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Abstract

We study the interactions between Weil restriction for formal schemes and rigid varieties, Greenberg
schemes, and motivic Serre invariants, and their behavior with respect to finite extensions of the base ring R,
which is a complete discrete valuation ring with perfect residue field.
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1. Introduction

Let R be a complete discrete valuation ring, with quotient field K , and perfect residue field k.
We will study the interactions between Weil restriction for formal schemes and rigid vari-

eties, Greenberg schemes, and motivic Serre invariants, and their behavior with respect to finite
extensions of the base ring R. The basic definitions and properties are recalled in Section 2: in
Section 2.1, we gather the basic results on Weil restriction of formal schemes and rigid varieties,
and we establish some new elementary properties for later use. Section 2.2 contains the definition
of the Greenberg schemes, and lists their main properties. Because of the confusion that seems to
exist in literature, we spend some time on the study of the ring schemes Rn when R is absolutely
ramified. In Section 2.3, we briefly recall the definition of the motivic Serre invariant.
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Next, in Section 3, we study the behavior of Greenberg schemes under ramification of the
ring R. If X∞ is a stft (separated, topologically of finite type) formal scheme over R, its Green-
berg scheme GrR(X∞) is a k-scheme, generally of infinite type, that parametrizes the unramified
sections of X∞. When R′ is a finite extension of R, with residue field k′, we construct a canon-
ical closed immersion ιR

′
R of GrR(X∞) ×k k′ into GrR

′
(X∞ ×R R′) (Theorem 3.8). When R′ is

totally ramified over R, the Greenberg scheme GrR
′
(X∞ ×R R′) carries a natural action of the

Galois group G(K ′/K), where K ′ is the quotient field of R′. If K ′/K is Galois and tame, ιR
′

R

is an isomorphism from GrR(X∞) onto the fixed locus of GrR
′
(X∞ ×R R′) w.r.t. the action of

G(K ′/K) (Theorem 3.12).
Under the assumption that k is algebraically closed, we define the k-Ind-scheme of sections,

and the k-Ind-scheme of tame sections, as direct limits of the inductive systems of k-schemes
GrR

′
(X∞ ×R R′), where R′ runs over the finite (respectively finite and tame) extensions of R

inside a fixed separable closure of K , and where the transition maps are the morphisms ιR
′′

R′ ,
for R′ ⊂ R′′. The k-points on these Ind-schemes are in canonical bijective correspondence with
Xη(K

s), respectively Xη(K
t ), where Ks and Kt denote the separable, respectively tame closure

of K , and where Xη is the generic fiber of X∞.
Section 4 investigates the relation between Greenberg schemes and Weil restriction. If R′/R

is totally ramified of degree n, and Y∞ is a stft formal R′-scheme such that the Weil restriction
of Y∞ to R is representable by a stft formal R-scheme, we construct a canonical isomorphism
between the special fiber of this Weil restriction, and the Greenberg scheme GrR

′
n−1(Y∞) of length

n − 1 (Theorem 4.1).
Finally, in Section 5, we come to the main results of the paper: we show that the motivic Serre

invariant (of a formal R′-scheme, respectively a rigid K ′-variety) is stable under Weil restriction
with respect to any finite totally ramified extension R′/R (Section 5.3).

In analogy with the p-adic case, the motivic Serre invariant of a smooth separated quasi-
compact rigid variety over K was introduced in [16]. This notion was refined to define the motivic
Serre invariant of a generically smooth stft formal R-scheme X∞ in [19], assuming that the
generic fiber Xη has pure dimension. Here we generalize the definition of the motivic Serre
invariant of X∞ to the non-equidimensional case (Definition 5.2).

Roughly speaking (see [18] for more details about this point of view), the motivic Serre in-
variant of a smooth rigid variety serves as a measure for the “number” of unramified points on the
variety (which is infinite, in general). In this paper, we justify this point of view, by showing that
the motivic Serre invariant is stable under Weil restriction w.r.t. a finite totally ramified extension
(Theorem 5.16).

The idea behind the construction of the motivic Serre invariant is the following: let X∞ be a
stft formal R-scheme. Suppose that the generic fiber Xη of X∞ is smooth over K . By a process
of Néron smoothening, we can dominate X∞ by another model Y∞ of Xη, with the following
property: if K ′ is any finite unramified extension of K , then all K ′-points on Xη are contained
in the generic fiber of the R-smooth locus Sm(Y∞) of Y∞. Since Sm(Y∞) is smooth, its special
fiber is a good measure for the number of unramified points on its generic fiber. The class S(X∞)

of this special fiber in an appropriate Grothendieck ring only depends on X∞, and not on Y∞
(Theorem 5.4). It is called the motivic Serre invariant of X∞.

A certain specialization of S(X∞) (forgetting the Xs -structure) only depends on Xη; this is
the motivic Serre invariant S(Xη) of the separated smooth quasi-compact rigid K-variety Xη. We
will show that this construction makes sense for a broader class of rigid varieties: the bounded
separated smooth rigid varieties over K (Section 5.2), whose unramified points are concentrated
in a quasi-compact open subspace. This generalization is necessary because the category of
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smooth quasi-compact rigid varieties is not closed under Weil restriction; however, the Weil
restriction of such a rigid variety w.r.t. a finite extension of the base field will be bounded and
smooth.

Although all results in this paper are thematically intertwined, Section 3 is logically indepen-
dent of the subsequent sections. The results of Section 4 are used in the proof of Theorem 5.16.

Notation

Throughout this note, R denotes a complete discrete valuation ring, with residue field k, and
quotient field K . We suppose that k is perfect. We fix a generator π of the maximal ideal M

of R. For any integer n � 0, we denote by Rn the quotient R/(πn+1). We denote by Ksh the
strict henselization of K , and by Rsh the normalization of R in Ksh.

We say that a formal scheme over SpfR is tft if it is topologically of finite type over SpfR, and
stft if it is tft and separated over SpfR. For any stft formal R-scheme X∞, we denote by Xs its
special fiber (which is a separated scheme of finite type over k), and by Xη its generic fiber (which
is a separated quasi-compact rigid variety over the non-Archimedean field K). We say X∞ is
generically smooth if Xη is smooth over K . We denote by Sm(X∞) the smooth part of X∞
over R. For any integer n � 0, we put Xn := X∞ ×R Rn; this is a separated Rn-scheme of finite
type. In particular, X0 = Xs .

If S is a scheme, a S-variety is a reduced separated S-scheme of finite type. We denote by Sred

the underlying reduced scheme of S. We denote by (Sch/S) the category of schemes over S.
One can view any object of (Sch/S) as a presheaf on (Sch/S): by Yoneda’s lemma, the functor
from (Sch/S) to the category of presheaves on (Sch/S), mapping a S-scheme X to the presheaf
Y �→ HomS(Y,X), is a fully faithful embedding.

For any separated scheme X of finite type over a field F , we denote by K0(VarX) the
Grothendieck ring of varieties over Xred (see, for instance, [9, 2.3] for a definition). For any
separated scheme Y of finite type over X, we denote by [Y ] the class of Yred in K0(VarX). We
write LX for the class of the affine line [A1

X]. Finally, when X = Speck, we will write K0(Vark)

and L instead of K0(VarSpec k) and LSpeck .
We denote by (For/R) the category of separated formal schemes, topologically of finite type

over SpfR, and by (Rig/K) the category of separated rigid varieties over K . If X is a separated
K-scheme of finite type, we denote the associated rigid K-variety by Xan.

2. Preliminaries on Weil restriction, Greenberg transforms and motivic Serre invariants

In this section, we recall the definitions of these notions, and we establish some basic proper-
ties, which we need in the following sections.

2.1. Weil restriction

Let h : S′ → S be a morphism of schemes, and let X be a presheaf on (Sch/S′). In [13, p. 13],
the Weil restriction of X to S is defined as the presheaf

∏
′

X : (Sch/S) → (Sets) : T �→ X(T ×S S′).

S /S
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This construction defines the Weil restriction functor
∏

S′/S from the category of presheaves on
(Sch/S′) to the category of presheaves on (Sch/S).

If h is proper and flat, and X is a quasi-projective variety over S′, the presheaf
∏

S′/S X is
representable, by [14, p. 20].

Now let X be any scheme over S′, and suppose that for any point y on S and any finite set P

of points on the fiber Xy of X over y, the set P is contained in an affine open subscheme of X.
If h is finite and locally free, the Weil restriction of X to S is still representable (see [4, 7.6.4]).
The following lemma is well known. A proof can be found in [17, 3.3.36(b)]. The second author
would like to thank Qing Liu for this reference.

Lemma 2.1. Let X be a quasi-projective variety over k. Any finite set P of points on X is
contained in some affine open subscheme of X.

One can also define Weil restriction for the categories (For/R) and (Rig/K), as was done
in [1] and [2]. We establish some elementary properties of the restriction functor, which will be
of use later on.

Definition 2.2. We will say a formal stft scheme X∞ over SpfR is nice, if any finite set of
points on X∞ is contained in an affine open formal subscheme of X∞. We say that a separated
quasi-compact rigid space Xη over K is nice, if it admits a nice model X∞ over R.

In particular, the formal completion of a quasi-projective variety X/R is nice, by Lemma 2.1.
If X∞ is a stft formal R-scheme, an admissible blow-up Y∞ → X∞ is the formal blow-up of

an ideal sheaf I on X∞ which contains a power of π .

Lemma 2.3. If X∞ is a nice stft formal R-scheme, and Y∞ → X∞ is any admissible blow-up,
then Y∞ is a nice stft formal R-scheme.

Proof. We may assume that X∞ is affine, i.e. X∞ = SpfA. Let I = (f1, . . . , fm,πa) be an open
ideal of A, and let Y∞ be the admissible formal blow-up of X∞ with center I . The special fiber
of Y∞ is isomorphic to the special fiber of the blow-up Y ′ of SpecA with center I . The blow-up
scheme Y ′ is a closed subscheme of P

m
A , so it suffices to prove that any finite set of points on the

special fiber of P
m
A is contained in an affine open subscheme. This follows from Lemma 2.1. �

The following proposition follows immediately from the results in [2]. Our definition of a
nice formal scheme is there called condition (PFor) on p. 441, while our definition of a nice rigid
variety is stronger than condition (Prig) on p. 452, by the remark on p. 453.

Proposition 2.4. Let K ′ be a finite extension of K , and let R′ be the normalization of R in K ′.
Let X∞ be a nice stft formal scheme over SpfR′.

(1) The direct limit of locally ringed spaces

lim−→
n

∏
(R′/πn+1)/Rn

X∞ ×R′
(
R′/πn+1)

is a stft formal R-scheme, and represents the functor
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∏
R′/R

X∞ : (For/R)op → (Sets) : Y∞ �→ Hom(Y∞ ×R R′,X∞).

We call it the Weil restriction of X∞ to SpfR.
(2) The functor

∏
K ′/K

Xη : (Rig/K)op → (Sets) : Yη �→ Hom(Yη ×K K ′,Xη)

is representable by a separated rigid space over K . We call it the Weil restriction of Xη to K .
(3) There is a canonical open immersion

( ∏
R′/R

X∞
)

η

↪→
∏

K ′/K
Xη.

Proof. Since R′/R is finite and free, these properties follow from [2, 1.3-4-5-9-16-22]. �
Remark. In general, taking generic fibers does not commute with Weil restriction, i.e. the open
embedding

( ∏
R′/R

X∞
)

η

↪→
∏

K ′/K
Xη

is not an isomorphism. A counter-example is given in [2, p. 442]. Let us give a more elementary
one: take R = k[[t]], where k is any field of characteristic �= 2, take R′ = k[[√t ]], and consider
X∞ := SpfR′{x}/(x2 − t). Let Y∞ → X∞ be the admissible blow-up of the ideal (x,

√
t ). Of

course, this blow-up induces an isomorphism on the generic fibers. However, direct computation
shows that (

∏
R′/R Y∞)η consists of two K-points, while (

∏
R′/R X∞)η consists of two K-points

and a K ′-point.

Now we prove some basic properties of the Weil restriction functor which are crucial for the
applications in this article.

Proposition 2.5. Let K ′ be a finite extension of K , and let R′ be the normalization of R in K ′.
Let X∞ be a nice stft formal scheme over SpfR′.

(1) The functors
∏

R′/R and
∏

K ′/K respect (open, closed ) immersions.
(2) If X∞ is smooth, then so is

∏
R′/R X∞. If Xη is smooth, then so are

∏
K ′/K Xη and

(
∏

R′/R X∞)η .
(3) If K ′/K is separable, then

∏
K ′/K Xη is quasi-compact.

(4) The canonical open immersion (
∏

R′/R X∞)η ↪→ ∏
K ′/K Xη induces a bijection

(
∏

R′/R X∞)η(L) = (
∏

K ′/K Xη)(L) for any finite unramified extension L of K .
(5) If K ′/K is unramified, then the canonical open immersion (

∏
R′/R X∞)η ↪→ ∏

K ′/K Xη is
an isomorphism.
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(6) If Y∞ is a nice stft formal scheme over SpfR′, and Y∞ → X∞ is a morphism of formal R′-
schemes that induces an open embedding Yη ↪→ Xη on the generic fibers, then the induced
morphism (

∏
R′/R Y∞)η → (

∏
R′/R X∞)η is an open embedding.

(7) If X is a separated K ′-scheme of finite type such that any finite set of points of X is contained
in an open affine subscheme, then the functor

∏
K ′/K Xan is represented by the rigid K-

variety (
∏

K ′/K X)an.

Proof. (1) See [1, 1.3.3] and [1, 2.1].
(2) Since R′/R is finite and free,

∏
R′/R X∞ is smooth if X∞ is, by [2, 1.5]. If Xη is smooth,

then
∏

K ′/K Xη is smooth, by [1, 1.1.6], and so is (
∏

R′/R X∞)η , by the canonical open embed-
ding

( ∏
R′/R

X∞
)

η

↪→
∏

K ′/K
Xη.

(3) In the affinoid case, this follows from [2, 1.8.iii]. The general case is deduced by using
[2, 1.13].

(4) Denote by RL the normalization of R in L. Since RL/R is unramified, the spectrum
of R′ ⊗R RL is a disjoint union

⊔
i SpecRi , with Ri a complete discrete valuation ring, finite

and unramified over R′ (see, for instance, [15, 6.1]). Moreover, RL ⊗R K ′ = L ⊗K K ′. Hence,
X∞(R′ ⊗R RL) = Xη(K

′ ⊗K L), and by the definition of the Weil restriction functor,

( ∏
R′/R

X∞
)

η

(L) =
( ∏

R′/R
X∞

)(
RL

) = X∞
(
R′ ⊗R RL

) = Xη(K
′ ⊗K L) =

( ∏
K ′/K

Xη

)
(L).

(5) Since

( ∏
R′/R

X∞
)

η

↪→
∏

K ′/K
Xη

is an open embedding, it is sufficient to check that it induces a bijection on the underlying sets,
i.e. on L-valued points with L a finite extension of K . Now one can copy the arguments from (4),
interchanging the roles of K ′ and L.

(6) By (1), we get an open embedding
∏

K ′/K Yη ↪→ ∏
K ′/K Xη. Since the open embeddings

( ∏
R′/R

X∞
)

η

↪→
∏

K ′/K
Xη and

( ∏
R′/R

Y∞
)

η

↪→
∏

K ′/K
Yη

are canonical, we get a commutative diagram

(
∏

R′/R Y∞)η (
∏

R′/R X∞)η

∏
K ′/K Yη

∏
K ′/K Xη.
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This implies that the induced morphism (
∏

R′/R Y∞)η → (
∏

R′/R X∞)η is an open embedding.
(7) This is a special case of [2, 1.19]. �

2.2. Greenberg transforms

In this section, we recall the construction of the Greenberg schemes associated to a stft for-
mal R-scheme, as defined in [11], and we will establish certain properties we will need in the
remainder of this article.

First, we recall the construction of the ring schemes Rn associated to the Artin local rings Rn

in [11]. If R has equal characteristic, then R is (non-canonically) an algebra over k, isomorphic
to k[[π]] (see [22, II, §4]), and Rn is simply the ring k-scheme representing the functor

Rn : (k-algebras) → (rings) : A �→ A ⊗k Rn.

It depends on the chosen k-algebra structure on R.
If R has mixed characteristic and is absolutely unramified, then R is canonically isomorphic

to the ring of Witt vectors W(k), by [22, II§5, Theorem 4], and Rn is the ring k-scheme Wn+1 of
Witt vectors of length n + 1.

Finally, we consider the case where R is of mixed characteristic and absolutely ramified with
index e. Due to the confusion that seems to exist in literature, we do so with extra care. There
exists a canonical injection of rings W(k) → R which makes R into a W(k)-algebra, free of
rank e as a W(k)-module [22, II§5, Theorem 4]. In fact, R is isomorphic to W(k)[π]/(p(π)),
where p(π) is an Eisenstein polynomial

p(π) = πe + a1π
e−1 + · · · + ae

over W(k) of degree e. The ring Rn has characteristic pm, with p the characteristic of k and
m = �(n + 1)/e� the smallest integer bigger than or equal to (n + 1)/e. Hence, Rn becomes a
finite algebra over Wm(k). As a Wm(k)-module, it can be written as an internal direct sum

Rn = Wm(k).e1(π) ⊕ · · · ⊕ Wm(k).er (π)

for some polynomials ei(π) over W(k) of degree < e, and the multiplication in Rn is defined by
the rules p(π) = 0 and πn+1 = 0. Each component Wm(k) · ei(π) is isomorphic to Wni

(k), for
some integer ni � m, and n + 1 = n1 + · · · + nr . Considering the Witt coordinates on each
of these rings Wni

(k), we obtain the affine space A
n+1
k endowed with the rules of addition

and multiplication defined by this presentation; this is by definition the ring scheme Rn (see
[11, Proposition 4]), which does not depend on the chosen presentation.

Let A be a perfect k-algebra, and consider the map

Ψ
(n)
A : Rn(A) → Wm(A) ⊗Wm(k) Rn

mapping the point

(a1,0, . . . , a1,n1−1, . . . , ar,0, . . . , ar,nr−1) ∈ An1+···+nr

to
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r∑
i=1

ni∑
j=0

τ
(
a

p−j

i,j

)
pjei(π)

where τ : A → Wm(A) is the Teichmüller character. It is clear from the definition of the ring
scheme Rn that this map is a morphism of rings, and that it does not depend on the chosen
presentation for Rn (i.e. the choice of e1(π), . . . , er (π)).

Lemma 2.6. If A is a perfect k-algebra, then the map

Ψ
(n)
A : Rn(A) → Wm(A) ⊗Wm(k) Rn

is an isomorphism, and Wm(A) ⊗Wm(k) Rn is canonically isomorphic to W(A) ⊗W(k) Rn.

Proof. Since A is perfect, Wa(A) ∼= W(A)/(pa), and W(A)⊗W(k) Wa(k) is canonically isomor-
phic to Wa(A) for each integer a > 0.

Therefore, Wm(A) ⊗Wm(k) Rn can be written as an internal direct sum

Wm(A) · e1(π) ⊕ · · · ⊕ Wm(A) · er(π)

and Wm(A)ei(π) ∼= Wni
(A) for each i. Hence, Ψ

(n)
A is an isomorphism. �

However, such an isomorphism Rn(A) ∼= W(A) ⊗W(k) Rn does not need to exist if A is not
supposed to be perfect. Let us consider an easy example: take n = 0, i.e. Rn = k. In this case, Rn

is simply the affine line A
1
k , even as a ring scheme, and Rn(A) = A for any k-algebra A. On the

other hand,

W(A) ⊗W(k) Rn = W(A)/(p)

and this ring is not necessarily isomorphic to A if A is not perfect, since p · W(A) consists of
the Witt vectors of the form (0, a

p

1 , a
p

2 , . . .) with ai ∈ A (such an isomorphism would yield an
endomorphism

A ∼= W(A)/p · W(A) → W(A)/W1(A) ∼= A

which is surjective but not injective, which is impossible if A is a field). This example contradicts
[4, §9.6].

One might be tempted to expect that Rn(A) = Wm(A) ⊗Wm(k) Rn, with m as before. Let us
give another example to show that this does not hold either. Put R = W(k)[π]/(π2 −p) and take
n = 2. Then m = 2, and

Rn = W2(k) · 1 ⊕ W2(k) · π

as a W2(k)-module (internal direct sum). The relations π3 = 0 and π2 −p = 0 impose π · p = 0,
such that W2(k) ·π is isomorphic to W1(k). The ring scheme Rn is given by A

3
k with the follow-

ing operations:
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• Addition:

(x0, x1, x2) + (y0, y1, y2) = (
x0 + y0, x1 + y1 − (

(x0)
p + (y0)

p − (x0 + y0)
p
)
/p,x2 + y2

)
.

• Multiplication:

(x0, x1, x2) · (y0, y1, y2) = (
x0 · y0, (x0)

p · y1 + (y0)
p · x1 + (x2 · y2)

p, x0 · y2 + x2 · y0
)
.

For any k-algebra A, we have Rn(A) = W2(A) ⊕ A with componentwise addition, and where
multiplication is defined by the rule (a, b) · (a′, b′) = (a · a′ + pb · b′, ab′ + a′b).

If A is not perfect, then the natural map

W2(A) ⊗W2(k) R2 ∼= W2(A)[π]/(π2 − p,p · π) → R2(A)

is not an isomorphism in general, since W2(A)/(p) �= W1(A).
In any of the above cases, as a scheme, Rn is isomorphic to the affine space A

n+1
k , but the ring

structure can be fairly complicated (especially in the absolutely ramified case). The ring Rn(k)

is canonically isomorphic to Rn. Hence, for any k-algebra A, Rn(A) is a Rn-algebra in a natural
way.

The construction in [11] of the ring scheme S associated to an Artin local ring S is functorial
in S: let ϕ : S′ → S be a morphism of Artin local rings with the same residue field k. Assume
that ϕ respects the chosen k-algebra structures if S, S′ have equal characteristic, and that ϕ

induces the identity on k if S, S′ have mixed characteristic. Then ϕ induces a natural k-morphism
of associated ring schemes S ′ → S ; see [12, p. 1]. Moreover, it is easy to see that R ′

n
∼=

Rn ×k k′ for any n � 0, if R′ is an unramified extension of R with perfect residue field k′.
Hence, if R′ is a finite extension of R, of ramification index d , and with residue field k′, then, for
all n ∈ N, the natural morphism of rings Rn−1 → R′

nd−1 induces canonically a k′-morphism of
ring schemes:

Rn−1 ×k k′ → R ′
nd−1

which is the composition of the canonical isomorphism Ro
n−1

∼= Rn−1 ×k k′ (with Ro the
maximal unramified extension of R in R′) and the morphism Ro

n−1 → Rnd−1 induced by the
morphism of Artin local rings Ro

n−1 → R′
nd−1.

Lemma 2.7. Assume that R has mixed characteristic. Suppose that R′ is a finite, totally ramified
extension of R, of degree d . Fix a couple of integers n,q � 1 such that either q = 1 and n � d ,
or n = d . For any k-algebra A, there is a canonical isomorphism of R′

nq−1-algebras

R ′
nq−1(A) ∼= Rq−1(A) ⊗Rq−1 R′

nq−1.

In particular, if e is the absolute ramification index of R′ and 0 < n � e, we get a canonical
isomorphism

R ′
n−1(A) ∼= A ⊗k R′

n−1.
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Proof. We only have to prove the result when n > 1. Note that both R′
nq−1 and Rq−1 have

characteristic pm with p the characteristic of k and

m = �nq/de� = �q/e�.
Choose elements e1, . . . , er in Rq−1 such that Rq−1 can be written (as a Wm(k)-module) as

an internal direct sum

Rq−1 = Wm(k) · e1 ⊕ · · · ⊕ Wm(k) · er .

Now we fix a uniformizing element π ′ in R′; this choice yields an isomorphism R′ ∼=
R[π ′]/(p(π ′)) with p(π ′) an Eisenstein polynomial of degree d over R. It follows from our
assumptions that R′

nq−1 is a free module over Rq−1, and that 1,π ′, . . . , (π ′)n−1 is a basis (this
is obvious if q = 1, since then Rq−1 = k; in the other case n = d , it follows from the fact that
1,π ′, . . . , (π ′)n−1 is a basis for R′ over R and that R′

nq−1
∼= R′ ⊗R Rq−1). Hence, R′

qn−1 can be
written (as a Wm(k)-module) as an internal direct sum

R′
qn−1 =

⊕
i=1,...,r;j=0,...,n−1

Wm(k) · ei · (π ′)j

with

Wm(k) · ei
∼= Wm(k) · ei · (π ′)j

for all i, j . This shows that

R ′
nq−1(A) ∼= Rq−1(A)[π ′]/(p(π ′), (π ′)nq

) ∼= Rq−1(A) ⊗Rq−1 R′
nq−1

for any k-algebra A. �
Consider the functor hR

n from the category of k-schemes to the category of Spec(Rn)-locally
ringed spaces, defined by:

T �→ (
T ,Homk(T ,Rn)

)
,

the locally ringed space of germs of k-morphisms from T to Rn. Since Rn(k) = Rn, we see
that hR

n (T ) is a locally ringed space in Rn-algebras in a natural way. If T = SpecA is affine, we
have hR

n (T ) = SpecRn(A) by [12, Proposition 1], so hR
n (T ) is a scheme for any T . If R has

equal characteristic, then hR
n (T ) is canonically isomorphic to T ×k Rn. The following statement

follows from the Theorem in [11, §4], and from [4, §7.6]:

Definition 2.8. Let Y be a separated Rn-scheme of finite type. The functor

(Sch/k)op → (Sets) :T �→ HomRn

(
hR

n (T ),Y
)
,

is representable by a separated k-scheme of finite type GrRn (Y ). This construction defines a func-
tor GrRn from the category of separated Rn-schemes of finite type, to the category of separated
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k-schemes of finite type. The functor GrRn is called the Greenberg transform of length n, and the
k-scheme GrRn (Y ) is called the Greenberg scheme (of length n) associated to Y .

If X∞ is a formal R-scheme topologically of finite type, we put

GrRn (X∞) := GrRn (Xn).

Remark. When R is a ring of equal characteristic, the Greenberg transform GrRn is nothing but
the Weil restriction functor

∏
Rn/k .

For any pair of integers m � n � 0, and any stft formal R-scheme X∞, the truncation mor-
phism Rm → Rn induces a canonical truncation morphism

θm
n : GrRm(X∞) → GrRn (X∞).

These truncation morphisms are affine (since the construction of the Greenberg scheme is local
on X∞ and GrRn (X∞) is affine if X∞ is affine; see [21, 3.1.1]). Hence, we can take the projective
limit

GrR(X∞) := lim←−
n

GrRn (X∞)

in the category of k-schemes. This k-scheme GrR(X∞) is called the Greenberg scheme associ-
ated to X∞. It is not of finite type, in general. We obtain a functor GrR from the category of stft
formal R-schemes to the category of separated k-schemes, called the Greenberg transform (of
length ∞).

Remark. In this paper, contrary to [21], we do not endow the Greenberg schemes with their re-
duced structure. Observe that these constructions depend on R: if R′ is a finite ramified extension
of R, then GrR(SpfR′) = ∅, while GrR

′
(SpfR′) is a point.

2.3. Motivic Serre invariants

Let Xη be a separated smooth rigid K-variety. A weak Néron R-model for Xη is a smooth
stft formal R-scheme U∞, endowed with an open embedding Uη → Xη, such that the natural
map U∞(Rsh) → Xη(K

sh) is bijective [6, 1.3]. If Xη is quasi-compact, then such a weak Néron
model always exists, by [6, 3.1].

Definition 2.9. Let X∞ be a generically smooth, stft formal R-scheme. We say that a morphism
of stft formal R-schemes U∞ → X∞ is a weak Néron R-smoothening, if it has the following
properties:

(1) the induced morphism Uη → Xη is an open embedding,
(2) U∞ is a weak Néron R-model for Xη (w.r.t. this open embedding).
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For any generically smooth stft formal R-scheme, there exists an admissible blow-up X′∞ →
X∞ such that Sm(X′∞) → X∞ is a weak Néron R-smoothening, by [6, 3.1].

Definition 2.10. If X∞ is a generically smooth, stft formal R-scheme, of pure relative dimension,
and U∞ → X∞ is a weak Néron R-smoothening, then we define the motivic Serre invariant
S(X∞) of X∞ by

S(X∞) := [Us] ∈ K0(VarXs )/
(
LXs − [Xs]

)
.

This definition does not depend on the choice of weak Néron smoothening, by [19, Proposi-
tion 6.11]. If Y∞ → X∞ is a morphism of generically smooth, stft formal R-schemes, inducing
an isomorphism on the generic fibers, the forgetful morphism

K0(VarYs )/
(
LYs − [Ys]

) → K0(VarXs )/
(
LXs − [Xs]

)
maps S(Y∞) to S(X∞) (this applies in particular to the case where Y∞ is the maximal flat closed
formal subscheme of X∞, i.e. the closed subscheme of X∞ defined by the π -torsion ideal).
Moreover, the image of S(X∞) under the forgetful morphism

K0(VarXs )/
(
LXs − [Xs]

) → K0(Vark)/(L − 1)

is the motivic Serre invariant S(Xη) introduced in [16]. It only depends on the generic fiber Xη

of X∞.

3. Greenberg schemes and ramification

In this section, we study the behavior of the Greenberg transform under extensions of the
complete discrete valuation ring R.

3.1. A direct system of closed immersions

The main result of this section is the following statement:

Theorem 3.1. Let n � 1 be an integer. Let R′ be a finite extension of R, of ramification index e.
We denote the residue field of R′ by k′. Let X be a Rn−1-scheme of finite type and X′ := X ×Rn−1

R′
ne−1 the R′

ne−1-scheme obtained by base change. Then the morphism Rn−1 → R′
ne−1 induces

a canonical morphism of k′-schemes

(
ιR

′
R

)
n

: GrRn−1(X) ×k k′ → GrR
′

ne−1(X
′).

This morphism (ιR
′

R )n is a closed immersion.

The proof of this theorem follows after Lemma 3.6. We need several preliminary results. First,
we construct the morphism (ιR

′
)n.
R
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Lemma 3.2. We keep the notations of Theorem 3.1. The morphism Rn−1 → R′
ne−1 induces a

canonical morphism of k′-schemes:

(
ιR

′
R

)
n

: GrRn−1(X) ×k k′ → GrR
′

ne−1(X
′).

Proof. For simplicity, we will write ιn instead of (ιR
′

R )n. By Yoneda’s lemma, it suffices to con-
struct a natural map

Homk′
(
T ,GrRn−1(X) ×k k′) → Homk′

(
T ,Grne−1(X

′)
)

for any k′-scheme T . So, by definition of the Greenberg schemes, it suffices to construct a natural
map ιn from HomRn−1(h

R
n−1(T ),X) to

HomR′
ne−1

(
hR′

ne−1(T ),X ×Rn−1 R′
ne−1

) � HomRn−1

(
hR′

ne−1(T ),X
)

for any k′-scheme T .
As we observed right before Lemma 2.7, the natural morphism Rn−1 → R′

ne−1 induces a
natural k′-morphism of ring schemes Rn−1 ×k k′ → R ′

ne−1 and hence, by definition of the func-
tors hR

n , a natural Rn−1-morphism of locally ringed spaces

in : hR′
ne−1(T ) → hR

n−1(T ).

Now the map ιn is obtained by composition. �
Proposition 3.3. We keep the notation of Theorem 3.1. If R′ is unramified over R, the
k′-morphism (ιR

′
R )n is a k′-isomorphism of schemes.

Proof. We noted in the paragraph preceding Lemma 2.7 that there exists a canonical isomor-
phism R ′

n
∼= Rn ×k k′ for all n � 0, so the morphism in : hR′

n−1(T ) → hR
n−1(T ) constructed in the

proof of Lemma 3.2 is an isomorphism. �
Lemma 3.4. We keep the notation of Theorem 3.1. The construction of the k′-morphism (ιR

′
R )n

is functorial in X in the following sense: if f : Y → X is a morphism of Rn−1-schemes of finite
type, and if we denote by Y ′ the base change Y ×Rn−1 R′

ne−1, then the square

GrRn−1(Y ) ×k k′ (ιR
′

R )n

GrRn−1(f )

GrR
′

ne−1(Y
′)

GrR
′

ne−1(f )

GrRn−1(X) ×k k′ (ιR
′

R )n

GrR
′

ne−1(X
′)

commutes.

Proof. This follows immediately from Yoneda’s lemma and adjunction properties. �
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Lemma 3.5. We keep the notations of Theorem 3.1. Suppose that R′ is totally ramified over R.
The k-morphism (ιR

′
R )n constructed in Lemma 3.2 is a closed immersion.

Proof. Since being a closed immersion is a local property, we can suppose that X is an affine
Rn−1-scheme of finite type. Consider a closed immersion X ↪→ AN

Rn−1
. By Lemma 3.4, we have

a commutative diagram

GrRn−1(X) GrR
′

ne−1(X
′)

GrRn−1(A
N
Rn−1

)
(ιR

′
R )n

GrR
′

ne−1(A
N
R′

ne−1
)

where the vertical arrows are closed immersions, by [11, §4, Corollary 2]. Hence, we may assume
that X = AN

Rn−1
. In this case, we can give an explicit description of the morphism (ιR

′
R )n. By the

description of the ring scheme Rn at the beginning of Section 2.2 and the proof of Lemma 2.7,
there exist isomorphisms

GrRn−1

(
AN

Rn−1

) ∼= Speck
[
(Xi,j )1�i�N;j=0,...,n−1

]
,

GrRne−1

(
AN

R′
ne−1

) ∼= Speck
[
(Yi,j )1�i�N;j=0,...,ne−1

]
such that the morphism (ιR

′
R )n is induced by the morphism of k-algebras

k
[
(Yi,j )1�i�N;j=0,...,ne−1

] → k
[
(Xi,j )1�i�N;j=0,...,n−1

]
mapping Yi,j to Xi,j/e if e divides j , and to zero else. This morphism is clearly surjective. �
Lemma 3.6. We keep the notations of Theorem 3.1. The construction of the k′-morphism (ιR

′
R )n

is functorial in the extension R′/R in the following sense: if R′′ is a finite extension of R′ of
ramification index e′, and if we denote by k′′ the residue field of R′′, then

(
ιR

′′
R

)
n

= (
ιR

′′
R′

)
ne

◦ ((
ιR

′
R

)
n
×k′ k′′).

Proof. By construction of the morphism (ιR
′

R )n, it suffices to show that, for any k′′-scheme T ,
the composition

hR′′
nee′−1(T ) → hR′

ne−1(T ) → hR
n−1(T )

coincides with the natural map

hR′′
nee′−1(T ) → hR

n−1(T ).

This follows at once from the fact that the composition Rn−1 → R′
ne−1 → R′′

nee′−1 coincides
with Rn−1 → R′′ ′ . �
nee −1
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Proof of Theorem 3.1. Let Ro be the maximal unramified extension of R in R′. The result
follows from Lemmas 3.3, 3.5, and 3.6, applied to the tower R′/Ro/R. �
Lemma 3.7. We keep the notations of Theorem 3.1. Consider a stft formal R-scheme X∞, and
denote by X′∞ the base change X∞ ×R R′. For any pair of integers m � n � 1, the square

GrRm−1(X∞) ×k k′ (ι
R′
R )m

θm−1
n−1

GrR
′

me−1(X
′∞)

θme−1
ne−1

GrRn−1(X∞) ×k k′ (ιR
′

R )n

GrR
′

ne−1(X
′∞)

commutes.

Proof. This follows from the construction of the morphism (ιR
′

R )n, and the commutativity of the
square

Rm−1 R′
me−1

Rn−1 R′
ne−1 �

Theorem 3.8. Let X∞ be a stft formal R-scheme, let R′ be finite extension of R, with residue
field k′, and denote by X′∞ the base change X∞ ×R R′.

(1) The morphisms (ιR
′

R )n induce a canonical morphism of k′-schemes

ιR
′

R : GrR(X∞) ×k k′ → GrR
′(
X′∞

)
.

(2) The morphism ιR
′

R is a closed immersion.

(3) If R′ is unramified over R, the morphism ιR
′

R is an isomorphism.

(4) The construction of the k′-morphism ιR
′

R is functorial in X∞ in the following sense: if
f : Y∞ → X∞ is a morphism of stft formal R-schemes, and if we denote by Y ′∞ the base
change Y∞ ×R R′, then the square

GrR(Y∞) ×k k′ ιR
′

R

GrR(f )

GrR
′
(Y ′∞)

GrR
′
(f )

GrR(X∞) ×k k′ ιR
′

R

GrR
′
(X′∞)

commutes.
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(5) The construction of the k′-morphism ιR
′

R is functorial in the extension R′/R in the following
sense: if R′′ is a finite extension of R′, and if we denote by k′′ the residue field of R′′, then

ιR
′′

R = ιR
′′

R′ ◦ (
ιR

′
R ×k′ k′′).

Proof. The existence of ιR
′

R follows from Lemma 3.7. Point (3), (4) and (5) follow immediately
from the corresponding statements for the truncations (ιR

′
R )n.

To prove that ιR
′

R is a closed immersion, we may assume that X∞ is affine; then GrRn (X∞)

and GrR
′

n (X∞) are affine for all n, and the result follows from the fact that the direct limit of an
inductive system of surjective ring morphisms An → Bn is again surjective, by exactness of the
direct limit functor. �
3.2. Galois action on the Greenberg scheme

Let K ′ be a totally ramified extension of K , of degree e, and denote by R′ the normalization
of R in K ′. Let X∞ be a stft formal R-scheme, and denote by X′∞ the base change X∞ ×R R′.

By functoriality, the action of the Galois group G = G(K ′/K) on R′
ne−1 over Rn−1 induces

an action of G on the ring scheme R ′
ne−1 over Rn−1, for any n > 0.

Lemma 3.9. Suppose that K ′/K is tame and Galois, with group G. For any integer n � 1, and
any k-algebra A, there is a canonical isomorphism

Rn−1(A) ∼= (
R ′

ne−1(A)
)G

.

Proof. Since K ′/K is tame, K ′ is of the form K ′ ∼= K[T ]/(T e − ρ), with ρ a uniformizing
element in K , and G = μe(R) = μe(k) acts by multiplication on T . Let ξ be a primitive eth root
of unity in R.

We have

R ′
ne−1(A) ∼= Rn−1(A) ⊗Rn−1 R′

ne−1

by Lemma 2.7. Hence, R ′
ne−1(A) is free over Rn−1(A), with basis 1, T , . . . , T e−1, and any

element a of R ′
ne−1(A) can be written in a unique way as a = ∑e−1

i=0 aiT
i with ai ∈ Rn−1(A).

The image of a under the action of ξ is given by ξ · a = ∑e−1
i=0 ξ iaiT

i , so it suffices to show that
(1 − ξ i) is invertible in R for 0 < i < e. However, reduction modulo ρ yields an isomorphism
between μe(R) and μe(k), so in particular, (1 − ξ i) /∈ (ρ) for 0 < i < e. �
Remark. Lemma 3.9 is false without the tameness condition. Consider, for example, the exten-
sion R′ = Z2[T ]/(T 2 − 2) of the ring of 2-adic integers Z2. The extension K ′/K is Galois,
and its Galois group G = Z/2Z acts by T �→ −T . Putting n = 1, we get Rn−1 = F2 and
R′

ne−1 = F2[T ]/(T 2), and we see that G acts trivially on R′
ne−1.

The main result of this subsection is the following:

Theorem 3.10. For any integer n � 0, the Greenberg scheme GrR
′

n (X′∞) carries a natural action
of the Galois group G = G(K ′/K). The functor of fixed points
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(Sch/k)op → (Sets) : T → (
GrR

′
n

(
X′∞

)
(T )

)G

is representable by a closed subscheme GrR
′

n (X′∞)G of GrR
′

n (X′∞). Moreover, for n � 1, the
morphism (ιR

′
R )n : GrRn−1(X∞) → GrR

′
ne−1(X

′∞) factors through a closed immersion

GrRn−1(X∞) → (
GrR

′
ne−1

(
X′∞

))G

and this is an isomorphism if K ′/K is tame and Galois.

Proof. First, we construct the natural action of G on GrR
′

n (X′∞). By Yoneda’s lemma, it suffices
to construct a natural G-action on Homk(T ,GrR

′
n (X′∞)), for any k-scheme T . By definition,

Homk

(
T ,GrR

′
n

(
X′∞

)) = HomR′
n

(
hR′

n (T ),X′
n

) = HomRm

(
hR′

n (T ),Xm

)
for any integer m � 0 with (m+ 1)e � n+ 1. Hence, it suffices to construct a canonical action of
G on the locally ringed space in Rm-algebras hR′

n (T ). This action is induced from the G-action
on R′

n over Rm, via the resulting action of G on R ′
n over Rm.

The functor of fixed points is representable by a closed subscheme GrR
′

n (X′∞)G of GrR
′

n (X′∞),
by [10, 3.1].

For any k-algebra A, and any integer n � 1, the closed embedding

(
ιR

′
R

)
n

: GrRn−1(X∞) → GrR
′

ne−1

(
X′∞

)
induces a map

Xn−1
(
Rn−1(A)

) = GrRn−1(X∞)(A) → GrR
′

ne−1

(
X′∞

)
(A) = X′

ne−1

(
R ′

ne−1(A)
)

whose image is invariant under the action of G by Lemma 2.7. Hence, (ιR
′

R )n factors through a
closed immersion

(
ιR

′
R

)
n

: GrRn−1(X∞) → GrR
′

ne−1

(
X′∞

)G
.

If K ′/K is tame and Galois, then this map is an isomorphism by Lemma 3.9. �
Proposition 3.11. For any pair of integers m � n � 0, the G = G(K ′/K)-action on GrR

′
n (X′∞) is

compatible with the truncations θm
n , i.e. for any element g of G, and any k-scheme T , the square

GrR
′

m (X′∞)(T )
g

θm
n

GrR
′

m (X′∞)(T )

θm
n

GrR
′

n (X′∞)(T )
g

GrR
′

n (X′∞)(T )

commutes.
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Proof. This follows from the fact that the square

R′
m

g
R′

m

R′
n

g
R′

n

commutes. �
Hence, our constructions pass to the limit n = ∞, and we get the following result.

Theorem 3.12. The G = G(K ′/K)-action on the schemes GrR
′

n (X′∞) induces a natural G-action
on GrR

′
(X′∞). The functor of fixed points

(Sch/k)op → (Sets) : T → (
GrR

′(
X′∞

)
(T )

)G

is representable by a closed subscheme GrR
′
(X′∞)G of GrR

′
(X′∞). Moreover, if n � 1 and K ′/K

is tame and Galois, then ιR
′

R is an isomorphism from GrR(X∞) onto (GrR
′
(X∞))G.

Proof. We only have to prove that the natural map

GrR
′(
X′∞

)G → lim←−
(
GrR

′
n

(
X′∞

)G)
is an isomorphism. This follows from Lemma 3.13 below. �
Lemma 3.13. Let Y• = (Yi)i∈N be an inverse system of k-schemes, and suppose that the projec-
tive limit Y of the system Y• exists in the category of k-schemes. Let G be a finite group acting
on Yi for each i, such that the transition morphisms of Y• are equivariant. If we consider the
induced G-action on Y , then there exists a canonical isomorphism of Y -schemes

(
YG → Y

) ∼=
(

lim←−
i

(
YG

i

) → lim←−
i

Yi = Y
)
.

Proof. Since the functor (.)G has a left adjoint (endowing a scheme with the trivial G-action), it
commutes with projective limits. �
3.3. The Ind-scheme of sections

For simplicity, we suppose that k is algebraically closed. We denote by Ks a separable closure
of K , and by Kt the maximal tamely ramified extension of K in Ks .

We denote by R the directed set of finite extensions of R in Ks , ordered by inclusion. Like-
wise, we denote by Rt the directed set of finite, tamely ramified extensions of R in Kt . Recall
that a k-Ind-scheme is an object of the category of presheaves on (Sch/k), isomorphic to a direct
limit of schemes.
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Definition 3.14. For any stft formal R-scheme X∞, we define the k-Ind-scheme of sections
Sec(X∞) of X∞ by

Sec(X∞) := lim−→
R′∈R

GrR
′
(X∞ ×R R′).

Likewise, we define the k-Ind-scheme of tame sections Sect (X∞) of X∞ by

Sect (X∞) := lim−→
R′∈Rt

GrR
′
(X∞ ×R R′).

Proposition 3.15. For any stft formal R-scheme X∞, the k-Ind-schemes Sec(X∞) and Sect (X∞)

carry a canonical action of the absolute Galois group G(Ks/K), respectively the tame Galois
group G(Kt/K).

Proof. These actions are induced by the canonical Galois action on GrR
′
(X∞ ×R R′), for any

finite extension R′ of R. �
Proposition 3.16. There exist canonical bijections

Sec(X∞)(k) ∼= Xη

(
Ks

)
and Sect (X∞)(k) ∼= Xη

(
Kt

)
which respect the actions of G(Ks/K) and G(Kt/K).

Proof. If K ′ is a finite extension of K , and R′ denotes the normalization of R in K ′, then
Xη(K

′) = X∞(R′) = GrR
′
(X∞)(k) by definition. The result now follows from the fact that

Xη

(
Ks

) = lim−→
K ′

Xη(K
′)

where K ′ runs over the finite extensions of K , and the analogous assertion for Xη(K
t ). �

4. Greenberg schemes and Weil restrictions

In this section, we will establish the following result:

Theorem 4.1. Let R′ be a finite, totally ramified extension of R, of degree n. Let X∞ be a nice
stft formal R′-scheme. There exists a canonical isomorphism of k-schemes

θ(X∞) :
( ∏

R′/R
X∞

)
s

→ GrR
′

n−1(X∞).

Proof. By Yoneda’s lemma, it suffices to construct a natural bijection

Homk

(
T ,

( ∏
′

X∞
)

s

)
→ Homk

(
T ,GrR

′
n−1(X∞)

)

R /R
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for any k-scheme T . By definition of the Weil restriction functor and the Greenberg transform, it
suffices to construct a natural bijection

jn : HomR′
n−1

(
T ×k (R′/MR′),Xn−1

) → HomR′
n−1

(
hR′

n−1(T ),Xn−1
)

for any k-scheme T (recall that M denotes the maximal ideal of R). Note that R′/MR′ = R′
n−1.

By Lemma 2.7, there exists a natural R′
n−1-isomorphism of locally ringed spaces

hR′
n−1(T ) → T ×k R′

n−1

which induces the natural bijection jn by composition. �
By composition with the truncation morphism θn−1

0 : GrR
′

n−1(X∞) → Xs , we obtain a k-
morphism

θ̃ (X∞) :
( ∏

R′/R
X∞

)
s

→ Xs.

Proposition 4.2. Let R′ be totally ramified extension of R of degree n. Let X∞ be a nice stft
formal R′-scheme. If X∞ is smooth over R′, then

θ̃ (X∞) :
( ∏

R′/R
X∞

)
s

→ Xs

is a Zariski-locally trivial fibration, with fiber An−1
k .

Proof. By [21, 3.4.2], θn−1
0 : GrR

′
n−1(X∞) → Xs is a Zariski-locally trivial fibration, with

fiber An−1
k . Now apply Theorem 4.1. �

Corollary 4.3. Let R′ be a totally ramified extension of R of degree n. If X∞ is a nice smooth
stft formal R′-scheme, then

[( ∏
R′/R

X∞
)

s

]
= [

A
n−1
Xs

]

in K0(VarXs ).

5. Motivic Serre invariants and Weil restriction

In this final section, we study the behavior of the motivic Serre invariant under Weil restriction.
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5.1. Motivic Serre invariants of mixed dimension

First, we will generalize the definition of the motivic Serre invariant to formal schemes and
rigid varieties of mixed dimension.

Let X∞ be a flat generically smooth stft formal R-scheme, and denote by X̃∞ → X∞ its
normalization. Let X̃∞,i , i = 1, . . . , �, be the connected components of X̃∞. Since Xη is smooth
over K , and normalization commutes with taking generic fibers, X̃η = Xη (see [7, 2.1.3]). By
[7, 2.3.1], the generic fibers X̃η,i of the formal schemes X̃∞,i , are exactly the connected com-
ponents of Xη. In particular, each X̃∞,i is a normal stft formal R-scheme, whose generic fiber
is smooth over K and connected, and hence, whose special fiber has pure dimension by [20, §1,
Lemma 1].

Lemma 5.1. Let X∞ be a generically smooth stft formal R-scheme, with equidimensional
generic fiber Xη. Let X̃∞ → X∞ be the normalization of X∞, and denote by X̃∞,i (1 � i � �)
the connected components of X̃∞. Then

S(X∞) =
�∑

i=1

S(X̃∞,i )

in K0(VarXs )/(LXs − [Xs]), via the forgetful morphisms

K0(VarX̃s,i
)/

(
LX̃s,i

− [X̃s,i]
) → K0(VarXs )/

(
LXs − [Xs]

)
.

Proof. Since X̃∞ → X∞ induces an isomorphism on the generic fibers,

S(X̃∞) = S(X∞)

in K0(VarXs )/(LXs − [Xs]). We conclude by additivity of the motivic Serre invariant. �
Definition 5.2. Let X∞ be a generically smooth, stft formal R-scheme. Let X̃∞ → X∞ be the
normalization of X∞, and denote by X̃∞,i , i = 1, . . . , �, the connected components of X̃∞. We
define the motivic Serre invariant of X∞ by

S(X∞) :=
�∑

i=1

S(X̃∞,i )

in K0(VarXs )/(LXs − [Xs]).

We will need the following technical result.

Proposition 5.3. Let h : V∞ → X∞ be a morphism of stft formal R-schemes, with V∞ smooth
over R and Xη smooth over K . Then h factors through a unique morphism V∞ → X̃∞.

Proof. The assertion is local on V∞ and X∞, so we may assume that both are affine formal
R-schemes. In this case, the existence of a morphism of formal X∞-schemes V∞ → X̃∞ fol-
lows from [6, 2.2]. The unicity of this morphism is automatic, since any two morphisms of flat
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stft formal R-schemes that induce the same morphism on the generic fibers, are equal (see, for
example, [5, proof of Theorem 4.1]). �
Theorem 5.4. Let X∞ be a generically smooth stft formal R-scheme, and let U∞ → X∞ be a
weak Néron R-smoothening. Then

S(X∞) = [Us] ∈ K0(VarXs )/
(
LXs − [Xs]

)
.

Proof. Consider the normalization morphism X̃∞ → X∞, and denote by X∞,i , i = 1, . . . , �, the
connected components of X̃∞. We have to show that

[Us] =
�∑

i=1

S(X̃∞,i )

in K0(VarXs )/(LXs − [Xs]).
Proposition 5.3 implies that the morphism U∞ → X∞ factors through a unique morphism

h : U∞ → X̃∞. It is clear that h : U∞ → X̃∞ is a weak Néron R-smoothening for X̃∞, and, for
each i = 1, . . . , �, h−1(X̃∞,i ) → X̃∞,i is a weak Néron R-smoothening for X̃∞,i . By Defini-
tion 2.10, we have

[(
h−1(X̃∞,i )

)
s

] = S(X̃∞,i )

in K0(VarXs )/(LXs − [Xs]). Now we can apply the additivity of [.]. �
Definition 5.5. For any separated quasi-compact rigid variety Xη, smooth over K , the motivic
Serre invariant S(Xη) is defined as

S(Xη) :=
�∑

i=1

S(Xη,i) ∈ K0(Vark)/(L − 1)

where Xη,1, . . . ,Xη,� are the connected components of Xη, and S(Xη,i) is the motivic Serre
invariant defined in [16, 4.5].

For any stft formal R-model X∞ of Xη, the Serre invariant S(Xη), is the image of S(X∞)

under the forgetful morphism

K0(VarXs )/
(
LXs − [Xs]

) → K0(Vark)/(L − 1).

5.2. Bounded rigid varieties

If K ′/K is a finite extension, and Xη is a smooth quasi-compact rigid variety over K ′, then∏
K ′/K Xη is not necessarily quasi-compact, so in order to associate a motivic Serre invariant to

this Weil restriction, we have to extend the construction.

Definition 5.6. We say a rigid variety X over K is bounded, if there exists a quasi-compact open
subspace V of X, such that V (Ksh) = X(Ksh).
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There exists an important natural class of bounded rigid varieties.

Definition 5.7. A special formal R-scheme is a separated Noetherian adic formal scheme X

over R, such that X/J is a scheme of finite type over R, for any ideal of definition J on X.

Berthelot constructs in [3, 0.2.6] the generic fiber Xη of a special formal R-scheme X (this
is carefully explained in [8, §7]). This generic fiber Xη is a separated rigid variety over K , not
quasi-compact in general.

Proposition 5.8. If X is a special formal R-scheme, then its generic fiber Xη is a bounded rigid
variety over K .

Proof. We may assume that X = SpfA is affine. Let J be the biggest ideal of definition on X.
Following [8, 7.1], we denote by A[J/π] the subalgebra of A⊗R K generated by A and elements
of the form j/π with j in J , and we denote by B1 the π -adic completion of A[J/π]. This is
an algebra topologically of finite type over R, and if we put C1 = B1 ⊗R K , then SpC1 is a
quasi-compact open subspace of Xη in a natural way.

By [8, 7.1.9], the points of Xη correspond canonically and bijectively to the maximal ideals
of A ⊗R K . Hence, it suffices to prove that any morphism of K-algebras A ⊗R K → Ksh fac-
tors through the natural map A ⊗R K → C1, or, equivalently, that any continuous morphism
of R-algebras A → Rsh factors through A → A[J/π]. This, however, is clear, since continu-
ity of A → Rsh guarantees that the image of any element j of J belongs to the maximal ideal
of Rsh. �

Now we define motivic integrals on bounded rigid varieties, using appropriate quasi-compact
models. We refer to [16] for the theory of motivic integrals of differential forms on smooth rigid
varieties. We recall that Mk denotes the localized Grothendieck ring K0(Vark)[L−1], and that
M̂k denotes its dimensional completion (see for instance [9, 4.3]).

Proposition 5.9. Let X be a separated smooth rigid variety over K of pure dimension m, and
let ω be a section of Ωm

X/K(X). If V1, V2 are quasi-compact open subspaces of X such that

V1(K
sh) = V2(K

sh) ⊂ X(Ksh), then∫
V1

|ω| =
∫
V2

|ω| in M̂k.

If ω is a gauge form on X, then this equality holds already in Mk .

Proof. Passing to the union V1 ∪ V2, we may as well assume that V1 ⊂ V2. By [5, 4.4], we
can find a formal R-model X∞ for V2, and an open formal subscheme U∞ of X∞ such that
V1 = Uη. By the assumption on V1 and V2, the induced morphism GrR(U∞) → GrR(X∞) is
an isomorphism (it is an open immersion by [21, 3.3.2], and it is bijective by [16, 2.7.3]). This
concludes the proof. �
Definition 5.10. If X is a bounded separated smooth rigid variety over K , and ω is a differential
form on X which is of maximal degree on each connected component of X, then we choose a
quasi-compact open subspace V of X with V (Ksh) = X(Ksh), and we put
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∫
X

|ω| :=
∫
V

|ω| in M̂k.

If ω is a gauge form on X, we put ∫
X

|ω| :=
∫
V

|ω| in Mk.

This definition does not depend on the choice of V , by Proposition 5.9.

Definition 5.11. If X is a bounded separated smooth rigid variety over K , then we choose a
quasi-compact open subspace V of X with V (Ksh) = X(Ksh), and we define the motivic Serre
invariant of X by

S(X) := S(V ) in K0(Vark)/(L − 1).

This definition does not depend on the choice of V , by Proposition 5.9. In fact, we have the
following result, which follows immediately from the definitions.

Proposition 5.12. If ω is any gauge form on X, then

S(X) =
∫
X

|ω| in Mk/(L − 1) ∼= K0(Vark)/(L − 1).

5.3. Motivic Serre invariants and Weil restriction

Now we check how the motivic Serre invariant behaves under Weil restriction. If X∞ is a nice
stft formal R-scheme,

∏
K ′/K Xη might not be quasi-compact (it is, though, if K ′/K is separable,

by Proposition 2.5(3)). However:

Lemma 5.13. Let K ′ be a finite extension of K , and denote by R′ the normalization of R in K ′.
If X∞ is a nice stft formal R′-scheme, then

∏
K ′/K Xη is a bounded rigid variety over K . In fact,

the canonical open embedding ( ∏
R′/R

X∞
)

η

→
∏

K ′/K
Xη

induces a bijection on the Ksh-valued points.

Proof. This follows immediately from Proposition 2.5(4). �
Corollary 5.14. If, moreover, X∞ is generically smooth, then

S

( ∏
K ′/K

Xη

)
= S

(( ∏
R′/R

X∞
)

η

)

in K0(Vark)/(L − 1).
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Lemma 5.15. Let K ′ be a finite extension of K , and let R′ be the normalization of R in K ′.
Let X∞ be a nice, generically smooth stft formal scheme over R′, and let Y∞ → X∞ be a weak
Néron R′-smoothening, with Y∞ nice. The Weil restriction

∏
R′/R Y∞ → ∏

R′/R X∞ is a weak
Néron R-smoothening.

Proof. Since Y∞ is smooth over SpfR′, the formal scheme
∏

R′/R Y∞ is smooth over SpfR, by
Proposition 2.5(2). By Proposition 2.5(6), the morphism (

∏
R′/R Y∞)η → (

∏
R′/R X∞)η is an

open embedding. If L is any finite unramified extension of K , Proposition 2.5(4) implies

( ∏
R′/R

Y∞
)

η

(L) =
( ∏

R′/R
X∞

)
η

(L). �

Remark. If X∞ is nice, we can always find a Néron R′-smoothening Y∞ → X∞ such that Y∞
is nice, by [6, 3.1] and Lemma 2.3.

Theorem 5.16. Let R′ be a finite totally ramified extension of R. Let X∞ be a generically smooth
stft-formal scheme over R′. Suppose that X∞ is nice. Then

S

( ∏
R′/R

X∞
)

= S(X∞) ∈ K0(VarXs )/
(
LXs − [Xs]

)

where the left-hand side carries a Xs -structure via the morphism of k-schemes
θ̃ (X∞) : (

∏
R′/R X∞)s → Xs from Section 4.

Proof. Let Y∞ → X∞ be a weak Néron R′-smoothening for X∞, with Y∞ nice over R′. The
Weil restriction

∏
R′/R Y∞ → ∏

R′/R X∞ is a weak Néron R-smoothening for
∏

R′/R X∞, by
Proposition 5.15. By Theorem 5.4, [(∏R′/R Y∞)s] = S(

∏
R′/R X∞) in K0(VarXs )/(LXs −[Xs]).

Applying Corollary 4.3 concludes the proof. �
Corollary 5.17. With the notation and hypotheses from Theorem 5.16,

S

( ∏
K ′/K

Xη

)
= S(Xη)

in K0(Vark)/(L − 1).

Proof. This follows from Theorem 5.16 and Corollary 5.14. �
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