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Let A be an algebra with involution ∗ over a field F of 
characteristic zero, and let χ∗

n(A), n = 1, 2, · · · , be the 
sequence of ∗-cocharacters of A. For every n ≥ 1, let l∗n(A)
denote the nth ∗-colength of A which is the sum of the 
multiplicities in χ∗

n(A). In this article, we classify in two 
different ways the finitely generated ∗-algebras satisfying 
an ordinary polynomial identity whose multiplicities of 
the ∗-cocharacters χ∗

n(A) are bounded by a constant. As 
a consequence this also yields a characterization of the 
∗-varieties whose ∗-colength l∗n(A), n = 1, 2, . . . , is bounded 
by a constant.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let F be a field of characteristic 0 and A an associative algebra with involution ∗
over F . In the last years, several authors have extensively studied the ∗-identities sat-
isfied by A (see for instance [5,12,14]). In particular some of the results are about the 
asymptotic behavior of two special numerical sequences associated to A. The first one 
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is the sequence of ∗-codimensions c∗n(A), given by the corresponding degrees measuring 
the growth of the ideal of ∗-identities of A, and the second is the sequence of ∗-colengths 
l∗n(A) given by the sum of the multiplicities in the decomposition of the ∗-cocharacter 
χ∗
n(A), for n ≥ 1. Here we study a specific property that connects those two sequences.
In [8] it was noticed that, as in the ordinary (non-involution) case, if A satisfies a 

nontrivial ∗-identity, then the sequence of ∗-codimensions is exponentially bounded and 
while in the theory of associative algebras the space of multilinear identities of degree n

is studied through the ordinary representation theory of the symmetric group Sn, in case 
of algebras with involution we exploit the representation theory of Hn = Z2 � Sn, the 
hyperoctahedral group of degree n (see [8]).

We denote by F 〈X, ∗〉 = F 〈x1, x∗
1, x2, x∗

2, . . .〉 the free algebra with involution freely 
generated by a countable set of indeterminates X = {x1, x2, . . .} over F . Recall that 
a polynomial f(x1, x∗

1, . . . , xn, x∗
n) is a ∗-identity of A if f(a1, a∗1, . . . , an, a

∗
n) = 0 for 

all a1, . . . , an ∈ A; it is well known that, in characteristic zero, the T -ideal Id(A, ∗) of 
∗-identities of A is completely determined by its multilinear polynomials. Let P ∗

n be the 
space of all multilinear polynomials of degree n in x1, x∗

1, . . . , xn, x∗
n. We shall consider 

an action of the group Hn = Z2 � Sn on P ∗
n .

We note that dimF P ∗
n = 2nn!. We can also observe that the space P ∗

n modulo 
Id(A, ∗) ∩ P ∗

n has a natural structure of left Hn-module and c∗n(A) is its dimension, 
known as the nth ∗-codimension of A, while χ∗

n(A) is its character, known as the nth 
∗-cocharacter of A.

By complete reducibility we write such a character as a sum of irreducible characters 
as below

χ∗
n(A) =

n∑
r=0

∑
λ�r

μ�n−r

mλ,μχλ,μ

where λ and μ are partitions of r and of n −r, respectively, mλ,μ ≥ 0 is the corresponding 
multiplicity of the irreducible Hn-character χλ,μ associated to the pair (λ, μ). To simplify 
the notation we shall use |λ| +|μ| = n to indicate λ 	 r and μ 	 n −r for all r = 0, 1, . . . , n
and so

χ∗
n(A) =

∑
|λ|+|μ|=n

mλ,μχλ,μ. (1.1)

In [6] Giambruno and Mishchenko characterized the ideals of ∗-identities in case the 
corresponding multiplicities are bounded by one. In this paper, we characterize in two 
different ways the ideal of ∗-identities of a finitely generated algebra A with involution 
in case the multiplicities are bounded by a constant. In fact we shall prove that the 
multiplicities in χ∗

n(A) are bounded by a constant if and only if Id(A, ∗) contains at 
least one ∗-polynomial which is not a ∗-identity of a specific subalgebra of the algebra 
of 4 × 4 upper triangular matrices endowed with the involution obtained by reflecting a 
matrix along its secondary diagonal.
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Another characterization will be given in terms of Hn-characters and we prove that the 
multiplicities are bounded by a constant if and only if for any irreducible character χλ,μ

appearing in χ∗
n(A) with non-zero multiplicity, the number of boxes out of the first row 

of the Young diagram Dλ plus the number of boxes out of the first three rows of the 
Young diagram Dμ is not greater than a constant q.

As a corollary of our main theorem we obtain the characterization that l∗n(A) =∑
|λ|+|μ|=n mλ,μ is bounded by a constant if and only if the ∗-codimensions c∗n(A) are 

polynomially bounded.
We remark that our characterizations are motivated by the results obtained by 

Mishchenko et al. in [11] concerning the ordinary case and also by the results obtained 
by Cirrito and Giambruno in [2] concerning the graded case.

2. Preliminaries

Throughout this paper, we will denote by F a field of characteristic zero. An anti-
automorphism ∗ of the second order of an associative algebra A over F is called an 
involution. For an algebra A with involution ∗ we have A = A+ ⊕ A− where A+ is the 
subspace formed by all symmetric elements, i.e. such that a∗ = a, and A− is the subspace 
of all skew elements, i.e. such that a∗ = −a, with a ∈ A.

It is useful to regard the free algebra with involution F 〈X, ∗〉 as generated by sym-
metric and skew variables: if for i = 1, . . . , n we let si = xi + x∗

i and ti = xi − x∗
i then 

F 〈X, ∗〉 = F 〈s1, t1, s2, t2, . . .〉 and P ∗
n will be the space of multilinear polynomials of 

degree n in s1, t1, . . . , sn, tn. So given a monomial f in P ∗
n either si or ti appears in f at 

degree 1 (but not both), for any i = 1, . . . , n.
Recall that if Z2 = {1, ∗} is the multiplicative group of order 2, then the hyperocta-

hedral group Hn is the wreath product Z2 � Sn and the space P ∗
n has a structure of left 

Hn-module induced by defining for k = (a1, . . . , an; σ) ∈ Hn, a natural action: ksi = sσ(i)
and kti = tσ(i) or −tσ(i) according to whether aσ(i) = 1 or ∗, respectively.

The set Id(A, ∗) of all ∗-identities of an F -algebra with involution A is a T -ideal of 
F 〈X, ∗〉, i.e., an ideal invariant under all endomorphisms of F 〈X, ∗〉 commuting with the 
involution ∗.

It is well known that since charF = 0, the ideal Id(A, ∗) is determined by the multi-
linear ∗-polynomials it contains and since the space Id(A, ∗) ∩P ∗

n is invariant under the 
Hn action, the space

Pn(A, ∗) := P ∗
n/

(
Id(A, ∗) ∩ P ∗

n

)
has a structure of left Hn-module and its character χ∗

n(A) has the decomposition given 
in (1.1).

From now on, yi and zi will always denote independent symmetric and skew vari-
ables, respectively. For a fixed r = 0, . . . , n we will denote y1 = s1, . . . , yr = sr
and z1 = tr+1, . . . , zn−r = tn and the space Pr,n−r of multilinear polynomials in 
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s1, . . . , sr, tr+1, . . . , tn can be seen as the space of multilinear polynomials in the symmet-
ric variables y1, . . . , yr and skew variables z1, . . . , zn−r. If we let Sr act on the symmetric 
variables y1, . . . , yr and Sn−r act on the skew variables z1, . . . , zn−r, we obtain an action 
of Sr × Sn−r on Pr,n−r. Since T -ideals are invariant under permutations of symmetric 
(respectively skew) variables, we get that

Pr,n−r(A, ∗) := Pr,n−r/
(
Id(A, ∗) ∩ Pr,n−r

)
has an induced structure of left Sr ×Sn−r-module and we write ψ∗

n(A) for its character. 
By complete reducibility we decompose

ψ∗
n(A) =

∑
|λ|+|μ|=n

m′
λ,μ(χλ ⊗ χμ) (2.1)

where χλ (respectively χμ) denotes the usual Sr-character (respectively Sn−r-character), 
χλ ⊗ χμ is the irreducible Sr × Sn−r-character associated to the pair of partitions (λ, μ)
and m′

λ,μ is the corresponding multiplicity.
In [4], Drensky and Giambruno proved that the relationship between the multiplicities 

of the characters in the decompositions (1.1) and (2.1) is given by

mλ,μ = m′
λ,μ, for all λ 	 r and μ 	 n− r.

In this way, we can use the action of Sr ×Sn−r on the space Pn(A, ∗) in order to obtain 
the multiplicities mλ,μ in χ∗

n(A), for λ 	 r and μ 	 n − r.
A numerical sequence that can be attached to an algebra A with involution whose nth 

∗-cocharacter has a decomposition as in (1.1) is given by the sequence of ∗-colengths:

l∗n(A) =
∑

|λ|+|μ|=n

mλ,μ.

It was proved in [1] that if A satisfies a nontrivial identity, the sequence l∗n(A) is poly-
nomially bounded.

In the language of varieties of algebras (see [3]), if V is a variety of algebras generated 
by an algebra A with involution, that is, a ∗-variety V = var(A, ∗) then we have χ∗

n(V) =
χ∗
n(A) and also l∗n(V) = l∗n(A).
Next we present a basic result about the sequences of ∗-cocharacters and ∗-colenghts. 

The proof is trivial and will be omitted (see [9]).

Lemma 2.1. Let A and B be two algebras with involution whose ∗-cocharacters have the 
following decompositions

χ∗
n(A) =

∑
|λ|+|μ|=n

mλ,μχλ,μ and χ∗
n(B) =

∑
|λ|+|μ|=n

m′
λ,μχλ,μ.

Then:
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(1) If B ∈ var(A, ∗) then m′
λ,μ ≤ mλ,μ for all λ, μ such that |λ| + |μ| = n. As a 

consequence, l∗n(B) ≤ l∗n(A) for all n.
(2) The direct sum A ⊕ B is also an algebra with involution induced by the involutions 

defined on A and B and if χ∗
n(A ⊕ B) =

∑
|λ|+|μ|=nm̄λ,μχλ,μ is the decomposition 

of its nth ∗-cocharacter then m̄λ,μ ≤ mλ,μ +m′
λ,μ for all λ, μ such that |λ| + |μ| = n.

3. ∗-Varieties with polynomial growth

Given an algebra A with involution over F , there is another numerical sequence that 
can be attached to it:

c∗n(A) := dimF Pn(A, ∗), n = 1, 2, . . .

called the sequence of ∗-codimensions of A, giving a measure of the ∗-polynomial iden-
tities satisfied by A. If V is a ∗-variety generated by A then we write c∗n(V) = c∗n(A).

We say that a ∗-variety V has polynomial growth if there exist k, t such that c∗n(V) ≤
knt; finally we say that V has almost polynomial growth if c∗n(V) cannot be bounded by 
any polynomial function but any proper subvariety of V has polynomial growth.

Next we introduce two algebras with involution generating ∗-varieties with almost 
polynomial growth. The first example is the algebra D = F ⊕ F with exchange involu-
tion ∗̄ given by (a, b)∗̄ = (b, a) constructed by Giambruno and Mishchenko in [5]. The 
authors proved that D has almost polynomial growth and

χ∗
n(D) =

n∑
j=0

χ(n−j),(j) and l∗n(D) = n + 1, for all n ≥ 1. (3.1)

Now we consider the algebra UTk(F ) of k×k upper triangular matrices endowed with 
an involution ρ defined by flipping a matrix along its secondary diagonal. The following 
subalgebra of UT4(F ) with induced involution also generates a ∗-variety with almost 
polynomial growth:

M = F (e11 + e44) ⊕ Fe12 ⊕ F (e22 + e33) ⊕ Fe34 (3.2)

and we have

⎛
⎜⎜⎝

x y 0 0
0 z 0 0
0 0 z w

0 0 0 x

⎞
⎟⎟⎠

ρ

=

⎛
⎜⎜⎝

x w 0 0
0 z 0 0
0 0 z y

0 0 0 x

⎞
⎟⎟⎠

for some x, y, z, w ∈ F .
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Clearly M is a 4-dimensional algebra and if we set a = e11+e44, b = e22+e33, c = e12, 
cρ = e34 then M = span{a, b, c, cρ} with the following multiplication table

a b c cρ

a a 0 c 0
b 0 b 0 cρ

c 0 c 0 0
cρ cρ 0 0 0

(3.3)

In [12], Mishchenko and Valenti proved that M has almost polynomial growth and 
also that the multiplicity mλ,μ of an irreducible character in the decomposition of the 
nth ∗-cocharacter χ∗

n(M) is equal to q + 1 if either

(1) λ = (p + q, p), μ = (1), for all p ≥ 0, q ≥ 0 or

(2) λ = (p + q, p), μ = ∅, for all p ≥ 1, q ≥ 0 or

(3) λ = (p + q, p, 1), μ = ∅, for all p ≥ 1, q ≥ 0.

(3.4)

In all other cases mλ,μ = 0, except the case mλ,∅ = 1. Then, it follows that

l∗n(M) =
{

3n2+5
4 , n odd

3n2+4
4 , n even.

(3.5)

In fact the algebras F ⊕ F and M with the involutions defined above are important 
in the characterization of ∗-varieties of polynomial growth given by Giambruno and 
Mishchenko in [7].

Theorem 3.1. (See [7, Theorem 4.7].) Let V be a ∗-variety. Then V has polynomial growth 
if and only if (F ⊕ F, ̄∗), (M, ρ) /∈ V.

We finish this section with the following remarks which will be useful in the future.

Remark 3.2. The ∗-identities of M2(F ) with transpose involution are consequences of 
the ∗-identities of M with involution ρ (see [10] and [12]). Thus (M, ρ) ∈ var(M2(F ), t).

Remark 3.3. The algebra M2(F ) with symplectic involution s contains a subalgebra with 
induced involution isomorphic to F ⊕F with exchange involution. In fact, it is enough to 
consider C = Fe11⊕Fe22 ⊆ M2(F ) and it is not difficult to see that (C, s) is isomorphic 
to (F ⊕ F, ̄∗).

4. ∗-Identities and the Wedderburn–Malcev decomposition

It is well known that an analogue of the Wedderburn–Malcev decomposition holds for 
finite dimensional algebras with involution.
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Theorem 4.1. (See [9, Theorems 3.4.3 and 3.4.4].) Any finite dimensional F -algebra with 
involution ∗ has a decomposition of the form

A = A1 ⊕ · · · ⊕Am + J

where the Jacobson radical J = J(A) is a ∗-ideal and Ai is a ∗-simple subalgebra of A, 
for all i = 1, · · · , m.

If we consider F an algebraically closed field, the Wedderburn–Malcev decomposition 
of a finite dimensional ∗-algebra given above can be described in more details. In fact, 
since F is algebraically closed by Theorem 3.4.4 in [9] we have that each Ai is a ∗-simple 
algebra of one of the following types:

(1) (Mk(F ), t) – the full matrix algebra with the transpose involution ∗ = t,
(2) (Ml(F ), s) – the full matrix algebra with the symplectic involution ∗ = s,
(3) (Mp(F ) ⊕Mp(F )op, ̄∗) – the direct sum of the full matrix algebra and its opposite 

algebra with the exchange involution (a, b)∗̄ = (b, a).

Remark 4.2. The condition for the base field F to be algebraically closed is necessary 
for the description of the ∗-simple components Ai, 1 ≤ i ≤ m. On the other hand 
any finite dimensional F -algebra with involution A can be naturally embedded in the 
∗-algebra A ⊗F F̄ which is finite dimensional over the algebraic closure F̄ ⊇ F . By this 
argument the study of identities with involution can be reduced to finite dimensional 
algebras A with Wedderburn–Malcev decomposition A1 ⊕ · · · ⊕ Am + J where Ai are 
∗-simple algebras specified in (1), (2), (3) above.

We shall assume without lost of generality that a finite dimensional ∗-algebra A over 
a field F of characteristic zero has a Wedderburn–Malcev decomposition such that the 
∗-simple components Ai satisfy the claims above the previous remark.

We will also evoke the following theorem recently proved by Sviridova in [14].

Theorem 4.3. (See [14, Theorem 1].) Let F be a field of zero characteristic. Then the 
ideal of ∗-identities of a finitely generated F -algebra with involution coincides with the 
ideal of ∗-identities of some finite dimensional F -algebra with involution.

Lemma 4.4. Let A be an algebra with involution ∗ over a field F of characteristic zero 
and suppose that var(A, ∗) does not contain any algebra isomorphic to (M2(F ), t). Then 
(M2(F ) ⊕M2(F )op, ̄∗), (M4(F ), s) /∈ var(A, ∗).

Proof. First we suppose that (M4(F ), s) ∈ var(A, ∗). In this case we can consider its 
subalgebra

S = span{e11 + e33︸ ︷︷ ︸, e14 − e32︸ ︷︷ ︸, e41 − e23︸ ︷︷ ︸, e22 + e44︸ ︷︷ ︸} ⊆ M4(F )

a b c d
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with induced involution, where the eij ’s are the usual matrix units of Mn(F ), 
1 ≤ i, j ≤ n.

Then by considering {e11, e12, e21, e22} the basis of matrix units of M2(F ) we see that 
the application ϕ : M2(F ) → S given by

ϕ(e11) = a, ϕ(e12) = b, ϕ(e21) = c and ϕ(e22) = d

is an isomorphism such that ϕ(Xt) = ϕ(X)s for all X ∈ M2(F ), that is, S is an algebra 
with involution isomorphic to (M2(F ), t) and S ∈ var(A, ∗), a contradiction.

Next we suppose that B = (M2(F ) ⊕ M2(F )op, ̄∗) ∈ var(A, ∗) and consider the ele-
ments U = (e11, e11), V = (e12, e21), V ∗̄ = (e21, e12) and W = (e22, e22) in B. Then by 
setting H = span{U, V, V ∗̄, W} ⊆ B the association

e11 �→ U, e12 �→ V, e21 �→ V ∗̄, e22 �→ W

is clearly an isomorphism preserving the involutions t and ̄∗ of M2(F ) and H, respectively. 
This completes the proof. �

As a consequence we get the following result.

Corollary 4.5. Let A be a finite dimensional F -algebra with involution ∗ and let A =
A1 ⊕ · · · ⊕Am + J be its Wedderburn–Malcev decomposition. If A does not contain any 
subalgebra isomorphic to (M2(F ), t) then for each i = 1, · · · , m, either Ai

∼= F with 
F ∗ = F or Ai

∼= (F ⊕ F, ̄∗) or Ai
∼= (M2(F ), s).

Lemma 4.6. Let A be a finite dimensional F -algebra with involution ∗ such that var(A, ∗)
does not contain any algebra isomorphic to (M, ρ), where (M, ρ) is given by (3.2). Then 
var(A, ∗) = var(B1 ⊕ · · · ⊕Bm, ∗) where for 1 ≤ i ≤ m, either

(i) Bi
∼= F + Ji with F ∗ = F , or

(ii) Bi
∼= F ⊕ F + Ji and F ⊕ F has exchange involution ∗̄, or

(iii) Bi
∼= M2(F ) + Ji and M2(F ) has symplectic involution s,

and Ji is the Jacobson radical of Bi.

Proof. By Remark 3.2, A does not contain a subalgebra isomorphic to (M2(F ), t) then 
by the previous corollary we can decompose

A = (A1 ⊕ · · · ⊕Am) + J

where J = J(A) and for each i = 1, · · · , m we have

either Ai
∼= F with F ∗ = F or Ai

∼= (F ⊕ F, ∗̄) or Ai
∼=

(
M2(F ), s

)
. (4.1)
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Suppose that there exist two ∗-simple components, say A1 and A2 such that 
A1JA2 �= 0. If, for instance, A1 ∼= (M2(F ), s) then according to Remark 3.3, A1 contains 
a subalgebra C ∼= F ⊕ F with exchange involution and we also have CJA2 �= 0. Thus 
we can reduce our analysis to the case A1JA2 �= 0 where either Ai

∼= F with F ∗ = F or 
Ai

∼= (F ⊕ F, ̄∗), for i = 1, 2.
Let u ∈ J be such that e1ue2 �= 0 where e1 and e2 denote the unit elements of A1

and A2, respectively. Define B = A1 ⊕ A2 + J , an algebra with induced involution and 
consider k ≥ 1 such that u ∈ Jk and u /∈ Jk+1 and set B̄ = B/Jk+1.

We can write B̄ = C1 ⊕C2 + J̄ where Ci
∼= Ai, i = 1, 2, and J̄ is the Jacobson radical 

of B̄. Notice that since Jk+1 is stable under ∗, B̄ has induced involution. Write ā = ē1 and 
b̄ = ē2 for the images of e1 and e2, respectively. Then, if we let c̄ = āūb̄ we get c̄∗ = b̄ū∗ā.

We now define the algebra R = span{ā, ̄b, ̄c, ̄c∗}. Then dimR = 4 and it is easy to 
check that R has the same multiplication table given in (3.3).

Hence the algebra R ∼= (M, ρ) and since R ∈ var(A, ∗) we reach a contradiction. Thus 
we must have that

for all i �= k, AiJAk = 0 and AiAk = 0. (4.2)

Define now Bi = Ai + J , i = 1, . . . , m. Then A = (A1 ⊕ · · · ⊕ Am) + J = (A1 + J) +
. . . + (Am + J) = B1 + . . . + Bm. Furthermore for each i = 1, . . . , m, J = Ji ⊆ Bi is the 
Jacobson radical of Bi and Bi/Ji ∼= Ai. So according to (4.1), each Bi satisfies (i), (ii)
or (iii) of this lemma.

Next we shall prove that

Id(B1 + . . . + Bm, ∗) = Id(B1, ∗) ∩ . . . ∩ Id(Bm, ∗) (4.3)

and since A = B1 + . . . + Bm and Id(B1, ∗) ∩ . . . ∩ Id(Bm, ∗) = Id(B1 ⊕ · · · ⊕ Bm, ∗)
this implies that Id(A, ∗) = Id(B1 ⊕ · · · ⊕ Bm, ∗), where each Bi is under one of the 
conditions (i), (ii) or (iii) and in conclusion var(A, ∗) = var(B1 ⊕ · · · ⊕Bm, ∗).

The inclusion Id(B1 + . . . + Bm, ∗) ⊆ Id(B1, ∗) ∩ . . . ∩ Id(Bm, ∗) is obvious. Con-
versely, we shall prove that if f = f(y1, . . . , yr, z1, . . . , zn−r) ∈ Pr,n−r is a ∗-polynomial 
in Id(B1, ∗) ∩ . . . ∩ Id(Bm, ∗) then f is a ∗-identity of A = B1 + . . . + Bm. It suffices to 
check substitutions in B1 ∪ . . . ∪Bm, that is, substitutions of the type

yi → ȳi ∈ B+
1 ∪ . . . ∪B+

m and zj → z̄j ∈ B−
1 ∪ . . . ∪B−

m.

If ȳ1, . . . , ȳr, ̄z1, . . . , ̄zn−r ∈ Bk for a single k, we get a zero value for f because f ∈
Id(Bk, ∗). Otherwise, by observing that Bi = Ai + J for all i, there exist k, l with k �= l

such that one of the following occurs: either ȳk ∈ A+
k and ȳl ∈ A+

l , or z̄k ∈ A−
k and 

z̄l ∈ A−
l , or ȳk ∈ A+

k and z̄l ∈ A−
l . In all cases, by (4.2) we get w̄σ(1) . . . w̄σ(n) = 0, for 

any monomial wσ(1) . . . wσ(n) in f , σ ∈ Sn, under the substitution wj → ȳj , for 1 ≤ j ≤ r

and wt → z̄n−t+1 for r + 1 ≤ t ≤ n.
Thus we have proved the equality (4.3) and we are done. �
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5. Bounded multiplicities of the ∗-cocharacters

In this section we shall characterize T -ideals of ∗-identities with multiplicities bounded 
by a constant.

Recall that if A is a finite dimensional algebra with involution ∗ such that dimA+ = u

and dimA− = v then according to [4, Lemma 1.2] we can refine the decomposition of 
its nth ∗-cocharacter as follows

χ∗
n(A) =

∑
|λ|+|μ|=n
h(λ)≤u
h(μ)≤v

mλ,μχλ,μ (5.1)

where h(λ) (respectively h(μ)) is the height of the Young diagram Dλ (respectively Dμ).
In the next result we shall use the considerations above.

Lemma 5.1. Let A = C + J be a finite dimensional F -algebra with involution ∗ where 
J = J(A) is its Jacobson radical and C is a ∗-simple subalgebra of A which is isomorphic 
to (M2(F ), s). If the ∗-cocharacter of A has a decomposition as in (1.1) then there exists 
a constant Ñ0 such that mλ,μ ≤ Ñ0, for all n ≥ 1 and |λ| + |μ| = n.

Proof. Let dimA = d. By hypothesis we can consider {a0, a1, . . . , au−1} a basis of A+

and {b0, b1, . . . , bv−1} a basis of A− such that a0 ∈ C+, a1, . . . , au−1 ∈ J+, b0, b1, b2 ∈ C−

and b3, . . . , bv−1 ∈ J−. Since C ∼= (M2(F ), s) we also admit that for 0 ≤ i, j ≤ 2, we 
have

bibj = 0 if and only if i = j = 1 or i = j = 2. (5.2)

In fact we note that it is true for b0 = e11 − e22, b1 = e12 and b2 = e21 in M2(F ).
Let q be the least positive integer such that Jq = 0 and note that we can assume q ≥ 2. 

In fact if q = 1 then A ∼= (M2(F ), s) and in this case the multiplicities are bounded by 
a constant (see [4, Theorem 4.1]). We shall prove that any multiplicity mλ,μ in (5.1) is 
not greater than Ñ0 = dN0, where N0 = (qd)uv.

We start by considering partitions λ 	 r and μ 	 n − r such that h(λ) ≤ u and 
h(μ) ≤ v. Let (Tλ, Tμ) be a pair of Young tableaux corresponding to (λ, μ); also RTλ

and 
CTλ

are the subgroups of row and column stabilizers of Tλ, respectively and analogously 
for Tμ. Let

R+
Tλ

=
∑

σ∈RTλ

σ and C−
Tλ

=
∑

τ∈CTλ

(−1)τ τ (analogously for Tμ).

It is known that (see [3]) one can construct the quasi-idempotents

eTλ
= R+

T C−
T and eTμ

= R+
T C−

T (5.3)

λ λ μ μ



JID:YJABR AID:14953 /FLA [m1L; v 1.137; Prn:7/10/2014; 9:24] P.11 (1-17)
A.C. Vieira / Journal of Algebra ••• (••••) •••–••• 11
in the group algebras F [Sr] and F [Sn−r], respectively. Clearly e = eTλ
eTμ

= eTμ
eTλ

is a 
quasi-idempotent in the group algebra F [Sr × Sn−r].

For each j = 1, . . . , u let Y λ
j be the set of symmetric variables whose indices lie in the 

jth row of Tλ and for each k = 1, . . . , v let Zμ
k be the set of skew variables whose indices 

lie in the kth row of Tμ.
Then, for every ∗-polynomial f ∈ Pr,n−r we have that the polynomial ef = eTλ

eTμ
f

is symmetric on each of the sets Y λ
1 , . . . , Y λ

u and Zμ
1 , . . . , Z

μ
v , respectively. Thus, the 

variables of ef are partitioned into u + v disjoint subsets

Y λ
1 ∪ · · · ∪ Y λ

u ∪ Zμ
1 ∪ · · · ∪ Zμ

v (5.4)

and ef is symmetric on each set as described above.
Note that for j = 1, . . . , u, the set Y λ

j may be empty if h(λ) < j ≤ u i.e. if the height 
of the Young diagram Dλ is less than u. A similar condition holds for the sets Zμ

k , for 
k = 1, . . . , v.

Notice that for any σ1 ∈ Sr and any σ2 ∈ Sn−r we have σ1eTλ
�= 0 and σ2eTμ

�= 0
and so for η = (σ1, σ2) ∈ Sr × Sn−r we have ηe �= 0. It follows that if f ∈ Pr,n−r is 
a ∗-polynomial such that ef �= 0 then the polynomials ef and ηef generate the same 
irreducible Sr × Sn−r-module.

Now we consider multilinear ∗-polynomials f1, . . . , fL such that fi and fj generate 
different but isomorphic irreducible Sr × Sn−r-modules corresponding to the same pair 
of partitions (λ, μ) for i �= j. Then, by the above, we can choose η1, . . . , ηL ∈ Sr × Sn−r

and a decomposition as in (5.4) such that η1f1, . . . , ηLfL are simultaneously symmetric 
on Y λ

j and on Zμ
k , for all j = 1, . . . , u and k = 1, . . . , v. Therefore, we shall assume that 

f1, . . . , fL satisfy the above condition.
Assume by contradiction that mλ,μ = L > Ñ0 = d(qd)uv. We shall prove that A

satisfies a ∗-identity of the type

f = t1f1 + . . . + tLfL (5.5)

where t1, . . . , tL ∈ F are not all zero. This will say that the ∗-polynomials f1, . . . , fL are 
linearly dependent modulo the ∗-identities of A and this is a contradiction. Since f is 
a multilinear ∗-polynomial it is sufficient to verify that f takes zero value on the given 
basis {a0, . . . , au−1, b0, . . . , bv−1}.

We start by considering substitutions of a special kind and so let

0 ≤ αλ
j0, α

λ
j1, . . . , α

λ
j(u−1), β

μ
k0, β

μ
k1, . . . , β

μ
k(v−1)

be integers satisfying the following equalities:

u−1∑
i=0

αλ
ji =

∣∣Y λ
j

∣∣ and
v−1∑
i=0

βμ
ki =

∣∣Zμ
k

∣∣,
for 1 ≤ j ≤ u and 1 ≤ k ≤ v.
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Now we set Xλ,μ
jk = Y λ

j ∪ Zμ
k , j = 1, . . . , u, k = 1, . . . , v. We say that a substitution γ

has type

(
αλ
j0, α

λ
j1, . . . , α

λ
j(u−1), β

μ
k0, β

μ
k1, . . . , β

μ
k(v−1)

)
, 1 ≤ j ≤ u, 1 ≤ k ≤ v,

if we replace the variables in the following way: for fixed j and k, we replace the first 
αλ
j0 symmetric variables from Xλ,μ

jk by a0, the next αλ
j1 symmetric variables by a1, and 

so on up to the last αλ
j(u−1) symmetric variables from Xλ,μ

jk by au−1; also we replace the 

first βμ
k0 skew variables from Xλ,μ

jk by b0, the next βμ
k1 skew variables by b1, and so on 

up to the last βμ
k(v−1) skew variables from Xλ,μ

jk by bv−1.
In order to get a non-zero evaluation of f given in (5.5), we should also take into 

account (5.2) and the exponent q of the Jacobson radical. Thus any substitution from 
variables in Xλ,μ

jk should also satisfy the restrictions below

(1) βk1, βk2 ≤ 1 and 
∑v−1

i=3 βki ≤ q − 1,
(2) αλ

j1 + . . . + αλ
j(u−1) ≤ q − 1, 1 ≤ j ≤ u,

(3) αλ
j0 = |Y λ

j | − (αλ
j1 + . . . + αλ

j(u−1)) and βμ
k0 = |Zμ

k | − (βμ
k1 + . . . + βμ

k(v−1)).

Note that the total number of special substitutions is the total number of distinct 
types (αλ

j0, . . . , α
λ
j(u−1), β

μ
k0, . . . , β

μ
k(v−1)), 1 ≤ j ≤ u, 1 ≤ k ≤ v. Now, from the restric-

tions (1), (2), (3) above we get that for each j = 1, . . . , u, k = 1, . . . , v, the number of 
distinct v-tuples (βμ

k0, . . . , β
μ
k(v−1)) is at most 22qv−2 and the number of distinct u-tuples 

(αλ
j0, . . . , α

λ
j(u−1)) is at most qu. Since 22qv−2 ≤ qv we have that the number of distinct 

(u + v)-tuples (αλ
j0, . . . , α

λ
j(u−1), β

μ
k0, . . . , β

μ
k(v−1)) is at most quqv = qu+v.

Thus, for given 1 ≤ j ≤ u, 1 ≤ k ≤ v the total number of different special substitutions 
is less than qu+v = qd. Since the number of pairs (j, k) is uv it follows that the total 
number N of distinct types of substitutions is less than N0 = (qd)uv.

So, let us consider all these N distinct special substitutions γ1, . . . , γN and set

γs(fi) = ωis ∈ A, 1 ≤ i ≤ L, 1 ≤ s ≤ N. (5.6)

The matrix (ωis) has L rows and N columns of elements from A, and since we assume 
L > dN0 we have that the rows of (ωis) are linearly dependent.

Then there exist t1, . . . , tL ∈ F , not all equal zero, such that

L∑
i=1

tiωis = 0, 1 ≤ s ≤ N.

This, together with (5.6), implies that γs(
∑L

i=1 tifi) = 0, 1 ≤ s ≤ N , that is, the 
∗-polynomial f =

∑L
i=1 tifi takes zero value under all special substitutions γs, 1 ≤

s ≤ N . We claim that this implies that f ∈ Id(A, ∗). In fact by multilinearity it is 
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enough to check only substitutions ϕ where the variables are evaluated into elements in 
the basis {a0, . . . , au−1, b0, . . . , bv−1}.

Let lλj0 be the number of variables in Y λ
j mapped by ϕ in a0; let lλj1 be the number of 

variables in Y λ
j mapped by ϕ in a1 and so on. Let rμk0 be the number of variables in Zμ

k

mapped by ϕ in b0; let rμk1 be the number of variables in Zμ
k mapped by ϕ in b1 and so 

on, up to rμk(v−1) which is the number of variables in Zμ
k mapped by ϕ in bv.

Since f is simultaneously symmetric on Y λ
1 , . . . , Y λ

u , Zμ
1 , · · · , Zμ

v it follows that, for 
any η ∈ Sr × Sn−r such that η(Y λ

j ) = Y λ
j and η(Zμ

k ) = Zμ
k , for all j = 1, . . . , u and 

k = 1, . . . , v we have

ϕ(f) = ϕ(ηf) = (ϕη)f.

In particular, we can choose η ∈ Sr × Sn−r such that ϕη is the special substitution ϕ′

corresponding to the type

(
lλj0, l

λ
j1, . . . , l

λ
j(u−1), r

μ
k0, r

μ
k1, . . . , r

μ
k(v−1)

)
.

Thus ϕ(f) = ϕ′(f) = 0 and f is a ∗-identity for A. We conclude that mλ,μ ≤ Ñ0 for 
any pair (λ, μ) and the proof of the lemma is complete. �

The next result is essentially Lemma 7 in [13] for the involution case. The proof uses 
the same argument as in the previous lemma and will be omitted.

Lemma 5.2. Let A = C ′ + J be a finite dimensional F -algebra with involution ∗ where 
J = J(A) is its Jacobson radical and C ′ is a ∗-simple subalgebra of A which is isomorphic 
to either F with F ∗ = F or (F ⊕ F, ̄∗). If the ∗-cocharacter of A has a decomposition 
as in (1.1) then there exists a constant N ′

0 such that mλ,μ ≤ N ′
0, for all n ≥ 1 and 

|λ| + |μ| = n.

Next we prove a property of the mutiplicities of the ∗-cocharacters of a finite dimen-
sional algebra A with involution when (M, ρ) is excluded from var(A, ∗).

Lemma 5.3. Let A be a finite dimensional F -algebra with involution ∗ such that (M, ρ) /∈
var(A, ∗). Then there exists a constant q such that in (1.1) we have mλ,μ = 0 whenever 
(|λ| − λ1) + (|μ| − (μ1 + μ2 + μ3)) ≥ q.

Proof. Let q be the index of nilpotence of the Jacobson radical J of A. Consider (λ, μ)
a pair of partitions with |λ| + |μ| = n such that (|λ| − λ1) + (|μ| −μ1 +μ2 +μ3) ≥ q and 
suppose, by contradiction, that mλ,μ �= 0.

Then there exist a pair of Young tableaux (Tλ, Tμ) and a ∗-polynomial f ∈ Pr,n−r

such that ef /∈ Id(A, ∗) where e = eTλ
eTμ

as in (5.3) and F [Sr × Sn−r]ef is a minimal 
left ideal.
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Now let e′ = C−
Tλ
eTλ

C−
Tμ
eTμ

. We have

0 �= F [Sr × Sn−r]e′f ⊆ F [Sr × Sn−r]ef

and since F [Sr × Sn−r]ef is a minimal left ideal, it follows that F [Sr × Sn−r]e′f =
F [Sr × Sn−r]ef . This means that e′f is not a ∗-identity of A and note that h = e′f is 
alternating on each of the λ1 disjoint sets of symmetric variables corresponding to the 
columns of Tλ, and on each of the μ1 disjoint sets of skew variables corresponding to the 
columns of Tμ.

We shall reach a contradiction by proving that h vanishes in A. Since f is multilinear, 
clearly it is sufficient to prove that h vanishes for any substitution by elements of a basis 
of A.

By hypothesis and Remark 3.2 we have (M2(F ), t) /∈ var(A, ∗). So by Corollary 4.5, 
A has Wedderburn–Malcev decomposition A1⊕· · ·⊕Am+J where for each i = 1, · · · , m
either Ai

∼= F with F ∗ = F or Ai
∼= (F ⊕ F, ̄∗) or Ai

∼= (M2(F ), s). We also have (4.2)
as in Lemma 4.6.

We shall fix a basis β = β+ ∪ β− of A where β+ (respectively β−) is the union of the 
base of symmetric elements (respectively skew elements) of A1, . . . , Am and J .

In order to get a nonzero value of h, by using (4.2) we must replace all the variables 
by elements of J and by elements of only one ∗-simple component, say Ai.

Since dimA+
i = 1 we can substitute at most one element of A+

i in each alternating 
set of symmetric variables.

On the other hand, either dimA−
i ≤ 1 or dimA−

i = 3 in case Ai
∼= (M2(F ), s). In

this last case, we can substitute at most three elements of A−
i in each alternating set 

of skew variables. Hence, in order to get a nonzero value, we can substitute at most λ1

elements from A+
i and at most μ1 +μ2 +μ3 elements from A−

i . This means that we must 
substitute at least (|λ| − λ1) + (|μ| − (μ1 + μ2 + μ3)) elements from J . Since Jq = 0 and 
by hypothesis, (|λ| − λ1) + (|μ| − (μ1 + μ2 + μ3)) ≥ q, we obtain that h vanishes under 
all substitutions.

In case dimA−
i ≤ 1 we can substitute at most one element of A−

i in each alternating 
set of skew variables. So in order to get a nonzero value, we can substitute at most λ1

elements from A+
i and at most μ1 elements from A−

i . In this way we must substitute at 
least (|λ| − λ1) + (|μ| − μ1) elements from J . Since

(
|λ| − λ1

)
+

(
|μ| − μ1

)
≥

(
|λ| − λ1

)
+
(
|μ| − (μ1 + μ2 + μ3)

)
≥ q,

again h vanishes under all substitutions, i.e., h is a ∗-identity of A. With this contradiction 
the proof is finished. �

Finally we are in a position to prove our main result.
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Theorem 5.4. Let A be a finitely generated F -algebra with involution ∗ satisfying a 
nontrivial identity. If the ∗-cocharacter of A has a decomposition as in (1.1) then the 
following conditions are equivalent:

(1) There exists a constant N0 such that for all n ≥ 1 and |λ| + |μ| = n, the inequality

mλ,μ ≤ N0

holds.
(2) (M, ρ) /∈ var(A, ∗).
(3) There exists a constant q such that for all n ≥ 1 and |λ| + |μ| = n the inequality

(
|λ| − λ1

)
+

(
|μ| − (μ1 + μ2 + μ3)

)
< q

holds whenever mλ,μ �= 0.

Proof. Suppose that A satisfies condition (1) and assume that (M, ρ) ∈ var(A, ∗). By 
(3.4) and Lemma 2.1 we get a contradiction. Therefore, we have that condition (1) 
implies condition (2). In order to prove the converse, we use Theorem 4.3 and so we may 
assume that A is a finite dimensional algebra with involution. Now the proof follows 
from Lemmas 2.1, 4.6, 5.1 and 5.2.

Finally, we prove the equivalence of conditions (2) and (3). As above we may as-
sume that A is a finite dimensional algebra and so by Lemma 5.3, condition (2) 
implies condition (3). Conversely, we suppose (M, ρ) ∈ var(A, ∗). In this case, if 
χ∗
n(M) =

∑
|λ|+|μ|=n m

′
λ,μχλ,μ then by (3.4) for λ = (λ1, λ2, 1) and μ = ∅ we have 

m′
λ,μ = λ1 − λ2 + 1 > 0. It turns out that mλ,μ �= 0 for any pair of partitions (λ, μ) with 

μ = ∅ and |λ| − λ1 arbitrary large and so A does not satisfy condition (3). In this way 
the proof of the theorem is complete. �

As a consequence, we have the following result about algebras with involution whose 
∗-colengths are bounded by a constant.

Corollary 5.5. Let A be a finite dimensional algebra with involution ∗ over a field of 
characteristic zero. Then c∗n(A) is polynomially bounded if and only if l∗n(A) ≤ K, for 
some constant K and for all n ≥ 1.

Proof. First we assume that c∗n(A) is polynomially bounded. Then by Theorem 3.1 it 
follows that M, F ⊕ F /∈ var(A, ∗). Consider the nth ∗-cocharacter

χ∗
n(A) =

∑
mλ,μχλ,μ.
|λ|+|μ|=n
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Since M /∈ var(A, ∗), by Theorem 5.4 all the multiplicities mλ,μ are bounded by some 
constant N0. On the other hand, by Lemma 5.3 there is a constant q such that

mλ,μ = 0 whenever
(
|λ| − λ1

)
+

(
|μ| − (μ1 + μ2 + μ3)

)
≥ q. (5.7)

Furthermore since F ⊕ F /∈ var(A, ∗), by [5, Theorem 2] we have zm ∈ Id(A, ∗) for 
some m ≥ 1. So by [7, Theorem 2.5] there exists s ≥ 1 such that

z1w1z2w2 . . . zsws ≡ 0 on A (5.8)

where w′
is are eventually empty words in symmetric and skew variables.

From (5.7) and (5.8) we can conclude that mλ,μ = 0 for pairs of partitions (λ, μ) such 
that |λ| − λ1 ≥ q or |μ| ≥ s. Thus mλ,μ = 0 if n is large enough.

Independently of n, only finite number of pairs of partitions (λ, μ) satisfy the condi-
tions |λ| − λ1 < q and |μ| < s and since the multiplicities are bounded by a constant it 
follows that for all n∑

|λ|+|μ|=n

mλ,μ = l∗n(A) ≤ K, for some constant K.

Conversely, assume that l∗n(A) is bounded by some constant. In this case we use 
Lemma 2.1 and also (3.1) and (3.5) to get that M, F⊕F /∈ var(A, ∗). But by Theorem 3.1
this implies that A has a polynomially bounded growth which completes the proof of the 
corollary. �
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