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Abstract

Let V be a variety of universal algebras. We suggest a method for describing automorphisms of the
category of free V-algebras. All automorphisms of such categories are found in two cases: (1) V is the
variety of all associative K-algebras over an infinite field K; (2) V is the variety of all representations
of groups in unital R-modules over a commutative associative ring R with unit. We prove that all these
automorphisms are close to inner automorphisms.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let V be a variety of universal algebras. Consider the category Θ(V) whose objects are all
algebras from V and morphisms are all homomorphisms of these algebras. Fix an infinite set X0.
Let Θ0(V) be the full subcategory of Θ(V) defined by all free algebras from V over finite subsets
of the set X0. The main problem is to describe all automorphisms of the category Θ0(V). Mo-
tivations for this research can be found in the papers [9,10,12,13]. Note that the problem under
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consideration is tightly connected with some problems in universal algebraic geometry, in partic-
ular, with the following question: when two algebras of a given variety have the same geometry?

The above mentioned main problem has been solved in many cases. For example, the auto-
morphisms are known for the varieties of all groups, all semigroups, all inverse semigroups, all
Lie algebras, semimodules and modules (see [4,5,9–11]). In each of these cases any automor-
phism of the category Θ0(V) turns out to be inner or close to inner. In all these cases, the proofs
are based on some reduction to the group AutEnd(A), where A is a finitely generated free al-
gebra from the variety V . Once one can describe the group AutEnd(A), the Reduction Theorem
[9] allows one to describe the automorphisms of the category Θ0(V). However, the problem of
describing AutEnd(A), interesting by its own, may happen to be even more complicated than the
original one (see [3,8,11]).

In the present paper we suggest another method for describing automorphisms of categories
of universal algebras. This method extends some ideas from [15]. For the reader’s convenience
we give below a sketch of the method.

Recall that an automorphism Φ of a category C is said to be inner if it is isomorphic to
the identity functor IdC in the category of all endofunctors of C. This means that there exists a
function assigning to every object A of C an isomorphism σA :A → Φ(A) such that for every
morphism μ :A → B we have Φ(μ) = σB ◦ μ ◦ σ−1

A . This fact explains the term “inner.”
1. Let A0 be a monogenic free algebra in a category C of universal algebras, and let x0 be a

free generator of A.

Remark 1. Throughout below we assume that every automorphisms Φ of C takes a monogenic
free algebra to an isomorphic one. This minor restriction is fulfilled in the most interesting cases.

Let A be a C-algebra, and let a ∈ A. Denote by αa the unique homomorphism from A0 to
A taking x0 to a: αa(x0) = a. Clearly, a �→ αa gives a one-to-one correspondence between the
sets A and Hom(A0,A). Thus every automorphism Φ of C fixing A0 determines a family of
bijections (sΦ

A | A ∈ ObC) defined by: sΦ
A (a) = Φ(αa)(x0) for every a ∈ A.

It is easy to see that if Φ is the identity automorphism then sΦ
A = 1A, if Φ is a product Γ ◦ Ψ

then sΦ
A = sΓ

A ◦ sΨ
A , and if Ψ = Φ−1 then sΨ

A = (sΦ
A )−1. It follows from the definition of the

function A �→ sΦ
A that for every homomorphism ν :A → B , where A and B are objects of C, we

have Φ(ν) = sB ◦ν ◦ s−1
A . This fact leads to the idea of introducing the notion of potentially inner

automorphism.
2. Let D be an extension of a category C obtained by adding some new maps as morphisms.

We say that an automorphism of C is D-inner if Φ is a restriction to C of some inner automor-
phism of D, that is, if there exists a function f assigning to every object A a D-isomorphism
fA :A → Φ(A) such that Φ(μ) = fB ◦ μ ◦ f −1

A holds for every C-morphism μ :A → B . We say
that an automorphism Φ of C is potentially inner if it is D-inner for some extension D of C.

This notion allows us to reformulate the problem as follows:

(1) What extension D of a given category C we have to construct in order to make all C-auto-
morphisms to be D-inner?

(2) When all potentially inner automorphisms are inner?

We show that an automorphism Φ of a category C containing a monogenic free algebra A0 is
potentially inner if and only if Φ(A0) is isomorphic to A0 (Theorem 1). Thus by our assumption
(Remark 1) the case of potentially inner automorphisms turns out to be general.
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3. Let Φ be an arbitrary potentially inner automorphism. We can reduce the problem of de-
scribing Φ to a simpler case. The first reduction is provided by Lemma 2, which shows that we
can assume that Φ fixes all free algebras in C. The second reduction is provided by Theorem 2.
It shows that Φ is a composition of two automorphisms, one of which is inner and the other has
the property that the corresponding permutation sA preserves all basis elements of every free al-
gebra A. Therefore, in what follows we consider automorphisms satisfying these two conditions.

Using bijections sA we can define a new algebraic structure A∗ on the underlying set of every
free algebra A such that sA :A → A∗ is an isomorphism. These new algebras A∗ need not be
objects of C, but it turns out that A∗ can be described. This is the crucial point of our argument.
If A is a free algebra such that the number of its free generators is not less than arities of all its
operations, then A∗ is a derived algebraic structure, i.e., all its basic operations are determined
by terms of the corresponding language or, in other words, are polynomial operations in the
algebra A (Theorem 3).

Thus, every map sA is an isomorphism between the source structure and the derived structure
on the same set. It is worth mentioning that the source structure is a derived structure for A∗.
This helps us to find the derived structures A∗ and to describe the maps sA.

4. Describing the maps sA leads to a description of a given automorphism, that is, we know
its form. However, this description is not unique, and it may happen that there exists a better one.
Lemma 3 shows that the last problem can be solved by means of the so-called central functions
(see Definition 3).

The paper is organized as follows. In the next section we prove the main statements outlined
above. Then we apply the suggested method in order to describe all automorphisms of the cate-
gory of free associative algebras (Section 3) and all automorphisms of the category of free group
representations (Section 4). In both cases the automorphisms are close to inner. We also show
that our method allows one to recover some known results in a simpler way.

Let us list some results of the paper. Theorem 1 gives a necessary and sufficient condition for
an automorphism to be potentially inner and also shows an important property of such automor-
phisms. Theorem 2 reduces the problem to the case when the maps sA fix all basis elements of
every free algebra A. Theorem 3 describes the maps sA. Theorem 4 characterizes automorphisms
of the category of free associative algebras as almost inner ones,2 and Theorem 5 gives an exact
form of such automorphisms. Theorem 8 presents a similar result for the variety of group repre-
sentations. This case is quite different because we deal with a two-sorted theory that causes extra
difficulties.

All standard notions from category theory and universal algebra which are not defined in the
text can be found in [6] and [2].

2. General approach

2.1. Preliminaries

In this section we present a general approach to the main problem. For the sake of complete-
ness we include here some results from [15] in the form adjusted to the case of the categories of
free universal algebras.

We consider arbitrary (not necessarily one-sorted) universal algebras, with homomorphisms
as morphisms. In the case of one-sorted algebras the notion of homomorphism is the usual one,

2 Other proofs of this result are given by Berzins [1] and Mashevitzky [7] using quite different approaches.
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while in the many-sorted case the homomorphisms are compatible with the many-sorted struc-
ture. Obviously, one can speak about varieties of such algebras. Every variety V of algebras
contains free algebras F(X) where X is a set of free generators.

By definition every map of X to a V-algebra A can be extended to a unique homomorphism
of F(X) to A.

Let V be a variety. We denote by Θ(V) the category whose objects are algebras from V
and morphisms are presented by homomorphisms of these algebras. We also assume that we
have a forgetful functor, that is, a faithful functor from Θ(V) to the category of all sets and
maps. In the case of a one-sorted theory, this functor assigns to every algebra its underlying set
and to every homomorphism the corresponding map. The many-sorted case requires additional
considerations.

2.2. Inner and potentially inner automorphisms

All categories under consideration are full subcategories of Θ(V). We assume that they all
contain a monogenic (one-generated) free algebra. Note that this condition is fulfilled automati-
cally for the categories of free algebras.

Since morphisms of Θ(V) are maps, we can consider an extension Q of Θ(V) with the
same objects but with extended sets of morphisms. These morphisms will be called quasi-
homomorphisms. Let C be a full subcategory of the category Θ(V). An extension D of C will
always mean a full subcategory of Q with the same objects as those of C.

Definition 1. We say that an automorphism Φ of a category C is inner if for every object A of C
there exists an isomorphism σA :A → Φ(A) such that for every homomorphism μ :A → B we
have Φ(μ) = σB ◦ μ ◦ σ−1

A . That is, the following diagram commutes:

A
σA−−−−→ Φ(A)

μ

⏐⏐� ⏐⏐�Φ(μ)

B
σB−−−−→ Φ(B).

In other words, Φ is isomorphic as a functor to the identity functor Id of C.
We say that an automorphism Φ is D-inner if it is the restriction to C of some inner automor-

phism of an extension D of the category C or, in other words, the isomorphisms σA and σB in
the above diagram are Q-isomorphisms (quasi-isomorphisms).

Definition 2. An automorphism Φ of the category C is said to be potentially inner if it is D-inner
for some extension D of C.

Under our assumption, every considered category has a monogenic free algebra. Let A0 be a
free monogenic algebra in a category C over a fixed element x0. There is a bijection between the
underlying set of any C-algebra A and the set of all homomorphisms from A0 to A, namely, to
each element a ∈ A, there corresponds a homomorphism αA

a defined by

αA
a (x0) = a. (2.1)

The next result gives a necessary and sufficient condition for an automorphism of a category
of universal algebras to be potentially inner.
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Theorem 1. An automorphism Φ of a category C is potentially inner if and only if Φ(A0) is
isomorphic to A0.

If Φ is potentially inner, i.e., if there is a function A �→ sA such that Φ(μ) = sB ◦ μ ◦ s−1
A for

every μ :A → B , then Φ(F) is isomorphic to F for every free algebra F in the category C, and
the quasi-isomorphism sF maps a basis of F onto a basis of Φ(F).

Proof. Let σ :A0 → Φ(A0) be an isomorphism. Let A be an arbitrary C-algebra, and let
a ∈ A. The formula (2.1) implies that there exists a unique element ā ∈ Φ(A) such that
Φ(αA

a )◦σ = α
Φ(A)
ā . Since αA

a = Φ−1(α
Φ(A)
ā ◦σ−1), we obtain a bijection sA :A → Φ(A) setting

for every a ∈ A:

sA(a) = Φ
(
αA

a

) ◦ σ(x0). (2.2)

This gives rise to a family of bijections (sA :A → Φ(A) | A ∈ ObC).
Let ν :A → B be a homomorphism. According to the definition above we have sB(ν(a)) =

Φ(αB
ν(a)) ◦ σ(x0). Since αB

ν(a) = ν ◦ αA
a , we obtain (sB ◦ ν)(a) = Φ(ν) ◦ Φ(αA

a ) ◦ σ(x0) =
(Φ(ν) ◦ sA)(a). Hence,

Φ(ν) = sB ◦ ν ◦ s−1
A . (2.3)

Let us add to the category C new isomorphisms (bijections) sA :A → Φ(A) and their inverses
s−1
A :Φ(A) → A. Denote the obtained category by D. By definition, the automorphism Φ is
D-inner.

Suppose that an automorphism Φ of C is potentially inner, and let F = F(X) be a free algebra
in the category C over a set X. Denote A = Φ(F) and B = Φ−1(F ). We have the following
diagram:

B
sB−−−−→ F

sF−−−−→ A.

Set X̃ = sF (X) and take into account that sF determines a bijection between X and X̃. Denote
by σ the unique homomorphism from F to A = Φ(F) that extends sF |X , that is, σ(x) = sF (x)

for every x ∈ X. In the same way, we have a homomorphism τ :F → B such that τ(x) = s−1
B (x)

for every x ∈ X. We have

Φ(τ) ◦ σ(x) = sB ◦ τ ◦ s−1
F ◦ sF (x) = sB ◦ s−1

B (x) = x.

Hence Φ(τ) ◦ σ = 1F . Replacing Φ with Φ−1 and vice versa, we switch σ and τ , therefore
Φ−1(σ ) ◦ τ = 1F . Hence σ ◦ Φ(τ) = 1Φ(F). Thus σ is an isomorphism from F to Φ(F). The
statement is proved. �

The above result shows that if an automorphisms takes a monogenic free algebra to an iso-
morphic one, it does the same with all free algebras in C.

The next fact is simple but useful.

Lemma 1. Let C be a subcategory of a category D, and let Φ :C → D be a functor. Let E be a
subcategory of C satisfying the following conditions:
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(1) Φ acts on the class of E-algebras as a permutation;
(2) for every E-algebra A there exists a quasi-isomorphism (a D-isomorphism) σA :A → Φ(A)

such that Φ(ν) = σB ◦ ν ◦ σ−1
A for every E-morphism ν :A → B .

Then Φ is a composition of two functors Φ = Ψ ◦ Γ , where Γ :C → D is an identity on E
(preserves all objects and all morphisms of E), and the functor Ψ is an inner automorphism of
the category D.

Proof. By the hypotheses of the lemma, we have a family (σA :A → Φ(A) | A ∈ ObE) of D-
isomorphisms. We construct an inner automorphism Ψ of D in the following way. For every
D-object U , we set Ψ (U) = U if U is not an object of E , and Ψ (A) = Φ(A) for every object
A of E . We define a D-isomorphism τU :U → Ψ (U) in the following way: τU = 1U if U is
not an object of E , and τA = σA, where A ∈ Ob(E). For every D-morphism μ :U → V , let
Ψ (μ) = τV ◦ μ ◦ τ−1

U . According to the given construction, Ψ is an inner automorphism of D.
It is clear that Φ = Ψ ◦ Ψ −1 ◦ Φ . Let Γ = Ψ −1 ◦ Φ . By definition, we have Γ (A) =

(Ψ −1 ◦ Φ)(A) = A for all A ∈ Ob(E) and Γ (ν) = (Ψ −1 ◦ Φ)(ν) = σ−1
B ◦ Φ(ν) ◦ σA =

σ−1
B ◦ σB ◦ ν ◦ σ−1

A ◦ σA = ν for every E-morphism ν :A → B . �
The next result is a variation of the above one.

Lemma 2. Let Φ be an automorphisms of a category C. Suppose that for some class E of
C-objects Φ(A) is isomorphic to A for every A ∈ E. Then Φ is a composition of two C-
automorphisms Φ = Ψ ◦ Γ , where Γ fixes all objects from E and Ψ is an inner automorphism.

Proof. We apply the previous lemma by setting D = C. Suppose that a class E is closed under Φ

and Φ−1. Let E be the subcategory of C whose class of objects is E and whose only morphisms
are identity morphisms (i.e., a discrete subcategory). The previous lemma gives us the required
statement. If E is not closed, we can consider its Φ- and Φ−1-closure that clearly has the same
property as E. �
2.3. The main function

As we have assumed, in all our categories C any automorphism Φ of C takes a monogenic free
algebra to an isomorphic one. Applying Lemma 2, we restrict our consideration to the case when
the automorphism Φ fixes all free algebras in C. This implies that the maps sA are permutations
of all free algebras in C and simplifies the formula (2.2):

sA(a) = Φ
(
αA

a

)
(x0). (2.4)

Note that the function A �→ sA that we call a main function is not a unique function realizing
Φ as a D-inner automorphism for some category D.

Definition 3. Suppose that for every C-algebra A we are given a permutation cA of its underlying
set. The function A �→ cA, A ∈ ObC, is said to be central if for every homomorphism ν :A → B

the following equation is satisfied: cB ◦ ν ◦ c−1
A = ν. In other words, a function A �→ cA is a

central function if it determines the identity automorphism of the category C.
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It is obvious that the function A �→ σA, A ∈ ObC, from Definition 1 is determined for a poten-
tially inner automorphism Φ up to a central function. Thus, if we find out that an automorphism
Φ is D-inner, Φ may be D′-inner for some subcategory D′ of D, or even inner. Central functions
are known for many varieties, for example, for varieties of semigroups, groups and associative
algebras, and we will use them below.

The next result shows how to use central functions. It is clear that the bijections sA allow
one to define a new algebraic structure A∗ on the underlying set of every algebra Φ(A) so that
sA :A → A∗ is an isomorphism.

Lemma 3. An automorphism Φ of C is D-inner for an extension D of C (by adding some kind
of quasi-homomorphisms) if and only if there exists a central function A �→ cA, A ∈ ObC, such
that every cΦ(A) is a quasi-isomorphism of Φ(A) onto A∗. In particular, Φ is inner if and only if
every cΦ(A) in the condition above is an isomorphism.

Proof. If Φ is D-inner, Φ(ν) = σB ◦ ν ◦ σ−1
A for all ν :A → B , where σA :A → Φ(A) are

D-isomorphisms for every A. Consider cΦ(A) = sA ◦σ−1
A . Clearly, cΦ(A) is a quasi-isomorphism

of Φ(A) onto A∗. Since the two considered functions A �→ sA and A �→ σA define the same
automorphism, the function A �→ cA is central.

Conversely, if there exists a central function A �→ cA, A ∈ ObC, such that every cΦ(A)

is a quasi-isomorphism of Φ(A) onto A∗, then we set σA = c−1
Φ(A) ◦ sA. Clearly σA is a D-

isomorphism of A onto Φ(A), and σB ◦ ν ◦ σ−1
A = c−1

Φ(B)
◦ sB ◦ ν ◦ s−1

A ◦ cΦ(A) = c−1
Φ(B)

◦ Φ(ν) ◦
cΦ(A) = Φ(ν) for all ν :A → B . Hence Φ is D-inner. �

Therefore in order to describe an automorphism of a given category, the first step is to describe
maps sA defined by (2.4). Then one has to find a suitable central function or to prove that it does
not exist. The formula (2.4) can be rewritten in the form:

Φ(α)(x0) = (sA ◦ α)(x0) (2.5)

for every α : A0 → A.
The following simple fact shows that we can reduce the problem to the case when the maps

sA satisfy very nice conditions.

Theorem 2. For every free algebra A in C fix some basis XA. Suppose that an automorphism
Φ of C preserves all free algebras. Then Φ is a composition of two automorphisms Φ = Ψ ◦ Γ ,
where Ψ is an inner automorphism and sΓ

A (x) = x for all x ∈ XA for every free algebra A.

Proof. According to the second part of Theorem 1, we have an automorphism σA for every free
algebra A such that σA(x) = sA(x) for all x ∈ XA. Now we apply Lemma 1, where D = C and E
is the subcategory of C containing all free algebras A in C with set of morphisms {αA

x , x ∈ XA}
from the A0 to the other ones and, of course, the identities 1A0 and 1A. Since Φ(αA

x )(x0) =
sA ◦ αA

x ◦ s−1
A0

(x0) = sA ◦ αA
x (x0) = sA(x) = σA ◦ αA

x (x0) = σA ◦ αA
x ◦ 1A0(x0), we obtain that

Φ(αA
x ) = σA ◦ αA

x ◦ 1A0 for all x ∈ XA and all objects A of the category E . Thus the restriction
of Φ to E acts according to the conditions of Lemma 1.

Applying this lemma, we obtain that Φ is a composition of two automorphisms Φ = Ψ ◦ Γ ,
where Ψ is an inner automorphism and Γ (αA

x ) = αx for all x ∈ XA. The last condition means
that sΓ (x) = x for all x ∈ XA for every free algebra A. �
A
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Corollary 1. Let Φ be an automorphism of the category C fixing the free algebra A over a set X.
Suppose that Φ(αx) = αx for all x ∈ X. Let f :X → A. Denote by θf the unique endomorphism
of A such that θf (x) = f (x) for all x ∈ X. Then Φ(θf ) = θsA◦f .

Proof. The condition θf (x) = f (x) can be expressed by the equality αf (x) = θf ◦ αx . Applying
Φ to this equality we obtain αsA(f (x)) = Φ(θf ) ◦αx . Hence sA(f (x)) = Φ(θf )(x). Since the last
equality is valid for all x ∈ X, we have Φ(θf ) = θsA◦f . �

Let X = {x1, . . . , xn}, f (x1) = a1, . . . , f (xn) = an. In this situation we write θa1,...,an instead
of θf . We thus have the following result:

Φ(θa1,...,an) = θsA(a1),...,sA(an). (2.6)

2.4. Derived algebras

From now on we consider the category Θ0(V) defined in Section 1, that is, the full subcat-
egory of Θ(V) formed by all free in V algebras A = A(X), where finite sets X are subsets of
a fixed infinite set X0. This restriction is motivated only by future applications. According to
results obtained in the previous section, we can reduce our consideration to the case when the
automorphisms Φ of Θ0(V ) satisfy the following conditions:

(1) Φ(A) = A for every algebra A,
(2) for every algebra A = A(X), sΦ

A (x) = x for each element x of X.

Let Φ be an automorphism of such kind. It determines two new structures on the underlying
set of every algebra A. These structures have the same type as the source structure. The first one
is already defined. It gives the algebra A∗ induced by the permutation sA, thus sA :A → A∗ is an
isomorphism. The second one will be defined below.

Let ω stand for the symbol of a basic k-ary operation. Denote by ωA the corresponding k-ary
operation of the algebra A. Consider an algebra A whose set XA = {x1, . . . , xn} of free generators
contains at least k elements. Fix the term ω(x1, . . . , xk) and the corresponding element w =
ωA(x1, . . . , xk) in A. For every collection a1, . . . , ak ∈ A we have:

ωA(a1, . . . , ak) = θa1,...,ak,ak+1,...,an

(
ωA(x1, . . . , xk)

)
, (2.7)

where ak+1 = · · · = an = ak .
Let us now apply Φ and consider the element w̃ = sA(w) = sA(ωA(x1, . . . , xk)). Being an

element of the free algebra A, w̃ is also a term. By means of w̃ we can define a new k-ary
operation ω̃A by the rule:

ω̃A(a1, . . . , ak) = θa1,...,ak,ak,...,ak
(w̃). (2.8)

Being defined by means of a term, the new operation is a derived operation which is often
called a polynomial operation. Let B be another algebra. The term w̃ determines a new opera-
tion ω̃B in the usual way. Let b1, . . . , bk ∈ B . Consider a homomorphism ν :A → B defined by
ν(x1) = b1, . . . , ν(xk) = bk, ν(xk+1) = · · · = ν(xn) = bk and set

ω̃B(b1, . . . , bk) = ν
(
ω̃A(x1, . . . , xk)

)
. (2.9)
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The next result completes our general description of automorphisms of the category Θ0(V). By
the way this result shows that the operation defined by (2.9) does not depend on the choice of an
algebra A.

Theorem 3. For every algebra B the derived operation ω̃B defined by (2.9) coincides with the
induced operation ω∗

B , that is,

sB
(
ωB(b1, . . . , bk)

) = ω̃B

(
sB(b1), . . . , sB(bk)

)
for every b1, . . . , bk ∈ B .

Proof. The homomorphism ν :A → B in (2.9) is defined by ν(x1) = b1, . . . , ν(xk) = bk ,
ν(xk+1) = · · · = ν(xn) = bk . Further, Φ(ν) = sB ◦ ν ◦ s−1

A and hence Φ(ν)(x1) = sB(b1), . . . ,

Φ(ν)(xk) = sB(bk),Φ(ν)(xk+1) = · · · = Φ(ν)(xn) = sB(bk). Thus we obtain

sB
(
ωB(b1, . . . , bk)

) = sB
(
ν
(
ωA(x1, . . . , xk)

)) = Φ(ν) ◦ sA
(
ωA(x1, . . . , xk)

)
= Φ(ν)

(
ω̃A(x1, . . . , xk)

) = ω̃B

(
sB(b1), . . . , sB(bk)

)
.

This shows that ω∗
B = ω̃B is a derived operation on B . �

Remark 2. Note that the above facts are also valid for every full subcategory of Θ(V) contain-
ing a monogenic free algebra and a free algebra whose set of free generators contains not less
elements than the arities of all basic operations.

For the category Θ0(V) we conclude that every term sA(ωA(x1, . . . , xk)) is also built from the
same free generators. Indeed, for every set X = {x1, . . . , xk} there is only one Θ0(V)-algebra A

such that A = A(X). Since the term sA(ωA(x1, . . . , xk)) belongs to A, it is built from the same
free generators and determines the corresponding derived operation. This fact will be used in the
next sections.

In view of the previous result we would like to emphasize the situation we come to. For every
algebra A of our category we have a derived algebra Ã of the same type. All derived operations
are defined by terms (polynomials) of the source structure, the algebra Ã is isomorphic to A, and
the isomorphism sA :A → Ã preserves all free generators from XA which, of course, are free
generators for Ã. Thus the problem is reduced to finding the derived operations. Once they are
found, we will know what quasi-homomorphisms we need to add in order to make Φ a D-inner
automorphism for some extension D of our category.

The following observation may help in some cases. As indicated above, every basic opera-
tion of each of free algebras A and Ã can be expressed as a term in the language of the other
one, i.e., it is a polynomial operation with respect to the other algebra. Let w̃ be a word in the
language of the algebra Ã such that a k-ary operation ω of the algebra A can be expressed as
follows: ω(x1, . . . , xk) = w̃. In exactly the same way, every basic operation appearing in w̃ can
be expressed by means of words in the language of the first algebra A. Replacing the basic oper-
ations in w̃ by their expressions in the language of the algebra A, we get an identity of the kind
ω(x1, . . . , xk) = w, where w is the word obtained by replacement.

If we know what identities of such kind are satisfied in the considered variety, we can un-
derstand what kind of derived operation we have to treat. For example, in the variety of all
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semigroups there is only one identity of such kind: xy = xy. In the variety of all commutative
semigroups, there are only two such identities: xy = xy and xy = yx. For the unary operation −1

in the variety of all inverse semigroups all such identities are of the form: x−1 = x−1(xx−1)m. It
is clear that in many cases one cannot hope to get such a simple solution.

2.5. Some simple examples

Now we present three examples illustrating our method. The results we obtain here are known
and published [3,9,10], so we can compare different ways leading to the same results.

Semigroups
For the simplest example, consider the variety SEM of all semigroups. As mentioned above,

there is a unique identity of the form xy = w satisfied in SEM, i.e., the identity xy = xy. Hence
if x • y = v defines a new operation, the word v contains the same letters x and y and is of
length 2. This fact immediately implies that there are no suitable polynomial operations except
the original and dual ones. Thus we have only one new derived operation x•y = yx. Therefore all
automorphisms of the category SEM0 are D-inner, where the category D is the category whose
objects are objects of SEM0 and morphisms are both homomorphisms and anti-homomorphisms
of semigroups.

If an automorphism Φ determines the same derived operation, then Φ is inner. If it determines
the dual operation, it is not inner because in this case there are no central maps which are isomor-
phisms of the two-generated free semigroup onto the dual semigroup. In the case of the variety
of commutative semigroups, all automorphisms are inner.

Groups
Let Grp be the category of all groups, viewed as algebras with one 0-ary, one unary and

one binary operations. The derived 0-ary operation coincides with the original one. Consider a 1-
generated free group and the derived unary operation x∗ = s(x−1) = w. The word w is built from
one variable x. Hence x∗ = xm, where m is a nonzero integer. Because of the identity (x∗)∗ = x,
we have m = 1 or m = −1. It is clear that only the last case is suitable.

Let G be a free group generated by two free generators x and y. Let s(xy) = w(x,y), that is,
the term w(x,y) determines a derived binary operation that gives an isomorphic free group with
the same free generators. Denote the new product by a • b = w(a,b). The term w(x,y) is of the
following form: w(x,y) = xi1yj1xi2yj2 . . . xik yjk , where i1, j1, . . . , ik, jk are integers.

The identities w(x, e) = x, w(e, y) = y imply that i1 + · · · + ik = j1 + · · · + jk = 1,
and the identity w(x,y)−1 = w(y−1, x−1) implies that i1 = jk, . . . , ik = j1. Thus w(x,y) =
xi1yikxi2yik−1 . . . xik yi1 . Therefore, w(a,a) = a2 for all a ∈ G. By induction, we obtain that
a•n = a • a • · · · • a (n times ) is equal to an.

Since the source operation has a similar expression in terms of w(x,y), we have an identity
of the form xy = xi1 • yik • xi2 • yik−1 . . . xik • yi1 . This identity holds if only if w(x,y) is equal
to xy or to yx.

Unlike the category SEM0, all automorphisms of the category Grp0 are inner because the
map g �→ g−1 is an isomorphism of a group onto the dual one, and the function assigning to
every group such a map is a central function.

Lie algebras
The case when V is the variety of Lie algebras over an infinite field K is more compli-

cated since there are two binary operations, “+” and “[ ],” and the set of unary operations
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a �→ ka for every k ∈ K. To obtain the derived unary operations, we consider the monogenic
free Lie algebra, which is a one-dimensional linear space L = Kx with trivial multiplication.
Thus sL(kx) = ϕ(k)x. The map ϕ : K → K is, of course, a bijection preserving multiplication
in K. Hence ϕ(0) = 0 and ϕ(1) = 1.

To find the derived binary operations, we consider the two-generated free Lie algebra F =
F(x, y). We have x ⊥ y = sF (x + y) = P(x, y), where P(x, y) is a polynomial in F . Since
x ⊥ y is homogeneous of degree 1, the polynomial P(x, y) is linear: x ⊥ y = ax + by. It is clear
that a = b = 1 because of commutativity and the condition x ⊥ 0 = x.

We conclude that sF is an additive isomorphism such that sF (kw) = ϕ(k)sF (w), where ϕ is
an automorphism of K, k ∈ K and w ∈ F .

Further, since x ∗ y = sF ([xy]) is a homogeneous polynomial of degree 2, x ∗ y = a[xy],
where a ∈ K. Consider a function assigning to every free Lie algebra F(X) a permutation cF(X)

of F(X) as follows: cF(X)(w) = w
a

. This function is clearly central. Hence every automorphism
of the category Θ0(V) is semi-inner according to the definition given in [10], that is, in Defini-
tion 1, the bijections σA are additive and multiplicative isomorphisms of the corresponding Lie
rings but σA(kw) = ϕ(k)σA(w) for every k ∈ K and w ∈ A.

In the next two sections, we apply the method to the variety of all associative linear algebras
over a fixed infinite field and to the variety of all representations of groups in unital R-modules
over a associative commutative ring R with unit.

3. Associative linear algebras

In this section, K will always denote an infinite field. Let A be an associative ring with unit,
and let f : K → A be a ring homomorphism of K to the center of A. We view such a homo-
morphism as an associative (linear) algebra over K, or shortly, a K-algebra. Let two K-algebras
f : K → A and g : K → B be given. A homomorphism of the first algebra to the second one is a
ring homomorphism ν :A → B such that g = ν ◦ f . As usual, we identify elements of K viewed
as symbols of 0-ary operations (constants) with their images in A and write ka instead of f (k)a,
if this does not lead to misunderstanding.

The category of all K-algebras and their homomorphisms will be denoted by Ass-K. Let
(Ass-K)0 denote the full subcategory of Ass-K consisting of all free K-algebras over finite sub-
sets of an infinite set X0. We fix a monogenic free algebra F1 in (Ass-K)0 with free generator x0
and a two-generated free algebra F2 with free generators x and y.

Let Φ be an automorphism of the category (Ass-K)0. It is clear that Φ(F1) is isomorphic
to F1, hence Φ is potentially inner (Theorem 1), and we can assume that Φ fixes all the objects.
According to Theorem 2, we can assume that the permutations sA act as identities on the bases
XA of the objects A of this category. Every map sA is an isomorphism of A onto the derived
algebra Ã. According to the method suggested in the previous section, we have to find the derived
algebraic structure F ∗

2 = F̃2, which is, of course, an associative free two-generated K-algebra
isomorphic to F2.

Lemma 4. Every map sA acts on 	K = fA(K) as a permutation.

Proof. Let u ∈ A. Evidently, u ∈ 	K if and only if for every endomorphism ν of A we have
ν ◦ αu = αu. We apply the automorphism Φ and obtain that for every endomorphism ν of A we
have Φ(ν) ◦ αsA(u) = αsA(u). Since Φ(ν) runs over all endomorphisms, this means that u ∈ 	K if
and only if sA(u) ∈ 	K. �
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This result shows that the automorphism Φ determines a permutation s̃ of the field K. The
derived 0-ary structure on the set A is given by the map f ∗

A : K → A∗, where f ∗
A = sA ◦ fA =

fA◦ s̃. We denote 0̃ = s̃(0) and 1̃ = s̃(1). Remind that the same symbols denote the corresponding
elements in K-algebras.

Remark. The same result can be obtained using the following arguments. The free algebra in
Ass-K over the empty set of generators is K. Thus sK is a permutation of K, and according to
Definition 2.9 of derived operations and Theorem 3, f ∗

A = f̃A = fA ◦ sK = sA ◦ fA. Here sK
coincides with s̃ above.

The next step is to make the permutation s̃ of the field K more convenient for finding the
derived structure.

Lemma 5. Every automorphism of the category Ass-K is a composition of an inner automor-
phism and an automorphism Γ satisfying the following conditions:

(1) Γ fixes all objects of the category;
(2) the corresponding permutations sΓ

A preserve all elements of XA ∪ {0,1} for every objects A

of this category.

Proof. The permutation s̃ of the field K takes the null element 0 to an element 0̃ and the unit
1 to an element 1̃. Clearly, 1̃ �= 0̃. Consider endomorphisms ψA and ξA defined as follows:

ψA(x) = (1̃ − 0̃)x + 0̃ and ξA(x) = x−0̃
1̃−0̃

for all x ∈ XA. Since ψA ◦ ξA(x) = ξA ◦ ψA(x) = x,
both endomorphisms are automorphisms of A.

Let us construct an inner automorphism Ψ of our category as follows: Ψ (A) = A for every
object A and Ψ (ν) = ψB ◦ ν ◦ ψ−1

A for every homomorphism ν :A → B . The main function sΨ
A

has the following properties:

sΨ
A (x) = Ψ (αx)(x0) = ψA ◦ αx ◦ ψ−1

F1
(x0) = ψA ◦ αx

(
x0 − 0̃

1̃ − 0̃

)
= ψA

(
x − 0̃

1̃ − 0̃

)
= x

for all x ∈ XA and

sΨ
A (0̃) = Ψ (α0̃)(x0) = ψA ◦ α0̃ ◦ ψ−1

F1
(x0) = ψA ◦ α0̃

(
x0 − 0̃

1̃ − 0̃

)
= ψA

(
0̃ − 0̃

1̃ − 0̃

)
= 0.

In the same way, sΨ
A (1̃) = 1.

Thus the composition Γ = Ψ ◦ Φ possesses the properties assumed for Φ , but in addition the
permutation determined by this composition preserves 0 and 1 of the field K. Since Ψ is an inner
automorphism, our statement is proved. �

Thus we can assume that our source automorphism Φ has the properties mentioned above
(Lemma 5).

Lemma 6. Suppose that an automorphism Φ of the category Ass-K satisfies conditions (1) and
(2) of the previous lemma. Then the corresponding permutations sA are ring automorphisms (or
anti-automorphisms) of every object A.
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Proof. We shorten the notation sF2 to s. Our aim is to find derived operations: x ⊥ y = s(x + y)

and x � y = s(xy), which are polynomials in two non-commuting variables x, y. Suppose

x ⊥ y = a1 + P1(x) + Q1(y) + R1(x, y),

x � y = a2 + P2(x) + Q2(y) + R2(x, y),

where a1, a2 ∈ K, P1(x), P2(x), Q1(y), Q2(y) are the polynomials without constant terms de-
pending only on x and y, respectively, and R1(x, y), R2(x, y) are the polynomials whose each
summand contains both variables x and y.

Because of the identities x ⊥ 0 = 0 ⊥ x = x, x � 0 = 0 � x = 0, it follows that a1, a2 = 0,
P1(x) = x, Q1(y) = y, P2(x) = Q2(y) = 0. Hence we have

x ⊥ y = x + y + R1(x, y),

x � y = R2(x, y).

Denote the full degree of the polynomial R2(x, y) by p. Take a constant k ∈ K and consider
k � x = R2(k, x) = Tk(x), where Tk(x) is a polynomial in one variable x. It is clear that the
degree of such a polynomial can be at most p for all k. Let m = k � k. We have the identity

Tm(x) = m � x = (k � k) � x = k � (k � x) = Tk

(
Tk(x)

)
.

The degree of the polynomial in the left-hand side is still at most p, and the degree of the polyno-
mial in the right-hand side is equal to the square of the degree of the polynomial Tk(x). Repeating
this process, we arrive at a contradiction if the degree of Tk(x) is not 1.

Thus k � x = R2(k, x) = Tk(x) = ax for some a ∈ K. Since k � 1 = k, we obtain a = k and
hence k � x = kx. In view of homogeneity of the polynomials R1(x, y), R2(x, y), we conclude
that R1(x, y) = 0 and R2(x, y) is equal to xy or to yx. Therefore

x ⊥ y = x + y and x � y = xy (or x � y = yx).

This gives us the required statement: sA(u + v) = sA(u) + sA(v) and sA(uv) = sA(u)sA(v)

(sA(uv) = sA(v)sA(u)) for all u,v ∈ A. �
Consider the case when the maps sA are ring automorphisms. Note that in general these maps

are not isomorphisms of K-algebras because for k ∈ K we have

sA(ku) = sA(k)sA(u) = s̃(k)sA(u).

The permutation s̃ = sK : K → K is an automorphism of K. This leads to the following definition.

Definition 4. Let fA : K → A and fB : K → B be K-algebras. A map σ :A → B is called a
twisted homomorphism if it is a ring homomorphism of A to B and σ ◦ fA = fB ◦ ϕ for some
automorphism ϕ of K, in other words, σ(aw) = ϕ(a)σ (w) for every a ∈ K and w ∈ A. In this
case we say that σ is a ϕ-homomorphism.
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We now define the category R(Ass-K)0 as the extension of the source category obtained by
adding all twisted homomorphisms and anti-homomorphisms. Then every automorphism Φ of
the category (Ass-K)0 is an R(Ass-K)0-inner automorphism.

Let us now formulate our final result more precisely. We say that an automorphism Φ is semi-
inner if it acts on morphisms of the category (Ass-K)0 as follows:

Φ(ν) = τB ◦ ν ◦ τ−1
A , (3.1)

where τA :A → Φ(A) is a ϕ-isomorphism of K-algebras and ϕ is an automorphism of the field
K determined by Φ .

Now consider the case when all maps sA are ring anti-automorphisms. It is known [9] that in
this case we deal with a special automorphism of our category called the mirror automorphism.
We recall its construction.

Given a free K-algebra A with the set XA of free generators, consider the free semigroup X+
A .

For every word w = xi1 . . . xin define the inverse word 	w = xin . . . xi1 where all letters of w are
written in the inverse order. The map w �→ 	w is an anti-automorphism of X+

A . This map can be
uniquely extended to an anti-automorphism ηA of the K-algebra A.

It is obvious that for every homomorphism ν :A → B of free algebras the map ηB ◦ ν ◦ η−1
A is

also a homomorphism from A to B . Hence we have an automorphism Υ of the category (Ass-K)0

defined by: Υ (A) = A and Υ (ν) = ηB ◦ ν ◦ η−1
A for every ν :A → B . This automorphism Υ is

called the mirror automorphism. Note that every ηA fixes all elements of XA and acts identically
on the field K.

Now we can give the following final description.

Theorem 4. Every automorphism Φ of (Ass-K)0 is either semi-inner (in particular, inner) or a
composition of a semi-inner automorphism and the mirror automorphism.

Proof. Every automorphism Φ of (Ass-K)0 is a composition Φ = Ω ◦ Ψ of an inner automor-
phism Ω and an automorphism Ψ satisfying the conditions of Lemma 5. According to Lemma 6,
every map sΨ

A is either a ring automorphism or a ring anti-automorphism of the corresponding
object A. In the first case, Ψ is semi-inner. In the second case, the automorphism Γ = Ψ ◦ Υ

satisfies the same conditions as Ψ (Lemma 5), but unlike Ψ , the maps sΓ
A are ring automor-

phisms and hence Γ is semi-inner. Since Ψ = Γ ◦Υ , we obtain Φ = Ω ◦Γ ◦Υ and the required
description. �

It is useful to present the above description in a more convenient form. Every automorphism
ϕ of the field K can be uniquely extended to a twisted automorphism ϕA for every free K-algebra
A which identically acts on X+

A . These twisted automorphisms determine a semi-inner automor-
phism ϕ̂ of the category (Ass-K)0 that we call the standard ϕ-automorphism:

ϕ̂(ν) = ϕB ◦ ν ◦ ϕ−1
A

for every ν :A → B .

Theorem 5. Every automorphism Φ of the category (Ass-K)0 can be represented as a composi-
tion of three automorphisms:

Φ = Υ ◦ ϕ̂ ◦ Ψ,



358 B. Plotkin, G. Zhitomirski / Journal of Algebra 306 (2006) 344–367
where Ψ is inner, ϕ̂ is the standard ϕ-automorphism, and Υ is the mirror or the identity auto-
morphism.

Proof. Let Φ be a semi-inner automorphism of the category (Ass-K)0, and let ϕ be the corre-
sponding automorphism of K. It is obvious that the composition Φ ◦ ϕ̂−1 is an inner automor-
phism of (Ass-K)0. Thus we can assert that Φ is a composition of an inner automorphism and the
standard ϕ-automorphism. Combining this result with Theorem 4, we complete the proof. �
4. Category of group representations

4.1. Basic definitions

R will always denote a commutative associative ring with unit 1. All R-modules under con-
sideration are assumed to be unital. A representation of a group G in an R-module A is an
arbitrary group homomorphism ρ :G → AutR(A), where AutR(A) is the group of all R-module
automorphisms of A.

To define such a representation is the same as to define an action of the group G on A, that is,
a map (a, g) �→ a · g from A × G to A satisfying the following conditions:

(1) for every g ∈ G the map a �→ a · g is an automorphism of the module A;
(2) (a · g1) · g2 = a · (g1g2) for every g1, g2 ∈ G and a ∈ A.

A group representation is viewed as a triple (A,G, ·), where A is an R-module, G is a group
and “·” denotes an action of G on A. We regard the theory of group representations as a two-
sorted theory [14]. Therefore, homomorphisms of representations are defined as homomorphisms
of two-sorted algebras.

Let two group representations (A,G, ·) and (B,H,•) be given. A homomorphism μ :
(A,G, ·) → (B,H,•) is a pair of maps (μ(1),μ(2)) of the form μ(1) :A → B , μ(2) :G → H

satisfying the following conditions:

(1) μ(1) :A → B is a homomorphism of R-modules;
(2) μ(2) :G → H is a homomorphism of groups;
(3) μ(1) and μ(2) are related by:

μ(1)(a · g) = μ(1)(a) • μ(2)(g),

for every a ∈ A and every g ∈ G.

The last condition means that the following diagram commutes:

A
g̃−−−−→ A

μ(1)

⏐⏐� ⏐⏐�μ(1)

B
˜μ(2)(g)−−−−→ B,

where g̃ and μ̃(2)(g) denote the corresponding actions.
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Denote by Rep-R the category whose objects are group representations and morphisms are
homomorphisms defined above. The forgetful functor can be defined according to the two-sorted
case. This means that this functor assigns to every representation (A,G, ·) the pair of sets (A,G)

and to every homomorphism (μ(1),μ(2)) the pair of corresponding maps. Therefore, we have a
notion of free object in this category, i.e., we can define free representations. We recall a realiza-
tion of such free objects.

A representation (W,F, �) is called a free representation over a pair of sets (Y,X) if the
set Y generates the RF-module W , where RF is the group algebra over the ring R, the set X

generates the group G, and for every representation (A,G, ·) and every two maps f (1) :Y → A

and f (2) :X → G, there exists a unique homomorphism μ : (W,F, �) → (A,G, ·) such that μ(1)

extends f (1) and μ(2) extends f (2).
Since the forgetful functor defined above is not a functor to the category of sets and maps, we

cannot apply the results from Section 2 in a straightforward way.
In order to apply the results from previous sections, we need to consider the following for-

getful functor from Rep-R to the category of sets and maps. This functor assigns to every
object (A,G, ·) the set A × G as the underlying set, and it assigns to every homomorphism
μ : (A,G, ·) → (B,H,•) the map |μ| = μ(1) × μ(2) :A × G → B × H . Note that free objects
with respect to such forgetful functor do not coincide with free objects with respect to the two-
sorted theory. This forces us to make some modifications in definitions and to check in some
cases if the results from Section 2 are valid.

In the same way as in the previous section, we consider the category (Rep-R)0 of all free
representations over pairs (Y,X), where X and Y are finite subsets of the fixed infinite sets Y0

and X0, respectively. Let (W1,F1) denote a monogenic free representation. This means that F1

is the infinite cyclic group {xn | n ∈ Z}, W1 = RF1 can be identified with the group algebra over
the ring R, and the action of this group on the group algebra is the group algebra multiplication.

Denote by e = x0 the unit of the group F1 and by 1R the unit of the ring R. For every r ∈ R

we identify re with r , thus R is embedded into W1. The pair of singular sets ({1R}, {x}) is a basis
of the representation (W1,F1).

Let (A,G, ·) be a group representation. We denote it for short by AG. According to our usual
definitions, denote by αAG

(a,g)
the unique homomorphism from (W1,F1) to (A,G, ·) that takes 1R

to a ∈ A and x to g ∈ G.
As mentioned above, we view the product A × G as the underlying set of the representation

(A,G, ·). Since this forgetful functor is represented by (W1,F1), the first part of Theorem 1 is
valid. This means that an automorphism Φ of the category (Rep-R)0 is potentially inner if and
only if it takes the representation (W1,F1) to an isomorphic one. The second part of this theorem
will be considered later.

Let Φ be an automorphism of the category (Rep-R)0 which fixes (W1,F1). Thus the main
function (A,G, ·) �→ sAG is defined in the same way as in Section 2:

sAG(a, g) = (ā, ḡ) ⇔ Φ
(
αAG

(a,g)

) = α
Φ(AG)
(āḡ)

, (4.1)

and we have the usual form of Φ-action, namely, for every homomorphism μ : (A,G, ·) →
(B,H,•):

Φ(μ) = sBH ◦ μ ◦ s−1. (4.2)
AG
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Consider the free representation (W,F, ·) with the basis (Y,X). Let f (1) :Y → A and
f (2) :X → G. We denote by θ(f (1),f (2)) the unique endomorphism extending these maps. Hence

(∀y ∈ Y, x ∈ X) θ(f (1),f (2))(y, x) = (
f (1)(y), f (2)(x)

)
.

To apply the method from Section 2, we have to study the monoid End1 of endomorphisms of
the free monogenic representation (W1,F1).

4.2. Some invariants of category automorphisms

Denote elements of the monoid End1 by ν(w,g), where w = ν
(1)
(w,g)(1R) and g = ν

(2)
(w,g)(x).

Lemma 7. The endomorphism ν(0,e), where 0 is the zero of the ring R, is the zero element
of the monoid End1. The endomorphism ν(1R,x) is the unit of this monoid. The set Te of all
endomorphisms ν(w,e), where w ∈ W1, is a minimal prime ideal in this monoid. Every prime
ideal different from Te contains Te or the ideal T0 = {ν(0,g) | g ∈ F1} .

Proof. The first and second statements are obvious. It is also obvious that the sets Te and T0
are ideals in End1. Suppose that for some ν,μ ∈ End1 we have ν ◦ μ ∈ Te. This means that
ν(2) ◦ μ(2)(x) = e and therefore μ(2)(x) = e or ν(2)(x) = e. Hence Te is a prime ideal. Suppose
now that I is another prime ideal and there exists w ∈ W1 such that ν(w,e) /∈ I . But ν(w,e)◦ν(0,g) =
ν(0,e) for all g ∈ F1. Hence ν(0,g) ∈ I for all g ∈ F1, that is, T0 ⊆ I . So Te ⊆ I or T0 ⊆ I . Since
T0 ∩ Te = {ν(0,e)}, Te is a minimal prime ideal. �

Denote by Tx the set of all endomorphisms of (W1,F1) of the form ν(w,x), where w is an
arbitrary element of W1.

Corollary 2. Tx is a submonoid of End1 which is multiplicatively isomorphic to the group alge-
bra RF1.

Proof. It is clear that Tx is a subsemigroup of End1 containing the unit ν(1R,x). For every
u,v ∈ W1 we have:

ν
(1)
(v,x) ◦ ν

(1)
(u,x)(1R) = ν

(1)
(v,x)(u) = vu,

therefore ν(v,x) ◦ ν(u,x) = ν(vu,x). �
Lemma 8. Te is a unique minimal prime ideal in End1 that contains more than 2 right units.

Proof. Let w = w(x) be an element of the group algebra such that w(e) = e. Since w = ∑
rnx

n,
where n ∈ Z and rn = 0 for almost all n, this condition means that

∑
rn = 1. Consider the

endomorphisms ν(w,e) with w just defined. For every ν ∈ Te we have:

ν(1) ◦ ν
(1)
(w,e)(1R) = ν(1)(w) =

∑
rnν

(1)
(
1Rxn

) =
∑

rnν
(1)(1R)e = ν(1)(1R).

This gives ν ◦ ν(w,e) = ν, i.e., ν(w,e) is a right unit in Te . Suppose that I is another minimal
prime ideal and ν(u,g) is its right unit. According to Lemma 7, T0 ⊆ I . Hence ν(0,x) ∈ I , and we
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obtain: ν(0,x) = ν(0,x) ◦ ν(u,g) = ν(0,g). This equation gives g = x. Thus our right unit is of the
form: ν(u,x). Since ν(u,x) ◦ ν(v,x) = ν(uv,x) and uv = vu for every two elements u,v ∈ W1, every
two right units in I coincide. �
Remark 3. The ideal T0 can be determined in the considered monoid because T0 = {ν | (∀μ ∈ Te)

ν ◦ μ = μ ◦ ν = ν(0,e)}. The set Tx can be described as follows: ν ∈ Tx ⇔ (∀μ ∈ T0) ν ◦ μ = μ.
The element ν(0,x) is a unique common element of T0 and Tx .

In the next corollaries we assume that automorphisms preserve the object (W1,F1).

Corollary 3. Suppose that an automorphism Φ of the category (Rep-R)0 fixes the object
(W1,F1). Then Φ preserves the sets Te , T0 and Tx , and hence it preserves the endomor-
phism ν(0,x).

Proof. Φ acts on the monoid End1 as an automorphism. Lemma 8 implies that Φ preserves Te.
Φ preserves the sets T0 and Tx since they are uniquely determined (Remark 3), and hence Φ

preserves the endomorphism ν(0,x) in view of the same remark. �
Corollary 4. Under hypotheses of the previous corollary, Φ induces a multiplicative automor-
phism of the group algebra RF1, and hence it induces an automorphism ϕ of the multiplicative
monoid of the ring R.

Proof. Using Corollary 2, define ϕ(r) = t ⇔ Φ(ν(r,x)) = ν(t,x). Then ϕ(rt) = ϕ(r)ϕ(t). �
4.3. The main function

In this section, we assume that an automorphism Φ fixes the monogenic free representation
(W1,F1). Thus we have the formula (4.2), and we start with studying maps sAG.

Let AG = (A,G, ·), let 0 be the zero of the module A, and let e be the unit of the group G.
Denote by T AG

e and T AG
0 the sets of all homomorphisms from (W1,F1) to (A,G, ·) of the form

α(w,e) and α(0,g), respectively, where w ∈ A, g ∈ G.

Lemma 9. Let Φ take AG = (A,G, ·) to BH = (B,H,�). Then Φ(T AG
e ) = T BH

e and
Φ(T AG

0 ) = T BH
0 .

Proof. Let M be the set of all homomorphisms from (W1,F1) to AG = (A,G, ·). Then N =
Φ(M) is the set of all homomorphisms from (W1,F1) to BH = (B,H,�). Since T AG

e = M ◦ Te

and T AG
0 = M ◦ T0, using Corollary 3 we obtain Φ(T AG

e ) = N ◦ Te = T BH
e and Φ(T AG

0 ) = N ◦
T0 = T BH

0 . �
The map sAG is a subdirect product of two maps s

(1)
AG and s

(2)
AG , and sAG(u, g) = (ū, ḡ) ⇔

s
(1)
AG(u, g) = ū & s

(2)
AG(u, g) = ḡ. These two maps are two-place functions. We can replace them

by two one-place maps. Indeed, according to the previous result, we have s
(1)
AG(0, g) = 0 and

s
(2)
AG(u, e) = e. Thus we can define:

πAG(a) = s
(1)

(a, e), �AG(g) = s
(2)

(0, g) (4.3)
AG AG
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and obtain

πAG(0) = s
(1)
AG(0, e) = 0, �AG(e) = s

(2)
AG(0, e) = e. (4.4)

Lemma 10. If ν : (A,G, ·) → (B,H,•) is a homomorphism and μ = Φ(ν), then

μ(1) = πBH ◦ ν(1) ◦ π−1
AG ,

μ(2) = �BH ◦ ν(2) ◦ �−1
AG.

Proof. Denote Φ(A,G, ·) by ÃG̃ and Φ(B,H,•) by B̃H̃ . Take b̃ ∈ B̃ and calculate:

μ(b̃, e) = sBH ◦ ν ◦ s−1
AG(b̃, e) = sBH ◦ ν

(
π−1

AG (b̃), e
)

= sBH
(
ν(1) ◦ π−1

AG (b̃), e
) = (

πBH ◦ ν(1) ◦ π−1
AG (b̃), e

)
.

Hence

μ(1)(b̃) = πBH ◦ ν(1) ◦ π−1
AG (b̃).

The proof of the second statement is similar. �
It is possible to strengthen the last result. Consider the evident equality:

α(w,g) ◦ ν(0,x) = α(0,g).

Applying Φ , we obtain Φ(α(w,g)) ◦ ν(0,x) = Φ(α(0,g)). Hence αs(w,g) ◦ ν(0,x) = αs(0,g). By the
definition of composition of homomorphisms, we get s(2)(w,g) = (0, s(2)(0, g)) = (0, �(g)).
Finally,

s(w,g) = (
s(1)(w,g), �(g)

)
.

Now we are in a position to apply the second part of Theorem 1 and to conclude that Φ takes
every free representation to an isomorphic one. Therefore, one can assume that Φ fixes all objects
of the category (Rep-R)0. Then we repeat all arguments from the proof of Theorem 2 and obtain
the analogous result.

Lemma 11. Φ is a composition of two automorphisms Φ = Ψ ◦ Γ , where Ψ is an inner au-
tomorphism and Γ fixes all objects of the category (Rep-R)0. Moreover, the permutation πΓ

AG
of A and the permutation �Γ

AG of G fix the corresponding basis elements of every (A,G, ·) in
(Rep-R)0.

Proof. If ν : (A,G, ·) → (B,H,•) is a homomorphism and μ = Φ(ν), then by Lemma 10 we
have

μ(1) = πBH ◦ ν(1) ◦ π−1
AG ,

μ(2) = �BH ◦ ν(2) ◦ �−1.
AG
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Let y1, . . . , yn be a basis of the KG-module A, and let x1, . . . , xm be a basis of the group G.
We define two endomorphisms σAG and τAG of the representation (A,G) as usual: σAG acts on
generators as πAG and �AG, and τAG acts by the inverse permutations. The proof that σAG and
τAG are automorphisms is literally the same as in Theorem 2.

Define a new automorphism Ψ of our category as follows. Let Ψ (ν) be equal to

σBH ◦ ν ◦ σ−1
AG

for every ν : (A,G) → (B,H).
By definition, Ψ is an inner automorphism. Now consider a new automorphism: Γ = Ψ −1 ◦Φ

and calculate the corresponding π and �. According to (4.3), we have to calculate Γ (αAG
(a,e)) and

Γ (αAG
(0,g)). Let us start with the first one. We have

Γ
(
αAG

(a,e)

) = σ−1
AG ◦ Φ

(
αAG

(a,e)

) ◦ σW1F1,

hence

sΓ
AG(a, e) = σ−1

AG ◦ Φ
(
αAG

(a,e)

) ◦ σW1F1(1, x),

and (
sΓ

AG(a, e)
)(1) = (

σ
(1)
AG

)−1 ◦ (
Φ

(
αAG

(a,e)

))(1) ◦ σ
(1)
W1F1

(1).

The last equality means that

πΓ
AG(a) = (

σ
(1)
AG

)−1 ◦ πAG ◦ (
αAG

(a,e)

)(1) ◦ π−1
W1F1

◦ σ
(1)
W1F1

(1).

Since by definition σ
(1)
W1F1

(1) = πW1F1(1) holds, we have

πΓ
AG(a) = (

σ
(1)
AG

)−1 ◦ πAG ◦ (
αAG

(a,e)

)(1)
(1) = (

σ
(1)
AG

)−1 ◦ πAG(a).

Now set a = yi ,

πΓ
AG(yi) = (

σ
(1)
AG

)−1 ◦ πAG(yi) = (
σ

(1)
AG

)−1 ◦ σ
(1)
AG (yi) = yi .

Thus, πΓ
AG fixes all generators y1, . . . , yn. The same arguments are valid for �. Since Φ =

Ψ ◦ Γ and Ψ is inner, we have the required statement. �
From now on we assume that Φ is an automorphism of (Rep-R)0 such that the permutations

πAG of A and the permutation �AG of G fix the basis of (A,G, ·). This gives

Lemma 12. sAG = πAG × �AG.

Proof. Indeed,

sAG(w,g) = Φ(α(w,g))(1, x) = (πAG × �AG) ◦ α(w,g) ◦ (πW1F1 × �W1F1)
−1(1, x)

= (πAG × �AG) ◦ α(w,g)(1, x) = (πAG × �AG)(w,g) = (
πAG(w),�AG(g)

)
. �
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4.4. Derived binary operations

According to our method, we have to find the derived operations such that the permutation
s is an isomorphism onto the derived structure. Since the biggest arity of operations is 2, we
consider the two-generated free representation (W2,F2), where F2 is the free group with two
free generators x1, x2 and W2 is the free RF2-module with the basis Y = {y1, y2}, i.e., W2 =
y1RF2 ⊕ y2RF2. Denote, for short, πW2F2 by π and �W2F2 by �.

Theorem 6. The map � is the identity or the mirror map on F2.

Proof. Since �(e) = e, the derived binary operation x1 � x2 = �(x1x2) has the same unit e and
hence the same inverses. This implies that x1 � x2 = x1x2 or x1 � x2 = x2x1. �

Consider now the derived additive operation on W2 defined by

y1 ⊥ y2 = π(y1 + y2).

Being an element of the free module W2, y1 ⊥ y2 is of the form y1P1 + y2P2, where P1 and P1
are elements of the group algebra RF2. Because of commutativity of the considered operation,
P1 = P2 = P and y1 ⊥y2 = (y1 +y2)P . We know that π(0) = 0. Therefore y1 = y1P , and hence
P = 1. Thus y1 ⊥ y2 = y1 + y2, and hence π is an automorphism of the additive group of the
module W2.

Lemma 13. The permutation s of the set W2 × F2 is of the form: s = π × ρ, where π is an
automorphism of the additive group of the module W2 and ρ is the identity map or the mirror
permutation of the group F2. For all r ∈ R, w ∈ W2 we have π(ru) = ϕ(r)π(u), where ϕ is an
automorphism of the ring R (it is the same map as defined in Corollary 4).

Proof. We only have to prove the second statement. It is clear that α(ru,x1) = α(u,x1) ◦ ν(r,x).
Applying the automorphism Φ , we obtain α(π(ru),x1) = α(π(u),x1) ◦ ν(ϕ(r),x). Hence π(ru) =
ϕ(r)π(u). By Corollary 4, ϕ is an automorphism of the multiplicative monoid of the ring R.
Further, π((r + t)y1) = ϕ(r + t)y1 and π((r + t)y1) = π(ry1 + ty1) = ϕ(r)y1 + ϕ(t)y1. Hence
ϕ(r + t)y1 = (ϕ(r) + ϕ(t))y1, and we finally get ϕ(r + t) = ϕ(r) + ϕ(t). �

Let ϕ be an automorphism of the ring R. It can be extended to a twisted automorphism of
every free RF-module W for a group F as follows:

ϕWF

(
y

∑
g

rgg

)
= y

∑
g

ϕ(rg)g.

Definition 5. Consider the function assigning to every free representation (W,F, ·) the pair
(ϕWF,1F ) of permutations, where ϕWF is the twisted automorphism of W defined above and
1F is the identity on F . This function determines an automorphism of the category (Rep-R)0.
We call this automorphism the standard twisted automorphism determined by ϕ and denote it
by ϕ̂.
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4.5. Derived action

Now consider an action of the group F2 on the module W2. We assume that the ring R has no
zero divisors. The action is determined by the term y1 ·x1. The derived structure is determined by
the term y1 •x1 = π(y1 ·x1), and the permutation s = π ×ρ is an isomorphism of two structures.
Let ν(x,e) be the endomorphism of (W1,F1) defined as usual by ν(x,e)(1, x) = (x, e). We have

α(y1,x1) ◦ ν(x,e) = α(y1·x1,e).

We apply the automorphism Φ and obtain

α(y1,x1) ◦ ν(w,e) = α(y1•x1,e),

where w is an element of the group algebra RF1, that is, w = ∑
rix

i
1, i ∈ Z. Hence

y1 • x1 = y1 ·
∑

rix
i
1,

and for every u ∈ W2 and every g ∈ F2 the equality

u • g = u ·
∑

rig
i

holds.
Since the derived structure is isomorphic to the source one, we have y1 • e = y1 which gives∑
ri = 1. We write the associativity law of the derived action and obtain

(y1 • x1) • x2 = y1 • (x1x2),

if ρ is the identity map, and

(y1 • x1) • x2 = y1 • (x2x1),

if ρ is the mirror map. Consider the first case. We obtain the following identity in the variety of
all group representation:

(∑
rix

i
1

)(∑
rix

i
2

)
=

∑
ri(x1x2)

i .

Both sides of this equality can have only two pairs of common words: one of degree 0 and the
other of degree 2, say, x1x2. This implies ri = 0 for all i �= 1 and r1 = 1. Hence y1 • x1 = y1 · x1.

In the case where ρ is the mirror map, the same arguments lead to y1 • x1 = y1 · x−1
1 .

Corollary 5. Let u ∈ W2 and g ∈ F2. Then π(u · g) = π(u) · g if ρ is the identity, and π(u · g) =
π(u) · ḡ−1, if ρ is the mirror map.

Proof. By definition, π(u · g) = π(u) • ρ(g). Thus in the case ρ is the identity, we get the first
statement. If ρ is the mirror map, π(u) • ρ(g) = π(u) · ḡ−1. �
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Let us introduce a new kind of quasi-homomorphisms. For every free group F , the map g �→ ḡ

can be extended to a permutation of the group algebra RF as follows: rg = rḡ for every r ∈ R

and g ∈ F . In the same way, the map g �→ g−1 can be extended to RF. Clearly, these two maps
can be extended to every free RF-module W as follows: (yP )−1 = yP −1 for every free generator
y and P ∈ RF. We do the same for the map “bar.”

Definition 6. Let (W,F, ·) be a free representation. A pair δ = (δ(1), δ(2)), where δ(1)(w) = 	w−1

for w ∈ W and δ(2)(g) = ḡ for g ∈ F , is called a mirror automorphism of (W,F, ·). Assign-
ing to every free representation (W,F, ·) the mirror automorphism δWF , we obtain the mirror
automorphism Δ of the category (Rep-R)0.

4.6. Final

Let R be a ring without zero divisors. Similarly to the previous section, we can describe
the automorphisms of the category (Rep-R)0 taking the regular representation (W1,F1) to an
isomorphic one.

Theorem 7. Suppose that an automorphism Φ of (Rep-R)0 takes the regular representation
(W1,F1) to an isomorphic one. Then Φ can be represented in the form Φ = ϕ̂ ◦ Ψ or in the
form Φ = Δ ◦ ϕ̂ ◦ Ψ , where Ψ is inner and ϕ̂ is the standard twisted ϕ-automorphism for some
automorphism ϕ of the ring R determined by Φ .

Proof. Φ is a composition of an inner automorphism Ψ and an automorphism Φ1 fixing all
objects and their bases. According to Lemma 13, Φ1 determines an automorphism ϕ of the ring
R and hence the standard twisted automorphism ϕ̂ of our category. Then the automorphism
Γ = Φ1 ◦ ϕ̂−1 determines the identity automorphism of the ring R, and according to Corollary 5,
it is the identity automorphism or the mirror automorphism Δ. �

However, this description can be simplified. Indeed, consider the function c : (W,F, ·) �→ cWF

assigning to every free group representation (W,F, ·) the permutation cWF as follows:

cWF(w,g) = (
w,g−1)

for every w ∈ W and g ∈ F .

Lemma 14. The function c is central for the category (Rep-R)0, and every map cWF is an iso-
morphism of (W,F, ·) onto the derived structure (W,F ∗,•), where w • g = w · g−1 and F ∗ is
the group dual to F .

Proof. Let μ : (A,G, ·) → (B,H,∗) be a homomorphism in the category (Rep-R)0. For every
a ∈ A and g ∈ G we have:

μAG ◦ cAG(a, g) = μAG
(
a,g−1) = (

μ
(1)
AG(a),

(
μ

(2)
AG(g)

)−1)
= cBH

(
μ

(1)
AG(a),μ

(2)
AG(g)

) = cAG ◦ μBH(a, g).

Thus the function c is central for the category (Rep-R)0.
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Then, since the map c
(1)
WF is the identity and the map c

(2)
WF :g �→ g−1 is an isomorphism of the

group F onto the dual group F ∗, we only have to prove that cWF is a homomorphism with respect
to group actions. For every w ∈ W and g ∈ F we have: c

(1)
WF(w ·g) = w ·g = w •g−1 = c

(1)
WF(w)•

c
(2)
WF(g). Thus cWF is an isomorphism of (W,F, ·) onto the derived structure (W,F ∗,•). �

Applying Lemma 3, we obtain that the mirror automorphism Δ of the category (Rep-R)0 is
in fact inner. Thus the final description looks as follows.

Theorem 8. Suppose that an automorphism Φ of (Rep-R)0 takes the regular representation
(W1,F1) to an isomorphic one. Then Φ is a semi-inner automorphism, that is, it can be repre-
sented in the form Φ = ϕ̂ ◦ Ψ, where Ψ is inner and ϕ̂ is the standard twisted ϕ-automorphism
for some automorphism ϕ of the ring R.

The above description is given for the case when the automorphisms of (Rep-R)0 take the
regular representation to an isomorphic one. This property depends on the ring R. Since this
condition is satisfied if R is an infinite field K, all automorphisms of the category (Rep-K)0 are
semi-inner.
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