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STAR-POLYNOMIAL IDENTITIES: COMPUTING THE

EXPONENTIAL GROWTH OF THE CODIMENSIONS

A. GIAMBRUNO, C. POLCINO MILIES, AND A. VALENTI

Abstract. Can one compute the exponential rate of growth of the ∗-codimensions
of a PI-algebra with involution ∗ over a field of characteristic zero? It was
shown in [2] that any such algebra A has the same ∗-identities as the Grass-

mann envelope of a finite dimensional superalgebra with superinvolution B.
Here, by exploiting this result we are able to provide an exact estimate of the

exponential rate of growth exp∗(A) of any PI-algebra A with involution. It

turns out that exp∗(A) is an integer and, in case the base field is algebraically

closed, it coincides with the dimension of an admissible subalgebra of maximal

dimension of B.

1. Introduction

Let A be an algebra over a field F of characteristic zero and suppose that A is
a PI-algebra i.e., it satisfies a non trivial polynomial identity. A celebrated result
of Kemer states that any such algebra A has the same polynomial identities as the
Grassmann envelope of a suitable finite dimensional superalgebra [20]. Recall that
if G is the (infinite dimensional) Grassmann algebra over F, one can consider its
standard Z2-grading G = G0 ⊕ G1. Then if B = B0 ⊕ B1 is a superalgebra over
F , the Grassmann envelope of B is the algebra G(B) = G0 ⊗ B0 ⊕G1 ⊗ B1. This
result has been extended to algebras graded by a finite group H in [4] (see also
[22]). In this case one considers the Grassmann envelope of a finite dimensional
Z2 ×H-graded algebra.

In this paper we are concerned with algebras with involution. In [2] a suitable
superinvolution on the Grassmann algebra was introduced having the following
property: if B is any algebra endowed with a superinvolution, then its Grassmann
envelope has an induced involution. More generally given a superalgebra B and
its Grassmann envelope G(B) there is a well-understood duality between graded
involutions and superinvolutions of the two algebras. The main outcome of this
correspondence is the following result proved in [2]: any PI-algebra with involution ∗
has the same ∗-identities as the Grassmann envelope of a suitable finite dimensional
algebra with superinvolution.

Here we are interested in the growth of the identities of an algebra. Recall that
if Pn is the space of multilinear polynomials in n variables and Id(A) is the T-ideal
of identities of the algebra A, then

cn(A) = dimPn/(Pn ∩ Id(A))
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is the n-th codimension of A. It is well known ([21]) that the sequence of codimen-
sions of an associative PI-algebra is exponentially bounded and in [13], [14] it was
shown that if A is any PI-algebra there exist constants C1 > 0, C2, t1, t2 such that
C1n

t1dn ≤ cn(A) ≤ C2n
t2dn holds for a suitable integer d. In particular the limit

limn→∞ n
√
cn(A) = d = exp(A) exists and is an integer called the PI-exponent of

A. We refer the reader to [16] for an account of the theory developed around the
exponent.

We have to mention that an actual asymptotic estimate of the codimensions
was established in [7] and [8] for algebras with 1 and it turns out that cn(A) �
Cntexp(A)n where t ∈ 1

2Z. Later in [17] it was shown that even if A does not have
a unit element, still C1n

texp(A)n ≤ cn(A) ≤ C2n
texp(A)n holds where C1 and C2

are positive constants.
When an algebra A has an additional structure, such as a group grading or an

involution, one can consider the corresponding codimension sequence and ask if the
analogue of the theorem on the existence of the exponent holds.

In this setting it was recently shown that if A is any PI-algebra graded by a finite
group then the corresponding exponent exists and is an integer ([3], [11], [1]). Also
it turns out that if the algebra is finite dimensional and is acted on by a finite group
of automorphisms and antiautomorphisms or by a finite dimensional Lie algebra of
derivations or more generally there is a so-called generalized Hopf algebra action,
still the corresponding exponent exists and is an integer ([18]).

Here we shall prove that if A is any PI-algebra with involution ∗, and c∗n(A), n =
1, 2, . . . , is the corresponding sequence of ∗-codimensions, then

C1n
t1dn ≤ c∗n(G(A)) ≤ C2n

t2dn,

holds for all n, where C1 > 0, C2, t1, t2, d are constants and d is an integer. As a
corollary we get that the ∗-exponent of A, i.e., exp∗(A) = limn→∞ n

√
c∗n(A) exists

and is an integer. Since A has the same ∗-identities as the Grassmann envelope
G(B) of a finite dimensional algebra with superinvolution B, we shall actually
exploit such relation.

As in the ordinary case (no involution) we also give an explicit way of comput-
ing the ∗-exponent; il turns out that when F is algebraically closed, exp∗(A) =
exp∗(G(B)) is the dimension of a so-called admissible subalgebra of B of maximal
dimension. It should be mentioned that the existence of the ∗-exponent was proved
in [15] for finite dimensional algebras.

Finally but most important, the proof we present here is not a generalization of
the original proof; the computation of the upper bound of c∗n(A) is based on an idea
of Procesi and the proof of the lower bound is a generalization and a simplification
of the original proof.

2. Preliminaries

Let A be a superalgebra over a field F and suppose that A is endowed with a
superinvolution ∗. Recall that in this case A is a superalgebra A = A0⊕A1 and * is a
linear map of A of order two such that (ab)∗ = (−1)|a||b|b∗a∗, for any homogeneous
elements a, b ∈ A, where | a | denotes the homogeneous degree of A. Now, for any
subset S = S∗ of A, let S+ = {a ∈ S | a = a∗} and S− = {a ∈ S | a = −a∗}
be the subsets of symmetric and skew elements of S, respectively. Then, since it is
well-known that A∗

0 ⊆ A0, A
∗
1 ⊆ A1 we can decompose A as A = A+

0 ⊕A−
0 ⊕A+

1 ⊕A−
1 .
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Now, throughout the paper the word algebra may mean superalgebra depending
on the context, for instance we shall say that A is an algebra with superinvolution
meaning that A is a superalgebra with superinvolution.

Throughout this paper F will be a field of characteristic zero, and F 〈X, s〉 the
free algebra with superinvolution on a countable set X over F . F 〈X, s〉 is defined
by a universal property and can be explicitly described as follows. Starting with the
free associative algebra F 〈X〉 on a countable set X, write X = Y ∪ Z, the disjoint
union of two countable sets. Then F 〈X〉 becomes a superalgebra denoted F 〈Y, Z〉
(the free superalgebra of countable rank) by requiring that the variables of Y have
homogeneous degree zero and those of Z have homogenous degree one.

Next we write Y = Y +∪Y − and Z = Z+∪Z−, disjoint unions of countable sets.
Then we define a superinvolution on F 〈Y, Z〉 by requiring that the variables of Y +

(Y −) are symmetric (skew, resp.) of homogenous degree zero and the variables of
Z+ (Z−) are symmetric (skew, resp.) of homogenous degree one. The resulting
algebra is F{X, s}, the free algebra with superinvolution on X.

In what follows we shall write Y + = {y+1 , y+2 , . . .}, Y − = {y−1 , y−2 , . . .}, Z+ =
{z+1 , z+2 , . . .}, Z− = {z−1 , z−2 , . . .}. Hence an element of F 〈X, s〉 will be written as

f = f(y+1 , . . . , y
+
n , y

−
1 , . . . , y

−
m, z+1 , . . . , z

+
p , z

−
1 , . . . , z−q ).

Let A be a superalgebra with a superinvolution ∗. A polynomial f ∈ F 〈X, s〉 is a
*-polynomial identity (or an identity with superinvolution) if it vanishes in A when
the homogeneous symmetric and skew variables are evaluated in symmetric and
skew elements of A of the corresponding homogeneous degree, respectively.

We shall denote by Ids(A) the ideal of F 〈X, s〉 of *-polynomial identities of A.
Also we shall denote by Id(A) the ideal of (ordinary) polynomial identities of A.
As an extension of the ordinary case, it is clear that Ids(A) is invariant under all
superinvolution endomorphisms of F 〈X, s〉.

Let us denote by P s
n, the space of multilinear polynomials with superinvolution

of F 〈X, s〉 in the first n variables, i.e.,

P s
n = spanF {wσ(1), · · · , wσ(n) |σ ∈ Sn, wi = y+i or y−i or z

+
i or z

−
i , 1 ≤ i ≤ n}.

Let also csn(A) = dim
P s

n

P s
n∩Ids(A) be the n-th superinvolution codimension of A. The

sequence csn(A), n = 1, 2, . . . , will be one our main object of study.
Now let B be an algebra with involution ∗. As above, let us denote by B+ =

{b ∈ B | b = b∗} and B− = {b ∈ B | b∗ = −b} the sets of symmetric and skew
elements of B, respectively.

Though we are using the same symbol ∗ for an involution or a superinvolution,
in what follows the role of ∗ will be clear from the context. Also in this case we
let F 〈X, ∗〉 = F 〈X+, X−〉 be the free associative algebra with involution * on the
countable set X. We shall write X+ = {x+

1 , x
+
2 , . . .} and X− = {x−

1 , x
−
2 , . . .} for

countable sets of symmetric and skew variables generating F 〈X, ∗〉, respectively. If
f ∈ F 〈X, ∗〉, f will be a ∗-polynomial identity (or identity with involution) of the
algebra B if f vanishes under all evaluations of the symmetric and skew variables
into symmetric and skew elements of B, respectively. We let Id∗(B) be the ideal
of ∗-polynomial identities satisfied by B.

We shall denote by

P ∗
n = span{wσ(1), · · · , wσ(n)|σ ∈ Sn, wi = x+

i orx−
i , 1 ≤ i ≤ n}
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the space of multilinear polynomials in the first n variables and c∗n(B) = dim
P∗

n

P∗
n∩Id∗(B)

will be the n-th ∗-codimension of B. Our main result here will be to prove that
C1n

t1dn ≤ c∗n(B) ≤ C2n
t2dn, holds for all n, for some constants C1 > 0, C2, t1, t2, d

where d is an integer, for any PI-algebra with involution B.
Actually we shall first compute a lower bound for a different kind of codimensions

that here we define. For any t, 0 ≤ t ≤ n, define Pt,n−t to be the span of multilinear
monomials in x+

1 , . . . , x
+
t , x

−
t+1, . . . , x

−
n , i.e.,

Pt,n−t = span{wσ(1) · · ·wσ(n)|σ ∈ Sn, wi = x+
i , 1 ≤ i ≤ t,

and wi = x−
i , t+ 1 ≤ i ≤ n}.

Then one defines ct,n−t(B) = dim
Pt,n−t

Pt,n−t∩Id∗(B) .

The connection between c∗n(B) and ct,n−t(B) is given by the formula (see [16,
Corollary 10.6.2])

(1) c∗n(B) =

n∑
t=0

(
n

t

)
ct,n−t(B).

In order to compute the lower bound of c∗n(B), we shall make use of the repre-
sentation theory of the symmetric group as follows. Given non negative integers
n1, n2, , n3, n4 we shall consider the space Pn1,...,n4 of multilinear polynomials in the
four sets of variables y+1 , . . . , y

+
n1
, y−1 , . . . , y

−
n2
, z+1 , . . . , z

+
n3
, z−1 , . . . , z−n4

on which we
act with Sn1 ×Sn2 ×Sn3 ×Sn4 , where Sni acts on the corresponding set of variables
by permuting them.

We also recall that if λ is a partition of the integer n and Tλ is a Young tableau
of shape λ, then RTλ

and CTλ
are the subgroups of Sn stabilizing the rows and

the columns of Tλ, respectively. Then eTλ
= R+

Tλ
C−

Tλ
is an essential idempotent

of the group algebra FSn, where R+
Tλ

=
∑

σ∈RTλ
σ and C−

Tλ
=

∑
τ∈CTλ

(sgn τ)τ .

Moreover every irreducible Sn-module corresponding to λ is isomorphic to FSneTλ
.

3. The basic setting

Let G be the Grassmann algebra over F , i.e., the algebra generated by the
elements e1, e2, . . . subject to the condition eiej = −ejei, for all i, j ≥ 1. Recall
that G has a natural Z2-grading G = G0 ⊕ G1 where G0 and G1 are the spans of
the monomials in the ei’s of even and odd length, respectively. If A = A0 ⊕ A1 is
a superalgebra then the Grassmann envelope of A is defined as G(A) = G0 ⊗A0 ⊕
G1 ⊗A1.

The relevance of G(A) relies in a result of Kemer ([20, Theorem 2.3]) stating
that if B is any PI-algebra, then its T-ideal of polynomial identities coincides with
the T-ideal of identities of the Grassmann envelope of a suitable finite dimensional
superalgebra.

Regarding algebras with involution, one can perform a construction involving G
as follows. First one defines a superinvolution ∗ on G by requiring that e∗i = −ei,
for any i ≥ 1. Then it is easily checked that G0 = G+ and G1 = G−. Now,
if A is a superalgebra one can construct its Grassmann envelope G(A) and in
([2]) it was shown that if A has a superinvolution ∗ (a graded involution), then ∗
induces a graded superinvolution (a graded involution, resp.) on G(A) by setting
(g ⊗ a)∗ = g∗ ⊗ a∗, for homogeneous elements g ∈ G, a ∈ A.
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In what follows we shall assume that A has a superinvolution and we shall denote
by Id∗2(G(A)) the ideal of graded identities (superidentities) with involution of G(A)
and by Id∗(G(A)) the ideal of identities with involution of G(A).

Next we briefly recall the main results of [2]. First one defines a superinvolution,

denoted �, on the Grassmann algebra G = G0 ⊕G1 by requiring that e�i = −ei, for
i ≥ 1. A basic property of this superinvolution is that G+ = G0 and G− = G1. It
follows that one can bridge between graded involutions and superinvolutions of a
superalgebra A and its Grassmann envelope. In fact we have (see [2, Lemma 1]).

Proposition 1. Let A be a superalgebra endowed with a graded involution or a
superinvolution ∗. Then the linear map ∗ : G(A) → G(A) such that (a ⊗ g)∗ =
a∗ ⊗ g�, for homogeneous elements g ∈ G and a ∈ A, induces a superinvolution or
an involution on the Grassmann envelope G(A), respectively.

In case A is a superalgebra with superinvolution and we regard G(A) as an
algebra with involution, the following result holds.

Theorem 1. ([2, Theorem 4]) If B is a PI-algebra with involution over a field F
of characteristic 0, then there exists a finite dimensional superalgebra with superin-
volution A such that Id∗(B) = Id∗(G(A)).

Hence, by making use of this theorem, we shall compute the exponential rate
of growth of the sequence of ∗-codimensions of the Grassmann envelope of a finite
dimensional algebra with superinvolution A. To this end we need a Wedderburn-
Malcev theorem for finite dimensional algebras with superinvolution whose proof
can be found in [10].

Theorem 2. Let A be a finite dimensional superalgebra with superinvolution ∗ over
an algebraically closed field F of characteristic 0. Then A = B + J where B is a
maximal semisimple superalgebra with induced superinvolution and J∗ = J is the
Jacobson radical of A.

Throughout this paper, unless otherwise stated, A will be a finite dimensional
algebra with superinvolution over an algebraic closed field of characteristic 0. Then
we write A = Ā+ J as in Theorem 2. Also we can write

Ā = A1 ⊕ · · · ⊕Ak

where A1, · · · , Ak are simple algebras with superinvolution.
We make a definition.

Definition 1. Given A = Ā+ J = A1 ⊕ · · · ⊕Ak + J , a finite dimensional algebra
with superinvolution, we say that a subalgebra Ai1 ⊕· · ·⊕Ait where Ai1 , . . . , Ait are
distinct simple superalgebras with induced superinvolution, is admisible if for some
permutation (l1, . . . , lt) of (i1, . . . , it) we have that Al1JAl2J · · · JAlt �= 0.

Definition 2. If Ai1 ⊕ · · · ⊕Ait is an admissible subalgebra of A then A′ = Ai1 ⊕
· · · ⊕Ait + J is called a reduced subalgebra.

In what follows we shall prove that c∗n(G(A)) is bounded from above and from
below, up to a polynomial factor, by dn where d is the maximal dimension of an
admissible subalgebra of A.
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4. The map ∼
In this section we shall introduce a map relating the ∗-identities of a superalgebra

with superinvolution and the ∗-identities of its Grassmann envelope (see [2, Section
2]). This generalizes the map introduced by Kemer in the ordinary case (see [20,
Section 2]).

As we remarked above, since A has a superinvolution ∗, G(A) has a graded
involution ∗, i.e., the homogeneous components of G(A) are invariant under ∗.
Also in this case we decompose G(A) = G(A)+0 ⊕ G(A)−0 ⊕ G(A)+1 ⊕ G(A)−1 . We
recall that Id∗2(G(A)) is the ideal of the free superalgebra with graded involution
of graded ∗-identities of G(A).

Let f(y+1 , . . . , y
+
n , y

−
1 , . . . , y

−
m, z+1 , . . . , z

+
p , z

−
1 , . . . , z−q ) ∈ F 〈X, s〉 be a polynomial

with superinvolution, and suppose that f is multilinear. We write f in the form

f =
∑

w1,...,wp+q+1

∑
σ∈Sp+q

ασw1ζσ(1)w2ζσ(2) . . . wp+qζσ(1)wp+q+1

where ζi = z+i for 1 ≤ i ≤ p and ζi = z−p+i for 1 ≤ i ≤ q. Here w1, . . . , wp+q+1

are eventually empty words in the variables of homogeneous degree zero. Then we
define

f̃ =
∑

w1,...,wp+q+1

∑
σ∈Sp+q

(sgnσ)ασw1ζσ(1)w2ζσ(2) . . . wp+qζσ(1)wp+q+1.

The basic properties of the map ∼ are given in the following.

Lemma 1. 1)
˜̃
f = f ;

2) f ∈ Ids(A) if and only f̃ ∈ Id∗2(G(A));
3) for any subset of variables Z ′ of {z+1 , . . . , z+p , z−1 , . . . , z−q }, f is alternating

on Z ′ if and only if f̃ is symmetric on Z ′.

Proof. 1) is clear.

Recall that since G+ = G0 and G− = G1, we have that G(A)0
+

= A0
+ ⊗ G0,

G(A)0
−
= A0

− ⊗G0, G(A)1
+
= A1

− ⊗G1 and G(A)1
−
= A1

+ ⊗G1. Hence

f(a+1,0 ⊗ g1,0, . . . , a
+
n,0 ⊗ gn,0, a

−
1,0 ⊗ h1,0, . . . , a

−
m,0 ⊗ hm,0,

b−1,1 ⊗ g1,1, . . . , b
−
p,1

⊗ gp,1, b
+
1,1 ⊗ h1,1, . . . , b

+
q,1

⊗ hq,1)

= f̃(a+1,0, . . . , a
+
n,0, a

−
1,0, . . . , a

−
m,0, b

−
1,1, . . . , b

−
p,1

, b+1,1, . . . , b
+
q,1

)⊗ g1,0

· · · gn,0h1,0 · · ·hm,0g1,1 · · · gn,1h1,1 · · ·hm,1,

where a+i,0⊗gi,0 ∈ A+
0 ⊗G0, a

−
i,0⊗hi,0 ∈ A−

0 ⊗G0, b
−
i,1⊗gi,1 ∈ A−

1 ⊗G1, b
+
i,1⊗hi,1 ∈

A−
1 ⊗G1. Thus f ∈ Id∗2(G(A)) if and only if f̃ ∈ Ids(G(A)). �

5. Multialternating polynomials

In what follows we shall denote by Y +
1 , . . . , Y +

r finite disjoint sets of symmetric
variables of homogeneous degree zero, by Y −

1 , . . . , Y −
r finite disjoint sets of skew

variables of homogeneous degree zero. The meaning of Z+
1 , . . . , Z+

r and Z−
1 , . . . , Z−

r

is clear. Also, in order to simplify the notation, for r ≥ 1, we shall write

Y +
(r) = Y +

1 ∪ · · · ∪ Y +
r ,

where | Y +
1 |= · · · =| Y +

r |; similarly Y −
(r) = Y −

1 ∪ · · · ∪ Y −
r , and so on.
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Also, if λ = (λ1, λ2, . . .) and μ = (μ1, μ2, . . .) are two partitions, we write μ ≤ λ
if μi ≤ λi, for all i.

It is well-known that any finite dimensional algebra A has nilpotent Jacobson
radical J . In the next lemmas we assume that J �= 0 and s in any positive integer
such that Js = 0.

Lemma 2. Let A = Ā + J be a finite dimensional algebra with superinvolution.
Suppose that dim(Ā)+0 = p0 > 0 and let s > 0 be such that Js = 0. Let

f(Y +
1 , . . . , Y +

r , X ′) �∈ Id∗2(G(A))

be a multilinear polynomial with r ≥ 1, such that

1) f is alternating on each set Y +
i with |Y +

i | = p0, 1 ≤ i ≤ r;
2) X ′ contains a set Y 0 of s symmetric variables of homogeneous degree zero.

Then there exists a partition λ ≥ (rp0) with |λ| − rp0 = s and a tableau Tλ such
that eTλ

f �∈ Id∗2(G(A)) where eTλ
acts on the set Y +

1 ∪ · · · ∪ Y +
r ∪ Y 0.

Proof. We let the symmetric group Sp0r+s act on the variables of the set Y +
1 ∪

· · · ∪ Y +
r ∪ Y 0. Let M = FSp0r+sf be the left Sp0r+s-module generated by f. Then

M �⊆ Id∗2(G(A)) since f �∈ Id∗2(G(A)). Hence there exists an irreducible submodule
M ′ of M not contained in Id∗2(G(A)).

This says that there exists a partition λ = (λ1, . . . , λt) � p0r + s and a tableau
Tλ such that eTλ

�∈ Id∗2(G(A)). We shall prove that λ ≥ (rp0).
To this end, suppose that λ1 ≥ r + s. Then eTλ

f is symmetric on at least
r + s + 1 variables of the set Y +

i ∪ · · · ∪ Y +
r ∪ Y 0. Since f is alternating on each

Y +
i by hypothesis, we obtain that f is symmetric and alternating on at least two

variables. Thus by linearity f = 0 and, so λ1 ≤ r + s.
Next we prove that λ contains at most s boxes below the first p0 rows, i.e.

λp0+1 + . . .+ λt ≤ s.
Consider the polynomial C−

Tλ
f which is alternating on disjoint sets of symmetric

variables of homogeneous degree zero corresponding to the columns of λ. If ∼ is
the map defined in Section 4, then C−

Tλ
f̃ is still alternating on the same sets of

variables. Since dim(Ā)+0 = p, in order to get a non-zero evaluation of C−
Tλ
f̃ in

A, we must substitute at most p0 elements of a basis of (Ā)+0 in each alternating
set and the remaining variables in J+

0 . It follows that if there are at least s boxes

outside the first p0 rows, then C−
Tλ
f̃ ∈ Ids(A), since Js = 0. By applying the map

∼ again by Lemma 1 we get that C−
Tλ
f ∈ Id∗2(G(A)), a contradiction.

We have proved that λ1 ≤ r+s and λp0+1+ . . .+λt ≤ s. It follows that λ ≥ (rp0)
and eTλ

f �∈ Id∗2(G(A)), for some tableau Tλ. �
The skew analogue of Lemma 2 is the following.

Lemma 3. Let A = Ā + J be a finite dimensional algebra with superinvolution.
Suppose that dim(Ā)+1 = p1 > 0 and let s > 0 be such that Js = 0. Let

f(Z+
1 , . . . , Z+

r , X ′) �∈ Id∗2(G(A))

be a multilinear polynomial with r ≥ 1, such that

1) f is symmetric on each set Z+
i with |Z+

i | = p1, 1 ≤ i ≤ r;
2) X ′ contains a set Z0 of s symmetric variables of homogeneous degree one.

Then there exists a partition μ ≥ (p1
r) with |μ| − rp1 = s and a tableau Tμ such

that eTμf �∈ Id∗2(G(A)) where eTμ acts on the set Z+
1 ∪ · · · ∪ Z+

r ∪ Z0.
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Proof. We consider the action of Sp1r+s on the variables of the set Z+
1 ∪· · ·∪Z+

r ∪Z0.
and the left Sp1r+s-module M = FSp1r+sf. As in the previous lemma there exists
a partition μ = (μ1, . . . , μt) � p1r+ s and a tableau Tμ such that eTμ �∈ Id∗2(G(A)).

Let μ′ = (μ′
1, . . . , μ

′
u) be the conjugate partition of μ, and suppose that μ′ > r+s.

Then the polynomial C−
Tμ
f ′ is alternating on at least r + s+ 1 variables of the set

Z+
1 ∪ · · · ∪Z+

r ∪Z0 corresponding to the first column of μ. Since f is symmetric on
each of the r sets Z+

i , we get that C−
Tμ
f is symmetric and alternating on at least

two variables. Hence C−
Tμ
f = 0 and, so, eTμf = 0, a contradiction. Thus μ′ ≤ r+s.

Suppose now that μ′
p1+1 + · · · , μ′

u ≥ s. Since the polynomial eTμ
f is symmetric

on disjoint sets of variables corresponding to the rows of μ, the polynomial eTμ f̃ is

alternating on the same sets of variables. Since eTμ f̃ �∈ Ids(A) and p1 = dim(Ā)+1 ,
in order to get a non-zero evaluation, we must substitute at most p1 elements from
a basis of (Ā)+1 in each alternating set, and the remaining variables from J+

1 .
It follows that if there are at least s boxes below the first p1 rows of μ′, then

eTμ f̃ ∈ Ids(A), since Js = 0. But then by Lemma 1 eTμf = eTμ

˜̃
f ∈ Id∗2(G(A)), a

contradiction.
We have proved that μ′

1 ≤ r + s and μ′
p1+1 + . . .+ μu < s. Thus μ ≥ (p1

r) and
eTμf �∈ Id∗2(G(A)), for some partition μ. �

Remark 1. It is clear that if dim(Ā)−0 = q0 > 0, then Lemma 2 has an analogue:
if f(Z+

1 , . . . , Z+
r , X ′′) �∈ Id∗2(G(A)), then eTμf �∈ Id∗2(G(A)) where f has the analo-

gous alternating properties as in that lemma and λ ≥ (rq0). Similarly, if dim(Ā)−1 =
q1 > 0, Lemma 3 has a corresponding analogue: if f(Z−

1 , . . . , Z−
r , X ′′′) �∈ Id∗2(G(A)),

then eTμf �∈ Id∗2(G(A)) where f has the analogous symmetric properties as in that
Lemma 3 and λ ≥ (qr1).

The previous two lemmas and Remark 1 imply the following.

Remark 2. Since the symmetric groups of the previous two lemmas and Remark
1 act on disjoint sets of variables, we can put together the above constructions.
Hence, for instance, if p0, q0, p1, q1 are all non-zero we have the following: let

f(Y +
(r1)

, Y +
(r2)

, Z+
(r3)

, Z−
(r4)

, X ′) �∈ Id∗2(G(A))

be a multilinear polynomial with ri ≥ 1, 1 ≤ i ≤ 4, and suppose that

1) f is alternating on each of the sets Y +
i and Y −

j , 1 ≤ i ≤ r1, 1 ≤ j ≤ r2,

2) f is symmetric on each of the set Z+
i and Z−

j , 1 ≤ i ≤ r3, 1 ≤ j ≤ r4,

3) |Y +
i | = dim(Ā0)

+ = p0, |Y −
i | = dim(Ā0)

− = q0, |Z+
i | = dim(Ā1)

+ = p1,
|Z−

i | = dim(Ā1)
− = q1,

3) X ′ contains four disjoint sets of order s, and of these sets two are of symmet-
ric variables of different homogeneous degree and two are of skew variables
of different homogeneous degree.

Then there exist partitions, λ(1) ≥ (rp0

1 ), λ(2) ≥ (rq02 ), λ(3) ≥ (pr31 ), λ(4) ≥ (qr41 )
with |λ(1)| − r1p0 = |λ(2)| − r2q0 = |λ(3)| − r3p0 = |λ(4)| − r4q1 = s such that∏4

i=1 eTλ(i)
f �∈ Id∗2(G(A)), for suitable tableaux Tλ(i), 1 ≤ i ≤ 4.

6. Simple algebras with superinvolution

We recall the classification of the finite dimensional simple algebras with super-
involution over an algebraically closed field F of charateristic 0 (see [5]).
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First, if A is a finite dimensional simple superalgebra over F , then it is well
known (see [20, Section 3]) that either A ∼= Mn(F ), n ≥ 1 or A ∼= Mn,m(F ) or
A ∼= Mn(F )⊕ cMn(F ), with c2 = 1.

Here Mn,m(F ) is the algebra of (n+m)× (n+m) matrices with Z2-grading

Mn,m(F )0 = {
(

A 0
0 B

)
| A ∈ Mn(F ), B ∈ Mm(F )},

Mn,m(F )1 = {
(

0 C
D 0

)
| C = n×m matrix, D = m× n matrix},

and Mn(F )⊕cMn(F ) = A has a Z2-grading such that A0 = Mn(F ), A1 = cMn(F ).
Now let A be a finite dimensional algebra with superinvolution. Then, according

to [5], either

1) A ∼= Mn,m(F ) with orthosymplectic or transpose involution, or
2) Mn,m(F )⊕ cMn,m(F )osp with exchange involution, or
3) A = Q(n) ⊕ Q(n)osp with exchange involution, where Q(n) = Mn(F ) ⊕

cMn(F ).

Recall that Mn,m(F ) has an orthosymplectic involution osp if and only if m = 2s
is even and osp in defined as follows(

X Y
Z T

)osp

=

(
In 0
0 P

)−1 (
X −Y
Z T

)t (
In 0
0 P

)

where X ∈ Mn(F ), T ∈ M2s(F ), In is the identity n×n matrix, Y and Z are rectan-

gular matrices of suitable size, t is the transpose involution and P =

(
0 Is

−Is 0

)
∈

M2s(F ).
Also, Mn,m(F ) has a transpose superinvolution trp if n = m and trp is defined

as follows (
X Y
Z T

)trp

=

(
T t −Y t

Zt Xt

)

where X,Y, Z, T ∈ Mn(F ).
Finally we remind the reader that if A = A0 ⊕ A1 is a superalgebra then the

superopposite algebra Asop of A is the algebra A with the same underlying vector
space and a new multiplication ◦ defined on homogeneous elements as follows:
a ◦ b = (−1)|a||b|ba; here |a| is the homogeneous degree of a.

Lemma 4. Let A be a finite dimensional simple algebra with superinvolution over
an algebraically closed field. Then, for every t ≥ 1 there exists a multilinear poly-
nomial

f(Y +
1 , . . . , Y +

2t , Y
−
1 , . . . , Y −

2t , Z
+
1 , . . . , Z+

2t, Z
−
1 , . . . , Z−

2t)

which is alternating on each of the sets Y +
i , Y +

i , Z+
i , Z−

i , where |Y +
i | = dimA+

0 , |Y −
i | =

dimA−
0 , |Z+

i | = dimA+
1 , |Z−

i | = dimA−
1 , 1 ≤ i ≤ 2t. Moreover f is a central poly-

nomial that takes an invertible value in A.

Proof. Let gn(x1, . . . , xn2 , y1, . . . , yn2) be the central polynomial of Regev forMn(F )
(see [16, Theorem 5.7.4] or [9]). Recall that gn is alternating on each of the two

sets of variables {x1, . . . , xn2} and {y1, . . . , yn2}. Let f (t)
n be the product of t copies

of gn on disjoint sets of variables. Then f
(t)
n is alternating on 2t sets of variables

each of order n2 and f
(t)
n takes a non-zero central value in Mn(F ).
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Now let A be a finite dimensional simple algebra with superinvolution and sup-
pose first that A ∼= Mn,m(F ) with orthosymplectic or transpose superinvolution.

Then the polynomial f
(t)
n+m is alternating on 2t sets each of cardinality (n + m)2;

since dimA+
0 +dimA−

0 +dimA+
1 +dimA−

1 = (n+m)2, each set can be partitioned

into four sets of the type Y +
i ∪ Y −

i ∪ Z+
i ∪ Z−

i , and f
(t)
n+m is alternating on each of

the four sets separately. Hence f
(t)
n+m is the desired polynomial.

Next suppose that A ∼= Mn,m(F )⊕ cMn,m(F )sop with exchange involution. For
such algebra A+ = {(a, a) | a ∈ Mn,m(F )} and A− = {(a,−a) | a ∈ Mn,m(F )}.
Then we take g

(t)
1 to be f

(t)
n+m on symmetric variables and g

(t)
2 to be f

(t)
n+m on skew

variables. Since A+ = A+
0 ⊕ A+

1 and A− = A−
0 ⊕ A−

1 , it turns out that g
(t)
1 g

(t)
2 is

the desired polynomial.
Now let A = Q(n)⊕Q(n)sop with exchange involution, where Q(n) = Mn(F )⊕

cMn(F ). Since A+ = {(a, a) | a ∈ Q(n)} and A− = {(a,−a) | a ∈ Q(n)}, we
consider g(t) = f

(t)
n ·cf (t)

n , which is a central polynomial for Q(n). Then we consider

g
(t)
1 = g(t) on symmetric variables of A and g

(t)
2 = g(t) on skew variables of A. It

follows that g
(t)
1 g

(t)
2 is the desired polynomial. �

7. Reduced algebras

The aim of this section is to construct multilinear polynomials corresponding to
hook shaped diagrams of suitable size, which are not ∗-identities of G(A), in case
A is a reduced algebra (see Definition 2).

We start by recalling two basic facts about the degrees of Sn-characters.
Il λ � n, we shall denote by dλ = χλ(1). the degree of the corresponding Sn-

character. χλ. Then we have the following easy fact.

Remark 3. ([16, Lemma 6.2.4]) Let λ � n and μ ≤ λ. If |λ| − |μ| = k, then
dλ ≥ n−2kdμ.

Next we recall the following definition.

Definition 3. For any integers k, l, t ≥ 0, we let h(k, l, t) be the hook shaped
diagram h(k, l, t) = ((l + t)k, lt).

The asymptotics of dh(k, l, t) are given in the following ([16, Lemma 6.2.5]).

Lemma 5. Let k, l ≥ 0 be fixed integers. If h(k, l, t) � n, then

dh(k,l,t) �n→∞ Cnr(k + l)n,

for some constants C, r.

Lemma 6. Let A = Ā + J be a finite dimensional reduced algebra with superin-
volution over an algebraically closed field F. Let dim(Ā)+0 = p0, dim(Ā)−0 = q0,
dim(Ā)+1 = p1, dim(Ā)−1 = q1. Then, for every t ≥ 1 there exists a multilinear
polynomial

f = f(Y +
1 , . . . , Y +

2t , Y
−
1 , . . . , Y −

2t , Z
+
1 , . . . , Z+

2t, Z
−
1 , . . . , Z−

2t, X̄)

where |Y +
i | = p0, |Y −

i | = q0, |Z+
i | = p1, |Y −

i | = q1 such that

1) f is alternating on each of the sets Y +
i , Y −

i , Z+
i , Z−

i , 1 ≤ i ≤ 2t;
2) X̄ is a set of k − 1 of homogeneous symmetric variables, where k is the

number of simple summands of Ā;
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3) f �∈ Ids(A).

Proof. Let Ā = A1 ⊕ · · · ⊕ Ak where each Ai is a simple algebra with superinvo-
lution. For each i, 1 ≤ i ≤ k, write Ai = (Ai)

−
0 ⊕ (Ai)

+
0 ⊕ (Ai)

+
1 ⊕ (Ai)

−
1 and

let p0i = dim(Ai)
+
0 , q0i = dim(Ai)

+
0 , p1i = dim(Ai)

+
1 , q1i = dim(Ai)

−
1 . Let fi =

fi(Y
+
i,1, . . . , Y

+
i,2t, Y

−
i,1, . . . , Y

−
i,2t, Z

+
i,1, . . . , Z

+
i,2t, Z

−
i,1, . . . , Z

−
i,2t) be the polynomial con-

structed in Lemma 4 which is alternating on each of the sets Y +
i,j , Y

+
i,j , Z

+
i,j , Z

−
i,j and

takes a central invertible value on Ai. Recall that |Y +
i,j | = p0i, |Y −

i,j | = q0i, |Z+
i,j | =

p1i, |Z−
i,j | = q1i, for all 1 ≤ j ≤ 2t. Now since A is reduced, A1JA2J · · · JAk �= 0,

and let ai ∈ Ai, 1 ≤ i ≤ k, ju ∈ J, 1 ≤ u ≤ k − 1 such that

a1j1a2j2 · · · jk−1ak �= 0.

We may clearly assume that each element ai and ji is homogeneous and either
symmetric or skew. Define a new polynomial

f = f1x1f2x2 · · ·xk−1fk,

where xi is a symmetric variable of the same homogeneous degree as aijiai+1, 1 ≤
i ≤ k − 1.

Let ϕ be an evaluation of f such that ϕ(fi) = ei, where ei is the unit element of
Ai, 1 ≤ i ≤ k− 1; also ϕ(xi) = aijiai+1 ± ai+1jiai, for 1 ≤ i ≤ k− 1, where we take
the plus or minus sign so that the resulting element is symmetric. Then we get

ϕ(f) = e1(a1j1a2 ± a2j1a1)e2 · · · (ak−1jk−1ak ± akjk−1ak−1)ek

= e1a1j1a2e2 · · · ak−1jk−1akek = a1j1a2 · · · ak−1jk−1ak �= 0.

Notice that here we are using the fact that eiai+1 ∈ AiAi+1 = 0.
Next we define new sets, for 1 ≤ i ≤ 2t :

Y +
i = Y +

1,i ∪ · · · ∪ Y +
k,i,

Y −
i = Y −

1,i ∪ · · · ∪ Y −
k,i,

Z+
i = Z+

1,i ∪ · · · ∪ Z+
k,i,

Z+
i = Z+

1,i ∪ · · · ∪ Z+
k,i.

Let AltXi be the operator of alternation on the set Xi. Recall that Alt is defined
on a multilinear polynomial f(x1, . . . , xn) as follows:

Alt{x1,...,xr}f(x1, . . . , xr, xr+1, . . . , xn) =
∑
σ∈Sr

(sgnσ)f(xσ(1), . . . , xσ(r), xr+1, . . . , xn).

Define a new polynomial

f ′ =
2t∏
i=1

AltY +
i
AltY −

i
AltZ+

i
AltZ−

i
f(Y +

1 , . . . , Y +
2t , Y

−
1 ,

. . . , Y −
2t , Z

+
1 , . . . , Z+

2t, Z
−
1 , . . . , Z−

2t).

Notice that for 1 ≤ i ≤ 2t, |Y +
i | = |Y +

1,i| + · · · + |Y +
k,i| = p01 + · · · + p0k = p0

and similarly |Y −
i | = q0, |Z+

i | = p1, |Z−
i | = q1. Now, since each polynomial fi is

already alternating in each of the sets Y +
i,j , Y

−
i,j , Z

+
i,j , Z

−
i,j , 1 ≤ j ≤ 2t, and AiAj = 0

for i �= j, it follows that under the evaluation ϕ we have that

ϕ(f ′) =
k∏

1=i

p0i!q0i!p1i!q1i!ϕ(f) �= 0,
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and hence f ′ does not vanish on A. Thus f ′ satisfies the conclusion of the lemma.
�

Corollary 1. Let f be the polynomial constructed in the previous lemma, f �∈
Ids(A). Then there exists a polynomial f ′ �∈ Ids(A) which is multialternating on the
same sets of variables as f and f ′ has 4 extra sets of variables X(p0) ⊆ Y +, X(p1) ⊆
Y −, X(q0) ⊆ Z+, X(q1) ⊆ Z− such that |X(i)| = 2m, if i �= 0 and |X(i)| = ∅
otherwise.

Proof. We start with the polynomial f constructed in the previous lemma and we
recall that there is an evaluation ϕ on A such that ϕ(f) = αe1j1e2j2 · · · jk−1ek �=
0, where α ∈ F, ei is the identity element of Ai and ji ∈ J is a homogeneous
symmetric element, 1 ≤ i ≤ k. Such evaluation coincides up to a scalar with the
evaluation of the polynomial f1x1f2x2 · · ·xk−1fk where fi is a central polynomial
for Ai constructed in Lemma 4.

We shall show how to insert in f, 2m skew variables of homogeneous degree zero,
provided q0 = dimA−

0 > 0. The insertion of the other sets of variables is similar.
Hence suppose that q0 = dimA−

0 > 0. Then there exists a simple algebra with
superinvolution, say Al such that dimA−

l > 0. Now, e1j1 · · · jk−1ek �= 0 says that
there exists a matrix unit a ∈ Al such that e1j1 · · · jl−1ajlel+1 · · · jk−1ek �= 0.

Now recalling the classification of the finite dimensional simple algebras with
involution, one can choose 2m elements of homogeneous degree zero a1, . . . , a2m,
taken from a standard basis of Al, such that aa1 · · · a2m = a. But then the polyno-
mial

f1x1 · · · fl−1xl−1flxk+1 · · ·x2m+kfl+1xl+1 · · ·xk−1fk

has a nonzero evaluation in A and has the required 2m extra skew variables of
homogeneous degree zero. �

Lemma 7. Let A = Ā+ J be a reduced algebra with superinvolution over an alge-
braically closed field F. Let dimA = m, dim(Ā)−0 = q0, dim(Ā)+1 = p1, dim(Ā)−1 =
q1. Then, for any t ≥ 1, there exist partitions

λ � 2t(p0 + p1) + 4m, μ � 2t(q0 + q1) + 4m

such that

h(p0, p1, 2t− 2m) ≤ λ ≤ h(p0 + 2m, p1 + 2m, 2t+ 2m)

h(q0, q1, 2t− 2m) ≤ μ ≤ h(q0 + 2m, q1 + 2m, 2t+ 2m),

and tableaux Tλ, Tμ with the following properties. If we let eTλ
act on symmetric

variables and eTμ on skew variables, then eTλ
eTμf �∈ Id∗(G(A)), for some multilin-

ear polynomial f with deg f = 2t(dim Ā) + 8m.

Proof. Let f be the polynomial constructed in the previous corollary. Recall that

f = f(Y +
(2t), Y

−
(2t), Z

+
(2t), Z

−
(2t), X

(p0), X(p1), X(q0), X(q1))

is a multilinear polynomial alternating on each of the sets of Y +
(2t)∪Y −

(2t)∪Z+
(2t)∪Z−

(2t)

and |X(i)| = 2m if i �= 0 and X(i) = ∅ otherwise. Moreover f �∈ Ids(A).

By the property of the map ∼ , the polynomial f̃ is alternating on each of the
sets of Y +

(2t) ∪ Y −
(2t) and symmetric on each of the sets of Z+

(2t) ∪ Z−
(2t); moreover
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f̃ �∈ Id∗2(G(A)). The polynomial f̃ satisfies the hypothesis of Remark 2. Hence
there exist partitions

λ(1) ≥ ((2t)p0), λ(2) ≥ ((2t)q0), λ(3) ≥ (p2t1 ), λ(4) ≥ (q2t1 )

with

|λ(1)| − 2tp0 = |λ(2)| − 2tq0 = |λ(3)| − 2tp1 = |λ(4)| − 2tq1 = 2m,

and tableaux Tλ(i), 1 ≤ i ≤ 4, such that
∏4

i=1 eTλ(i)
f̃ �∈ Id∗2(G(A)).

Let the symmetric groups S2tp0+2m, S2tq0+2m, S2tp1+2m, S2tq1+2m act on the poly-

nomial g =
∏4

i=1 eTλ(i)
f̃ by permuting the variables corresponding to the tableaux

Tλ(i), 1 ≤ i ≤ 4, respectively. Let M be the S2tp0+2m × S2tq0+2m × S2tp1+2m ×
S2tq1+2m-module generated by the polynomial g. If M̄ is the induced module

M̄ = M ↑S2t(p0+p1)+4m×S2t(q0+q1)+4m ,

then, since M �⊆ Id∗2(G(A)), then also M̄ �∈ Id∗2(G(A)). We decompose M̄ into
irreducible modules M̄ = M̄1 ⊕ · · · ⊕ M̄r and since M̄ �⊆ Id∗2(G(A)), we have that
M̄i �⊆ Id∗2(G(A)), for some i. Now by the Littlewood-Richardson rule (see [19]), M̄i

is associated to a pair of partitions λ � 2t(p0+ p1)+4m, μ � 2t(q0+ q1)+4m such
that

h(p0, p1, 2t− r) ≤ λ ≤ h(p0 + 2m, p1 + 2m, 2t+ 2m),

and
h(q0, q1, 2t− s) ≤ μ ≤ h(q0 + 2m, q1 + 2m, 2t+ 2m),

where r = max{p0, p1} and s = max{q0, q1}. Clearly λ ≥ h(p0, p1, 2t − 2m) and
μ ≥ h(q0, q1, 2t − 2m). Now, since M̄i �⊆ Id∗2(G(A)), there exists a multilinear
polynomial g′ and tableaux Tλ and Tμ such that eTλ

eTμg
′ �∈ Id∗2(G(A)).

If we consider the variables appearing in eTλ
eTμg

′ as symmetric ungraded or skew
ungraded variables, we get that eTλ

eTμg
′ in these new variables is not a ∗-identity

for G(A)), i.e., eTλ
eTμg

′ �∈ Id∗(G(A)). �

8. The lower bound

Lemma 8. Let A be a finite dimensional algebra with superinvolution over an
algebraically closed field F . Then there exist constants C > 0, r such that

c∗n(G(A)) ≤ Cnrdn,

where d is the maximal dimension of an admissible subalgebra of A.

Proof. Let A = Ā+J where Ā = A1⊕· · ·⊕Ar is a maximal semisimple subalgebra
with superinvolution and the Ai’s are simple algebras with superinvolution. Recall
that by Definition 2, if C is an admissible subalgebra of A, then B = C + J is a
reduced algebra. Hence, since c∗n(G(A)) ≥ c∗n(G(B)), for all n ≥ 1, in order to prove
the lemma we may clearly assume that A is a reduced algebra with dim Ā = d.

Let m = dimA and set p0 = dim(Ā0)
+, q0 = dim(Ā0)

−, p1 = dim(Ā1)
+, q1 =

dim(Ā1)
−. Hence d = p0 + q0 + p1 + q1.

Take n ≥ 8m any integer, and divide n− 8m by d. So we write n = 2td+ 8m+
r, with 0 ≤ r ≤ 2d. Let f be the polynomial constructed in Lemma 7. Hence
eTλ

eTμf �∈ Id∗(G(A)), for suitable tableaux Tλ, Tμ where

λ ≥ h(p0, p1, 2t− 2m), μ ≥ h(q0, q1, 2t− 2m)).

Moreover deg f = 2td+ 8m. We compute n− deg f = 2td+ 8m+ r − 2td− 8m =
r ≤ 2d. Thus n− deg f = s is a constant that does not depend on t.
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Let g′ = eTλ
eTμfxs+1 · · ·xn, where xs+1 · · ·xn are symmetric variables distinct

from the ones appearing in f. Recalling the construction of f, it is readily seen
that still g′ �∈ Id∗(G(A)). Now, by the branching rule we add n − s boxes to the
diagrams of λ and μ In this way we obtain partitions

λ̂ � n1 ≥ |λ| ≥ |h(p0, p1, 2t− 2m)|,

μ̂ � n2 ≥ |μ| ≥ |h(q0, q1, 2t− 2m)|
and a polynomial g′′ such that eTλ̂

eTμ̂
g′′ �∈ Id∗(G(A)). Here n1 and n2 count the

number of symmetric and skew variables appearing in the polynomial g′.
Notice that

n− |h(p0, p1, 2t− 2m)| − |h(q0, q1, 2t− 2m)|

= 2td+ 8m+ r − (p0 + p1)(2t− 2m)− p0p1 − (q0 + q1)(2t− 2m)− q0q1

≤ 8m+ 2d− 2dm− p0p1 − q0q1,

a constant that does not depend on t.
It follows that n1 − |h(p0, p1, 2t− 2m)| and n2 − |h(q0, q1, 2t− 2m)| are also con-

stant. Thus by Remark 3, dλ̂ ≥ n−2k
1 dh(p0,p1,2t−2m) and dμ̂ ≥ n−2k

2 dh(q0,q1,2t−2m),
for some constant k. It follows that

cn1,n2(G(A)) ≥ c∗n1,n2
(G(B)) ≥ dλ̂dμ̂

≥ (n1n2)
−2kdh(p0,p1,2t−2m)dh(q0,q1,2t−2m)

≥ (n1n2)
r(p0 + p1)

2t(p0+p1)(q0 + q1)
2t(q0+q1) = (n1n2)

rp2tpq2tq,

where

|h(p0, p1, 2t− 2m)| = (p0 + p1)
2t − (p0 + p1)2m+ p0p1,

and similarly for h(q0, q1, 2t−2m). In the above inequalities we have applied Lemma
6 which gives the asymptotics for the hooks.

Next we compute c∗n(G(A)) (recall the connection between c∗n and cn1,n2 given

at the end of Section 2). Recalling Stirling formula n! � √
2πn(ne )

n, we get

n!

n1!n2!
≥ (2tp+ 2tq)!

(2tp)!(2tq)!
�

√
2π(2tp+ 2tq)√
16π2t2pq

(2tp+ 2tq)2tp+2tq

(2tp)2tp(2tq)2tq

=
C(p+ q)2t(p+q)

p2tpq2tq
,

for some constant C > 0. Hence

c∗n(G(A)) ≥
(

n

n1, n2

)
cn1,n2(G(A)) ≥ C(n1n1)

rp2tpq2tq
(p+ q)2t(p+q)

p2tpq2tq

≥ Cnr(p+ q)2t(p+q) ≥ Cnrd2td ≥ C1n
r′dn,

since n− 2td is constant. �
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9. The upper bound

Let n ≥ 1 and let S be the free supercommutative algebra over F on the count-
able sets T1 and T2 where T1 = {ξi,j |1 ≤ i ≤ n, j ≥ 1} and T2 = {ηi,j |1 ≤ i ≤
n, j ≥ 1} (see [6]). Recall that S is the algebra with 1 generated by T1 ∪ T2 over
F, subject to the conditions that the elements of T1 are central and the elements
of T2 anticommute.

The algebra S has a natural Z2-grading S = S0 ⊕ S1 if we require that the
ξi,j ’s are of homogeneous degree zero and the ηi,j ’s are of homogeneous degree one.
Hence S0 (S1) is the span of all monomials in the elements of T1 ∪ T2 having an
even (odd, resp.) number of ηi,j ’s.

The Grassmann algebra G embeds into S with induced Z2-grading if one iden-
tifies the generating elements e1, e2, . . . of G with the elements of T2. In this em-
bedding G0 is spanned by the monomials in the ηi,j ’s of even length and G1 by
the monomials in the ηi,j ’s of odd length. Hence S ∼= F [ξi,j ]⊗F G. Notice that the
superinvolution of G extends naturally to a superinvolution of S by requiring that
ξ∗i,j = ξi,j for all i, j. And we have that S0 = S+ and S1 = S−.

Now let A = A0⊕A1 be a finite dimensional algebra with superinvolution ∗ and
consider G(A), its Grassmann envelope.

We fix a basis B of A which is the union B = B+
0 ∪ B−

0 ∪ B+
1 ∪ B−

1 of bases of
A+

0 , A
−
0 , A

+
1 , A

−
1 , respectively.

Let B+
0 = {a0,1, . . . , a0,r0},B−

0 = {b0,1, . . . , b0,s0},B+
1 = {a1,1, . . . , a1,r1} and

B−
1 = {b1,1, . . . , b1,s1}. Next we define for i = 1, . . . , n,

(2) ξ+i =

r0∑
j=1

ξi,ja0,j +

s1∑
l=1

ηk,lb1,l,,

(3) ξ−i =

s0∑
j=1

ξi,r0+jb0,j +

r1∑
l=1

ηk,s1+la1,l,.

Let H = F 〈ξ+1 , . . . , ξ+n , ξ−1 , . . . , ξ−n 〉 be the algebra generated by the ξ+i and ξ−i , 1 ≤
i ≤ n, over F. Clearly H ⊆ F [ξi,j ]⊗G⊗A � S⊗A. Moreover, H has an involution
∗ such that ξ+1 , . . . , ξ

+
n are symmetric elements and ξ−1 , . . . , ξ−n are skew elements

(this is easily checked by recalling that the ηk,l are anticommuting variables). Now
recall that the involution on the Grassmann envelope G(A) is such that

G(A)+ = G0 ⊗A+
0 ⊕G1 ⊗A−

1 ,

G(A)− = G0 ⊗A−
0 ⊕G1 ⊗A+

1 .

Hence any element of G(A)+ (G(A)−) can be thought as obtained from ξ+i (ξ−i ,
resp.) by evaluating the variables ξi,j into G0 and the variables ηi,j into G1. It
follows that f(x+

1 . . . , x+
n , x

−
1 . . . , x−

n ) ∈ F 〈X, ∗〉 is a ∗-identity of G(A) if and only
if f(ξ+1 . . . , ξ+n , ξ

−
1 . . . , ξ−n ) = 0. HenceH is the relatively free algebra with involution

in n symmetric generators and n skew generators of the variety of algebras with
involution generated by G(A).

Lemma 9. Let A be a finite dimensional algebra with superinvolution over an
algebraically closed field F . Then there exist constants C, t such that

c∗n(G(A)) ≤ Cntdn,

where d is the maximal dimension of an admissible subalgebra of A.
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Proof. Let H = F 〈ξ+1 , . . . , ξ+n , ξ−1 , . . . , ξ−n 〉, be the relatively free algebra defined
above. Then the n-th ∗-codimension of G(A) is

c∗n(G(A)) = dimF span{ησ(1) · · · ησ(n) | σ ∈ Sn, ηi = ξ+i or ηi = ξ−i , 1 ≤ i ≤ n}.
For a fixed t ≥ 0, let

Pt,m−t = span{ησ(1) · · · ησ(n) | σ ∈ Sn, ηi = ξ+i if 1 ≤ i ≤ t,

and ηi = ξ−i if t+ 1 ≤ i ≤ n}.
Our first aim is to compute an upper bound of dimF Pt,n−t. To this end, take a
monomial ησ(1) · · · ησ(n) ∈ Pt,n−t and, by mean of the definition given in (2) and
(3), write such monomial as a linear combination of products of n elements of the
basis of A with coefficients polynomials in the ξi,j ’s and the ηk,l’s.

Write A = B + J where B is a maximal semisimple subalgebra with superinvo-
lution and J = J(A). Write B = B1 ⊕ · · · ⊕ Bk, a direct sum of simple algebras
with superinvolution. Then we choose our basis B = B+

0 ∪ B−
0 ∪ B+

1 ∪B−
1 in such a

way that each of the four components is made of elements of J and of the simple
algebras Bi. But then, by abuse of notation, since each variable ξi,j or ηk,l in (1)
and (2) is attached to a basis element, we shall say that ξi,j or ηk,l is a radical
variable or a semisimple variable.

Notice that if Ju+1 = 0, then clearly each non-zero monomial contains at most
u radical variables and n− i semisimple variables with i ≤ u.

Let us fix a distribution of the radical variables in a non-zero monomial of Pt,n−t.
For this fixed distribution the semisimple variables must come either from a simple
component or from distinct simple components of (i1, . . . , iv). This means that
D = Bi1 ⊕ · · · ⊕Biv ⊆ B is an admissible subalgebra of B.

Now let D be an admissible subalgebra of B and let d1 = |B+
0 ∩D|, d2 = |B+

1 ∩
D|, d3 = |B−

0 ∩D| and d4 = |B−
1 ∩D|. Hence d1+d2 = dimD+ and d3+d4 = dimD−.

Now, each monomial has t coefficients taken in the set {ξi,j |1 ≤ i ≤ t, 1 ≤ j ≤
r0} ∪ {ηk,l|1 ≤ k ≤ t, 1 ≤ l ≤ s1} and n − t taken in the set {ξi,j | t + 1 ≤ i ≤
n, r0 + 1 ≤ j ≤ r0 + s} ∪ {ηk,l| t+ 1 ≤ k ≤ n, s1 + 1 ≤ l ≤ s1 + r1}. Moreover the
number of possible distributions of i radical variables for i = 1, . . . , u, is bounded by
C1n

u, for some constant C1. Therefore in all we get ≤ C2n
u(d1 + d2)

t(d3 + d4)
n−t

possible monomials, with C2 a constant. Thus an upper bound for the monomials
coming from an admissible subalgebra D is

C2n
u(dimD+)t(dimD−)n−t.

Now, if M is the number of admissible subalgebras of B and E is an admissible
subalgebra of maximal dimension, then an upper bound for the number of possible
non-zero monomials is MC2n

u(dimE+)t(dimE−)n−t. Taking into account that we
rewrote any product of n basis elements of A as a linear combination of basis
elements, we get that

dimF Pt,n−t ≤ C3n
u(dimE+)t(dimE−)n−t,

where C3 is a constant. The connection between c∗n(G(A)) and dimPt,n−t, 0 ≤ t ≤
n, is given in (1), and we have

c∗n(G(A)) =
n∑

t=0

(
n

t

)
dimPt,n−t
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≤ C3n
u

n∑
t=0

(
n

t

)
(dimE+)t(dimE−)n−t = C3n

udn,

where d = dimE+ + dimE− = dimE. �

10. The main theorem

Putting together the results of the previous sections we get.

Theorem 3. Let A be a finite dimensional superalgebra with superinvolution over
an algebraically closed field of characteristic zero. If ∗ is the induced involution
on the Grassmann envelope G(A), then there exist constants C1 > 0, C2, t1, t2 such
that

C1n
t1dn ≤ c∗n(G(A)) ≤ C2n

t2dn.

where d is the maximal dimension of an admissible subalgebra of A.

Recalling that codimensions do not change by extending the base field, by The-
orem 1 we have the following.

Theorem 4. Let A be a PI-algebra with involution ∗ over a field of characteristic
zero. Then there exist constants C1 > 0, C2, t1, t2 such that

C1n
t1dn ≤ c∗n(A) ≤ C2n

t2dn.

Hence limn→∞ n
√
c∗n(A) = exp∗(A), the ∗-exponent of A, exists and is an integer.
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