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STAR-POLYNOMIAL IDENTITIES: COMPUTING THE
EXPONENTIAL GROWTH OF THE CODIMENSIONS

A. GIAMBRUNO, C. POLCINO MILIES, AND A. VALENTI

ABSTRACT. Can one compute the exponential rate of growth of the x-codimensions
of a Pl-algebra with involution % over a field of characteristic zero? It was
shown in [2] that any such algebra A has the same x-identities as the Grass-
mann envelope of a finite dimensional superalgebra with superinvolution B.
Here, by exploiting this result we are able to provide an exact estimate of the
exponential rate of growth exp*(A) of any Pl-algebra A with involution. It
turns out that exp*(A) is an integer and, in case the base field is algebraically
closed, it coincides with the dimension of an admissible subalgebra of maximal
dimension of B.

1. INTRODUCTION

Let A be an algebra over a field F' of characteristic zero and suppose that A is
a Pl-algebra i.e., it satisfies a non trivial polynomial identity. A celebrated result
of Kemer states that any such algebra A has the same polynomial identities as the
Grassmann envelope of a suitable finite dimensional superalgebra [20]. Recall that
if G is the (infinite dimensional) Grassmann algebra over F, one can consider its
standard Zs-grading G = Gy @ G;1. Then if B = By @ Bj is a superalgebra over
F', the Grassmann envelope of B is the algebra G(B) = Gy ® By ® G1 ® B;. This
result has been extended to algebras graded by a finite group H in [4] (see also
[22]). In this case one considers the Grassmann envelope of a finite dimensional
Zo x H-graded algebra.

In this paper we are concerned with algebras with involution. In [2] a suitable
superinvolution on the Grassmann algebra was introduced having the following
property: if B is any algebra endowed with a superinvolution, then its Grassmann
envelope has an induced involution. More generally given a superalgebra B and
its Grassmann envelope G(B) there is a well-understood duality between graded
involutions and superinvolutions of the two algebras. The main outcome of this
correspondence is the following result proved in [2]: any PI-algebra with involution x
has the same *-identities as the Grassmann envelope of a suitable finite dimensional
algebra with superinvolution.

Here we are interested in the growth of the identities of an algebra. Recall that
if P, is the space of multilinear polynomials in n variables and Id(A) is the T-ideal
of identities of the algebra A, then

en(A) = dim P, /(P, N Id(A))
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is the n-th codimension of A. It is well known ([21]) that the sequence of codimen-
sions of an associative Pl-algebra is exponentially bounded and in [13], [14] it was
shown that if A is any Pl-algebra there exist constants C; > 0, Cy, t1, t2 such that
Cinfrd™ < ¢, (A) < Cynt2d™ holds for a suitable integer d. In particular the limit
lim,, 00 ¥/cn(A) = d = exp(A) exists and is an integer called the Pl-exponent of
A. We refer the reader to [16] for an account of the theory developed around the
exponent.

We have to mention that an actual asymptotic estimate of the codimensions
was established in [7] and [8] for algebras with 1 and it turns out that ¢, (A) ~
Cn'exp(A)™ where t € $Z. Later in [17] it was shown that even if A does not have
a unit element, still Cynfexp(A)" < ¢, (A) < Cantexp(A)™ holds where C; and Cy
are positive constants.

When an algebra A has an additional structure, such as a group grading or an
involution, one can consider the corresponding codimension sequence and ask if the
analogue of the theorem on the existence of the exponent holds.

In this setting it was recently shown that if A is any PI-algebra graded by a finite
group then the corresponding exponent exists and is an integer ([3], [11], [1]). Also
it turns out that if the algebra is finite dimensional and is acted on by a finite group
of automorphisms and antiautomorphisms or by a finite dimensional Lie algebra of
derivations or more generally there is a so-called generalized Hopf algebra action,
still the corresponding exponent exists and is an integer ([18]).

Here we shall prove that if A is any Pl-algebra with involution *, and ¢ (A), n =
1,2,..., is the corresponding sequence of x-codimensions, then

Cintrd™ < ¢ (G(A)) < Cant2d™,

holds for all n, where Cy > 0,Co,t1,t2,d are constants and d is an integer. As a
corollary we get that the %-exponent of A, ie., exp*(A) = lim, o {/c}(A) exists
and is an integer. Since A has the same *-identities as the Grassmann envelope
G(B) of a finite dimensional algebra with superinvolution B, we shall actually
exploit such relation.

As in the ordinary case (no involution) we also give an explicit way of comput-
ing the x-exponent; il turns out that when F' is algebraically closed, exp*(A4) =
exp*(G(B)) is the dimension of a so-called admissible subalgebra of B of maximal
dimension. It should be mentioned that the existence of the *-exponent was proved
in [15] for finite dimensional algebras.

Finally but most important, the proof we present here is not a generalization of
the original proof; the computation of the upper bound of ¢ (A) is based on an idea
of Procesi and the proof of the lower bound is a generalization and a simplification
of the original proof.

2. PRELIMINARIES

Let A be a superalgebra over a field F' and suppose that A is endowed with a
superinvolution *. Recall that in this case A is a superalgebra A = Ag®A; and *is a
linear map of A of order two such that (ab)* = (—1)*/Ilp*a*, for any homogeneous
elements a,b € A, where | a | denotes the homogeneous degree of A. Now, for any
subset S = S* of A, let ST ={ae S|a=a}tand S ={a € S |a=—a"}
be the subsets of symmetric and skew elements of S, respectively. Then, since it is
well-known that Af C Ay, A} € A; we can decompose A as A = AJ@AE @AT DA .
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Now, throughout the paper the word algebra may mean superalgebra depending
on the context, for instance we shall say that A is an algebra with superinvolution
meaning that A is a superalgebra with superinvolution.

Throughout this paper F' will be a field of characteristic zero, and F(X,s) the
free algebra with superinvolution on a countable set X over F. F(X,s) is defined
by a universal property and can be explicitly described as follows. Starting with the
free associative algebra F'(X) on a countable set X, write X =Y U Z, the disjoint
union of two countable sets. Then F(X) becomes a superalgebra denoted F(Y, Z)
(the free superalgebra of countable rank) by requiring that the variables of Y have
homogeneous degree zero and those of Z have homogenous degree one.

Next we write Y = YTUY ™ and Z = ZTUZ~, disjoint unions of countable sets.
Then we define a superinvolution on F(Y, Z) by requiring that the variables of Y’
(Y ™) are symmetric (skew, resp.) of homogenous degree zero and the variables of
Zt (Z7) are symmetric (skew, resp.) of homogenous degree one. The resulting
algebra is F'{X, s}, the free algebra with superinvolution on X.

In what follows we shall write Y+ = {y,vs,...}, Y~ = {y17,v5,...},ZT =

{zF,28,...},Z= ={27,2;,...}. Hence an element of F(X,s) will be written as
f:f(y?»7"'7y’;1/'>7y1_’"'7y;L7Zr7"'7Z;—7Z;7"'7Zq7)'

Let A be a superalgebra with a superinvolution *. A polynomial f € F(X,s) is a
*-polynomial identity (or an identity with superinvolution) if it vanishes in A when
the homogeneous symmetric and skew variables are evaluated in symmetric and
skew elements of A of the corresponding homogeneous degree, respectively.

We shall denote by Id®*(A) the ideal of F'(X,s) of *-polynomial identities of A.
Also we shall denote by Id(A) the ideal of (ordinary) polynomial identities of A.
As an extension of the ordinary case, it is clear that Id®(A) is invariant under all
superinvolution endomorphisms of F(X, s).

Let us denote by P?, the space of multilinear polynomials with superinvolution

n?

of FI(X,s) in the first n variables, i.e.,
Ps = spanp{wy(1), -+ s Wo(n) |0 € Sp,w; =y ory; orzorz; 1 <i<n}

Let also ¢f(A) = dim P;%ﬁsm) be the n-th superinvolution codimension of A. The
sequence ¢ (A), n=1,2,..., will be one our main object of study.

Now let B be an algebra with involution *. As above, let us denote by BT =
{be B|b=1"0"}and B~ = {b € B|b* = —b} the sets of symmetric and skew
elements of B, respectively.

Though we are using the same symbol * for an involution or a superinvolution,
in what follows the role of * will be clear from the context. Also in this case we
let F(X,*) = F(XT, X ™) be the free associative algebra with involution * on the
countable set X. We shall write X+ = {z],25,...} and X~ = {27,25,...} for
countable sets of symmetric and skew variables generating F'(X, %), respectively. If
f e F(X,x), f will be a -polynomial identity (or identity with involution) of the
algebra B if f vanishes under all evaluations of the symmetric and skew variables
into symmetric and skew elements of B, respectively. We let Id*(B) be the ideal
of *-polynomial identities satisfied by B.

We shall denote by

B = span{w,y, -, Won)|o € Sp,w; = zforaz;,1<i<n}
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the space of multilinear polynomials in the first n variables and ¢}, (B) = dim PT,;%C%
will be the n-th #-codimension of B. Our main result here will be to prove that
Cinfrd™ < ¢ (B) < Cynt2d™, holds for all n, for some constants Cy > 0, Ca, t1,t2,d
where d is an integer, for any Pl-algebra with involution B.

Actually we shall first compute a lower bound for a different kind of codimensions
that here we define. For any ¢, 0 < ¢ < n, define P; ,,_; to be the span of multilinear

monomials in gci"7 ... ,93;"737;_1, Loz, e,
_ _ ot :
Pt,nft - Span{wa(l) to wa(n)‘a € Sp,w; = Zz; 1 <i <4,

and w; = z; ,t+1<i<n}.

Then one defines ¢; ,,—+(B) = dim %.
The connection between ¢} (B) and ¢ ,—+(B) is given by the formula (see [16,

Corollary 10.6.2])

o @ =3 (})eni®)

t=0

In order to compute the lower bound of ¢%(B), we shall make use of the repre-
sentation theory of the symmetric group as follows. Given non negative integers
n1,ng,,ns, ng we shall consider the space P, .. n, of multilinear polynomials in the
four sets of variables yf,...,y;’;l,yf,...,y,j?,zfr,...,z;‘b‘yzf,...,z;‘l on which we
act with S, x Sy, X Sp, X Sy,, where S,,; acts on the corresponding set of variables
by permuting them.

We also recall that if A is a partition of the integer n and T} is a Young tableau
of shape A, then Ry, and Cr, are the subgroups of .S;, stabilizing the rows and
the columns of T}, respectively. Then ep, = RE CT} is an essential idempotent
of the group algebra F'S,, where R% = ZaeRTA oand Cp = ZTECTA (sgn7)T.
Moreover every irreducible S,,-module corresponding to A is isomorphic to F'S, er, .

3. THE BASIC SETTING

Let G be the Grassmann algebra over F, i.e., the algebra generated by the
elements ey, es,... subject to the condition e;e; = —eje;, for all 4,5 > 1. Recall
that G has a natural Z,-grading G = Gy @ G where Gy and G are the spans of
the monomials in the e;’s of even and odd length, respectively. If A = Ag ® A; is
a superalgebra then the Grassmann envelope of A is defined as G(A4) = Gp ® Ao ®
G ® Ay

The relevance of G(A) relies in a result of Kemer ([20, Theorem 2.3]) stating
that if B is any PI-algebra, then its T-ideal of polynomial identities coincides with
the T-ideal of identities of the Grassmann envelope of a suitable finite dimensional

superalgebra.
Regarding algebras with involution, one can perform a construction involving G
as follows. First one defines a superinvolution * on G' by requiring that e; = —e;,

for any 7 > 1. Then it is easily checked that Gy = G* and G; = G~. Now,
if A is a superalgebra one can construct its Grassmann envelope G(A) and in
([2]) it was shown that if A has a superinvolution * (a graded involution), then x
induces a graded superinvolution (a graded involution, resp.) on G(A) by setting
(g ®a)* = g" ®a*, for homogeneous elements g € G,a € A.
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In what follows we shall assume that A has a superinvolution and we shall denote
by Id5(G(A)) the ideal of graded identities (superidentities) with involution of G(A)
and by Id*(G(A)) the ideal of identities with involution of G(A).

Next we briefly recall the main results of [2]. First one defines a superinvolution,
denoted f, on the Grassmann algebra G = Gy @ G by requiring that eg = —¢;, for
i > 1. A basic property of this superinvolution is that GT = Gy and G~ = G;. It
follows that one can bridge between graded involutions and superinvolutions of a
superalgebra A and its Grassmann envelope. In fact we have (see [2, Lemma 1]).

Proposition 1. Let A be a superalgebra endowed with a graded involution or a
superinvolution . Then the linear map x : G(A) — G(A) such that (a @ g)* =
a* @ g*, for homogeneous elements g € G and a € A, induces a superinvolution or
an involution on the Grassmann envelope G(A), respectively.

In case A is a superalgebra with superinvolution and we regard G(A) as an
algebra with involution, the following result holds.

Theorem 1. ([2, Theorem 4]) If B is a PI-algebra with involution over a field F
of characteristic 0, then there exists a finite dimensional superalgebra with superin-
volution A such that Id*(B) = Id*(G(A)).

Hence, by making use of this theorem, we shall compute the exponential rate
of growth of the sequence of *-codimensions of the Grassmann envelope of a finite
dimensional algebra with superinvolution A. To this end we need a Wedderburn-
Malcev theorem for finite dimensional algebras with superinvolution whose proof
can be found in [10].

Theorem 2. Let A be a finite dimensional superalgebra with superinvolution * over
an algebraically closed field F' of characteristic 0. Then A = B + J where B is a
mazimal semisimple superalgebra with induced superinvolution and J* = J is the
Jacobson radical of A.

Throughout this paper, unless otherwise stated, A will be a finite dimensional
algebra with superinvolution over an algebraic closed field of characteristic 0. Then
we write A = A+ J as in Theorem 2. Also we can write

A=A & & A,

where Ay, .-+, Ay are simple algebras with superinvolution.
We make a definition.

Definition 1. Given A=A+ J = A, O @ Ap + J, a finite dimensional algebra
with superinvolution, we say that a subalgebra A;, @---® A;, where A; ..., A;, are
distinct simple superalgebras with induced superinvolution, is admisible if for some
permutation (ly,...,1l;) of (i1,...,4;) we have that Ay, JA,J---JA;, #0.

Definition 2. If A;, @ --- @ A;, is an admissible subalgebra of A then A’ = A;, ®
<@ A;, + J is called a reduced subalgebra.

In what follows we shall prove that ¢ (G(A)) is bounded from above and from
below, up to a polynomial factor, by d” where d is the maximal dimension of an
admissible subalgebra of A.



6 A. GTAMBRUNO, C. POLCINO MILIES, AND A. VALENTI

4. THE MAP ~

In this section we shall introduce a map relating the x-identities of a superalgebra
with superinvolution and the x-identities of its Grassmann envelope (see [2, Section
2]). This generalizes the map introduced by Kemer in the ordinary case (see [20,
Section 2]).

As we remarked above, since A has a superinvolution *, G(A) has a graded
involution #, i.e., the homogeneous components of G(A) are invariant under .
Also in this case we decompose G(A) = G(A)d & G(A); ® G(A)] ® G(A)]. We
recall that Id5(G(A)) is the ideal of the free superalgebra with graded involution
of graded #-identities of G(A).

Let f(yy U ys s U 21 -0 25 21 -+ -5 24 ) € F(X, s) be a polynomial
with superinvolution, and suppose that f is multilinear. We write f in the form

f= E § AoW1Co(1)W2Ca(2) - - - Wpt qCo (1) Wptgt1
W1, Wptq4+1 OESptq

where (; = z;" for1 <i<pand( = Zppi for 1 <7 < g. Here wy,..., Wpqq41
are eventually empty words in the variables of homogeneous degree zero. Then we
define

f= > D (5800)a0wiCo(1)W2la(@) - - Wpt gCo(1)Wptgt1-

W1, ;Wptq+1 0ESptg

The basic properties of the map ~ are given in the following.

Lemma 1. 1) f: f; )
2) feld*(A) if and only [ € Id3(G(A));
3) for any subset of variables Z' of {z,. .., zf 20, ..., 25 }, [ is alternating

on Z' if and only if f is symmetric on Z'.

Proof. 1) is clear.
Recall that since G = Gy and G~ = G4, we have that G(A)0+ = Ao" ® Gy,
G(A)y™ = Ay~ ®Go, G(A), T = 4,7 Gy and G(A);” = 4,7 ® G;. Hence

f(at() ® gl,Oa LREN a;t’() ® gn,Oa CLli() ® hl,Oa ... 7a;L70 & hm,07
bl_,l ® 91,1 .- ab;J ®gp,17bt1 (2 hl,la EER >b;1 ® hq,l)
= f(aigs- 0 0, @105+ 3 05 DT 15 by 10T 1y b)) @ g0
o 'gn,ohl,o ce hm,091,1 ce 9n,1h1,1 s hm,ly
where a], ©gi0 € Af @Go, a7y @hip € Ay ©Go, b, ©gi1 € AT @Gy, by ®@hi) €
AT ® Gy. Thus f € Id5(G(A)) if and only if f € Id*(G(A)). O
5. MULTIALTERNATING POLYNOMIALS

In what follows we shall denote by Y|, ..., Y,* finite disjoint sets of symmetric
variables of homogeneous degree zero, by Y, ,...,Y,” finite disjoint sets of skew
variables of homogeneous degree zero. The meaning of Zi", e Zfand Zy, ... 20
is clear. Also, in order to simplify the notation, for » > 1, we shall write

Y(j) =Y u---uY",

where | Y] |= - =| Y,* |; similarly Yo=Y U---UY7, and so on.
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Also, if A = (A1, A\a,...) and g = (u1, p2, .. .) are two partitions, we write g < A
if p; < A, for all 7.

It is well-known that any finite dimensional algebra A has nilpotent Jacobson
radical J. In the next lemmas we assume that J # 0 and s in any positive integer
such that J* = 0.

Lemma 2. Let A_: A+ J be a finite dimensional algebra with superinvolution.
Suppose that dim(A)J = po > 0 and let s > 0 be such that J* = 0. Let

FOAT LY XY ¢ 1d3(G(A))
be a multilinear polynomial with r > 1, such that
1) f is alternating on each set Y;© with |Y;*| =pg, 1 <i <r;
2) X' contains a set YO of s symmetric variables of homogencous degree zero.

Then there exists a partition A > (rP°) with |\| — rpo = s and a tableau Ty such
that er, f € 1d3(G(A)) where er, acts on the set Y,  U---UY,F UYO.

Proof. We let the symmetric group Sp,.+s act on the variables of the set Y;" U
< UYFUYC Let M = FS,,1sf be the left S, ,+s-module generated by f. Then
M ¢ Id;(G(A)) since f ¢ Id5(G(A)). Hence there exists an irreducible submodule
M’ of M not contained in Id5(G(A)).

This says that there exists a partition A = (A1,...,A¢) F por + s and a tableau
T such that ep, & Id;5(G(A)). We shall prove that A > (rP?).

To this end, suppose that \; > r + s. Then ep, f is symmetric on at least
7+ s+ 1 variables of the set Y;* U---UY,F UY". Since f is alternating on each
YZ-Jr by hypothesis, we obtain that f is symmetric and alternating on at least two
variables. Thus by linearity f =0 and, so \y <7+ s.

Next we prove that A\ contains at most s boxes below the first py rows, i.e.
/\p0+1+-'-+)\t < s.

Consider the polynomial Cr, f which is alternating on disjoint sets of symmetric
variables of homogeneous degree zero corresponding to the columns of A. If ~ is
the map defined in Section 4, then Cr, f is still alternating on the same sets of

variables. Since dim(A)§ = p, in order to get a non-zero evaluation of Cr, f in

A, we must substitute at most py elements of a basis of (A){ in each alternating
set and the remaining variables in JO+ . It follows that if there are at least s boxes
outside the first pg rows, then C’if € Id*(A), since J* = 0. By applying the map
~ again by Lemma 1 we get that Cp, f € Id3(G(A)), a contradiction.

We have proved that Ay < r+sand Ay 41+...+X < s. It follows that A > (r7°)
and eq, f & Id5(G(A)), for some tableau T}. O

The skew analogue of Lemma 2 is the following.
Lemma 3. Let A_: A+ J be a finite dimensional algebra with superinvolution.
Suppose that dim(A)] = p; > 0 and let s > 0 be such that J* = 0. Let
f(Zf,.. 28, X') ¢ 1d5(G(4))
be a multilinear polynomial with r > 1, such that
1) f is symmetric on each set Z;" with |Z;"| = p1,1 <i < r;
2) X' contains a set Z° of s symmelric variables of homogeneous degree one.

Then there exists a partition g > (p1") with |u| — rp1 = s and a tableau T), such
that er, f ¢ Id3(G(A)) where er, acts on the set Z;" U---U Z,F U Z°.
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Proof. We consider the action of S}, ;.1 on the variables of the set ZfLU- . ‘UZT*UZO.
and the left Sy, ,+s-module M = F'Sp, s f. As in the previous lemma there exists
a partition g1 = (p1,..., ) F p1r+ s and a tableau T), such that e, ¢ Id5(G(A)).

Let p/ = (u}, ..., ul,) be the conjugate partition of i, and suppose that p' > r+s.
Then the polynomial Ci f' is alternating on at least r + s + 1 variables of the set
ZFU---UZFUZY corresponding to the first column of . Since f is symmetric on
each of the r sets Z;", we get that Ci" f is symmetric and alternating on at least
two variables. Hence C’if =0 and, so, ez, f = 0, a contradiction. Thus p' < r+s.

Suppose now that g, .y + -+, u, > s. Since the polynomial er, f is symmetric
on disjoint sets of variables corresponding to the rows of u, the polynomial e, fis
alternating on the same sets of variables. Since eTMf ¢ Id*(A) and p; = dim(A)],
in order to get a non-zero evaluation, we must substitute at most p; elements from
a basis of (A)] in each alternating set, and the remaining variables from .J;".

It follows that if there are at least s boxes below the first p; rows of u', then
eTuf € Id°(A), since J® = 0. But then by Lemma 1 eg, f = eTuf € Id5(G(A)), a
contradiction.

We have proved that py <7+ s and g + ...+, < 8. Thus g > (p1") and
er, f & 1d3(G(A)), for some partition . O

Remark 1. It is clear that if dim(A); = ¢o > 0, then Lemma 2 has an analogue:
if f(Z,...,2F,X") & Id3;(G(A)), then er, f & Id5(G(A)) where f has the analo-
gous alternating properties as in that lemma and A > (r%). Similarly, if dim(A)] =
¢1 > 0, Lemma 3 has a corresponding analogue: if f(Z],...,Z, X"") & Id;(G(A)),
then er, f & Id5(G(A)) where f has the analogous symmetric properties as in that
Lemma 3 and A > (¢7).

The previous two lemmas and Remark 1 imply the following.

Remark 2. Since the symmetric groups of the previous two lemmas and Remark

1 act on disjoint sets of variables, we can put together the above constructions.

Hence, for instance, if pg, qo, p1, @1 are all non-zero we have the following: let
TG Y Ly Zirayy X' & 1d3(G(A))

be a multilinear polynomial with r; > 1,1 <17 < 4, and suppose that

1) f is alternating on each of the sets Y;© and Y7, 1<i<r;,1<j<ry

2) f is symmetric on each of the set ZZ-'" and Z;7,1<i<r3; 1<j<ry,

3) Y| = dim(Ao)* = po, [Y;7| = dim(Ao)~ = qo, |Z;7| = dim(A1)* = p,
|1Z; | = dim(A1)™ = q1,

3) X’ contains four disjoint sets of order s, and of these sets two are of symmet-
ric variables of different homogeneous degree and two are of skew variables
of different homogeneous degree.

Then there exist partitions, A(1) > (r1°),A(2) > (r2),A(3) > (p}?), A(4) > (q1*)
with [A(1)| — r1po = [A(2)] — 7290 = |A(3)| — rapo = |A(4)| — raq1 = s such that
H?:l ety [ & 1d5(G(A)), for suitable tableaux Ty, 1 <i < 4.

6. SIMPLE ALGEBRAS WITH SUPERINVOLUTION

We recall the classification of the finite dimensional simple algebras with super-
involution over an algebraically closed field F' of charateristic 0 (see [5]).



STAR-POLYNOMIAL IDENTITIES 9

First, if A is a finite dimensional simple superalgebra over F, then it is well
known (see [20, Section 3]) that either A = M, (F),n > 1 or A = M, ,,(F) or
A M, (F)®cM,(F), with ¢ = 1.

Here M, ., (F') is the algebra of (n 4+ m) X (n 4+ m) matrices with Zj-grading

My n(F)o = {( a0 > | A€ My(F), B € My(F)},

My m(F)1 = {< lO) g ) | C =n xm matrix, D = m x n matrix},
and M, (F)®cM,,(F) = A has a Zs-grading such that Ag = M, (F), A1 = cM,,(F).
Now let A be a finite dimensional algebra with superinvolution. Then, according
to [5], either
1) A~ M, ,(F) with orthosymplectic or transpose involution, or
2) My m(F) ® cM,, m(F)°*P with exchange involution, or
3) A =Q(n)®Q(n)°P with exchange involution, where Q(n) = M, (F) ®
cM, (F).
Recall that M,, ,,,(F') has an orthosymplectic involution osp if and only if m = 2s
is even and osp in defined as follows

X YN\ (L, oN' /(X =Y\ /(I 0
Z T o 0 P zZ T 0 P
where X € M,,(F),T € Mss(F), I, is the identity n X n matrix, Y and Z are rectan-

. . . . . . I
gular matrices of suitable size, ¢ is the transpose involution and P = ( 0 N ) €

—I; 0
Mss(F).
Also, My, (F) has a transpose superinvolution trp if n = m and ¢rp is defined

as follows
X Y\ Tt Yt
(z2) =(z *)
where X, Y, Z,T € M, (F).
Finally we remind the reader that if A = Ay & A; is a superalgebra then the
superopposite algebra A%°P of A is the algebra A with the same underlying vector

space and a new multiplication o defined on homogeneous elements as follows:
aob=(—1)lllPlpa; here |a| is the homogeneous degree of a.

Lemma 4. Let A be a finite dimensional simple algebra with superinvolution over
an algebraically closed field. Then, for every t > 1 there exists a multilinear poly-
nomial

FOY Yo Y Y 2 2 2 Zy)
which is alternating on each of the sets Y, Y;", Z ¥ Z: where |Y;"| = dim Af, |V, | =
dim Ay, |Z}| = dim A}, |Z; | = dim A}, 1 < i < 2t. Moreover f is a central poly-
nomial that takes an invertible value in A.

Proof. Let g, (x1,...,2Zn2,91,...,Yn2) be the central polynomial of Regev for M, (F)
(see [16, Theorem 5.7.4] or [9]). Recall that g, is alternating on each of the two

sets of variables {z1,...,2,2} and {y1,...,y,2}. Let f,gt) be the product of ¢ copies
of g, on disjoint sets of variables. Then fr(f) is alternating on 2t sets of variables
each of order n? and f,(f) takes a non-zero central value in M, (F).
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Now let A be a finite dimensional simple algebra with superinvolution and sup-
pose first that A = M, ,,(F') with orthosymplectic or transpose superinvolution.
Then the polynomial fT(L:)_m is alternating on 2t sets each of cardinality (n + m)?;
since dim A +dim Ay +dim A +dim A7 = (n+m)?, each set can be partitioned
into four sets of the type ;" UY,” U Z U Z;, and f(t;zm is alternating on each of

n
the four sets separately. Hence fY(Lt_,)_m is the desired polynomial.

Next suppose that A = M, ,(F) & c¢M,, 1, (F)*°P with exchange involution. For
such algebra AT = {(a,a) | @ € M, (F)} and A~ = {(a,—a) | a € My, n(F)}.
Then we take ggt) to be f,(flm on symmetric variables and ggt) to be fT(LtJ)rm on skew
variables. Since AT = A} ® Al and A~ = A; @ A7, it turns out that g?)gét) is
the desired polynomial.

Now let A = Q(n) ® Q(n)*°P with exchange involution, where Q(n) = M, (F) ®
cM,(F). Since AT = {(a,a) | a € Q(n)} and A~ = {(a,—a) | a € Q(n)}, we
consider ¢g(*) = f,(f) -c 7(Lt>, which is a central polynomial for Q(n). Then we consider

g{t) = ¢ on symmetric variables of A and ggw = g™ on skew variables of A. It

follows that gy) gét) is the desired polynomial. O

7. REDUCED ALGEBRAS

The aim of this section is to construct multilinear polynomials corresponding to
hook shaped diagrams of suitable size, which are not *-identities of G(A), in case
A is a reduced algebra (see Definition 2).

We start by recalling two basic facts about the degrees of S,,-characters.

11 A F n, we shall denote by dy = xx(1). the degree of the corresponding S,,-
character. x». Then we have the following easy fact.

Remark 3. ([16, Lemma 6.2.4]) Let A = n and p < X. If |\ — |pu| = k, then
dy > n—deu.

Next we recall the following definition.

Definition 3. For any integers k,l,t > 0, we let h(k,l,t) be the hook shaped
diagram h(k,1,t) = ((I +t)*,1%).

The asymptotics of d,(k,[,t) are given in the following ([16, Lemma 6.2.5]).
Lemma 5. Let k,l > 0 be fized integers. If h(k,l,t) = n, then
dh(k,1,t) Znosoo O (kK +1)",
for some constants C,r.

Lemma 6. Let A = A+ J be a finite dimensional reduced algebra with superin-
volution over an algebraically closed field F. Let dim(A)d = po, dim(A); = qo,
dim(A)} = p1, dim(A)] = q1. Then, for every t > 1 there exists a multilinear

polynomial
f=f0 Yo Y Y 2 2 2 25, X)
where |Y;T| = po, |Y;"| = q0,|Z;"| = p1, 1Y, | = ¢1 such that
1) f is alternating on each of the sets Yfr,Y[, Z;r, Z;,1 <4< 2t
2) X is a set of k — 1 of homogeneous symmetric variables, where k is the
number of simple summands of A;
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3) [ ¢ 1d°(A).
Proof. Let A = A1 & --- @ A, where each A; is a simple algebra with superinvo-
lution. For each i, 1 < i < k, write 4; = (A;)g @ (Ai)g @ (A)] @ (4;);] and
LYY Y 2 2, 2, Z ) De the polynomial con-
structed in Lemma 4 which is alternating on each of the sets Y:;, YZ'E, Z:ﬁ Z; ; and
takes a central invertible value on A;. Recall that |YZ';| = poi, Y ;| = qois |Zl+J\ =
D1i, \Z;j| = qqi, for all 1 < 5 < 2t. Now since A is reduced, A1 JAsJ --- JA # 0,
and let a; € A;,1 <i<k,j, € J,1 <u<k—1such that
aijiasjs - jr—1ar # 0.

We may clearly assume that each element a; and j; is homogeneous and either
symmetric or skew. Define a new polynomial

[ = hzifera - xp—1fi,
where z; is a symmetric variable of the same homogeneous degree as a;j;a;+1,1 <
1 <k—1.

Let ¢ be an evaluation of f such that ¢(f;) = e;, where ¢; is the unit element of
A;, 1 <i<k—1;also o(x;) = a;jiait1 £ a;+1j:a:, for 1 <i < k—1, where we take
the plus or minus sign so that the resulting element is symmetric. Then we get

o(f) = er(arjraz = azjrar)ez - - - (ap—1jk—1ak + apjr—1aK-1)eg

= €101J102€2 - - - Q1 Jk—1akCK = A1]102 - - Q1 Jk—10) 7 0.
Notice that here we are using the fact that e;a;,41 € 4; 4,41 = 0.
Next we define new sets, for 1 <i < 2t :

Yi+ :Yli'U"'UYkTiv
Y7 =Y ,U---UY,_,,
ZF=2zHu---uzf,
ZfF=2zHu---uzf,.
Let Altx, be the operator of alternation on the set X;. Recall that Alt is defined
on a multilinear polynomial f(x1,...,z,) as follows:

Alt{wl,...,zT}f(‘Tla c 4 7x7‘7x7‘+17 et 7xn) = Z (Sgn O-)f(ma'(l)7 e 7‘To'(r)7x7‘+17 et ,.Tn).

o€eS,
Define a new polynomial
2t
= H Alty+ Alty, - Alt ;1 Alt - FO Y Y,
i=1

e Yo T T D e Ty
Notice that for 1 < i < 2t, |Y;7| = |Y1in\ + -4 \Y,;LZ\ = po1 + -+ Pok = Do
and similarly |Y;7| = qo, |Z;"| = p1, |Z; | = ¢1. Now, since each polynomial f; is
already alternating in each of the sets Yf;, Y Z;ﬁrj7 Z;;,1<j <2t and A;4; =0
for i # j, it follows that under the evaluation ¢ we have that

k
o(f') = [ [ poilaoi'prilanitee(f) # 0,

1=i
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and hence f’ does not vanish on A. Thus f’ satisfies the conclusion of the lemma.
O

Corollary 1. Let f be the polynomial constructed in the previous lemma, f &
I1d*(A). Then there exists a polynomial f' & 1d*(A) which is multialternating on the
same sets of variables as f and f' has 4 extra sets of variables XP0) C Y+, X®1) C
Y=, X Cc z+ x@) C Z= such that | X@D| = 2m, if i # 0 and |XPD| = 0
otherwise.

Proof. We start with the polynomial f constructed in the previous lemma and we
recall that there is an evaluation ¢ on A such that ¢(f) = aeijiesjo - jr_16x #
0, where a € F,e; is the identity element of A; and j; € J is a homogeneous
symmetric element, 1 < ¢ < k. Such evaluation coincides up to a scalar with the
evaluation of the polynomial fixq foxs - xk_1 fr where f; is a central polynomial
for A; constructed in Lemma 4.

We shall show how to insert in f, 2m skew variables of homogeneous degree zero,
provided gp = dim A; > 0. The insertion of the other sets of variables is similar.

Hence suppose that go = dim A; > 0. Then there exists a simple algebra with
superinvolution, say A; such that dim A;” > 0. Now, eqji - - - jr—1ex # 0 says that
there exists a matrix unit a € A; such that ey ji - - - ji_1aji€141 - - jr—1€x # 0.

Now recalling the classification of the finite dimensional simple algebras with
involution, one can choose 2m elements of homogeneous degree zero aq, ..., aom,
taken from a standard basis of A;, such that aa; - - - asy,, = a. But then the polyno-
mial

fizr - ficami—1 fitka o Tomek fie1 @i T fr

has a nonzero evaluation in A and has the required 2m extra skew variables of
homogeneous degree zero. (|

Lemma 7. Let A= A+ J be a reduced algebra with superinvolution over an alge-
braically closed field F. Let dim A = m,dim(A); = qo,dim(A){ = p1,dim(4)] =
q1- Then, for any t > 1, there exist partitions

AE2t(po + p1) +4m, pk 2t(q +q1) +4m

such that
h(p07p17 2t — 2m) S A S h(p() + 2m>p1 + 2m> 2t + 2m)

h(q07q172t - 2m) S 1 S h’(qo + 2m7<]1 + 2m72t + 2m)7

and tableauz Tx,T,, with the following properties. If we let er, act on symmetric
variables and e, on skew variables, then er,er, f & I1d*(G(A)), for some multilin-
ear polynomial f with deg f = 2t(dim A) + 8m.

Proof. Let f be the polynomial constructed in the previous corollary. Recall that

f= f(Y(JQFt)VY(;t)’ Z(zt)’Z(;t)7X(p0)7X(p1)7X(q0)’X(ql))

UZ(_Qt)

is a multilinear polynomial alternating on each of the sets of Yé’t) UY(;t) uz (2 "
and | X@| = 2m if i # 0 and X = () otherwise. Moreover f & Id*(A).
By the property of the map ~ , the polynomial f is alternating on each of the

sets of Y(;t) U Y(gt) and symmetric on each of the sets of Z(J;t) Uz moreover

(2t)’
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f ¢ Id5(G(A)). The polynomial f satisfies the hypothesis of Remark 2. Hence
there exist partitions

A1) > ((20)7), A2) = ((20%), A(3) = (01'), M4) > (41")
with
IA(1)] = 2tpo = |A(2)] — 2tqo = |A(3)| — 2tp1 = |N(4)| — 2tq1 = 2m,

and tableaux Ty;),1 <4 < 4, such that ., eTw)f & Id5(G(A)).

Let the symmetric groups Soip,+2m s S2tgo+2m > S2tps +2m s S2tq: +2m act on the poly-
nomial g = H?Zl er, f by permuting the variables corresponding to the tableaux
Txiy,1 < i < 4, respectively. Let M be the Sap,i2m X S2tgo+2m X S2tp+2m X
Satq+2m-module generated by the polynomial g. If M is the induced module

M = M 4%2t@otp1)+am X S2e(ag +ay) +am

then, since M ¢ Id3(G(A)), then also M ¢ Id5(G(A)). We decompose M into
irreducible modules M = M; @ --- @ M, and since M ¢ Id5(G(A)), we have that
M; € Id5(G(A)), for some i. Now by the Littlewood-Richardson rule (see [19]), M;
is associated to a pair of partitions A - 2t(pg +p1) +4m, pk 2t(go+ q1) +4m such
that

h(po, p1,2t — 1) < A < h(po + 2m, p1 +2m, 2t + 2m),
and

h(qo, q1,2t — s) < pp < h(qo + 2m, q1 + 2m, 2t + 2m),
where 7 = max{po,p1} and s = max{qo,q1}. Clearly X > h(po,p1,2t — 2m) and
w > h(qo,q1,2t — 2m). Now, since M; € Id5(G(A)), there exists a multilinear
polynomial ¢’ and tableaux Ty and T}, such that er, e, g’ & Id5(G(A)).

If we consider the variables appearing in ez, e, g’ as symmetric ungraded or skew

ungraded variables, we get that er, er, g’ in these new variables is not a *-identity
for G(A)), i.e., eryer, g’ & Id*(G(A)). O

8. THE LOWER BOUND

Lemma 8. Let A be a finite dimensional algebra with superinvolution over an
algebraically closed field F. Then there exist constants C > 0,r such that

cn(G(A)) < Cn"d",

n

where d is the mazimal dimension of an admissible subalgebra of A.

Proof. Let A= A+J where A = A, ®---® A, is a maximal semisimple subalgebra
with superinvolution and the A;’s are simple algebras with superinvolution. Recall
that by Definition 2, if C' is an admissible subalgebra of A, then B = C' + J is a
reduced algebra. Hence, since ¢, (G(A)) > ¢} (G(B)), for all n > 1, in order to prove
the lemma we may clearly assume that A is a reduced algebra with dim A = d.

Let m = dim A and set py = dim(Ay)*, g0 = dim(Ay)~,p1 = dim(A;) ", q1 =
dim(A;)~. Hence d = pg + qo + p1 + 1.

Take n > 8m any integer, and divide n — 8m by d. So we write n = 2td + 8m +
r, with 0 < r < 2d. Let f be the polynomial constructed in Lemma 7. Hence
er,er, [ & 1d*(G(A)), for suitable tableaux T}, T), where

A > h(po,p1,2t —2m), > h(qo,q1,2t —2m)).

Moreover deg f = 2td + 8m. We compute n — deg f = 2td + 8m +r — 2td — 8m =
r < 2d. Thus n — deg f = s is a constant that does not depend on t.
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Let ¢’ = ep, er, frsy1 - Tn, Where repy -+ 2, are symmetric variables distinct
from the ones appearing in f. Recalling the construction of f, it is readily seen
that still ¢’ & Id*(G(A)). Now, by the branching rule we add n — s boxes to the
diagrams of A and p In this way we obtain partitions

AEny > (A > |h(po, p1, 2t — 2m)],

,[l, F n2 > |N‘ > |h(quQI72t - 277L)|

and a polynomial ¢ such that er; eTﬂg” ¢ Id*(G(A)). Here ny and ny count the
number of symmetric and skew variables appearing in the polynomial g’.
Notice that

n — |h(po, p1, 2t — 2m)| — |h(qo, q1, 2t — 2m)|
=2td+8m +1r — (po + p1)(2t — 2m) — pop1 — (g0 + q1)(2t — 2m) — qoqu

< 8m + 2d — 2dm — pop1 — qoq1,

a constant that does not depend on t.

It follows that ny — |h(po, p1, 2t — 2m)| and na — |h(qo, g1, 2t — 2m)| are also con-
stant. Thus by Remark 3, d > nl_%dh(pa,phgt_gm) and d; > ng%dh(qo’ql,%,zm),
for some constant k. It follows that

Cnana (G(A)) 2 ¢, 0, (G(B)) > dsdy

— ni,n2 -

—2k
> (n1n2)” " dn(pg pr,20—2m) Ah(go,q1,2t—2m)

> (n1n2)r(po +p1)2t(p0+p1)(QO + Q1)2t(q°+(“) = (nan)TPQtqutq’
where
|h(po, p1, 2t = 2m)| = (po + p1)*" — (po + p1)2m + pop1,

and similarly for h(qo, g1, 2t —2m). In the above inequalities we have applied Lemma
6 which gives the asymptotics for the hooks.

Next we compute ¢f,(G(A)) (recall the connection between ¢, and ¢, », given
at the end of Section 2). Recalling Stirling formula n! ~ v/27n(2)", we get

n! 3 (2tp + 2tq)! /2w (2tp + 2tq) (2tp + 2tq)>P T30
nilng! = (2tp)!(2tq)! — \/16722pg  (2tp)*tP(2tq)*e

C(p +q)*'to
thpq2tq

)

for some constant C' > 0. Hence

n r.2tp 2tq (p + q)2t(p+q)

G = (" Yo (@A) = Clmyprge P

ny,M2

> o' (p+ @)@+ > Onrd > Gy’ d,

since n — 2td is constant. O



STAR-POLYNOMIAL IDENTITIES 15

9. THE UPPER BOUND

Let n > 1 and let S be the free supercommutative algebra over F' on the count-
able sets T} and T where Th = {§ ;|1 < i < n,j > 1} and To = {n; ;|1 < i <
n,j > 1} (see [6]). Recall that S is the algebra with 1 generated by 77 U Ty over
F, subject to the conditions that the elements of T} are central and the elements
of T, anticommute.

The algebra S has a natural Zs-grading S = Sy @ S if we require that the
&;,;'s are of homogeneous degree zero and the 7); ;’s are of homogeneous degree one.
Hence Sy (S7) is the span of all monomials in the elements of 77 U T, having an
even (odd, resp.) number of 7; ;’s.

The Grassmann algebra G embeds into S with induced Zs-grading if one iden-
tifies the generating elements ey, e, ... of G with the elements of 75. In this em-
bedding Gy is spanned by the monomials in the 7; ;’s of even length and G; by
the monomials in the 7; ;’s of odd length. Hence S = F'[¢; ;] ®p G. Notice that the
superinvolution of G extends naturally to a superinvolution of S by requiring that
& =& j for all 4, j. And we have that Sp = S* and S; = S~

Now let A = Ag @ Ay be a finite dimensional algebra with superinvolution * and
consider G(A), its Grassmann envelope.

We fix a basis B of A which is the union B = Bf U B, U B U B of bases of
A[)", Ay, AT, A7, respectively.

Let B(T = {a071, ey a()’,«o}, BO_ = {b()’l, ey b0’50}7611_ = {alﬂl, ey (117“} and
By ={bi1,...,b16 }. Next we define for : = 1,...,n,

0 s1
2 & = Gija0;+ Y b,
=1 =1
50 1
3) § =D Cirotibos + Y Mhsr 1010,
=1 =1

Let H=F(&F, ..., 68,6, ...,&7) be the algebra generated by the & and ;7,1 <
i <n,over F. Clearly H C F[{; ;]® G® A ~ S® A. Moreover, H has an involution
x such that §1+ yo.., & are symmetric elements and &7 ,..., &, are skew elements
(this is easily checked by recalling that the 7 ; are anticommuting variables). Now
recall that the involution on the Grassmann envelope G(A) is such that

GAT=Gy® A ®G1 ® A7,

G(A)™ =GR A; ®G1 ® AT.
Hence any element of G(A)* (G(A)™) can be thought as obtained from & (&,
resp.) by evaluating the variables &; ; into Gy and the variables n; ; into Gy. It
follows that f(x) ...,z , 27 ... 2;) € F(X,*) is a *-identity of G(A) if and only
if f(&5 ..., 6 &0 ..., &) = 0. Hence H is the relatively free algebra with involution
in n symmetric generators and n skew generators of the variety of algebras with
involution generated by G(A).

Lemma 9. Let A be a finite dimensional algebra with superinvolution over an
algebraically closed field F'. Then there exist constants C,t such that

cr(G(A)) < Cntd™,

n

where d is the mazimal dimension of an admissible subalgebra of A.
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Proof. Let H = F(&F, ..., &5, &0,...,&,), be the relatively free algebra defined
above. Then the n-th *-codimension of G(A) is

*

n(G(A)) = dimp span{ng() - oy | 0 € Sp, i =& or gy = &7, 1 <i <n}.
For a fixed t > 0, let
,Pt,mft = Span{ﬁau) © Mo (n) ‘ o€ Sy, i = 5;’_ if1 <i<t,

andn, =& ift+1<i<n}.

Our first aim is to compute an upper bound of dimg P; ,—;. To this end, take a
monomial 7,1y - No(n) € Pt and, by mean of the definition given in (2) and
(3), write such monomial as a linear combination of products of n elements of the
basis of A with coefficients polynomials in the &; ;’s and the n;;’s.

Write A = B + J where B is a maximal semisimple subalgebra with superinvo-
lution and J = J(A). Write B = By & --- @ By, a direct sum of simple algebras
with superinvolution. Then we choose our basis B = Bf UBy UB; U By in such a
way that each of the four components is made of elements of J and of the simple
algebras B;. But then, by abuse of notation, since each variable &; ; or n; in (1)
and (2) is attached to a basis element, we shall say that & ; or ng; is a radical
variable or a semisimple variable.

Notice that if J“*! = 0, then clearly each non-zero monomial contains at most
u radical variables and n — ¢ semisimple variables with i < u.

Let us fix a distribution of the radical variables in a non-zero monomial of Py ,,_;.
For this fixed distribution the semisimple variables must come either from a simple
component or from distinct simple components of (i1,...,%,). This means that
D =B, ®&---®B,;, C B is an admissible subalgebra of B.

Now let D be an admissible subalgebra of B and let d; = |[Bf N D|,d> = |B} N
D|,ds = |ByND| and dy = |By ND|. Hence d;+ds = dim D' and d3+dy = dim D~
Now, each monomial has ¢ coefficients taken in the set {&; ;|1 < i <¢,1<j <
ot U{ne|l <k <t 1 <1< s} and n—t taken in the set {& [t +1 < i <
n,ro+1<j<ro+stU{net+1<k<n, sg+1<1<s +r}. Moreover the
number of possible distributions of i radical variables for i = 1, ..., u, is bounded by
Cin*, for some constant C;. Therefore in all we get < Con®(dy + do)!(ds + dsg)" ¢
possible monomials, with Cs a constant. Thus an upper bound for the monomials
coming from an admissible subalgebra D is

Con™(dim D) (dim D~)"".
Now, if M is the number of admissible subalgebras of B and E is an admissible
subalgebra of maximal dimension, then an upper bound for the number of possible
non-zero monomials is M Con™(dim E1)*(dim E~)"~*. Taking into account that we
rewrote any product of n basis elements of A as a linear combination of basis
elements, we get that

dimp Py < Cyn®(dim ET)! (dim E7)" 7",

where Cj is a constant. The connection between ¢ (G(A)) and dim Py ¢, 0 <t <
n, is given in (1), and we have

) =3 (1) dmP
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<oy ("> (dim ET)!(dim E-)"* = Cyn"d™,
t=0 t
where d = dim ET +dim E~ = dim E. O

10. THE MAIN THEOREM
Putting together the results of the previous sections we get.

Theorem 3. Let A be a finite dimensional superalgebra with superinvolution over
an algebraically closed field of characteristic zero. If % is the induced involution
on the Grassmann envelope G(A), then there exist constants Cy > 0,Cay,t1,ty such
that

Cin"d" < ¢ (G(A)) < Cyn'2d™.

where d is the maximal dimension of an admissible subalgebra of A.

Recalling that codimensions do not change by extending the base field, by The-
orem 1 we have the following.

Theorem 4. Let A be a Pl-algebra with involution x over a field of characteristic
zero. Then there exist constants Cy > 0,Co, ty,ty such that

Cin'td" < ¢ (A) < Oyn'2d™.
Hence lim, oo Y/t (A) = exp*(A), the x-exponent of A, exists and is an integer.
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