1 1
. � Ž .Ž1.associated to the short simple root � of G . In the A case, 
 	 L �1 2 2 1

Ž .Ž1. Ž . Ž . Ž� L � 	 L 3� � L 3� � associated to the ith simple root � in the2 1 2 i i
. Ž �.usual labelling . Consequently, dim 
 � 7 in the G case and 6 in the Ak 2 2

case.

Proof. We first explore the G case. Note that, in this proof, all2
Ž . � �numbered references should be understood to be from 26 , unless

Ž .otherwise noted. That said, by Corollary 3.14 iv d, the zero weight space

� of the G-action on 
� is one-dimensional; in particular, 
� � 0. Thus,0 0

Ž . Ž . � � Ž .Ž1.ŽParts i � iii of Proposition 5.2 and Table 1 of 26 imply L � 	1
Ž .. � Ž .L 3� 
 
 . Now, by ii of Corollary 3.14 again, the multiplicity of 3� in1 1
� Ž . �� is one, so there exists only one copy of L 3� inside 
 . As follows1
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Ž . Ž � �. Ž Ž ..from the description of L � e.g., see 2 , dim L 3� � 7, arising1 k 1
from a one-dimensional zero weight space, with remaining weights given
by taking the short roots � , � � � , and 2� � � and their negatives,1 1 2 1 2

Ž .the orbit of 3� � � under the Weyl group. However, by iii of Corollary1 1
3.14 and Table 1, the only possible nonzero weights in 
� are precisely the

� Ž .elements of this orbit. Consequently, 
 must be exactly L 3� , as1
claimed.

Ž . �For the A case, iv a of Corollary 3.14 posits that 
 � 0. In this case,2 0
consulting Table 1 and Proposition 5.2, we find that the only possible
weights of 
� are in the orbits of 3� and 3� under the action of the1 2

Ž .Weyl group. Also, by Corollary 3.14 ii , the multiplicity of each of these
weights in �� is one. In this case, 3� � 2� � � and 3� � � � 2� ,1 1 2 2 1 2
so neither is a root, i.e., a nonzero weight of the action of G on �. Since
�� is a central extension of � , we conclude that 3� and 3� must appear1 2

� � Ž .in the weight space decomposition of 
 . Subsequently, 
 	 L 3� �1
�Ž . Ž .L 3� . From this, dim 
 � 6 follows.2 k

COROLLARY 4.14. Let G be a simple, simply connected algebraic group
o�er k, p � 3, of type G or A . Assume G is also defined and split o�er � .2 2 p

Ž �. Ž �.Then dim � � 21 if G is of type G , and dim � � 14 if G is ofk 2 k
type A .2

Ž .Proof. As is well known, the dimension of � in type G resp., A is2 2
Ž . Ž .14 resp., 8 . The result is then an immediate consequence of 4.13 and

Ž .the exactness of the sequence 4.12 .

By introducing an appropriate involution � � on ��, we may use the
knowledge of the G-module structure of 
�, developed above, to express

Ž . �L � as a quotient of � . Suppose G is any semisimple, simply connectedu
algebraic group over k, with involution � . From the universal mapping
property of ��, there must be a morphism � �: �� � �� making the
diagram

� �

�
 � ��

��� ���

��

�

���

commute.

From the commuting triangle above, ��� � � � . Since � � ��1, we get
�� � � �� . Now, this yields

�� � 2 � �� � � �Ž .
� �� � �Ž .
� � ��Ž .
� � 2� � � .
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Therefore

� �

�
 � ��

��2�1
 � ���

��

�

��


commutes. However, replacing � � 2 with the identity map 1 � trivially�

gives a commutative diagram. Since �� is universal, the morphism
Ž . � 2 �

� � �1 , 1 is unique, hence � � 1 , so � is an involution.
 � �
Ž .Suppose we consider the special case that � � Aut G is inner, i.e.,

� � Int t. As previously noted, G acts on �� compatibly with the mor-
phism � : �� � �. Therefore, � � here is given by the action of t on ��

Ž .lifting the action � � Ad t on �. In this case, it is easy to see, without our
calculation above, that � � must be an involution.

In any case, the involution � � on �� determines a decomposition

�� 	 �� � �� 4.15Ž .

into a �1-eigenspace �� and a �1-eigenspace ��.

LEMMA 4.16. Let G be any semisimple, simply connected algebraic group
G o�er k with in�olution � . Assume the notation abo�e. Then � : �� � �

� � � � � � Ž � � �
�maps � onto � , and � � � , � i.e., � � L for � : � � � ,� ���

.the ob�ious LTS imbedding .
� Ž . �Ž . Ž . Ž .Proof. Let Y � � . Then �� Y � �� Y � � �Y � �� Y ,

Ž �. Ž �.therefore � � 
 �. Likewise, � � 
 �. Howe�er, � � � � 0, and � is
� Ž � . � �surjecti�e, hence � maps � onto � and � onto � . Thus � � � �

� � �� �� , � since � has no proper subalgebras mapping onto �.

Ž .We may now proceed with the promised characterization of L � .u

THEOREM 4.17. Let G be a semisimple, simply connected algebraic group
Ž . � Ž � �.o�er k, with in�olution � . Then L � 	 � � 
 � � .u

Ž . Ž .Proof. As in the proof of 4.10 , we have the central extensions 4.11
Ž . Ž . Ž . Ž .and 4.12 and a morphism � , � from 4.12 to 4.11 . In particular, � :0

� Ž .� � L � with � �� � � . Since � and � both commute with the actionu
of � , so does � . Consequently, � maps �� onto � , and likewise �� �
� � � � � � Ž . �� , � maps onto � , � . Now, setting 	 � Ker � , we have 	 
 
 .u

�1Ž . � � � �Thus, � � � � � 	 
 � � 
 . Let � be any subalgebra of �
�1Ž . Ž .containing � � . Then arguing just as in the proof of 4.10 , we conclude

� � � � � �that � � � � � , � � � . Therefore � is surjective, and no smaller
Ž .subalgebra maps onto L � .u
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Since � �� � � and � is one-to-one on � , necessarily 
� � �� 
 	.
This inclusion gives rise in the usual manner to a surjective morphism � :

� � � � � � �Ž . Ž . Ž .� � 
 � � � L � for which � � � � q, for q: � � � � 
 � �u
Ž Ž .. Ž �the natural quotient map. Consequently dim L � 
 dim � �k u k

Ž � �..
 � � .
Ž �. � Ž �We now check that the reverse inequality holds. Since q � � � � 


�. Ž . � Ž � �. Ž �.� � 	 � as vector spaces , we find � � 
 � � 	 q � �
� Ž �. Ž �.� � �q � , q � has the form � � � , � , taking the bracket operation in

Ž . Ž .the quotient algebra. By the universal property of L � , L � surjectsu u
Ž �. � Ž �. Ž �.� Ž Ž .. Ž � Ž � �..onto q � � q � , q � . Thus dim L � � dim � � 
 � � .k u k

� � �Ž . Ž .Therefore � : � � 
 � � � L � must be an isomorphism, as de-u
sired.

Ž .As previously noted, in case G is defined and split over � , 4.10 canp
Ž .alternately be derived as a corollary to 4.17 , for except when p � 3 and

� Ž .G is of type G or A , 
 � 0 by 4.9 . To complete our identification of2 2
Ž . � �L � , we need now to examine the structure of 
 � � when p � 3 andu

G is of type G or A .2 2

LEMMA 4.18. Suppose p � 3 and G is simple, simply connected of type
G , with in�olution � . Assume also that G is defined and split o�er � and2 p

Ž � �.that � is defined o�er � . Then dim 
 � � � 4.p k

Ž . Ž . Ž .Proof. By 6.2.2 , we may assume � � Int t, where � t � � t � �11 2
Ž .and this determines the values of � and � . Now, by 4.13 , the nonzero1 2

� Ž . Ž .weights associated to 
 are �3� , �3 � � � , and �3 2� � � .1 1 2 1 2
Ž . Ž .3 Ž .Ž . ŽŽ .Ž ..3Observe that 3� t � �1 � �1, 3 � � � t � �1 �1 � 1,1 1 2

Ž .Ž . ŽŽ .2Ž ..3and likewise 3 2� � � t � �1 �1 � �1. From this, we see that1 2
Ž .the weight spaces corresponding to �3� and �3 2� � � alone lie in1 1 2

� � � �Ž .the �1-eigenspace � of � . Thus, dim 
 � � � 4.k

LEMMA 4.19. Suppose p � 3 and G is simple, simply connected of type
A , with in�olution � . Assume also that G is defined and split o�er � and2 p

Ž � �.that � is defined o�er � . Then dim 
 � � � 3 if � is outer and 4 if � isp k
inner.

� Ž .Ž1. Ž .Ž1. Ž .Proof. In this case, 
 	 L � � L � by 4.13 . Suppose � is1 2
outer. Then � must induce a graph automorphism of the Dynkin diagram

� Ž .Ž1.associated to A . Therefore, the action of � is to interchange L �2 1
Ž .Ž1. � � �Ž �Ž ..and L � . In this case, one can see that 
 � � � x, �� x � x �2

Ž .Ž1.4 Ž � �.L � . Thus, dim 
 � � � 3.1 k
Ž .Now suppose � is inner. As in 6.2.2 we can assume � � Int t, with

Ž . Ž . Ž .� t � �1 � � t . Since 3� � 2� � � , the other weights of L 3�1 2 1 1 2 1

 
� are �� � � and �� � 2� . Checking the values of these1 2 1 2
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weights at t, we see that 2� � � and �� � 2� have value �1. Thus,1 2 1 2
Ž .the weight spaces in L 3� corresponding to 2� � � and �� � 2�1 1 2 1 2

lie in ��. A similar calculation yields another two-dimensional contribu-
� � � �Ž . Ž .tion to 
 � � from L 3� . Thus, dim 
 � � � 4.2 k

Ž . Ž . Ž . Ž .By combining 4.14 , 4.17 , 4.18 , and 4.19 , we immediately get

COROLLARY 4.20. Let G be simple and simply connected o�er k, of type
G or A , p � 3, with in�olution � . Assume also that G is defined and split2 2
o�er � and that � is defined o�er � . Then3 3

Ž . Ž Ž ..1 dim L � � 17 if G is of type G ;k u 2

Ž . Ž Ž ..2 dim L � � 11 if G is of type A and � is outer;k u 2

Ž . Ž Ž ..3 dim L � � 10 if G is of type A and � is inner.k u 2

Ž .In particular, in these cases L � � � , since their dimensions differ.u

Ž .In combination together with 4.5 , our analysis above produces a
Ž . Ž .complete description of L � , L � , and their relationships with � fors u

any simple, simply connected algebraic group G over k, defined and split
over � , with involution � defined over � . This we summarize in thep p
following theorem.

THEOREM 4.21. Let G be a simple, simply connected algebraic group o�er
k with in�olution � . Assume also that G is defined and split o�er � and thatp

Ž . � Ž �� is defined o�er � . Then, following the pre�ious notation, L � 	 � � 
p u
�. Ž . Ž Ž . . Ž Ž . � �.� � and L � 	 �� Z � � � � �� Z � � � , � . In particular,s

Ž . Ž . Ž .1 L � 	 � 	 L � unless � is inner and G is either of type A ,u s n
Ž .p � n � 1 , n � 2, or of type E , p � 3, or unless � is any in�olution and G6

is either of type A or of type G , and p � 3.2 2

Ž . Ž . Ž . Ž .2 L � 	 � , while L � 	 ��Z � if G is either of type A , n � 2u s n
Ž .and p � n � 1 , or of type E , p � 3, and � is inner. In this case,6

Ž Ž .. 2 Ž Ž ..dim L � � n � 2n � 1 for G of type A , and dim L � � 77 if Gk s n k s
is of type E .6

Ž . Ž . � Ž � �. Ž .3 L � 	 � � 
 � � and L � 	 � , if G is of type G , p � 3.u s 2
Ž Ž .. Ž .In this case, dim L � � 17, dim � � 14.k u k

Ž . Ž . � Ž � �. Ž . Ž .4 L � 	 � � 
 � � and L � 	 ��Z � , if G is of type A ,u s 2
Ž Ž .. Ž .p � 3, and � is inner. Here, dim L � � 10, dim � � 8, andk u k

Ž Ž ..dim L � � 7.k s

Ž . Ž . � Ž � �. Ž .5 L � 	 � � 
 � � and L � 	 � , if G is of type A , p � 3,u s 2
Ž Ž ..and � is outer. In this case, dim L � � 11.k u
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5. MODULES FOR LIE TRIPLE SYSTEMS

In the first subsection of Section 5, we step back a bit from the analysis
of the LTS � and the related Lie algebras of the last section. Returning to
the more general setting of an arbitrary LTS T , we discuss modules for T

Ž .and the passage from modules for T to modules for L T . Under theu
additional assumption that T is a restricted LTS, we then introduce the
category of restricted T-modules. We conclude in Section 5.2 by swinging
back to the case of Lie triple systems arising from involutions on algebraic
groups, combining the material of Section 5.1 with that of Section 4 to
relate �-modules and �-modules. There we also raise some questions for
further research.

5.1. Modules and Restricted Modules for Lie Triple Systems. As we have
a number of times already in this paper, we first look to the Lie algebra
setting for inspiration. Although a module V for a Lie algebra L over k
perhaps is most succinctly defined via a Lie algebra homomorphism � :

Ž .L � �� V , one may also define the vector space V to be a module for L
if there is a Lie algebra structure on L � V for which

Ž .1 L is a subalgebra;
Ž . � �2 V is an ideal, i.e., for X, Y � L � V, X, Y � V if one of

X, Y � V; and
Ž . � �3 X, Y � 0 if both X, Y � V.

Ž .Ž . � �In the latter case, for X � L and Y � V, defining � X Y � X, Y
Ž .determines a homomorphism � : L � �� V , returning us to our first

approach. One may similarly check that the two approaches are equiva-
lent.

� �With this perspective in mind, following 6 , we define a module for a
Lie triple system as below.

DEFINITION 5.1.1. Let T be a Lie triple system over k. A k-vector
space M is a module for T if E � T � M is a Lie triple system for whichM

Ž .1 T is a subsystem of E ;M

Ž . � �2 for a, b, c � E , abc � M if any one of a, b, c lies in M;M

Ž . � �3 abc � 0 if any two of a, b, c are elements of M.

Given two T-modules M, N, a linear map � : M � N is a T-module
morphism if the induced map 1 � � : E � E is a morphism of LieT M N
triple systems. The resulting category will be denoted T-Mod, with full
subcategory T-mod which has as its objects all the finite-dimensional
T-modules.
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� �Now, each one-to-one imbedding � : T � � for which L � T � T , T�

produces a realization of T as the �1-eigenspace of an involution � �
Ž . Ž . Ž .Aut L , defined just as in 2.0.16 . In a similar fashion, M � Ob T-Mod�

may be described in terms of Lie algebra modules and involutions.

DEFINITION 5.1.2. Let L be a Lie algebra over k with involution � .
Ž .Define a Lie algebra module V for L to be an L, � -module if � also acts

on V and satisfies

� X .� � � X .� � , 5.1.3Ž . Ž . Ž . Ž .

for all X � L, � � V.

In other words, there is an automorphism of the k-vector space V, also
2 Ž . Ž .denoted � , satisfying � � 1 and 5.1.3 . Of course, a morphism of L, � -

modules is a morphism of L-modules which commutes with the action of
Ž . Ž .� . The notations L, � -Mod and L, � -mod will have the usual meanings.

� � Ž . Ž .In 6 , an L, � -module is called a Lie algebra module with in�olution.
Ž Ž .. Ž .For a LTS T , define � � Aut L T as in 2.0.15 . Then, given M �u

Ž . � �Ob T-Mod , 6 essentially proves

LEMMA 5.1.4. Let M be a module for a Lie triple system T. Then there
Ž Ž . . Ž . Ž . � �exists an L T , � -module N M for which N M � M � T , M andu s s

� Ž . Ž . 4M � n � N M � � n � �n .s

Ž .Termed the standard extension of M, the module N M is analogous tos
Ž . Ž .the standard enveloping Lie algebra L T of a LTS T. To define N M ,s s

Ž .follow the procedure for defining L T as related in Section 2, but makes
the following changes and�or substitutions.

Ž . Ž1 Replace the quotient space V of T � T by the subspace of allT k
� � .Ýa � b for which Ý a b x � 0 for all x � T by the quotient space Ui i i i M

� �of T � M modulo the subspace of all Ýa � m for which Ý a m b � 0k i i i i
for all b � T.

Ž . Ž .2 Set N M � M � U .s M

Ž . Ž . Ž .3 Equip N M with an L T -module structure. Do this by defin-s u
� � Ž . Ž . � �ing a bracket , on L T � N M as follows: First set a, mu s

Ž . Ž .� a � m, a � T 
 L T , m � M 
 N M . Note that this is the analogueu s
Ž . Ž . Ž .of the first of four defining relations for L T , discussed below 2.0.14 .s

ŽIn order to define the bracket for the remaining combinations e.g.,
�� � � � � ��.T , T , M , T , T , M , follow the obvious analogues of the three re-u

Ž .maining relations defining L T .s

� � Ž .To ensure that the rules above are well-defined, 6 describes N M ass
Ž .an ideal in L E , as we now discuss. Note that U above injectss M M

Ž . Ž .naturally into the quotient V of E � E 
 L E . Hence, N ME M k M s M sM
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Ž .inherits its structure as an L T -module from the Lie algebra morphismu
Ž . Ž . Ž . ŽL T � L E induced by the imbedding T � E � L E and theu s M M s M

Ž ..universal property of L T . Pictorially,u

�T �

T L TŽ .u

��

L E .Ž .s M

Ž . ŽIn this context, the action of � on L E , defined as usual i.e., bys M
Ž .. Ž .2.0.15 , restricts to an action of � on N M , satisfying the compatibilitys

Ž . Ž . Ž Ž . .criterion of 5.1.3 . By this means, N M becomes an L T , � -module.s u
ŽWe caution the reader not to be lulled by the notation into thinking that
Ž . Ž . Ž .N M must be a module for L T , although the construction of N Ms s s

Ž . .parallels that of L T .s
� � Ž .By construction, as pointed out in 6 , the standard extension N Ms

possesses the same kind of universal property carried by the standard
Ž . Ž Ž . .enveloping Lie algebra L T . Namely, if N is any L T , � -module fors u

� � � Ž . 4which N � M � T , M and M � n � N � � n � �n , then there exists
Ž .a surjective morphism � : N � N M completing the diagrams

�

M N
����

N MŽ .s

Ž .for the obvious inclusions M � N and M � N M .s
Suppose � : M � M� is a morphism of T-modules. Then, as previously

discussed, � gives rise to a LTS morphism E � E whence, by theM M �

Ž . Ž . Ž .construction above, to a morphism N � : N M � N M� ofs s s
Ž Ž . . Ž .L T , � -modules. To be more precise, regard N M as M � U , andu s M

� �observe that, given m � M and a � T , Ý a m b � 0 for all b � Ti i i i i EM� Ž . �implies Ý a � m b � 0 for all b � T. Thus, sending U � U byi i i E M M �M �

Ž .Ý a � m � Ý a � � m yields a well-defined linear map � . Theni i i i i i U
Ž . Ž .N � � � � � . Note that N � commutes with the action of � .s U s
Our next two results describe a few properties of the functor N , the firsts

� �of which was noted in 6 .

Ž .LEMMA 5.1.5. Let T be a Lie triple system. Let M, M� � Ob T-Mod
Ž . Ž . Ž .and let � : M � M� be a morphism. Then N � : N M � N M� iss s s

Ž . Ž .one-to-one resp., onto if � is one-to-one resp., onto .

Proof. If � : M � M� is a one-to-one mapping of T-modules, then the
morphism of Lie triple systems 1 � � : E � E is one-to-one as well.T M M �

From this and our comments above, it follows that � : U � U is alsoU M M �
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Ž .an injection. As a consequence, N � � � � � is an injection. Likewise,s U
Ž .an analogous argument shows that N � is onto if � is.s

PROPOSITION 5.1.6. Let T be a Lie triple system. Then the functor N :s
Ž Ž . .T-Mod � L T , � -Mod is a full embedding.u

Ž . Ž . Ž .Proof. Let M, M� � Ob T-Mod . Suppose N M � N M� . Then Ms s
Ž .� M�, for each is the �1-eigenspace of � on N M . Now suppose � , � :s

Ž . Ž .M � M� are two LTS-module maps for which N � � N � . Thens s
Ž . � Ž . �� � N � � N � � � . This shows N is faithful and one-to-one onM Ms s s

Ž . Ž . �objects. Finally, suppose � : N M � N M� . Then � �� � � �� , so � :Ms s
Ž � . Ž .M � M�. Observe that N � � � , whence N � is a full functor. ThisMs s

completes the proof.

With some knowledge now of the category T-Mod, we proceed to define
the category res T-Mod of restricted modules for a restricted LTS T.

DEFINITION 5.1.7. Let T be a restricted Lie triple system over k, with
� � � p �p -operator a � a . If M is a T-module, we will define M to be
restricted provided that

� � p � �abc � a, b , c, . . . , c p copies of c , 5.1.8Ž . Ž . Ž .

for all c � T and a, b � E andM

� � p � �ab c � a, b , . . . , b , c p copies of b 5.1.9Ž . Ž . Ž .

Ž .for all b � T and a, c � E . Note that the right-hand sides of 5.1.8 andM
Ž . Ž .5.1.9 may be taken in L E , but both lie back in E . Moreover, as iss M M

Ž . Ž .the case for restricted Lie triple systems, conditions 5.1.8 and�or 5.1.9
� � p � �determine a bc under similar hypotheses. A morphism � : M � M� of

restricted T-modules is just a linear map which defines a morphism in
T-Mod.

We have chosen the definition of a restricted module for a restricted
Ž .LTS by way of analogy. Recall that if � : L � �� V determines a module

structure on V for a restricted Lie algebra L, then V becomes a restricted
Ž � p �. Ž Ž .. pmodule if, for all X � L, � X � � X , taking the pth iterate of the

Ž .endomorphism � X of V.

5.2. Algebraic Groups and LTS Modules: Closing Remarks. Assume the
setup as at the beginning of Section 4, so that � is a Lie triple system
arising from an involution � on the connected, reductive algebraic group
G. Our first lemma provides us with a large class of restricted Lie triple
systems and pulls together our earlier work classifying the standard en-

Ž .veloping algebra L � .s
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LEMMA 5.2.1. Let G be simple and simply connected, with in�olution
Ž .� � Aut G . Then � is a restricted Lie triple system.

Ž .Proof. With the exception of the cases p � n � 1 and G is of type An
Ž . Ž . � p �or p � 3 and G is of type E , 4.5 yields � 	 L � . Letting X � X6 s

� �represent the usual p -operation on � , we see that � is a restricted Lie
� p � Ž .triple system under a � a , by 3.24 .

Ž . Ž .In these exceptional cases, L � 	 ��Z � . However, by Table 1 ofs
� � Ž . � � Ž .11 , Z � is a p -ideal of � , so L � inherits a restricted structure froms
�. Thus, as before, � becomes a restricted Lie triple system.

Thus, it makes sense to discuss restricted modules for � , as in Section
5.1. We now point out one way in which restricted �-modules arise. First
of all, since � imbeds in � , we should expect appropriate modules for � to
give rise to modules for �. More precisely, it is easy to see that the
restriction functor

resŽ� , � . : � , � -Mod � �-Mod 5.2.2Ž . Ž .�

Ž .associates to each restricted � , � -module a restricted �-module. Further-
Ž .more, by analogy with the category of � , � -modules, the category of

Ž . Ž Ž .G, � -modules can be defined. A classification of the irreducible G, � -
� � .modules may be found in 8 . In general, if G is any algebraic group with

Ž .involution � , then one sees immediately that a G, � -module M is also a
Ž .� , � -module. In addition, M is, compatibly with the �-action of � , of

Ž . Ž .course a restricted �-module. Thus 5.2.2 associates to each G, � -mod-
ule a restricted �-module.

We now consider the reverse situation, that is, whether we can produce
modules for � by beginning with modules for �. Our next fundamental

Ž .result accomplishes this by utilizing our knowledge of L � .u

THEOREM 5.2.3. Let G be a simple, simply connected algebraic group with
in�olution � . Let M be a module for the LTS �. Then aside from the possible

Ž . Ž .exceptions of when p � 3 and G is of type A or G , N M is a � , � -2 2 s
module.

Proof. Excluding the exceptional cases p � 3, � of type A or G ,2 2
Ž . Ž . Ž .4.10 shows that � � L � . The usual involution on L � is the uniqueu u

Ž .involution determining � as the �1-eigenspace by 2.0.16 and hence
agrees with the involution � on � arising from the involution � on G. The
theorem follows.

Now suppose G is simple, simply connected of type not A or G for2 2
Ž . Ž .p � 3, so that � � L � . Since the restriction functor 5.2.2 carries theu
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Ž .category of restricted � , � -modules to res �-Mod, we are led to wonder
Ž .whether the functor N : �-Mod � � , � -Mod carries restricted �-mod-s

Ž . Žules to restricted � , � -modules and, if so, under what circumstances the
Ž . .resulting modules arise from G, � -modules . In fact, by considering

Ž .irreducible modules for the so-called ‘‘reduced enveloping algebras’’ UU ��

associated to � , we can show that the functor N need no carry a restricteds
Ž�-module to a restricted �-module. More details on N and relateds

� � .functors will appear in a forthcoming paper 10 .
In general, then, one might consider the question of the effect of N ons

restricted modules for an abstract restricted Lie triple system T. Under
Ž .what circumstances will N send restricted T-modules to restricted L T -s u

modules? Note that if we suppose the form 	 on T is nondegenerate, then
Ž . Ž . Ž .3.45 guarantees that L T � L T is a restricted Lie algebra. In thiss D

Ž . Ž Ž .. Ž .situation, however, we are only assured that L � �Z L T 	 L Tu u s
Ž Ž . Ž .. Ž .see 2.1.10 and 2.1.9 , so we do not yet know if L T itself even has au
restricted structure. Let us point out that, in the case T � � above, we do
have the following result.

THEOREM 5.2.4. Let G be a simple, simply connected algebraic group with
Ž .in�olution � . Then the uni�ersal Lie algebra L � bears a restricted Lieu

algebra structure, compatible with the restricted structure of �.

Ž . Ž . � Ž � �.Proof. By 4.17 , L � 	 � � 
 � � . Now, Proposition 6.2 andu
� � �Corollary 10.2 of 26 show that � has a unique restricted structure,

compatible with the restricted structure of �. Moreover, from the proof of
� � p � � � � �Proposition 6.2, for X � 
 , X � 0. Thus, 
 � � is a p -ideal of

� Ž .� , hence L � inherits a restricted structure, compatible with theu
restricted structure of � , as claimed.

Ž .Suppose under some hypotheses L T is restricted and, for perhapsu
some collection of restricted T-modules, N does produce restricteds

Ž . ŽL T -modules. Then another project of interest on which we are cur-u
.rently at work is the development of a restricted cohomology theory for T

Ž .and its connections with the restricted cohomology of L T . Here, oneu
Ž .should keep in mind Harris’s investigation of ordinary cohomology of T

� �in 6 . We are especially curious to know whether there are restricted
�-cohomology versions of restricted Lie algebra cohomology results of

Ž � �.Friedlander and Parshall e.g., 4, 5 and others. For example, will the
nilpotent elements of � 
 � be isomorphic as a scheme to the spectrum of

e� Ž .H � , k , the restricted cohomology of the LTS � in even degrees,r e s
suitably defined? Will there be a meaningful theory of support varieties for
�-modules?
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Other questions regarding the behavior of the functor N remain. Thiss
functor is neither left nor right exact. Still, one can consider its homologi-
cal properties. What are its derived functors? Suitably restricted, does it fit
into some setting as an adjoint functor? One may phrase other such
homological questions.

What is the structure of T-Mod, resp., res T-Mod, and�or T-mod and
res T-mod? For example, if T � � , is there a classification of irreducible

Ž .restricted �-modules, perhaps linked to that of the irreducible G, � -mod-
Žules? Are these categories highest weight categories allowing for infinitely

.many irreducibles , or are some ‘‘sections’’ of them highest weight cate-
Žgories with finitely many irreducibles and thus module categories for

.quasi-hereditary algebras ? If not, are there still some interesting related
finite-dimensional algebras for which sections of them are the module

Ž .categories e.g., Frobenius algebras ?
In any case, we are interested in understanding to what extent, for

algebraic groups G, questions regarding rational G-modules and�or �-
modules might be reduced to questions about modules for �. In conclu-
sion, our original interest in Lie triple systems arose when considering
modular Harish-Chandra modules, modules carrying compatible �- and

� Ž .K-actions, K � G , including that the action of � � Lie K 
 � on such a
module should agree with the differential of the action of K. In some
sense, then, the action of � � � � � on a modular Harish-Chandra mod-
ule is determined by the action of K and the action of �. Although it is yet

Ž .an unrealized goal to ascertain how profitably we may if we may pass
Ž .from these modules to certain �-modules or vice versa , the results of this

paper have raised a platform from which we may dive into these questions,
among many others.

6. APPENDIX

6.1. Che�alley Basis. The following material may be found, for exam-
� �ple, in 25 . The Lie algebra � of a semisimple, simply connected algebraic

group G associated to a root system � may be obtained from Chevalley’s
Ž�-form for � the complex semisimple Lie algebra with root system ��

and root space decomposition � � � � � � for � a fixed� � � � �� � �
.Cartan subalgebra via � � � � k. Here � is a free �-module with� � �

Ž .‘‘Chevalley basis’’ denoted H � H , � � � a set of simple roots for � ,i � ii

and X � � , � � �. In particular, let as usual� � �

2�
�� � for all � � � . 6.1.1Ž .

� , �Ž .
Ž . Ž �.Then for any � � �, H � � is defined by � H � � , � .� � �
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LEMMA 6.1.2. Let � be a fixed root system in a Euclidean space with
Ž .inner product , in�ariant under the action of the Weyl group of G. Let

� 4� , � � � and take � � � , . . . , � to be a set of simple roots. Then the1 l
� 4structure constants of � with respect to the Che�alley basis H , X are� i �

Ž . � �a H , H � 0;i j

Ž . � � Ž �.b H , X � � , � X ;i � i �

Ž . � �c X , X � H � Ý c H for c � �;� �� � i i i i

Ž . � � Ž .d X , X � � r � 1 X if � � � is a root, where � �� � ���

Ž .r� , . . . , � , . . . , � � q � 1 � is the �-string of roots through � ;
Ž . � �e X , X � 0 if � � � � 0 and � � � is not a root.� �

For G simply connected, semisimple of type �, the corresponding basis

h � h , e � i � 1, . . . , l , � � � 6.1.3� 4 Ž .i � �i

Ž .of the Lie algebra � � Lie G , given by setting

h � H � 1 and e � X � 1, 6.1.4Ž .� � � �

will have a similar multiplication table.

6.2. Some In�olutions. It may be easily checked that the following
Ž � �.proposition holds or see Proposition 2.1.2 of 8 .

Ž .PROPOSITION 6.2.1. An in�olution � � Aut G is a semisimple automor-
phism.

Ž .EXAMPLE 6.2.2 Some Involutions .

Ž . Ž .A Take G � SL k , and let � : G � G be the automorphismn
Ž t.�1x � x .
Ž . Ž .B Let Int G denote the group of inner automorphisms of any

Ž .algebraic group G and Int x � Int G the inner automorphism associated
to x � G. Using Proposition 6.2.1, one may easily check that Int x is an
involution if and only if x � 1 is a semisimple element for which x 2 �
Ž .Z G , the center of G.

Ž .C Let G be simple and simply connected, of type G . Then, up to2
conjugacy by an element G, we claim G has a unique involution � .

Ž . Ž .Furthermore, let � resp., � denote the short resp., long simple root1 2
Ž .of G . Then � can be taken to be Int t as in B above, where t is a2

2 Ž . Ž .semisimple element, t � 1, and � t � �1 � � t . Let us now explain1 2
why.
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Ž . Ž . Ž .In this case, Aut G � Int G 	 G as abstract groups . Furthermore,
Ž .the assumption of simplicity implies Z G � 1, so Int t is an involution

2 Ž . Ž .only if t � 1 by B . As another consequence of Z G � 1, Int t is
Ž . Ž . Ždetermined by the values � t and � t having fixed a maximal torus T1 2

.containing t and having a fixed Borel subgroup B � T .
Ž .We claim that the values � t , i � 1, 2, can be only �1. The involutioni

Ž . Ž Ž ..2Int t has differential Ad t , so Ad t � 1. However, for the Chevalley
Ž . Ž . Ž . Ž Ž ..2basis elements e as in 6.1.4 , Ad t e � � t e ; by this, Ad t e �� � i � �i i i i

Ž Ž ..2 2Ž .� t e , so � t � 1. At this point, we have three possibilities for pairsi � ii
Ž Ž . Ž .. Ž . Ž . Ž .of values � t , � t : �1, �1 , �1, 1 , and 1, �1 . These values1 2

completely determine the effect of � . Let t , j � 1, 2, 3, be the uniquej

element associated to each of these three possibilities, so that � � Int t j
for some j. We wish to show that, up to conjugacy, we may take t � t .1

Ž .Let s denote the simple reflection associated to � , s � W 	 N T �T.� i �i i

Ž . Ž �.By definition, for any root � , s � � � � � , � � . Using the fact that� i ii
Ž �. Ž �. Ž �.� , � � 2, � , � � �3, and � , � � �1, one checks thati i 2 1 1 2
Ž Ž .. Ž .Ž . Ž . Ž .�1 Ž Ž ..� s t � s � t � �� t � �1 � �1, and � s t �1 � 2 � 1 2 1 2 2 � 21 1 1

Ž .Ž . Ž .3Ž . Ž Ž ..3� � � t � �1 1 � �1. Likewise, � s t � �1 �1 2 2 1 � 32
Ž Ž .. Ž .� s t . Identifying s with a representative n � N T 
 G, it now2 � 3 � �2 i i

Ž .follows from the isomorphism G 	 Int G that, up to conjugacy in G, G2
2 Ž .has a unique involution � � Int t for which t � 1 and � t � �1 �1

Ž .� t .2

Ž .D Let us consider another rank-two case, in which G is simple and
Ž . Ž .simply connected, of type A , when char k � 3. The center of SL k2 3

Ž .consists precisely of the n � n scalar matrices A for which det A � 1 and
thus identifies with the cube roots of unity in k. Since 1 is the unique cube

Ž . Ž .root of unity in k, Z G � 1. Thus, if � � Aut G is inner, � must have
the form � � Int t for some semisimple element t with t 2 � 1, as in the
G case examined above. Proceeding as in the G case, we can similarly2 2
show that there is only one inner involution � up to conjugacy by an

Ž .element of the Weyl group W, where we may take � � Int t for � t �1
Ž .�1 � � t .2

As for outer involutions, there is a unique graph automorphism � of the
Dynkin diagram which switches the two nodes. Thus, up to conjugacy in W,
every other outer involution of G has the form � � Int t�� .
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